B lack holes in the brane world ：T im e sym m etric in itial data

Tetsuya Shirom $\operatorname{izu}^{1 ; 2 ; 3}$ and $M$ asaru Shibata ${ }^{4 ; 5}$<br>${ }^{1}$ M P I fur G ravitationsphysik，A lberte instein Institut，D－ 14476 G om ， G em any<br>${ }^{2}$ D epartm ent of Physics，The U niversity of Tokyo，Tokyo 113－0033，Japan<br>${ }^{3}$ Research Center for the Early U niverse（RESCEU ），The U niversity of Tokyo，Tokyo 113－0033，Japan<br>${ }^{4}$ D epartm ent of Physics，U niversity of Tllinois at U rbana－C ham paign，U rbana，II 61801，U SA<br>${ }^{5}$ D epartm ent of E arth and Space Science，O saka U niversity，T oyonaka 560－0043，Japan


#### Abstract

$W$ e num erically construct tim e－sym $m$ etric in itial data sets of a black hole in the $R$ andall－Sundrum brane world $m$ odel，assum ing that the black hole is sphericalon the brane．$W$ e nd that the apparent horizon is cigar－shaped in the 5D spacetim e．


## I．IN TRODUCTION

M otivated by H orava－w itten $m$ odel［1］，the so called brane world m odel has been actively investigated 目］． Am ong several models，a sim ple，but very attractive model was recently proposed by R andall and Sundrum 3，［4］．A ccording to their scenario，we are living in a 4D dom ain wall in 5D bulk spacetim e．The notew orthy fea－ tures of their $m$ odel are that in the linearized theory，the conventionalgravity can be recovered on the brane 目［ $]$ ］ and that a hom ogeneous，isotropic universe can be sim－ ply described if we consider a 4D dom ain wallm oving in the 5D Schw arzschild－antide Sitter spacetim e G］．

O ne of the $m$ ost non－linear objects in the theory of gravity is a black hole，which should be also investi－ gated to understand the nature of the models in strong elds．H ow ever，because of the com plexity of the equa－ tions，any realistic，exact solutions for black holes have not been discovered in the brane w orld $m$ odel，even $w$ ith help of num erical com putation so far．We only know that the e ective 4D gravitationalequation on the brane is di erent from the $E$ instein equation［\＄］（see A ppendix A），so that the static solution for a non－rotating black hole should not be identicalw ith the 4D Schwarzschild solution．Indeed，a linear pertunbation analysis 5］］ shows that a solution of gravitational eld outside self－ gravitating bodies on the brane is slightly di erent from the 4D Schw arzschild solution．C ham blin et al．10］con－ jecture that the topology of black hole event horizons would be sphericalw ith the cigar－shaped surface in the 5D spacetim e．H ow ever，nothing has been clari ed sub－ stantially．

In this paper，as a rst step tow ard self－consistent stud－ ies for black holes in the brane world，we num erically com pute a black hole space using a tim e sym $m$ etric in itial value form ulation；nam ely we solve the 5D E instein equa－ tion only on a spacelike 4D hypersurface．Thus，the black hole obtained here is not static nor the exact solution for the 5D E instein equation，im plying that we cannot iden－ tify the event horizon．H ow ever，we can investigate the property of the horizon determ in ing the apparent horizon
which could give us an insight on the black hole in the brane world．W e focus on the R andall－Sundrum＇s second m odel［园］，and assum e that the black hole is spherical on the brane，but the shape of the horizon is non－trivial in the bulk．W ew illdeterm ine the apparent horizon on the brane and show that the black hole is cigar－shaped as conjectured in 10］．

## II．FORM ULATION AND RESULTS

W e consider tim e sym m etric，spacelike hypersurfaces， t ，in the brane world m odel assum ing the vanishing extrinsic curvature；i．e．，

$$
\begin{equation*}
\mathrm{H} \quad(+t \mathrm{t})^{(4)} \mathrm{r} \mathrm{t}=0 \tag{2.1}
\end{equation*}
$$

where $t$ is the unit nom al tim elike vector to $t$ and ${ }^{(4)} r$ is the covariant derivative $w$ ith respect to the 4D $m$ etric on $t$ ．In this case，the $m$ om entum constraint is satis ed trivially，and the equation of the H am iltonian constraint becom es

$$
\begin{equation*}
{ }^{(4)} \mathrm{R}=16 \mathrm{G}_{5}\left(+{ }^{(5)} \mathrm{T} \quad \mathrm{t} t\right) \text {; } \tag{2.2}
\end{equation*}
$$

where ${ }^{(4)} \mathrm{R}$ is the R icci scalar on $\quad \mathrm{t}$ ，and $\mathrm{G}_{5}\left(=\quad \begin{array}{l}2 \\ 5\end{array}=8\right)$ ， and ${ }^{(5)} \mathrm{T}$ denote the gravitational constant，negative cosm ological constant，and energy $m$ om entum tensor in 5D spacetim e［cf．，Eq．A1）］．W e choose the line elem ent on $t$ in the form

$$
\begin{equation*}
d l^{2}={\frac{1}{z^{2}}}^{h}{ }^{\prime 2} d z^{2}+{ }^{4}\left(d r^{2}+r^{2} d\right)^{i} ; \tag{2.3}
\end{equation*}
$$

where＇$=\mathrm{P} \quad{ }_{5}^{2}=6, z(1)$ denotes the coordinate orthogonal to the brane and $r(0)$ is the radial coordi－ nate on the brane．$W$ e assum $e$ that the brane is located at $z=1$ ．N ote that we sim ply choose this line elem ent for convenience of the analysis．In this paper，we fo－ cus on a black hole which is spherical on the brane，i．e．，
$=(r ; z) . T$ hen，the explicit form of the $H$ am iltonian constraint in the bulk（for $z>1$ ）is written in the form

$$
\begin{align*}
& \infty^{0}+\frac{2}{r}{ }^{0}+\frac{3}{2^{2}} @_{z}^{2} \quad \frac{3}{z} @_{z} \quad{ }^{4}+3\left(@_{z}\right)^{2} 3^{i} \\
&=\frac{5}{4}(5)  \tag{2.4}\\
& \text { t t }:
\end{align*}
$$

$w^{2}$ here ${ }^{0}=@=@ r$, and ${ }^{(5)}$ is the energy-m om entum tensor in the bulk, which is introduced for num erical convenience.

Equation 2.4) is an elliptic type equation and should be solved im posing boundary conditions at $\mathrm{z}=1, \mathrm{z} \quad 1$, $r=0$, and $r$ '. The boundary condition at $z=1$ is derived from Israel's junction condition 11] as (see A ppendix A for the derivation)

$$
\begin{equation*}
@_{z} \dot{z}=1=0: \tag{2.5}
\end{equation*}
$$

The boundary conditions at $z \quad 1$ and $r$ ' are obtained from the linear perturbation analysis (see Appendix B).For $r$ ' and $r>{ }^{\prime} z$, it becom es

$$
\begin{equation*}
1+{\frac{M G_{4}}{2 r}}^{h} 1+\frac{1}{2} \frac{R}{r}^{2}+O \quad\left({ }^{\prime}=r\right)^{4}{ }^{i} \tag{2.6}
\end{equation*}
$$

where $G_{4}=G_{5}={ }^{\prime}, M$ is the gravitationalm ass on the brane, and $R=(2=3)^{1=2}$ 。. For z 1 ,

$$
\begin{equation*}
\text { , } 1+\frac{3}{4} \frac{G_{4} M}{R z} 1+{\frac{r^{2}}{z^{2} R^{2}}}^{3=2}: \tag{2.7}
\end{equation*}
$$

To determ ine the existence of a black hole, we search for the apparent horizon. H ere, we determ ine tw o horizons [12]. O ne is de ned to be the spherical tw o-surface on the brane on which the expansion of the null geodesic congruence con ned on the brane is zero [1 3$]$, i.e.,

$$
\begin{equation*}
3=\frac{2}{3} 2^{0}+\frac{1}{r}=0: \tag{2.8}
\end{equation*}
$$

T he other is the apparent horizon in full 4D space, which is de ned with respect to the null geodesic congruence in full 5D spacetim e and satis es [13]

$$
\begin{equation*}
{ }_{4}={ }^{(4)} r_{i} s^{i}=0 ; \tag{2.9}
\end{equation*}
$$

$w$ here $s^{i}$ is a unit norm al to the surface of the apparent horizon. Explicit equation for determ in ing this apparent horizon is shown in A ppendix C.

The procedure of num erical analysis is as follows. First, we arti cially put the $m$ atter of $h$ (5) $t t>$ 0 in the bulk. This $m$ ethod is em ployed because we do not have to consider the inner boundary condition of black holes w ith this treatm ent. A s long as $h$ is con ned around the brane and inside the horizon, it does not signi cantly a ect the geom etry outside the horizon. T hen, we solve Eq. (2.3), and try to nd the apparent horizon both on the brane and in the bulk. W hen the distribution of $h$ is su ciently com pact, the apparent horizons exist. It should be noted that tw o horizons do not coincidently appear. In som e cases, the apparent horizon on the brane exists although that in the bulk does not.


FIG.1. Location of the apparent horizons on the brane ( lled circle) and in the 4D space (solid line). A rti cialm atter is con ned in the region show $n$ by the dashed line.


FIG.2. Pro le of 1 on the brane (solid line). Location of the apparent horizon on the brane is show. $n$. he dashed line denotes $1=\mathrm{M}=2 \mathrm{r}$

Here, we show one exam ple of num erical results. W e set $G_{4}=1$. In this exam ple, an arti cialm atter is put for 0 r $0: 2 \mathrm{R}$ and 1 z 1:2. Equatior (2.4) is solved using a uniform grid w ith grid size $1200 \quad 1200$ for $r$ and $z$ directions, which covers a dom ain w ith $0 \quad r=R \quad$ 17:1 and 1 z 18:1. In this case, the gravitationalm ass on the brane is $M$ ' $0: 29 \mathrm{R}$, and both apparent horizons on the brane and in the bulk exist. W e note that the results are essentially the sam e for $0: 25 \quad M=R \quad 0: 5$. In Fig. 1, we show the location of apparent horizons in the bulk and on the brane. T he apparent horizon in the bulk is apparently cigar-shaped. Due to this cigar-shape the circum ferentialradius of the apparent horizon is di erent depending on the choice of the circum ference in the bulk. In Fig. 2, we show that the pro le of 1 on the brane. For r $\quad \mathrm{R}, \quad 1$ behaves as $M=2 r$, im plying that the solution approxim ately agrees w ith that in the 4D E instein gravity, i.e., the bulk e ect is sm all. H ow ever, the existence of the bulk is signi cant for $r \quad R$ as expected. Indeed, 1 deviates from $M=2 r w$ ith decreasing $r$. This $e$ ect is in particular im portant for the location and area of the apparent horizon on the brane: In the case of 4D gravity w ithout bulk, the apparent horizon is located at $r_{\text {A }}=M=2 \mathrm{w}$ ith the area $A_{A H}=16 \mathrm{M}^{2}$. H ow ever, in the brane w orld $m$ odel, they take di erent values in general. (In this example, $r_{A H}$, $0: 9 \mathrm{M}$ and $A_{A H}$ ' $88: 6 \mathrm{M}^{2}$,
and the coe cients converge to well-know 4D values (0.5 and 16 ) w ith increasing $M$, im plying that the ect of the existence of the bulk becom es less im portant.)

## III. SUM M ARY

W e num erically com puted tim e sym $m$ etric initialdata sets of a black hole in the brane world $m$ odel, assum ing that the black hole is spherical on the brane. As has been expected, the black hole (apparent horizon) is cigarshaped in the bulk 10].

W e rem ind that we only present tim e sym $m$ etric initial data of a black hole space. This implies that the black hole is not static and will evolve to other state $w$ ith time evolution. The quantitative features of the
nal fate could be di erent from the present result. Selfconsistent analysis for static black holes shou ld be carried out for future to obtain a de nite answer with regard to black holes in the brane w orld. H ow ever, w e believe that the present result provides us a guideline for such future works.

## ACKNOW LEDGMENTS

W e thank B. Carter, N. Dadhich, D. Langlois, R. M aartens, K. M aeda, M. Sasaki and T. Tanaka for discussions. TS is gratefiul to thank Relativity Group for their hospitality at G olm near by Potsdam. M S gratefully acknow ledges support by JSP S and the hospitality at the D epartm ent of P hysics of U niversity of Illinois at U rbana-C ham paign.

## APPENDIX A:THEESSENCEOFTHEBRANE W ORLD

W e brie y review the covariant form alism of the brane world [0]. For the $m$ atter source of the 5D E instein equation, ${ }^{(5)} \mathrm{G}={ }_{5}^{2}\left({ }^{(5)} \mathrm{T} \quad{ }^{(5)} \mathrm{g}\right)$, we choose the energy-m om entum tensor as

$$
\begin{equation*}
{ }^{(5)} \mathrm{T}=()\left[\mathrm{q}+{ }^{(4)} \mathrm{T}\right]+{ }^{(5)} \text {; } \tag{A1}
\end{equation*}
$$

where $=$ ' $\ln z$, is the tension of the brane, $q$ is the induced $m$ etric on the brane, and ${ }^{(4)} \mathrm{T}$ is the energy m om entum tensor on the brane. Due to the singular source at $=0$ and the $Z_{2}$ sym $m$ etry, we can derive the Israel's junction condition at $=0$ as

$$
\mathrm{K} \quad=\frac{1}{6}{ }_{5}^{2} \mathrm{q} \quad \frac{1}{2}{ }_{5}^{2}{ }^{(4)} \mathrm{T} \quad \frac{1}{3} \mathrm{q}{ }^{(4)} \mathrm{T} \quad \text {; (A 2) }
$$

where $K$ = qqD $n$, and $D$ and $n$ are the covariant derivative $w$ ith respect to $q$ and the unit spacelike norm al vector to the brane. In the text, we consider the
cases in which ${ }^{(4)} \mathrm{T}=0 . \mathrm{U}$ sing (4+1) form alism, the $e$ ective $4 D$ equation on the brane has the form

$$
\begin{equation*}
{ }^{(4)} \mathrm{G}={ }_{4} \mathrm{q} \quad \mathrm{E} ; \tag{A3}
\end{equation*}
$$

where ${ }^{(4)} \mathrm{G}$ is the 4D E instein tensor on the brane,

$$
{ }_{4}=\frac{1}{2}{ }_{5}^{2}+\frac{1}{6}{ }_{5}^{2}{ }^{2} \quad \text { and } \mathrm{E} \quad={ }^{(5)} \mathrm{C} \quad \mathrm{n} \mathrm{n} \text {; (A 4) }
$$

where ${ }^{(5)} \mathrm{C} \quad$ is 5D W eyltensor. In the above, for sim plicity, we set ${ }^{(5)}=0$. Equation A 3) im plies that we can consider E as the ective source term of the 4D E instein equation on the brane, and as long as E is not vanishing, the geom etry on the brane is di erent from that in the 4D gravity even in the vacuum case. O nly for very special case such as for the black string solution [10, 14], $\mathrm{E}=0$ holds.

From Eq. A 3), we nd that the M inkow skispacetim e is realized on the brane when $\mathrm{E}=0$ and ${ }_{4}=0$. In this paper, we set ${ }_{4}=0$ to focus on asym ptotically at brane. Then, the junction condition at $=0$ is rew ritten to $K=\frac{1}{9} q$. In the case when we choose the line elem ent as Eq. 2.3), the junction condition reduces to Eq. 2.5).

## APPENDIX B:ASYMPTOTIC BOUNDARY COND IT ION S

To specify the boundary condition at in nities, we investigate the linearized equation of Eq. (2.4) :

$$
\begin{equation*}
, \infty+\frac{2}{r},^{0}+\frac{1}{R^{2}} @_{z}^{2}, \quad \frac{3}{z} @_{z}^{\prime}=\frac{5^{2}}{4} \mathrm{~h} ; \tag{B1}
\end{equation*}
$$

where $=1+$ ' and ' $1 . \mathrm{W}$ e can obtain the form al solution $w$ ith aid of the $G$ reen function $G\left(x ; z ; x^{0} ; z^{0}\right)$ as

$$
, 2 G_{4}^{\prime} d^{3} x^{0} d z^{0} G\left(x ; z ; x^{0} ; z^{0}\right) h\left(x^{0} ; z^{0}\right):
$$

A ssum ing that $h$ is non-zero only in the sm all region around the brane, we can derive the relevant $G$ reen function as []

$$
\begin{align*}
G\left(x ; z ; x^{0} ; z^{0}\right)= & \frac{Z}{\frac{d^{3} k}{(2)^{3}} e^{i k}\left(x x^{0}\right)} \\
& \frac{h}{\frac{1}{4 k^{2}}+\quad Z_{1}} \quad d m \frac{u_{m}(z) u_{m}(1)^{i}}{k^{2}+m^{2}} \\
= & G_{0}+G_{k K} ; \tag{B3}
\end{align*}
$$

$w$ here $u_{m}(z)$ is the $m$ ode function given from the B essel functions $J_{n}$ and $N_{n}$ as

$$
\begin{align*}
u_{m}(z)= & z^{2} \frac{r}{\frac{m R^{2}}{2^{\prime}}} \\
& \frac{J_{1}(m R) N_{2}(m R z) \quad N_{1}(m R) J_{2}(m R z)}{P} ; \tag{B4}
\end{align*}
$$

where $R=(2=3)^{1=2}$ 」. $G_{0}$ and $G_{K K}$ are the $G$ reen function of zero and K K m odes, respectively. From Eq. B 2) we can derive the asym ptotic boundary conditions show n in the text.

## APPENDIX C:APPARENTHORIZON IN THE B U LK

W e derive the equation for the apparent horizon in the bulk. A fter we perform the coordinate transform ation from $(r ; z)$ to $(x ;)$ as $z=1+x j c o s j a n d r=$ ' $x \sin$, the surface of the apparent horizon is denoted by $\mathrm{x}=$ $h()$. Then, the non-zero com ponents of $s i$ is written as

$$
\begin{equation*}
S_{x}=C \text { and } s=C h ; \tag{C1}
\end{equation*}
$$

where C [ $\left.\quad{ }^{2} \hat{C}=(1+x j c o s j)\right]$ is a nom alization constant calculated from $s^{i} s_{i}=1$, and $h ;=d h=d . T$ hen, the equation for $h$ can be written to the follow ing ordinary di erential equation of second order

$$
\begin{align*}
& \frac{d^{2} h}{d^{2}}=\frac{h^{2}}{{ }^{4} \hat{C}^{2}} \quad 4 \frac{@_{x}}{h(1+h j \cos j)}+\frac{@_{x} \hat{C}}{\hat{c}} \\
& \sin ^{2}+{ }^{4} \cos ^{2} \quad\left(1{ }^{4}\right) \sin \quad \cos \frac{h ;}{h} \\
& +h^{1} 4 \frac{@}{}+3 \frac{h \sin }{1+h j \cos j}+2 \cot +D \\
& \left.(1)^{4}\right) \sin \cos \quad\left(\cos ^{2} s+{ }^{4} \sin ^{2} \frac{h ;}{h}\right. \\
& +4{ }^{3} @_{\mathrm{x}}\left(\cos ^{2}+\mathrm{h}^{1} \sin \cos h,\right. \\
& +h^{2}\left(1{ }^{4}\right) \sin \cos h \\
& +h^{1}\left(1{ }^{4}\right) \cos (2) \quad 4 h^{1} \sin \cos { }^{3} @ \\
& +\mathrm{f}\left(\begin{array}{ll}
1 & 4
\end{array}\right) \sin (2) \quad 4 \sin ^{2}{ }^{3} @ \quad \mathrm{~g} \frac{\mathrm{~h} ;}{\mathrm{h}^{2}} \text {; } \tag{C2}
\end{align*}
$$

where

$$
\begin{align*}
D= & \hat{C}^{2}\left[\left(1 \quad{ }^{4}\right) f 1 \quad h^{2} h_{;}^{2} g \sin \quad \cos \right. \\
& h^{1}\left(1 \quad{ }^{4}\right) \cos (2) h ; \\
& \left.+2^{3} @ \quad\left(\cos +h^{1} \sin h ;\right)^{2}\right]: \tag{C3}
\end{align*}
$$

Eq. (C2) is solved im posing boundary conditions at $=0$ and $=2$. In the lim it ! 0, we im pose the follow ing boundary condition,

$$
\begin{equation*}
\mathrm{h}=\mathrm{h}_{0}+\mathrm{h}_{2}{ }^{2}+\mathrm{O}\left({ }^{3}\right) ; \tag{C4}
\end{equation*}
$$

$\mathrm{where} \mathrm{h}_{2}$ is evaluated at $\mathrm{x}=\mathrm{h}_{0}$ and $=0$ from the follow ing equation;

$$
\begin{equation*}
h_{2}=\frac{h_{0}^{2}}{6} \frac{8 @_{x}}{}+\frac{3}{h_{0}\left(1+h_{0}\right)}+\frac{@_{x} \hat{C}}{\hat{C}}+\frac{3}{h_{0}}\left(1 \quad{ }^{4}\right): \tag{C5}
\end{equation*}
$$

At $==2$, the boundary condition is im posed as h; $=$ 0 .
$N$ ote that in the lim it ! $=2$ (i.e., on the brane), Eq. (c2) is w ritten in the form

$$
\begin{equation*}
\frac{d^{2} h}{d^{2}}=h+\frac{{ }^{12} h^{2}}{4} \frac{4 @_{x}}{h}+\frac{2}{h} ; \tag{C6}
\end{equation*}
$$

where we useh; $=0$ and the relation @ $=D=@_{x} \hat{C}=$ 0 . N ote that the equation which the apparent horizon on the brane satis es is $4 \mathrm{Q}=+2=\mathrm{h}=0$ [cf., Eq. (2.8)]. Thus, unless $d^{2} h=d^{2}=h$ at $=2$, the apparent horizon on the brane cannot coincide w ith that in 4D space. $N$ ote that the black string solution 1014$]$ exceptionally satis es $a^{3} h=d^{2}=h$ at $=2$.
[1] P. H orava and E.W itten, N ucl. Phys. B 460, 506 (1996); ibid B 475, 94 (1996).
[2] For earlier work on this topic, see V.A. R ubakov and M . E. Shaposhinikov, Phys. Lett. 152B , 136 (1983); M . V isser, Phys. Lett. 159B , 22 (1985); M . G ogberashvili, M od. Phys. Lett. A 14, 2025 (1999).
[3] L. R andall and R . Sundrum , Phys. Rev. Lett. 83, 3370 (1999).
[4] L. R andall and R . Sundrum, Phys. Rev. Lett. 83 ,4690 (1999).
[5] J. G arriga and T. Tanaka, Phys. Rev. Lett. 84, 2778 (2000).
[6] M . Sasaki, T . Shirom izu and K . M aeda, Phys. R ev. D 62, 024008 (2000).
[7] S.B. G iddings, E. K atz, and L. R andall, JH EP 0003, 023 (2000).
[8] A. Cham blin and H.S. R eall, Nucl. Phys. B 562,133 (1999); T. Ninei, Phys. Lett. B 465, 81 (1999); N.K aloper, Phys. Rev.D 60, 123506 (1999); H.B.K im and H.D.Kim, Phys.Rev.D 61, 064003 (2000); P.Binetruy, C.De ayet, U .E lw anger and D.Langlois, Phys. Lett. B 477, 285 (2000); P. Kraus, JHEP 9912, 01 (1999); S. M ukohyam a, Phys. Lett. B 473, 241 (2000); D. Ida, gr-qc/9912002; J. G arriga and M . Sasaki, Phys. Rev. D 62, 043523 (2000); S.M ukohyam a, T. Shirom izu and K.M aeda, Phys.R ev.D 62, 024028 (2000); P.B ow cock, C. C harm ousis and R. G regory, hep-th/0007177.
[9] T. Shirom izu, K . M aeda and M . Sasaki, Phys. R ev. D 62, 024012 (2000).
[10] A. C ham blin, S.W . H aw king and H . S . R eall, Phys. R ev . D 61, 065007 (2000).
[11] W . Israel, N uovo. C im ento. 44B , 1 (1996).
[12] W e note that in the brane world model, photons can propagate only on the brane, so that the apparent horizon on the brane is w ith regard to the photons. On the other hand, the apparent horizon in full 4D space is w ith regard to gravitons which can propagate in full 5D spacetim e.
[13] F or exam ple, M . Shibata, Phys. R ev. D 55, 2002 (1997).
[14] R . G regory, hep-th/0004101.

