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14.1 Einstein theory

14.1.1 Introduction

In these lectures we review the symmetry properties of Einstein’s theory when
it is reduced from four to two dimensions. We explain how, in this reduction,
the theory acquires an infinite-dimensional symmetry group, the Geroch group,
whose associated Lie algebra is the affine extension of SL(2, B). The action
of the Geroch group, which is nonlinear and non-local, can be linearized, thereby
permitting the explicit construction of many solutions of Einstein’s equations with
two commuting Killing vectors 3; and 3. A non-trivial example of this method
for a colliding plane wave metric is given.

The lectures review some well-known material at a pedagogical level.
Therefore, rather than including references in the text, we have chosen to collect
some basic references at the end, which readers are invited to use as a guide to the
vast literature on the subject of exact solutions, on the integrability of Einstein’s
equations in the reduction to two dimensions, and finally on the generalization of
these structures to other theories, including supergravity.

14.1.2 Mathematical conventions

Our main interest is in studying the structural properties of Einstein’s theory and
its generalizations. We will first formulate it in D dimensions, with coordinates
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246 Infinite-dimensional symmetries in gravity

M = (x% ..., xP=1). The metric can be expressed in terms of the vielbein as
gun = EyERnas (14.1)
with the flat metric nap = (+,—..... —). For the following it will be important

that the vielbein can be viewed as an element of a coset space according to
Ef € GL(D,R)/SO(1,D —1). (14.2)
The metric must be covariantly conserved
Dn(Igmp =0 (14.3)

where " is the Christoffe! symbol of the metric gan. We next introduce a spin
connection one-form, with coefficients w4 . The vielbein postulate, that is the
covariant constancy of the vielbein, which agrees exactly with Cartan’s structure
equation for the torsion two-form, is

Dy(w, TYEN? = 0. (14.9)
Writing out this equation, we have
3[MEN]A+(1)MABENB ZF[MN]PEPA. (14.5)

We assume there is no torsion, so the Christoffel symbols are symmetric in
spacetime indices, hence

B[MEN]A +a)[MAN] =0. (14.6)
The coefficients of the anholonomy are
QagC =2EAMEpNomENC. (14.7)

Using the torsion-free condition for the spin connection and permuting the indices
of the coefficients of the anholonomy we obtain the following equations

Qasc +wacs —wpca =0
—Qpca — wpac +wcap =0 (14.8)
Qcap+wcpa —wape =0.
Employing then the property of the spin-connection w agc = —wacg, due to
the fact that the generators of the algebra of the D-Lorentz Group are totally
antisymmetric matrices, we have the expression of the spin connection as a
function of Q4pc

wapc = $(Qasc — 2pca + Qcan). (14.9)
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The Riemann tensor (the curvature two-form) can be defined by
[Dy(w). Dy @)V = Ry gV E. (14.10)
The explicit expression in terms of the spin connection is
Runa® = 20monia® + 20m4 wncb. (14.11)

From the Riemann tensor the Ricci tensor and the curvature scalar are obtained in
the usual way: Ry = Rypn? and R := g¥¥ Ry . The metric determinant is

E =detEy” = V/—3. (14.12)

14.1.3  The Einstein-Hilbert action

Now we have all the elements to define Einstein theory. The Einstein—Hilbert
action is

S=fd4x£ (14.13)
and the Lagrangian £ can be expressed in function of the spin connection

L= —1ER=—JEEAMEg"Ryn*®

= — %EEAMEBNE)MQ)NAB — %EwAACa)BCB + %wBACa)ACB. (14.14)

Substituting now the expression w = w(Q) integrating by parts and dropping
total derivatives, we arrive at

—3ER = L E(Qapc Q8¢ — 2Q48CQpca — 4Q4c Q4 pP).  (14.15)

This is the expression best suited for dimensional reduction of Einstein’s theory.
In the remainder, we will now set D = 4, i.e. work in four spacetime dimensions.

14.1.4 Dimensional reduction D =4 —» D =3

‘Dimensional reduction’ is equivalent to searching for solutions of Einstein’s
equations with one Killing vector, which we take to be £ M3y = 8;. For this
purpose, we proceed from the ‘Kaluza—Klein ansatz’ for the vierbein.

EMA _ A—|/2ema Al/ZBm M_ Al/ﬁenm —e," BnAl/Z
0 A2 ) A 0 A-I2

(14.16)

The matrix e, is the three-bein: B,, is called the Kaluza—Klein vector and A the
Kaluza—Klein scalar. The ansatz fixes a part of the SO(1, 3) Lorentz symmetry.
The residual symmetry group preserving the gauge condition E3¢ = 0 is the
gauge group SO(1, 2).
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After some algebra, we find

! 3 —1.
Qupe = AE(Q((,/,)(- — € Npre A lamA)

(14.17)

Qup® = A%, e Bon (14.18)
3_ 1 —-1/2

93,,(‘ = — 3" A2, A (14.19)

Q3¢ =0. (14.20)

Substituting the ansatz for the vierbein in the field action and making use of the
above decomposition of the Einstein action, after some calculations we arrive at
the following result

—1ER(E) = —3eRV(e) — (ge A B™" By + §e8"™" A 200 AB A (1421
where By, = 0y By — 0, Bp;.

Duality transformation

The very special feature of three dimensions is that the Kaluza—Klein vector field
can be dualized to a scalar. This is achieved by adding to the Einstein—Hilbert
Lagrangian the expression

L' = }e€™ P B,,,,B (14.22)

where B is a Lagrange multiplier and €7 the Levi-Civita totally antisymmetric
symbol. The dualization makes the Lagrangian depend only on B. So, adding £’
to £ and varying B, leads to

eA’B™ = €"3,B (14.23)

modulo a numerical constant. Here we have set €™"P = eé™"P  When
we substitute this expression in the three-dimensional reduced Einstein—Hilbert
Lagrangian, we get a new one with two scalar fields

L=—3eRP(e) + g™ A2 (3, A3, A + 8, BO, B). (14.24)

This is consistent with the equation of motion 8, (¢ A B™") = 0. In fact, the term
we add to the Lagrangian, which is now three dimensional, can be dropped by an
integration by parts and the use of the three-dimensional Bianchi identities for the
tensor B,

14.1.5 Dimensional reduction D =3 - D =2

Then we perform a dimensional reduction from three to two, i.e. we have two
Killing commuting vectors (33 and d>) and there is no dependence on x 2 at all.

XM= (xH, xh). (14.25)
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Repeating the same steps as before. the two-bein now takes the form

e, pA el —eJA
6,,,“ = ( 6 p“) . eum = ( lz) pa_lff . (1426)

Detailed calculation shows that

_%e(.?)R(B) — —%peR(z) _ 1L6p3£’A,wA“U (14.27)

with
eR'D = =20, (ee”  QupP) (14.28)
where ¢ is the determinant of the two-bein. At this point we can write the

equations of motion for the theory. The equation of motion for the Kaluza—Klein
vector is given by

du(pleA") = 0. (14.29)
In two dimensions, a Maxwell field does not propagate, as there are no

transverse degrees of freedom. Neglecting topological effects (i.e. non-vanishing
holonomies) we can, therefore, set A, = 0.

For the remaining equations of motion, we can fix the gauge, and then
calculate them in a particular gauge, called the conformal gauge. The term
E’R(z)(e) is Weyl-invariant. To see why this is so, let us consider the term

_%pR(Z) = %pa\,(eeavgayy)' (14.30)

An integration by parts gives

—4PRI= = 5eQ o iy o (14.31)
Then, using the definition of the anholonomy, we get

e(ea"eyfavery — eyl'earavery)eauaﬂp (14.32)

eg

o

[STE S

€yTavet78“p — %eaveaveaﬂaﬂp (1433)

where another integration by parts and the defipjtion of the two-bein have been
used.

Now we can set the gauge, i.e. the 2D diffeomorphisms. by a condition on
the two-bein. So we write

e“u = AE“Q (14.34)
with deté,® = 1 and A = A(x): hence, we are not considering the whole group
GL(2, R) but only its restriction to unimodular mutrices SL(2. B).

_ As we said before. we can set a particu|y, gauge, the conformal gauge, by
imposing the following condition on the two-bej, It is'given by

et = ot (14.35)
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Then, after an integration by parts, we get
—1oRP= — g1 9AB,p + 584" 0, (87 0y ). (14.36)
In this gauge it is obviously
1Y = g MV = 2Pghv, (14.37)

So we have three fields: the dilaton p, the A and the unimodular two-bein ¢ ,%.
We can calculate the equations of motion varying the Lagrangian with respect to
all these fields. Varying it with respect to A we get

3,(8"a,p)=0p=0 (14.38)
because in conformal gauge g"" = ", The solution of this equation is

p(x) = pi(xT)+p_(x7) (14.39)

with vt = v0 & 1!

The dilaton can be dualized: in two dimensions, the dual of a scalar field is
again a scalar field. We will refer to the dual of the dilaton field as the ‘axion’; it
is defined by

dup+e€nd'p=0 (14.40)

where p is just the axion. In the conformal gauge this field is
px) = psr(xt)—p_(x7). (14.41)
The equation obtained by varying p is
3,(8"'2718,1) = matter contribution. (14.42)

Note that with matter contribution we refer to the fields A and B coming out from
dimensional reduction. The terminology matter part will be clear in the following
section, where we will be able to identify this fields with the fields of a bosonic
nonlinear o-model Lagrangian.

Before writing the complete Lagrangian of the two-dimensional reduced
gravity we must still consider the equation that is obtained from (14.36) by
variation with respect to the unimodular two-bein. The corresponding equations
must be interpreted as constraint equations (in standard conformal field theory,
they would just correspond to the Virasoro constraints). We have

—(SEa“?m')fla(;lkalv)P + %Séa“a,l(éwavp) — %BHE(,“(SE“”BN/) + matter = 0.
(14.43)

~ - ] . .
In conformal gauge. ¢, = 84, this expression becomes

“%5?“')518“)\31'0 + %6(@‘“’8“8‘,;) = matter (14.44)
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where 81" = 254/ ¢“" has been used. The metric is diagonal in this gauge, so
the equations for the conformal factors become

(traceless part of){— 347 9, Ad,0 + 13,8,0) = matter. (14.45)

We have not explicitly written the matter sector yet. This will be done in the next
section.
The pure gravity action written in two dimensions in the conformal gauge
reads
—1ePRD = 1315204 (14.46)

where the equation [p = 0 has been used to make the second term of (14.36)
vanish. The whole Lagrangian is then

Lp=—32"19,10"p + LpA™2(3,A9" A + 8, BI" B) (14.47)

where the second term with the Kaluza—Klein scalar and the dual of the Kaluza—
Klein vector has been obtained considering only the two-dimensional part of the
action. The subscript E stands for Ehlers, who did this analysis for the first time
in the 1950s.

Here we have treated one possible way of performing dimensional reduction:
we have seen it consists of many steps. One first reduces from four to three; then,
dualizes the vector field and performs the reduction to two dimensions. However,
this is not the whole story: actually, it is possible also to get the two-dimensional
Lagrangian directly from the three-dimensional one, without dualization.

The procedure for doing the calculation is as follows: first we express the
Kaluza-Klein vector in the form

B, = (By, B, =B) (14.48)

and then we perform directly the dimensional reduction in conformal gauge b'y
using the previous choice of the three-bein in triangular form. Proceeding in
this way, we meet two electromagnetic fields in two dimensions, A, and B{l.
which can be set to zero because they do not propagate (we have already used this
argument before) and there is no cosmological constant.

Let us note now the various steps of the calculation. ‘ .
writing for the Kaluza-Klein vector and the considerations on two-dimensional
electromagnetism imply

The new

B, =0— B,y =0. (14.49)
So the only non-vanishing terms of the three-dimensional Lagrangian before the
reduction are

L=—1eMRA () = LeDA2B, BH + [ Vg™ AT20, A0, 8. (14.50)

Then we reduce the dimensions as before (we set A, = 0) and choose the
conformal gauge. Keeping in mind that

g/ur - )"lnuv, g22 — __pZ (14.51)
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we get a new 2D Lagrangian
Lum = —52719,00"p + gpA 79, 00" A + Lo~ A%0, Ba* B (14.52)

for the fields B and A.

The subscript MM stands for Matzner—Misner, who performed this analysis
at the end of the 1960s. It is worth noting that the link between the fields B and
B is given by three-dimensional duality. To see why it is so, let us consider the
duality relation

eAZan — emnpapB (]453)

and then reduce the dimensionality using the properties of the Kaluza—Klein
vector B,,. The duality relation becomes then

p~'A%3,B = ¢€,,3"B. (14.54)

The deep relation between these two distinct reducted Lagrangians will be
explained in the next section, treating nonlinear o -models. In the language of the
nonlinear sigma models, these two reducted actions correspond to two distinct
SL(2, R)/S0O(2) models.

14.2 Nonlinear o-models

In this section, we introduce nonlinear o-models and discover that the reduced
gravity is a certain nonlinear o-model, connected to a certain symmetry group.
The expression of the Lagrangian of the model depends on this symmetry group.

Let us start from a non-compact Lie group G and consider the maximal
compact Lie subgroup H of G. The Lie algebra decomposition is

G=HoK (14.55)
with the following commutation rules
[HLHICH, [K.K|CH, [H K]CK. (14.56)
This decomposition is invariant under the symmetric space automorphism
t(Hy=H, 1(K)=-K (14.57)

which can alternatively be formulated in terms of Lie group elements g directly
through
) =n"¢H "y (14.58)

where the matrix n depends on the group G (e.g. n = | for G = SL(n, R)).
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Exampj,. ¢ = SL(2. R). H = SO(2)
Jo

The generators of the group are

L (1 0 > (01 s (01
Y:(O—I'Y_IO'Y_—IO' (14.59)

We have
Tr(Y")? = Tr(Y?)? = —Tr(v 3?2 =2 (14.60)

SO Y! 4nd Y7 are the non-compact generators, while Y3 generates the SO(2)
Subgroyp,
The group can be decomposed on its generators, as

H=RY} K=RY'eRY. (14.61)
Let us introduce now an element of the group v(x) € G with the property
v(x) > V' (x) = g7 u(x)h(x) (14.62)

Where g is a rigid G transformation and i (x) a local H transformation. This type
Of transformation is needed for the necessity of preserving gauge choice. In fact,
¥Ou can fix the gauge choosing a particular element of the group v. Then, when
YOu act on v by an arbitrary g, that gauge choice will be lost. To restore the gauge
YOu have to introduce the local transformation A(x) so that the rotation g can be
COmpensed. It follows that & does not depend only on the coordinates x, but also
on the vector v and the rotation g.

Therefore, equation (14.62) is called a nonlinear realization of symmetries,
because 1 depends nonlinearly on v.

This is important for the following calculation, because we can fix a gauge,
Called triangular gauge, such that

v(x) =expe(x), ¢k)eK—> veG/H. (14.63)

The next step is the construction of a Lagrangian with the required symmetry. To
this aim, let us consider the Lie algebra valued expression

U_la,nv = Qm + Pm. Qm € H, Pm (S K (1464)
Oor equivalently
v Do = v 0nv — v0m) = P (14.65)

which defines the H -covariant derivative D,,. It is straightforward to verify that
Qm transforms like a gauge field with respect to the local group H, namely
Q;, = h='Qumh +h'3,h and that P, = h~' P,,h. The formula (14.62) implies
the integrability relations

O Qm — Oy Qm + [Qm~ Qn] = —[Pu. Pyl
Dm Pn - Dn Pm =0
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The Lagrangian is given by

L= %egmn Tr Py Py (14.66)
and then the field equations for P,, read

Dm(\/§g”m Py) = 0. (14.67)

In the following section we will show how it is possible to reproduce the
Lagrangians obtained by dimensional reduction from this general construction
of nonlinear o-models.

14.2.1 Ehlers Lagrangian as a nonlinear o -model

To link these arguments to the previous discussion, let us consider the groups
G=SLQ2.R), H=S50(2). (14.68)

The quotient space has only two degrees of freedom. We enforce the triangular
gauge choosing for v the following expression

v = (A(l)/z BAA,_,/IQZ) (14.69)
and then
ooy = (%A'(')E),,,A —?AIBI’SBA)
5 'm
=P Y + PoY + QY (14.70)

where the coefficients of the generators of the algebra are given by

Php=3A""9uA, Pi=Qw=1A""3,8. (14.71)

mn

The evaluation of the Lagrangian is straightforward, and we get
L= %egmn Tr P, P, = %egm" A~2(amA8,,A + 0,y B, B). (14.72)

This result matches exactly with the matter part of the Einstein—Hilbert
Lagrangian found in the previous section. We have found that this expression can
be directly reduced to two dimensions, and then, coupled to gravity, it becomes
simply the Ehlers Lagrangian L seen before.

The Ehlers Lagrangian after dimensional reduction is

EE = gravity + %pF(Z)gluy Tr(P“ Pv)
= — 12719,00"p + fpeP A3, AB A + 3, B, B). (14.73)
We saw in the previous section that, by another type of dimensional reduction, we
got a different reduced Lagrangian, the Matzner-Misner one.
This one can be constructed as a nonlinear o-model too: we need only a

different gauge choice, as we will see in the next section; before this, let us look
at the equations of motion derived from the Ehlers Lagrangian.
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14.2 2  The Ernst equation
The equations of motion for the fields A and B from the Lagrangian £ i are

AB, (pd" A) = p(8, A" A — 3, BI*B) (14.74)
AB, (p0" B) = 2p3* A3, B. (14.75)

Deﬁning a complex function & = A + iB called the Ernst potential, these
€quations can be combined into a single one, called the ‘Ernst equation’:

A, (pdHE) = pdHED,E. (14.76)

This equation figures prominently in studies of exact solutions of Einstein’s
€Quations,

Here we have got the Ernst equation from the fields equations for A and B.
ACtually equation (14.67) is the Ernst equation, in the sense that it reduces to it
ChOOsmg the Ehlers triangular form for v in the conformal gauge.

14.2.3 The Matzner-Misner Lagrangian as a nonlinear o -model

ReCalling the shape of the Matzner-Misner Lagrangian as written before in the
conformal gauge

Cvm = —1a7'8,00%p + §pA 720, 00" A + fp 7' A%, B2 Ba.  (14.77)

This can be thought of as a nonlinear o-model, too. We suppose our Lagrangian
10 be composed by a term of pure gravity, but reduced to two dimensions, and a
term coming from a two-dimensional nonlinear c-model. We are in conformal
gauge, namely ¢, = 18,“ and g;v = 1. The Lagrangian is

L=—11""8"X8,0 + on"" Tr B, P,. (14.78)

We have to choose a proper gauge, namely an expression for v, such that the two
Lagrangians match together.

We refer now to the generators of SL(2, R) introduced at the beginning of
this section. Let us choose for # the following triangular form

5o (/DY B/ Y (@A) —&mnﬁ“)
0 a/p'2 ) “\ o (/D))

Evaluating now the matrix product '3, and decomposing it on the algebra
generators. Following the standard procedure seen before, the Lagrangian is built
using only the non-compact elements of this decomposition. After calculation,
we have

v ly,0 = Pll + f’

(851

~ 14‘ _1. 1 0
0, '%p—A‘@A%O 4)

_+_
1 /A 1 /A 0 1
(= ~(2Ys,B: (1479
+2<p> ( )+2(p)“ "(’1 0) :
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Then, the trace is
FTeP P = L(BLPM + PZPY) = 07" 8, p(p~ Yok p — 28~ 18" A)
[T 1 /AN
-+ gA d,LAa A+ g ; a# BZBHB?_. (1480)

Now, the two Lagrangians coincide if X satisfies the condition

— 1AM + §p 0.0 B — 2AT 4 A = —5x 9 ad,p (14.81)
namely if .

h=ap ATl (14.82)

Therefore, the two-dimensional reduced gravity in conformal gauge is given by a
part of pure two-dimensional gravity, characterized by the conformal factor A and
the dilaton p, and a matter part given by the bosonic fields A and B, or B: this
one has the structure of a nonlinear G/H sigma model.

Following the first section of this paper, the complete Lagrangian reduced to
two dimensions in conformal gauge, for any G/H o -model is

= — 31718 130 + o Tr(P, PH) (14.83)

and we can recover, as before, the field equation for the conformal factor A, this
time with the general o -model matter part. It is given by the rraceless part of

A9 h0up = 3 Te(PuPY) + 18,0,p. (14.84)

This will be useful in the foregoing sections when recovering the colliding plane
wave solutions of Einstein’s theory.

The Kramer—Neugebauer transformation

Note now that the two models, that of Ehlers and that of Matzner—Misner, are
related by the Kramer—-Neugebauer transformation, defined by

Aol BoB
A
It is worth remembering that the fields B and B are related by duality too, namely

AZ
"B = =By, (14.85)

To sum up: in this section we have seen that the dimensional reduction of Einstein
theory from D = 4 to D = 2 can be done in two ways, leading to two different
SL{2, R)/SO(2) o-models.
We discover two different isometry groups, that of Ehlers and that of Matzer—
Misner
SL(2, R)g., SL(2, Rymm. (14.86)

Combining these two groups, one gets the (infinite-dimensional) Geroch group.
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14.3 Symmetries of nonlinear o -models

We have seen that for preserving the gauge choice, in particular the triangular

83auge, the symmetry

v—ov=g¢g""v. gegG (14.87)

Must be realized in a nonlinear way, namely
v — v(x) = gilv(x)h(.x'). geG,. heH. (14.88)
Now consider the infinitesimal form of (14.88). The infinitesimal variation of v is
Su(x) = =8¢ 'v(x) + v(x)8h(x) (14.89)

applying now this linearized transformation to the two o-models seen before.
Considering in particular the Chevalley—Serre generators for the SL(2, &)
Lie algebra

eET+:<8 (1)) fET7=<(l) 8), hET3=<(1) -f)l)

(14.90)
endowed with the following commutation rules

th.el =2e. [h. fl=—2f [e.f]=h (14.91)

one can check that this nonlinear transformation has been introduced to preserve
the gauge. Let us now analyse the action of the Ehlers and Matzner-Misner
groups in turn.

14.3.1 Nonlinear realization of SL(2, R)g

We use the Chevalley—Serre generators for the algebra. Considering the triangular

gauge
12 —1/2
b= (Ao Ba ) (14.92)

we now linearize the transformation (14.87). The variation of v is only due to the
algebra element a:
Sv=v —v=—av. (14.93)
Then, given the triangular form of v, it follows also
L A=1/2 _LA=3/2 —-1/2
su= (28 704 28 IB‘SAQLA By, (14.94)
0 —3A725A

In the following we will refer to the variation § A by, for example, the generator ¢
with the compact notation e(A) or ¢( B) for B. Now, we realize the transformation
using the Chevalley—Serre algebra generators, e, h and f. For ¢ we have

0 1) [AaYr Batl? 0 —AT2
o) — = 495
- (0 ())( 0 a2 (0 0 (14.93)
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where the subscript | refers to the Ehlers group. From (14.94). one deduces
e1(A)y =0, e (B)=—] (14.96)

and the triangular gauge is preserved. The calculation is analogous for the
generator /1

. 1 0 AlZ pa-1z ~AU2  _ga-in2
111.—(0 —l)( 0 A_1/2>=( 0 A-12 ) (14.97)

with 11(A) = —2A and h1(B) = —2B. The triangular gauge is still preserved.
This is not so for the third generator, f. Repeating the above steps we find

.00 A2 BATVZY 0 0
=11 o 0 A2 TN AL _BAJI/;)) (14.98)

namely the triangular gauge is not preserved. Therefore, we have to introduce a
compensating term, i.e. we need the transformation rule (14.89). We introduce
a local H transformation parametrized by a function w, which is determined in
such a way as to preserve the gauge. Remember that the H generator is ¥ :

— PR N 0 0 BA~12 _Al2
Sri=fiv+ul CUY)—(_A|/2 _BA_y/g)-i—w(A_l/z 0 )

The triangular gauge is defined by the condition (1459
—~\/Z+%=0—>w=A (14.100)
and so the transformation reads
fiidv= (BAOI/Z _;f_/f/z) : (14.101)
Hence the variations of the fields A and B are
fitd) =2AB,  fi(B) = B> — A (14.102)

clearly not linear in the fields.
Note that the SL(2, R) transformations leave the fields p and A unchanged,
ie.
dh=0, sp=0.

14.3.2 Nonlinear realization of SL(2, R)pm

On the other side, identical calculations can be done to evaluate the action of
SL(2, R)mm on the fields (A, Ba). Also in this case the symmetry is realized in
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a nonlinear way. We have (with the suffix 0 for Matzner—Misner)

eo(A) =0, ep(B2)=—1 (14.103)
ho(A) =2A, ho(B2) = -2B> (14.104)
folD) = —2ABy.  fo(Ba) = BY — (%)‘. (14.105)

Again, the generator fy acts nonlinearly.

14.4 The Geroch group

The aim of this section is to combine the two groups, SL(2. R)g with fields
(A, B) and SL(2, RymMm, with (A, B2), into a unified group, the infinite-
dimensional Geroch group. The associated Lie algebra is an affine Kac-Moody
algebra.

We return first to duality relation

o 'A%, By =€,,0"B (14.106)

which is invariant under the Kramer-Neugebauer transformation. We need this
equation because we now have to evaluate the action of SL(2)g on B> and of
SL(2)mm on B.

14.4.1 Action of SL(2, R)gon A, B,
Keeping in mind that §p = 0, we have
B — B+38B = €,,0"(8B) = 8(A*p™'8, B>) (14.107)
after the functional differentiation and the usage of duality
3, (8B2) = pey, (3'6B — 24738 A). (14.108)

Consequently, from the change of B calculated before, we have the variation of
B; due to the SL(2)g generators.

ey :0=0,(8B2) = e(B2) = ¢ (= constant) (14.109)
hi: 3,(8B2) = 2pA%€,,,0" B = h|(B2) = 2B> (14.110)
fi €'Y, (8By) =2p(ATIB3"B+ A9 A) = fi(By) =2¢;. (14.111)

Here a dual potential ¢ has been introduced, which is defined such that
plend ¢ = ATHBI,B + MY A). (14.112)

Careful inspection of these relations now shows the following. The contributions
duc to ¢y and hy are linear in the fields and local; the difference is in the
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transformation generated by f, which is clearly nonlinear and non-local, because
one has to perform an integration to calculate explicitly the dual potential.

We then evaluate also the action on A. From the definition of (14.82), and
observing that 4 = 0, it follows that

Alsh=—taTlsA (14.113)

14.4.2 Actionof SL(2, R)ymon A, B

Exactly the same analysis has to be done for the other group, with generators
(eo. ho. fo)

ey := eg(B) =¢p (14.114)
ho :=> ho(B) = 2B (14.115)
Jo = fo(B) =2 (14.116)
with
peund o = —A2Br3, By + pAD, (%) . (14.117)

14.4.3 The affine Kac-Moody SL(2, R) algebra

The transformations we have just derived are to be identified with an affine
SL(2, R) Kac—-Moody algebra. The latter is characterized by the Cartan matrix

Ay = (32 —22) (14.118)

and the standard Chevalley-Serre presentation defining the algebra which can be
read off from the Cartan matrix:

lhi,hj1=0
[hi.ej] = Ajje;
lhi. fij1 = —Aij fj
lei, fj]=dijh;

leileilei.e;ll} =0
Lilfilfi, fi1ll = 0.
Here i = j = 0, 1; note that there is no summation on repeated indices and
that the first relation defines the Cartan subalgebra. To see the relation with the
SL(2, R) transformations dealt with before, we make the identifications
_ T+ — 7 3
€|—To, fI_T()’ h]:T() (14119)
ey = T]_, f(): Tj, h():(,'— T(; (14120)
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Using the known commutation rules of the Chevalley—Serre generators of
SL(2, R) itis possible to directly check the algebra.
For example, it is straightforward to see that

[h1,e0] = T3, T ) = 2T = ~2ep (14.121)

or that
ler, ol = [Ty, T, ] = 2T}
(14.122)
le1. [e1, eoll = —4T," = [er[e1[e1, eo]l] = O

and so on for the other commutators.

The full current algebra is now built by taking multiple commutators in all
possible ways. The Lie algebra element ¢ = kg + & is the central charge. It has
a trivial action on the fields A, B, By, A, A.

14.5 The linear system

The aim of this section is to linearize and localize the action of the Geroch group

seen in the previous section.
Let us start from the Lagrangian for arbitrary G/H in three dimensions and

then reduce to two

L = —jpeR(e)+ ;peg"" Tt Py, Py. (14.123)
We pick now the conformal gauge for the three-bein, as before
A8¢ 0
eﬁ’n=< o p) (14.124)

where we have dropped the two-dimensional Kaluza-Klein vector becausg it
carries no physical degrees of freedom any more. It is well known that the choice
€ = Aey, is preserved under conformal diffeomorphisms

SxtT=6_(x"), SxT=&07) (14.125)

. . . 1 . . .
with the light cone coordinates xt = —l—z(xO =+ x'). This residual coordinate

freedom can be gauged away, for example, by employing t.he dilat9n aqd Fhe
axion fields. One can fix the residual conformal diffeomorphisms by identifying

the field p or p with one of the coordinates.

14.5.1 Solving Einstein’s equations
Let us now focus our attention on the way of solving Einstein’s-equation. First
note that by substituting the gauge (14.124) into the scalar equation (14.67), we

arrive at
p ' D*(pP,) = 0. (14.126)
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The dependence of this equation on p is all that remains of three-dimensional
gravity. Equation (14.126) reduces to the Ernst equation for G = SL(2. R), but
we will return to this later. For the moment, note only that this equation works for
the o -model degrees of freedom, namely on A.

The remaining equations, which follow from higher dimensions, are the
equations for the dilaton p and for the conformal factor A. p is a free field in
two dimensions which can be solved for in terms of two arbitrary functions (left-
movers and right-movers)

Op =0= p(x) = p+(x7) + p_(x7). (14.127)
The equations of motion for the conformal factor in light-cone coordinates
plarpr dun = S Te(PLPr) + Lo "ol (14.128)

can be written as
3:p0+6 = 10 Tr PPy (14.129)

where the second term on the right-hand side of (14.128) has been reabsorbed into

the Liouville scalar 6 = A(8+p)’% (8_p)'%. Note that this equation determines
A only up to a constant factor. Observe also that this equation has no analogue
in flat space theories, and this, together with the presence of p, makes a great
difference. For instance, we cannot simply put o = constant, for this would
imply the vanishing of the right-hand side of (14.129), which by the positivity of
the Killing metric on the subalgebra K would imply P+ = 0 and leave us only
with the trivial solution v = constant (modulo H gauge transformations).

Now specializing to general relativity, i.e. G/H = SL(2, R)/SO(2) coset
space. As anticipated before, we start from the equation of motion (14.126),
employ the triangular gauge in the Ehlers form, so to have explicit expressions
for P, and Q,. After a little algebra we have again the Ernst equation

A3, (pd"E) = pdpEIE (14.130)

in terms of the complex potential £ = A + iB. Solving Einstein’s equations
is now simply a matter of choosing the appropriate p(x), finding a solution of
the nonlinear partial differential equation (14.130) and finally determining the
conformal factor A by integration of (14.129). For the colliding plane wave
solutions. that will be recovered in the next sections, one distinguishes waves with
collinear polarization, where B = 0 and waves with non-collinear polarization.
For collinearly polarized waves, the nonlinear Ernst equation can be reduced to a
linear partial differential equation through the replacement A = exp .
So, for collinearly polarized waves, with B = 0, the four-bein is

AATY2 0 0 0
A4 0 an~1? 0 0
_ , 13
Em 0 0 pAY2 0 (14.131)

0 0 0 A2
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and then the four dimensional line element is
ds? =272 dv T dx T — AT p%(dx?)? — Aqdr?)? (14.132)

where A, p and A depend only on x ™ and x .

14.5.2 The linear system

The integrability of the nonlinear equation of motion (14.126) is reflected in the
existence of a linear system. This means that there is a set of linear differential
equations, whose compatibility conditions yield just the nonlinear equations that
one tries to solve.

To formulate the linear system one must introduce a so-called spectral
parameter ¢ as an extra variable and replace v(x) by a matrix v(x) which also
depends on t.

v 2 5 00 ki, (14.133)
We postulate
T 1+ 2 ,
078,00 =0, + 3Pt tze,“,P‘. (14.134)

This is a generalization of v™'3,,v = Q,, + P, which is obtained from (14.134)
in the case r = 0. (14.134) is equivalent to

JURA 1 Fr
040 = 04 + — 1P, (14.135)
1+¢

Here we have an integrability condition, written as
A (07 o)y —a (' Dy + [0 1840, 07 9_0] =0 (14.136)

which vsing (14.135) can be directly checked by calculation, making use of the
integrability condition seen before and of the equation of motion for p. We define
explicitly

A=0,07"9-0) —o_ @7 oL d) (14.137)
B=1{o"'a,0.0""a_s]. (14.138)
Employing (14.135) these relations become

1+t 1 —

t
A=9 _—0_ P — —3_P
3.0 ( Q++l_r‘+ 17 +

1+ I —1
+o{—~— )P —0_|— P 14.139
w(l—r) ( (l+r> * ( )

N 1+ 1 —1 .
B=104. Q- 14 1Pe P]t+ Q4. P-] - Ta1Q- Pl (14.140)
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The sum now reads

1+1¢ 1 —1
A+B=—D,P_——D_P
+ - I +1 *
2t i t _
+ tT'0 tP_+ t'a_tP 14.141
a—n ™ (1+1)2 v )

where the integrability relation seen in section 14.2 has been used. Now let us
postulate

15t
—1 —1
170t = —— o0+ 14.142

so it follows

1+ 12 2t
A+B= = 12(D+P, —D_P.)+ 1—_7(D+P_ + D_Py)
2t
+ 1o t2(p"3+pp, +p 9 pPy). (14.143)
Now the first term is null for the integrability relation Dy P_ = D_P, and

the second for the equation (14.126). Therefore, the integrability condition is
checked.

Let us now focus on equation (14.142): it is integrable once one has a
solution of Op = 0. This can be explicitly verified, as it follows. First, let us
multiply (14.142) by (1 — 12); after a little algebra this equation reduces to

1
3+ [p (t + ;) — 2;3:‘ =0 (14.144)
where the axion g has been introduced. So one must have
! t+ ! ] (14.145)
2” t p=w '
where w is an integration constant. When we substitute in this relation the explicit

expression of the dilaton and the axion as functions of incoming and outgoing
fields, we get

Vw+ ot — Jw—p_(x7)
Vw+pr(H) + Jw—p_(x7)
For fixed x, the function r (x; w) lives on a two-sheeted Riemann surface over the
complex w-plane, with an x-dependent cut extending from p_(x~) to p4(x™).

The integration constant w can be regarded as an alternative spectral parameter.
The inverse of the spectral parameter is also important

tx; w) = (14.146)

2t+ r~0
| 2 S, ~
T w o p(l 4+ —2up 2 ( )

_.+_...’ ~ Q0
ot



The linear system 265

where we consider the expansion around zero and infinity. What is the
significance of the replacement (14.133)? A spectral parameter is required if one
wants to enlarge the finite Lie group to its affine extension, and the appearance of
t in (14.133) fits nicely with this expectation. There is now an infinite hierarchy
of fields, as one can see by expanding ¢ in . For convenience let us pick a
generalized triangular gauge, defined by the requirement that o should be regular
atr =0, or

[o.0)
Dxs ) =exp Y "on(x). (14.148)
n=0

Another important feature of the linear system is the invariance under a
generalization of the symmetric space automorphism. Let us define it for n = 1

8 = D! (;) . (14.149)

In terms of the Lie algebra, the action of T *° reads
Ou > Qu. Pu— —Pu. (14.150)
It is straightforward to verify that
(0719, 0) = 59,0 (14.151)

We can say that it is 09,0 € H®, which is the subalgebra of the Geroch group
G which is r*-invariant, as happens for finite-dimensional symmetric spaces.
It is worth noticing that this property does not hold for v !9, v if we replace 7>
with the transformation r defined in section two.

14.5.3 Derivation of the colliding plane metric by factorization

At this point we can convince ourselves that the results obtained so far can be
used to construct exact solutions of Einstein’s equations. Of central importance
for this task is the monodromy matrix, which is defined as follows

1
M = d(x; )T (x; 7) . (14.152)
A short calculation reveals that
M = 0(0713,0 — B 13, N0 =0 (14.153)
where the relation (14.151) was used. Consequently, .M can only depend on w.

The solutions generating procedure now consists in choosing a matrix .\ (w) and
finding a factorization as in (14.152).
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The simplest non-trivial example, that will be considered here. permits us to
recover the Ferrari-Ibanez colliding plane wave metric. Let us consider for this
aim the monodromy matrix

wro—w )
Aﬂuu==<wgw wﬁw)<ESLQ,C) (14.154)
ug—ur
and use
w — W ——i(f—f) :
0 = a1 0 ; —ro) (14.155)

with the special value wg = % and 1y = 1(x: wyp).
We use light cone coordinates, with the following notation to facilitate the
comparison with the standard literature

+ -

u X', V=X (14-156)

I

then the remaining conformal invariance is entirely fixed by choosing the
coordinates in such a way that
pr) = 5(1=2u%). p (1) =31-20)) = p(u.v) = 1 —u’—v? (14.157)

where p(u,v) > O because the interaction region, where the waves collide, is

w4+ v < L. Substituting (14.155) into (14.154) and defining two particular
solutions (14.146) in our gauge as

,](u'v)E,(u,v;w:l)=E—_”>o (14.158)

2 Vi—ul 4

£ v) E[(ll,v; w = —l) - Ylovtu (14.159)
2 V1—v2—u

where the inequalities hold in the interaction region, we obtain in a
straightforward way the desired factorization form for the monodromy matrix.
Then it follows that

nt—y
/__._: 0
ﬁ(u,U:f)=< nn rrr)'
pr—i
0 Voo

Putting + = () we recover v(u. v) in the triangular gauge, and then read directly
the result for A by virtue of (14.69). We get

(14.160)

A= __1=8 0 p 14.161
R o (14.161)

where the oblate spherical coordinates have been introduced

E=uvl— v+ oVl —u? (14.162)
r}zu\/l —vz—v\/l — v, (14.163)
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From (14.161) we have PZ = Q. = 0, with P = FA7'9:A. Putting
equation (14.161) into this second relation, we gain

IATNapA = S 0en — S Toen (14.164)
which using the formulae

1 —1t 1 4+

2. ~1. -1, -1.
It = ) .ot 0or = _p—— 14.
t o4 o (+pl+f P pl—f (14.165)
becomes | | |
1. Fh Fin
Pl=-p""9 - . 14.16
== 5f ip(lirl lir3> (14.166)

Now we use the expression given here for P+l to integrate the equation for the
conformal factor. Some further calculations show that
(1 —nn)?
}\2=8Ml'ﬁ* (14167)
(L=l —13)
where the undetermined overall tfactor has been chosen for convenience. Then,
this result yields the four-dimensional metric

2 2 d‘i:z d'lz ”l_s o) l+é 3.2
s = (1 - — —pm——(dx")"— ——=(dx")". (14.168
ds (14+8) (l—53 1—'73) pl+§(\) 146(\) ( )

This is (a special case of) the so-called Ferrari-Ibanez colliding plane wave
solution.
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The behaviour of a gyroscope in geodesic motion is studied in the field of
a plane gravitational wave. We find that, with respect to a special set of
frames, the compass of inertia undergoes a precession which, to first order in the
dimensionless amplitude & of the wave, is dominated by the cross-polarization
alone. This suggests that a gyro might act as a filter of the polarization state of
the wave.

15.1 Introduction

The (direct) detection of gravitational waves is still an open question, although
indirect evidence for their existence has been obtained from the observation
of the binary pulsar system PSR 1913+16 [1]. Besides the well-known bar
antennae, there is a growing interest in laser interferometry detectors, like LIGO
and VIRGO, which are sensitive to the low frequency (~10 Hz) gravitational
waves which are emitted by sources like coalescing binaries.

The purpose of this paper is to study the behaviour of a test gyroscope
which is acted upon by a plane gravitational wave with the purpose to see
whether this interaction leads to observable effects. It is well known that in
the absence of significant coupling between the background curvature and the
multipole moments of the energy—momentum tensor of an extended body, the
spin vector is Fermi—Walker transported along the body’s own trajectory (see [2]

268
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and references therein). The effects of a gravitational wave on a frame which is
not Fermi—Walker transported, are best appreciated by studying the precession of
a gyro at rest in that frame. Clearly it is essential to identify a class of frames
which optimize the corresponding precession effect.

In section 15.2 we give a short review of the observer dependent spacetime
splitting which enables one to describe in physical terms the motion of a test
particle as well as that of a test gyroscope. In section 15.3 we discuss the
spacetime of a plane gravitational wave and confine our attention to the family of
static observers; we give an example of a tetrad frame adapted to these observers
with respect to which the precession of a gyroscope is induced by the cross-
polarization only. In section 15.4 we discuss the non-trivial problem of how to
fix, in an operational and non-ambiguous way, a frame of reference which is not
Fermi—Walker transported in the spacetime of a plane gravitational wave. Finally,
in section 15.5 we calculate the precession of a gyroscope, in a general geodesic
motion, with respect to the above frame.

In what follows, Greek indices run from 0-3, latin indices from 1-3.

15.2 Splitting formalism and test particle motion: a short
review

A given family of test observers, namely a congruence of timelike lines with unit
tangent vector field u (i.e. ¥ - u = —1) induces a splitting of the spacetime into
space plus time through the orthogonal decomposition of the tangent space at each
point into the local time direction along u and the local rest space LRS ,,.
Projection of spacetime tensor fields onto LRS,, is accomplished using the
projection operator
Pnn=1+u®u (15.1)

and yields a family of spatial tensors (belonging to LRS, ® --- ® LRS,, i.e.
for which any contraction with u vanishes). The collection of all the spatially
projected tensor fields, associated to a given spacetime tensor field, will be
referred to as the ‘measure’ of the spacetime tensor itself. For instance, the
measure of the unit volume four-form 744,v. gives only one non-trivial spatial
field: €Wapy = u‘snsaﬂy which can be used in turn to define the spatial cross
product x, in LRS,,.

One can also spatially project the various derivative operators so that the
result of the derivative of any tensor field is itself a spatial tensor; examples
are: the spatial Lie derivative, £4,), = Puyfx for any vector field X, the

spatial covariant derivative V,,, = P(,,)P(l,)g Vg. the Lie temporal derivative,
Viie.wy = Punfu. the Fermi—Walker temporal derivative, Vyy, ) = PV, and
several other natural derivatives for which a detailed discussion can be found
in[2].

The measure of the covariant derivative ot the four-velocity of the observers,
gives rise to the kinematical coefficients of the observer congruence, namely the




270 Gyroscopes and gravitational waves
acceleration, vorticity expansion
aly = Vigwou®,
)
Wapap = P(u)yot Py ﬁV[V“S},
s
Buwap = Puy¥ o Pun’ pViyus,, (15.2)

and the spatial dual of the vorticity field

3 1
Wy = jétu)aﬁyw(!l)ﬁy~ (15.3)

When dealing with different families of test observers, say u and U, the
mixed projection map Py ., = Py Py fromLRSy to LRS, (and the analogous
compositions of two or more projectors) will be useful. Let ¢, be the world line
of a nonzero rest mass test particle with U as its unit timeljke tangent vector. The
orthogonal decomposition of U relative to the family of test observers u, identifies
its relative velocity vy .,y = Vi) Where v = llvy ) || = vl and Dy ) is
the unit spatial vector, so that

U=vylu+viwuwl (15.4)

Here y = (1 —v?)~ /2 is the local relative Lorentz factor. If the four acceleration
of the particle
D
awy)=VylU = —U
dry
is non-vanishing, then its projection onto LRS , leads to the acceleration-equals-
force equation:
P(U.u)a(U) = yF(U.u)

where F(y ., is the spatial force acting on the particle as seen by the observer u.
In a similar way, one defines a spatial gravitoinertial force

. Du
dry.u)
= ylgw + V(3w Xu Huy — 0o Lw.n)], (15.5)

where Ty is a proper time parametrization for U and t(y ,, = f“, y dry is the
corresponding Cattaneo relative standard time parametrization; g (,) = ~a,, and
H(,), = 2w, are, respectively, the electric- and magnetic-like components of
the gravitoinertial force. This terminology is justified by the Lorentz form of the
gravitoinertial force which appears in the last of equations (15.5).
If we define pw .y = yViv.y. Eqvwy =y and
[)(t'w.U.u)

:y"IP _I)_—_—V“._ +va V(u) (]S())
dry.u) “”dtU w.u) ) o 3.
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the latter being the measure of the (rescaled) absolute derivative along U, the
(34 1) version of the equation of motion of the particle and of the energy theorem,
acquires the Newtonian form

D(fw U.u) (G)
_— = F + F s
At . PU.uy (U.u) (tw.U.u)
dEw.w (G)
m = [Fyw + F(fw_U‘“)] u VU.u). (15.7)
Ju

Let us now consider the motion of a test gyroscope. As it is well known,
the spin vector Sy of a gyroscope carried by an observer U, is Fermi-Walker
transported along his worldline (i.e. S(y) does not precess with respect to spatial
axes which are Fermi—Walker dragged along U), namely:

Dtw.U) D
——58Su) = Pyy—Sw, =0. 15.8
dry W) <U>dw W) ( )

Suppose that we have chosen a spatial triad e(U/ ) ; which is adapted to the observer
U and is not a Fermi-Walker frame. The observer U will then see the spin S(U)
of the gyroscope to precess with respect to these axes according to the law:

ds(lU) a b S[‘ - -0 1

dry € BeSwvamydw €W = (15.9)
where )

Siiw.v.awng = €W - Viw)eU)e (15.10)

is the precession rate vector.

However, we may want the gyroscope to be analysed by a different observer,
u say, who is not comoving with the gyro’s centre of mass. In this case we need
a smooth family of these observers, each one intersecting the gyro’s worldline at
any of its spacetime points where he measures the instantaneous precession of
the spin vector relative to a suitably defined frame, adapted to u. Of course, we
require that the observer’s u are synchronized so that their measurements can be
compared. The results of these measurements are described by a smooth and at
least once differentiable function of the proper-time of u.

Let {e(u);} be a tield of spatial triads adapted to u: then the restriction of
{e(u);} to the worldline £ of the gyroscope. allows one to define on ¢ a field
of tetrad frames, adapted to U, given by {{U. e(U);}, where:

‘_)(U)[l = B(lrs,u.U)"(“)[,. (15.1H
Baes.uy = PuyBuu)Poy © LRS, — LRSp being the boost map between the

rest spaces of the observers U and u; this map has been studied extensively in
[2—4]. Since the boost is an isometry, the precession of Sy, with respect to the
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axes e(U); is the same as the precession, with respect to the axes e(u);, of the
boosted spinvector s(,, which reads:

Y
Sy = B(lrs.U.u)S(U) = [P(u) - ¥y

+ IV(U,M) ® U(U.u)] P(U,ll)S(U)- (1512)

Hence, from (15.9) and (15.11) and the acceleration-equals-force equation
for U; we find:

ds? R .
[Br(—;) — ye sl va + cm.fwu,u)]”s(‘“)] e(u); =0 (15.13)
where!
1 G
Sitw. Uy = mU(U.u) Xu [F(fw).U.u) —yFu.uwl
1 a6 Diw.v.wy
Cisefw Uy = E‘Sah“d(r—(wuﬁe(u)& Xu e(“)}; (15‘14)
so that
Q!‘W.U.?(U)g,) = VB(lrs.u.U)[C(fW‘U.U) + ((sc.fw.U.u)]- (15-15)
Finally, by rescaling equation (15.13) 1o the proper-time of u, one has
ds a " 0 2
w_ € /}5[§(fw.U,u) + ((sc.fw.U,u)]hS(u)L =0 (15~16)
drw.
where

- 5 -1
C(t’w.U.u) + C(sc,fw.U,u) = C(fw.u,e(u);,) =Y B(lrs.U.u)C(fw.U.E(U)l;) (15 17)

is the angular velocity precession of the gyroscope as measured by the observer u
with respect to the axes e(u);.

It is worth mentioning here that while the observer U, who is comoving
with the gyro’s centre of mass, measures the precession (15.10) along his own
worldline, the observer’s # can only compare the instantaneous measurements
of Zng,,.em,a, in (15.17), made by each of them along the gyro’s worldline.
Evidently either type of measurements requires the tetrad frames to be
operationally well defined. This will be discussed in the following section.

15.3 The spacetime metric

The metric of a plane monochromatic gravitational wave, elliptically polarized
and propagating along a direction which we fix as the coordinate x direction, can
be written in the *TT’ gauge as [5]:

ds® = —di® + dx? 4+ (1 — ha)dy” + (1 + h2) dz? = 2ha3dydz (15.18)

! This notation for the Fermi—Walker relative angular velocity gy, ¢/ .y and the Fermi-Walker space-
curvature relative angular velocity §yc. fw. /.,y has been introduced in {2},
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with hap = hap(t — x), (A, B = 2, 3). Let u denote the tangent vector field of
a family of geodesic, non-rotating and expanding observers defined by

>

w =-—dr, u=2a. (15.19)

One can adapt to these observers an infinite number of spatial frames, by rotating
any given one arbitrarily. For example, consider the following u-frame {e 5} =

{eg = u, e; = e(u)z} with its dual {w¥} = {0® = —u", 0% = wu)d}
u = 3{
e(u)j = dy

e(u); = (1 — ha) 728y >~ (1 + %hll)a\'
ey = (1= h3y = h3) 7210 = o)™ Phozdy + (1= ha) 20

> ha3d, + (1 — $ha2)o; (15.20)
—u’ =dr
a)(u)i =dx
w)? = (1 — ha)'? [dy - ﬁzzzz d:] ~ (1 - %hzz) dy — ha3dz

; L—h2 -2\ 1

3 T My T3

Y= = dz>~(14+ =h d:.
w(u) ( 1 hos ) ( + > zz)

where ~ denotes the corresponding weak-field limit. Any other spatial frame
{e(u);}. adapted to the observers (15.19), can be obtained from this one by a
spatial rotation R

E(u)g = e(w); R, (15.21)

Among all the possible frames, there exists only one with respect to which the
local compass of inertia experiences no precession. This frame is Fermi—Walker
transported along u, namely it satisfies the condition

P(“)—l)—é(u)[, = Viwanelu); = 0. (15.22)
dz,

A Fermi-Walker frame is the most natural of the u-frames; its spatial
directions, in fact, are fixed by three mutually orthogonal axes of small size
comoving gyroscopes. However, if a metric perturbation causes a dragging of
the local compass of inertia, the only way to detect and measure it. is to select a
frame which is not Fermi—Walker transported. In this frame. in fact, a gyroscope
would be seen to precess and indeed its precession contains all the informations
about gravitational dragging. Nonetheless. it is quite non-trivial to identify. in
an operational way, a trame which is notr Fermi-Walker transported along the
observer’s worldline when it is acted upon by a gravitational wave.
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Frame (15.20) is clearly Fermi-Walker transported in the absence of
gravitational waves (/122 and h33 being time independent), but it is not so when
they are present. The Fermi rotation of the frame, in this case, is described by the
(antisymmetric) angular velocity spatial tensor [6]:

Cinba = € u Vitwaeu)g. (15.23)

hence, a gyroscope carried by the observer u will precess with respect to frame
(15.20) with an angular velocity tensor which has only one independent nonzero
component, namely:

(23, (1 — h22) + hoo hos) 1
i = 7 5 = = —5hn.. (15.24)
2(1 = hao)y /1 'hiz —1153 <~

However. frame e (1t); cannot be operationally defined, so result (15.24) is of little
physical significance although it shows the existence of frames which respond to
one state of polarization only. at least to first order in 4 45. We are, therefore,
motivated to search for *frames’ that can be fixed from a viable experimental set
up.

C

15.4 Searching for an operational frame

Let us consider the timelike geodesics of the metric (15.18). These are well known
17]: the four-velocity of a general such geodesic can be written as

I 5
Up =510+ f + EDd + (1+ f — EDiy]

s {la(l + ha2) + Bh23]dy + [B(1 — h22) + ah23]d:},

- "%2 — M3
(15.25)
where «, f and E are Killing constants and f = g4gU* U8 is equal to
) 1 5 >
f = —"—,——7[Q’b(l + h22) + ﬁ-(l —_ }122) + 20,8}'123]
1 —h3y ~h3y
~ a>(1 + hay) + B2l — hy2) + 2aBhas. (15.26)

If u = 9, is the family of observers who make the mesurements and {e (1) ;}
is an adapted spatial frame, then the relative velocity vy, ,\* of Uy with respect
to u is defined by the relation

U, = y(Ug‘,,,lu + wug‘u;"e(u);,]. (15.27)
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where

1+ [+ E?
VWe» = =75 p

12

1 , ,
U+ E + (14 ha2) + B2(1 — ha) + 2aBha3] (15.28)

and the relative velocity components can be obtained by comparison of (15.28)
and (15.25).

Hereafter, we restrict ourselves to the weak field approximation (first order in
hap) and assume. without loss of generality that, in the absence of a gravitational
wave, the spatial velocity vy, ,), was only in the v coordinate direction. This
corresponds to the requirement that

=0 E=VI+a2 (15.29)

In this case we find

2

ViWuy = ‘2“ +a2)/122-
2 i |4 (15.30)
Vit - = . o
(b‘ll) 1+a2 2(] +a2)
j o
VWW.uy = ———=h2.

We now require that the four-velocity of a test gyroscopeis U = Uy as given
by (15.25) with conditions (15.29). The assumption of geodesicity is justified if
we consider the limit of zero size gyroscopes. In this case, in fact. not only can we
neglect the multipole moments of the gyro’s stress tensor higher than the dipole.
but also ignore the tidal term which enters the Papapetrou—Dixon equations and
arises from the coupling of the gyro’s spin with the background curvature. This
term is of the order of the ratio of the average size of the gyroscope and the
gravitational-wave wavelength.

Let us consider the restriction of the vector field # = 9, of stationary
observers, to the gyroscope’s worldline and require that these observers monitor
the behaviour of the spin of the moving gyro. measuring the (instantaneous)
precession vector ¢ given by equation (15.17). As already mentioned. the spatial
frame e(u); given by (15.20) is not operationally well defined. so we have to find
one which is so.

To find a spatial frame which is suitable for actual experiments, note that the
observer’s 1 can unambiguously determine in their rest-frame. a spatial direction
given by that of the relative velocity v of the gyroscope. Suppose they fix. by
guessing if necessary, a direction of propagation of the gravitational wave and
term this as the x-axis with unit vector e(«);. Then from these two directions,
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namely that of the relative velocity of the gyro and of the wave propagation, it is
possible to construct a spatial triad as follows

Au); = e(u); =«
)‘-(M)é = 1’J(U.u) X ue(u)i
Aw); = Aw); % (s, (15.31)

This frame can be operationally constructed apart from guessing the
direction of propagation of the wave. Indeed such a guess is also required to fit
data from bar antenna detectors, for example. Obviously this frame is not unique:
any other spatial triad obtained from it after a rotation which depends at most on
the (known) modulus of the relative velocity (or is constant) is equally useful.

The spatial triads e(u); in (15.20) and A(u); in (15.31), differ by a rotation

AMu), = RB;,e(u)l;.

In the weak field limit, the only non-trivial components of Rb 4. are

'R%:—R%:’Rgi: 1, RQQ=R33=}123
so that
k(u)i = 0y
Au); =~ hye(u); —e(w)y > —(1 — $hy)d;
Au)y > e(u); +hxe(w); >~ (1+ Th22)dy + h3d-. (15.32)

15.5 Precession of a gyroscope in geodesic motion

The precession of the gyro which is measured by the observer’s u all along its
worldline, is the image of the precession measured by the comoving observer U,
under the boost B(U, u) as shown in (15.17). In order to study the spin precession
seen by the observer comoving with the gyro, we must first decide with respect
to what axes (non-Fermi—Walker transported but operationally well defined) the
precession will be measured, as explained in section 15.2.

Since the observer’s u intersect the worldline of the observer U carrying the
gyro, the u-frames {X(u);} in (15.31) form a smooth field of frames on it, so the
observer U can identify spatial directions in his rest space simply by boosting the
directions A(u);.

At each event along his worldline in fact he will see the axes A(u); defined
in (15.31) to be in relative motion, therefore the boost of these axes, namely

)_\(U)[l = Birs.u.inAMu)g = Au); + ﬁ[l}(u_“) Aty u+U), (15.33)
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from (15.11), will be seen by U as the corresponding axes with the same
orientation which are ‘momentarily at rest’. The orientation of the spin vector
S with respect to the axes A(U); is also the orientation of S with respect to the
moving axes A(u) ;-

The velocity of spin precession then corresponds to the spatial dual of
the Fermi-Walker structure functions of A(U )a. namely Csu)(U AU Yadiss
according to relation (15.23).

Confining our attention to the weak-field approximation, the components of
the precession velocity with respect to the triad A(U); are

~

4 i 1
Sitw Uiy = — 2h23s
_ 5
Sitw Uiy, = @/2hny

f(fw,U.X(U>5>3 >~ o/2h3,. (15.34)

We observe that in the limit of small linear momentum, o <« 1, the
dominant precession is in the direction of wave propagation e(u); (to zeroth
order, A(U )y >~ e(u);) and is induced by the cross-polarization only. (Note that
the precession in the direction of propagation of the wave does not depend on
«.) In this case we can conclude that the gyro can act as a polarization filter for
gravitational waves.

In the opposite limit of large linear momentum, o >> 1, the precession vector
lies mainly in the plane orthogonal to the propagation direction and is contributed
likewise by both polarizations. Indeed the measurement of the precession induced
by a plane gravitational wave, of a gyroscope set in relativistic motion, would
enable one to identify the local direction of propagation of the wave. A similar
situation will be encountered in the rest frame of u, where from (15.17), (15.28)
and (15.29) we have:

: : 1 1

=1 —1 - I ~ _ _

Citwounny = YwanBusUwlewviany = ~ 3 iia a2h23.r
~ " 1 o

=3 -1 IV

C(fwyu_;t(,,)&) = V(U_,,)B(lrs.U.u)f(fw,U,)\(U)[‘) ) r——l n a2h22.t

1

3 -1 o3 @
Sitwan iz = Ywan BusUoSewviwn” = 2mh23-'~ (15.35)

Finally, let us note that results (15.35) are only slightly modified after
rotating the frame (15.31) by a constant angle ¢ around the propagation direction
of the wave. In fact, in this case, the new spatial u-frame becomes

faog = A
fluwy, cos PA(u); + sin @A (u);
faoy — singA(u); + cos Pru)s; (15.36)
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when ¢ = 0 it reduces to (15.31). Once the boosted frame f(U)a
Brs.U.u f (u); in LRSy is obtained. the components of the precession velocIty
turn out to be

~ _
Swwu.fny = 7 sh23.
gﬂ'w.U.ﬂU)mz = a/2[cos ph2s; — sinphas ]
Swtr, fity) = @/2=singhyy  + cos pha,]. (15.37)

again showing that, in the limit of small linear momentum «, the precession
mainly occurs about the direction of propagation of the wave.

15.6 Conclusions

We have operationally defined a tetrad frame adapted to a family of static
observers in the background of a plane gravitational wave. Then we have used
this family to study the precession angular velocity of a gyroscope moving along
a spacetime geodesic. The results show that, to first order in 4 and in the
case of non-relativistic motion (@ <« 1), the observed gyroscopic precession is
mainly induced by the cross-polarization only so a gyro appears to behave as a
polarization filter.

Assuming the form hy3 = hy sin(fg\i (t — x/c) + ¢) for the Cross-

polarization, with an obvious meaning for the symbols, the precession frequency
(in conventional units) would be

wchy
AGW

2 .
Qgyroy (1) >~ — cos (l(t —x/c) + 1//) ) (15.38)
AGW

The values of the precession frequency are very small, as expected. With a typical
amplitude of 10721 at the Earth and a frequency of 10* Hz, we could hope for a
maximum precession of the order of 10718571,

Clearly the precession effect is larger with high-frequency gravitational
waves or when the gyroscope is close enough to the wave source to allow for
a higher value of h . This situation is encountered by a spinning neutron star,
say, in a compact binary system.

The type of analysis we have considered, is most suitable to describe the
interaction of a moving gyroscope with a continuous flow of plane gravitational
waves with metric form as in (15.18). These are expected to be emitted by
sources like compact binaries. If we have an impulsive source, like a supernova,
then one expects a burst of gravitational radiation which is better described by a
gravitational sandwich. This latter case is now under investigation.
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