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Abstract. TheanalogoftheprincipalSOð3Þ subalgebraofa¢nite-dimensional simpleLie algebra
can be de¢ned for any hyperbolic Kac^Moody algebra gðAÞ associated with a symmetrizable
Cartan matrix A, and coincides with the non-compact algebra SOð1; 2Þ. We exhibit the
decomposition of gðAÞ into representations of SOð1; 2Þ. With the exception of the adjoint
SOð1; 2Þ algebra itself, all of these representations are unitary. We compute the Casimir
eigenvalues; the associated ‘exponents’ are complex and noninteger.
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1. Introduction

Over the past years it has become clear that in¢nite-dimensional Lie algebras [1,2]
play an increasingly important role in modern theoretical physics, and string theory
in particular. The close links between string vertex operators and Kac^Moody
algebras are well known [3^5]. In particular, there has been mounting evidence
that Kac^Moody algebras of inde¢nite type and generalized Kac^Moody
(Borcherds) algebras might appear in the guise of duality symmetries in string
and M theory.
Within the context of gravity and supergravity, indications of a more concrete

realization of inde¢nite, and especially hyperbolic, Kac^Moody algebras have
emerged very recently from results concerning the generic behavior of solutions
of Einstein’s ¢eld equations near a spacelike cosmological singularity (see [6,7]
and references therein). More speci¢cally, the diagonal gravitational metric degrees
of freedom can be identi¢ed with the Cartan subalgebra of some underlying inde¢-
nite Kac^Moody algebra, such that the resulting dynamics is elegantly described
as a massless, relativistic, perfectly elastic billiard moving linearly within the
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associated fundamental Weyl chamber and bouncing off its walls. The presence of
chaotic oscillations in this motion then becomes correlated to the hyperbolicity
of this algebra.
Possibly not unrelated is the fact that Kac^Moody algebras have also appeared in

Toda ¢eld theories (see [8,9] and references therein). Hyperbolic Toda theories were
considered in [10]. Like the Toda theories based on ¢nite-dimensional Lie algebras,
and in contradistinction to the af¢ne Toda theories, they are conformally invariant
due to the existence of a Weyl vector for the ¢nite and hyperbolic cases. As also
shown in [10], a special feature of the strictly hyperbolic Toda theories is the absence
of higher-order (spin 2 and above) local conserved charges, indicating the
nonintegrability of these models.
As is well known, [1,2] every Kac^Moody algebra is de¢ned in terms of a

Cartan matrix Aij (1 � i; j � r) satisfying the properties listed on page 1 of [1],
and a set of generating elements fei; fi; hig subject to a set of generating relations
(Chevalley^Serre presentation). The algebra itself can always be represented in
the form

gðAÞ ¼ n� � h� nþ; ð1Þ

where h is the Cartan subalgebra (whose dimension equals the rank r), and where n�
and nþ are the triangular subalgebras consisting of the independent multiple
commutators of the ei’s and fi’s, respectively. The most interesting (and least known)
algebras are the ones associated with inde¢nite and nondegenerate Cartan matrices.
Among them, hyperbolic Kac^Moody algebras are distinguished by the extra
requirement that the deletion of any node from the Dynkin diagram leaves a
subalgebra which is either af¢ne or ¢nite. Unfortunately, beyond the usual
‘Dynkinology’, they remain shrouded in mystery. Root multiplicities are known
in closed form only for levels j‘j � 2 [11,12], and in implicit form also for
‘ ¼ �3 [13]. While the Lie algebra elements at levels 0 and �1 are completely
under control, explicit representations of the root space elements beyond low
levels have been worked out only for a few examples and exhibit an exceedingly
complicated structure [14,15]. Especially in view of their conjectured applications,
understanding the structure of hyperbolic Kac^Moody algebras remains a major
challenge.
In this Letter we take a step in this direction by generalizing a tool that has proved

to be of great use in the study of ¢nite-dimensional simple Lie groups, namely the
concept of the principal SOð3Þ subgroup [17] (its Lie algebra is distinguished amongst
all those SOð3Þ subalgebras in the complete classi¢cation of [18] by being maximal*).
The generalization of this concept to hyperbolic Kac^Moody algebras rests on the
fact that, among the set of all Cartan matrices, the ¢nite and hyperbolic ones
are singled out by the property that the entries of the associated inverse Cartan

*For an early application of this classification in physics, see [19]; embeddings of the special
superalgebra OSpð1j2Þ into larger superalgebras were studied in [20].
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matrix have a de¢nite sign, i.e. for all i; j 2 f1; . . . ; rg

A�1
ij 
 0 for finite Cartan matrices;

A�1
ij � 0 for hyperbolic Cartan matrices:

ð2Þ

For de¢niteness and simplicity of notation, only symmetric Cartan matrices, A, are
considered, and the real roots are assumed to have length

ffiffiffi
2

p
; however, the extension

of our results to the nonsimply laced algebras based on symmetrizable Cartan
matrices is straightforward. The second inequality in (2) above follows from
A�1

ij ¼ Li �Lj, and the fact that the fundamental weights Li all lie in the forward
lightcone for hyperbolic Kac^Moody algebras.
The above properties have no analogue for af¢ne Cartan matrices (which by de¢-

nition are not invertible), and in general will also fail for nondegenerate inde¢nite
Cartan matrices, where the entries of A�1 can assume both signs. We believe that
we have thus found another indication of the privileged status enjoyed by the
hyperbolic algebras among the inde¢nite Kac^Moody algebras.
The main new insight of the present work is that, due to the relative switch in sign

between ¢nite and hyperbolic Cartan matricesA in (2), the compact SOð3Þ associated
with a ¢nite-dimensional Lie group is replaced by the noncompact group SOð1; 2Þ for
hyperbolic Kac^Moody algebras. With the exception of the adjoint representation,
the ¢nite-dimensional representations of SOð3Þ are accordingly replaced by
in¢nite-dimensional ones. We will exhibit the basic features arising when the algebra
gðAÞ is decomposed into representations of SOð1; 2Þ. The fact that the ‘exponents’ of
gðAÞ now come out to be complex and irrational is presumably related to the fact that
hyperbolic Kac^Moody algebras do not admit any polynomial Casimir invariants
other than the quadratic Casimir^Kac operator [16].

2. The Principal SO(3) Subalgebra of a Finite Kac^Moody Algebra

This algebra exists for every Kac^Moody algebra de¢ned by a positive de¢nite
Cartan matrix Aij (it is a standard result that the positive de¢niteness of A implies
that gðAÞ is ¢nite-dimensional [1,2]). It is constructed by means of the Weyl vector
r, which is de¢ned to obey r�ai ¼ 1 for all simple roots ai. An explicit formula
is r ¼

P
j Lj where Lj are the fundamental weights satisfying ai �Lj ¼ dij. The diag-

onal generator of the principal SOð3Þ is de¢ned by*

J3:¼ r�H ¼) ½J3;Ea� ¼ htðaÞEa; ð3Þ

where htðaÞ denotes the height of the root a and Ea the generator(s) associated with
the root a. Then, since the number of simple roots equals the dimension of the Cartan
subalgebra, r, there always exist linear combinations of the step operators for the

*See [5] for our notations and conventions.
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simple roots Eai and E�ai

Jþ ¼
X

niEai ; J� ¼
X

niE�ai ð4Þ

such that

½J3; J�� ¼ �J�; ½Jþ; J�� ¼ J3: ð5Þ

With respect to the principal SOð3Þ algebra, the Lie algebra gðAÞ decomposes into r
irreducible representations of spin sj

gðAÞ ¼
Mr

j¼1

gðsj Þ; ð6Þ

where gðsjÞ carries the ð2sj þ 1Þ-dimensional irreducible representation of SOð3Þ, and
the r ‘spins’ sj are known as the exponents of gðAÞ. In particular, gð0Þ is empty, while
the adjoint representation gð1Þ is just the principal SOð3Þ subalgebra itself. Thus,
the smallest exponent is always s1 ¼ 1. The importance of the principal SOð3Þ is
due to the fact that the exponents sj contain essential information about the Lie
group. For instance, the orders of the invariant Casimir operators are given by
the numbers sj þ 1; thus, the representation s1¼1 is always associated with the
quadratic Casimir invariant. Furthermore, the group (co)homology is speci¢ed
by the Poincare¤ polynomial

Q
jð1� x2sjþ1Þ [17].

It is straightforward to re-express the SOð3Þ generators directly in terms of the
Chevalley basis ei � Eai ; fi � E�ai and hi � ai �H. Using Li ¼

P
j A

�1
ij aj in (3) we

readily obtain

J3 ¼
X
j

pjhj; Jþ ¼
X
j

njej; J� ¼
X
j

njfj; ð7Þ

where

pi:¼
X
j

A�1
ij > 0; ni:¼

ffiffiffiffi
pi

p
: ð8Þ

The strict positivity of pi for all i follows from (2) and the nondegeneracy of Aij . The
SOð3Þ algebra can now be directly veri¢ed from the standard Chevalley^Serre
presentation.

3. The Principal SO(1,2) Subalgebra of a Hyperbolic Kac^Moody Algebra

Because the Weyl vector exists also for certain in¢nite-dimensional Kac^Moody
algebras, it is natural to extend the above considerations to Kac^Moody algebras
whose Cartan matricesA are no longer positive de¢nite. However, the mere existence
of a Weyl vector by itself is not suf¢cient; rather, it is the fact that the entries of the
inverse Cartan matrix are of the same sign which ensures that the construction
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can be carried through. For the hyperbolic case the expression for J3 still takes the
same form

P
i;j A

�1
ij hj as before. But, taking account of the relative sign switch

in (2) and insisting that pj still denotes a positive quantity, we now have, instead
of (7) and (8),

J3 ¼ �
X
j

pjhj; ð9Þ

with

pi:¼ �
X
j

A�1
ij > 0; ni:¼

ffiffiffiffi
pi

p
: ð10Þ

As a consequence of the extra minus signs in these de¢nitions, (5) is replaced by

½J3; J�� ¼ �J�; ½Jþ; J�� ¼ �J3: ð11Þ

Because the Hermiticity properties of the Chevalley generators are the same as
before, we see that the compact SOð3Þ has been replaced by a noncompact
SOð1; 2Þ. Evidently, an analogous de¢nition cannot work for af¢ne Cartan matrices,
whose inverse does not exist; likewise, it fails for Kac^Moody algebras where the
signs of the pi’s alternate. The consistency of the above de¢nition may be traced
back in part to the fact that the Weyl vector is timelike (r2 < 0) and an element
of the forward lightcone in root space for hyperbolic Cartan matrices (this property
actually holds for all inde¢nite algebras of rank � 25, provided they are obtained
by the procedure of overextension [5]).
As before it is possible to decompose the algebra gðAÞ into irreducible

representations of the principal subalgebra. However, in accordance with the
noncompactness of SOð1; 2Þ, all the irreducible representations occurring will
now be in¢nite-dimensional and unitary, with the exception of the adjoint represen-
tation consisting of the subalgebra SOð1; 2Þ itself, which is neither. This will be
explained below.
In this context, according to standard de¢nitions, [1], unitary means that the rep-

resentation space possesses a Hermitian scalar product, denoted ðx; yÞ with the
properties that (i) the actions of ei and fi are mutually adjoint, while that of hi
is selfadjoint, i.e. for all x; y 2 gðAÞ

�
½ei; x�; y

�
¼
�
x; ½fi; y�

�
and

�
½hi; x�; y

�
¼
�
x; ½hi; y�

�
ð12Þ

and (ii) the scalar product is positive de¢nite.
Here the representation space is the vector space of the algebra gðAÞ, with gðAÞ

acting on itself by adjoint action. Because the Cartan matrix A is assumed symmetric
the algebra possesses a standard invariant bilinear form h:j:i, generalizing the
Cartan^Killing form. A natural candidate for the Hermitian scalar product
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(extending that familiar in angular momentum theory) is given by ([1], chapter 2),

ðx; yÞ:¼ �hxjyðyÞi; ð13Þ

where y is the Cartan involution

yðeiÞ ¼ �fi; yðfiÞ ¼ �ei; yðhiÞ ¼ �hi: ð14Þ

It is easy to check that with this de¢nition ei and fi are indeed mutually adjoint while
hi is selfadjoint but the question of positive de¢niteness is more subtle. There is a
rather general theorem, [22], certainly applicable to hyperbolic algebras with
symmetric Cartan matrix, that states that gðAÞ as a vector space decomposes into
orthogonal subspaces consisting of the Cartan subalgebra and subspaces associated
with each root. All subspaces are positive de¢nite with respect to (13) except for
the Cartan subalgebra for which the scalar product reduces to the inde¢nite one
already met in talking of scalar products between roots and weights.
Having veri¢ed the desired adjointness properties of the Chevalley generators, it

follows immediately from (7) that J3 is selfadoint while Jþ and J� are mutually
adjoint. Furthermore, the norms of these elements are easily calculated to be

ðJ3; J3Þ ¼ r2 ¼ �
X
j

pj < 0 and ðJ�; J�Þ ¼ ðJþ; JþÞ ¼
X
j

pj > 0:

Thus the adjoint representation of SOð1; 2Þ is indeed not unitary. The reason is that
the Weyl vector r is inside the forward light cone. Since all vectors orthogonal
to it are space-like the Hermitian scalar product restricted to this subspace within
the Cartan subalgebra orthogonal to the Weyl vector is positive de¢nite. Because
the decomposition of gðAÞ into irreducible representations is into orthogonal
subspaces this is the reason that all the components except the three dimensional
one are unitary.

4. Irreducible Representations of SO(1,2)

Next we examine which sorts of unitary representations of SOð1; 2Þ occur.
Because of the adjoint action the spectrum of J3 is integral, that is expð2piJ3Þ

equals unity, the representations arising must be what is sometimes called single
valued, as well as unitary. As usual, the irreducible representations of SOð1; 2Þ
are labeled (in part) by the eigenvalues of the SOð1; 2Þ Casimir operator

Q ¼ J3J3 � JþJ� � J�Jþ

¼ J3ðJ3 � 1Þ � 2JþJ� ¼ J3ðJ3 þ 1Þ � 2J�Jþ:
ð15Þ

When evaluating this Casimir on a given element x 2 gðAÞwe will always understand
the adjoint action

adQ ðxÞ:¼ ½J3; ½J3; x�� � ½Jþ; ½J�; x�� � ½J�; ½Jþ; x�� ð16Þ

Besides the non-unitary ¢nite-dimensional representations such as the three-
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dimensional one, SOð1; 2Þ possesses two different kinds of unitary in¢nite-
dimensional representations [21]. The so-called discrete series representations with
Casimir eigenvalue Q ¼ sðs� 1Þ > 0 are characterized by the existence of a lowest
(highest) weight state obeying J�js; si ¼ 0 (or Jþj � s;�si ¼ 0); the states of the
representation are then given by js;mi (or j � s;�mi) for m ¼ s; sþ 1; . . . : Because
we are interested only in the adjoint action (16) we encounter only single-valued
representations, namely ones obeying expð2piJ3Þ ¼ 1. Hence for the discrete series
occurring in the decomposition of gðAÞ, s is always a (positive) integer I in fact,
we will see below that actually s 
 2. The continuous representations split into
principal and supplementary series representations, with the respective Casimir
eigenvalues obeying

principal series:�1 < Q < �1
4;

supplementary series:� 1
4 < Q < 0:

ð17Þ

These inequalities are easily deduced from (15) and the positivity requirements�
x; ½J�; ½J�; x��

�
> 0 for x 6¼ 0, implying Q < mðm� 1Þ for all integer-spaced

m 2 E0 þ Z. For the supplementary series m is never an integer, and therefore
the latter representations will not occur in our analysis since expð2piJ3Þ cannot equal
unity for them.
To analyze the representation content of gðAÞ, let us ¢rst consider those on spaces

intersecting the Cartan subalgebra h. Apart from J3, there are ðr� 1Þ linearly inde-
pendent combinations belonging to principal series representations. For any linear
combination

P
j cjhj we have

adQ
X
j

cjhj

 !
¼ �2 J�; Jþ;

X
j

cjhj

" #" #
¼ �2

X
i;j

ciAijpjhj : ð18Þ

Setting cj ¼ pj and using
P

j Aijpj ¼ �1 for all i, we obtain

adQ
�
J3
�
¼ �2

X
i;j

piAijpjhj ¼ þ2J3 ð19Þ

as expected for the adjoint representation of SOð1; 2Þ. We have already mentioned
that the latter is the only ¢nite-dimensional representation arising. The coef¢cients
of the ðr� 1Þ orthogonal linear combinations satisfy

X
i

c0ihi;
X
j

pjhj

 !
¼
X
i;j

c0iAijpj ¼ 0 ¼)
X
j

c0j ¼ 0: ð20Þ

It is not dif¢cult to see that these orthogonal combinations are of positive norm
because the Weyl vector is timelike, and therefore any vector

P
j c

0
jaj orthogonal

to it must be spacelike. We can now generate the full representations by multiply
commuting

P
j c

0
jhj with Jþ and J�, where the ðr� 1Þ mutually orthogonal linear

combinations
P

j c
0
jhj are determined by diagonalizing the SOð1; 2Þ Casimir operator
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(18). Since none of these commutators vanishes, these representations extend simul-
taneously into n� and nþ. For instance, commuting once with Jþ we obtain

x:¼ Jþ;
X
j

c0jhj

" #
¼ �

X
i;j

c0iAijnjej ð21Þ

and one easily checks that ðx; xÞ > 0. The positivity of the remaining states in the
representation then follows from the theorem mentioned above which is indeed
proven by induction on the height of the roots [22]. Because the (integer) eigenvalues
of J3 are bounded neither from below nor from above, we conclude that the orthog-
onal complement of J3 in h must belong to ðr� 1Þ principal series representations.
By contrast, the discrete series representations are entirely contained in the tri-

angular subalgebras nþ or n�. The lowest weight representations are built on states
of the form

vðsÞ ¼
X
j1...js

cj1...js ½ej1 ; . . . ; ½ejs�1 ; ejs � . . .�;
�
J�; vðsÞ



¼ 0; ð22Þ

by repeated application of Jþ. In an analogous fashion, the highest-weight states are
obtained by acting on the states

vð�sÞ ¼
X
j1...js

cj1...js ½fj1 ; . . . ; ½fjs�1 ; fjs � . . .�;
�
Jþ; vð�sÞ
 ¼ 0; ð23Þ

with J�. From (3) it is immediately obvious that the lowest weight states indeed have
spin s*. Because the space spanned by the generators ei is of dimension r, there are no
new representations at that level (corresponding to spin s ¼ 1). Likewise, for s ¼ 2,
the number of independent Lie algebra elements of type ½ei; ej�, that is corresponding
to roots of height two, equals the number of links in the Dynkin diagram, which is at
most r for hyperbolic diagrams. Hence, at most one new representation starts with
s ¼ 2, and that only if the diagram has a loop rather than a tree structure. Thus
only the spins s ¼ 2; 3; 4; . . . with corresponding Casimir eigenvalues Q ¼ sðs� 1Þ
occur in the discrete series representations, whose unitarity follows again by the
general theorem. We emphasize that the discrete series representations have no
analog in the ¢nite-dimensional case, where all representations appearing in the
decomposition of the Lie algebra intersect the Cartan subalgebra nontrivially.

5. Casimir Eigenvalues

We now wish to calculate the Casimir eigenvalues of the principal series
representations occurring in the decomposition of gðAÞ for some concrete examples.

*Alternatively, we may use the formula

hi; ej1 ; . . . ; ejs�1 ; ejs
� 


. . .
� 
� 


¼
Xs
k¼1

Aijk

 !
ej1 ; . . . ; ½ejs�1 ; ejs � . . .�
�

which is easily proved by induction.
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These representations are the analogues of the r representations occurring in the
decomposition of a ¢nite-dimensional Lie algebra. Of these, the ¢nite- dimensional
adjoint representation with Q ¼ þ2 is present in both the ¢nite and the
in¢nite-dimensional case, and is unitary for SOð3Þ, and nonunitary for SOð1; 2Þ.
The remaining ðr� 1Þ representations belonging to the principal series must satisfy
the bound Q < �1

4. Setting

Q ¼ sjðsj � 1Þ for j ¼ 2; . . . ; r; ð24Þ

we have

sj ¼ 1
2þ ilj: ð25Þ

The resulting ðr� 1Þ values of sj can be viewed as the analogs of the exponents in the
¢nite-dimensional case, but they are now complex and noninteger.
From (18), we infer that the Casimir eigenvalues of the adjoint and principal series

representations are identical with the eigenvalues of the nonsymmetric real matrix
�2Aijpj (no summation on j). This matrix was actually introduced already in [10],
albeit for the (slightly different) purpose of determining the location of ‘resonances’
in the associated strictly hyperbolic Toda models. Besides the in¢nitely many strictly
hyperbolic Kac^Moody algebras of rank two* there are altogether eleven such
algebras of rank three and four, see e.g. [23]. The relevant eigenvalues are listed
in Table 3 of [10], and with the bene¢t of hindsight are now easily recognized to
be just the SOð1; 2Þ Casimir eigenvalues for these algebras.
The simplest hyperbolic algebra obtained by over-extension (hence containing an

af¢ne subalgebra) is AE3, which was ¢rst studied in [11]. In this case, fpjg ¼
ð 92 j 5 j 2 Þ, and therefore

Aijpj ¼
9 �10 0
�9 10 �2
0 �5 4

0
@

1
A:

The eigenvalues of �2Aijpj are given by

Q ¼ 2 ; �2 12�
ffiffiffiffiffi
54

p� �
: ð26Þ

In a similar manner one determines the Casimir eigenvalues of the hyperbolic
algebras AEn for n > 3.
For the maximally extended hyperbolic algebra E10, we have

fpjg ¼ ð 30 j 61 j 93 j 126 j 160 j 195 j 231 j 153 j 76 j 115 Þ; ð27Þ

*With Cartan matrices (formn > 4Þ

Aij
2 �m
�n 2

� �
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and the matrix Aijpj is

60 �61 0 0 0 0 0 0 0 0
�30 122 �93 0 0 0 0 0 0 0
0 �61 186 �126 0 0 0 0 0 0
0 0 �93 252 �160 0 0 0 0 0
0 0 0 �126 320 �195 0 0 0 0
0 0 0 0 �160 390 �231 0 0 0
0 0 0 0 0 �195 462 �153 0 �115
0 0 0 0 0 0 �231 306 �76 0
0 0 0 0 0 0 0 �153 152 0
0 0 0 0 0 0 �231 0 0 230

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

The eigenvalues of �2Aijpj can be determined numerically. Besides the expected
eigenvalue Q ¼ 2, we ¢nd the nine values

Q ¼� 45:86857088

� 221:4130766

� 290:5176114

� 438:1539904

� 594:5608986

� 714:1355888

� 1025:0975582

� 1507:5072788

ð28Þ

The determination of the ‘exponents’ (25) is now an elementary exercise. The com-
plexity of these numbers is related to the nonexistence of polynomial invariants
in the enveloping algebra of gðAÞ other than the quadratic Casimir^Kac element
[1,2]. However, as shown in [16], there do exist transcendental invariant functions
on the Cartan subalgebra. The precise link between them and the exponents
exhibited above remains to be elucidated, however.

6. Outlook

Whereas the principal series representations are uniquely determined by diagonal-
izing the SOð1; 2ÞCasimir operator, it is less easy to describe the spectrum of discrete
series representations. Certainly the number of highest (or lowest) weight states will
increase exponentially with the height and (negative) length of the roots, leaving
an equally growing arbitrariness in the number of ways they can be combined into
linearly independent and mutually orthogonal elements.
On the other hand, we expect the states belonging to the principal series

representations to play a distinguished role, and to provide a new way of ‘probing’
hyperbolic Kac^Moody algebras. Usually, the hyperbolic algebras which arise as
over-extensions of af¢ne algebras, are decomposed w.r.t. to the level [11,12] (de¢ned
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as the eigenvalue of the central charge operator of the underlying af¢ne algebra), viz.

gðAÞ ¼
M
‘2Z

g½‘�ðAÞ: ð29Þ

Because the generators J� always have a contribution from the over-extended root,
we see that their action does not preserve the level. For this reason, in any of
the ðr� 1Þ principal series representations, there will be states mixing an arbitrary
(but given) number of levels. Therefore the decompositions w.r.t. to level and w.r.t.
to SOð1; 2Þ are extremely oblique relative to one another.
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