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Nonlinear and perturbative evolution of distorted black holes: Odd-parity modes
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We study fully nonlinear and perturbative evolutions of nonrotating black holes with odd-parity distortions.
Perturbative methods proved to be useful in order to interpret the nonlinear results. In particular, they provided
insight on the nonlinear dependence of the wave forms with the distortion parameterQ0, explaining it in terms
of the multipole coupling. We also found an increase in the frequency of the wave forms in the nonlinear
regime which results from the loss of a noticeable part of the initial total mass of the system to gravitational
radiation producing effectively a drifting of the quasinormal frequencies. The nonlinear evolutions have been
performed~and cross checked! with the 3D parallel code for numerical relativity,CACTUS, and an independent
axisymmetric codeMAGOR. The linearized ones using the Regge-Wheeler formalism.

PACS number~s!: 04.25.Dm, 04.30.Db, 95.30.Sf, 97.60.Lf
o
a
av

-
b

ns
ric
e

ur
on
e
r
re
ve
io
r
tu
n
er
re
a

se

at
d
le
h

re
ap-
vant

-
ealt
k

I,
the

-
ole
-
ng
ets

‘arbi-
e
s.

is

sic
uch

r-
Coalescing black holes are considered one of the m
promising sources of gravitational waves for gravitation
wave observatories such as the Laser Interferometric Gr
tational Wave Observatory~LIGO! and VIRGO-GEO-
TAMA network under construction. Reliable wave form in
formation about the merger of coalescing black holes can
crucial not only to the interpretation of such observatio
but also could greatly enhance the detection rate. Nume
relativity is expected to provide a detailed theoretical und
standing of the coalescence process.

There are at least two important ways in which a pert
bative treatment can actually aid the numerical simulati
First, as shown in Ref.@1#, it is possible to use perturbativ
evolutions to provide good outer boundary conditions fo
numerical simulation, since away from the strong field
gion one expects to see low amplitude gravitational wa
propagating on a black hole background. This informat
can be exploited in the outer region in providing bounda
data. Second, this combined approach can be used in fu
applications of perturbative approaches to ‘‘take over’’ a
continue a previously computed full scale nonlinear num
cal simulation. For example, if gravitational wave forms a
of primary interest in a simulation, once the system h
evolved towards a perturbative regime~e.g., two coalescing
black holes form a distorted Kerr hole, or evolve clo
enough that a close limit approximation is valid!, then one
may be able to extract the relevant gravitational wave d
and evolve them on the appropriate black hole backgroun
extract wave forms@2#. As discussed above, 3D black ho
evolutions using traditional ADM style formulations, wit
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singularity avoiding slicings, generally break down befo
complete wave forms can be extracted. A perturbative
proach may be necessary in such cases to extract the rele
wave form physics.

All work to date in this area of comparing full scale nu
merical simulations with perturbative approaches has d
with even-parity distortions of Schwarzschild-like blac
holes. See for instance Ref.@3#, referred to here as paper
where we compared perturbative techniques, based on
Zerilli approach, with fully nonlinear evolutions of even
parity distorted black holes. The more general black h
case has both even- andodd-parity distortions, and also in
volves black holes with angular momentum. Our starti
point is represented by a distorted black hole initial data s
developed originally by Brandt and Seidel@4# to mimic the
coalescence process. These data sets correspond to ‘
trarily’’ distorted rotatingsingle black holes, such as thos
that will be formed in the coalescence of two black hole
Although this black hole family can include rotation, in th
first step we restrict ourselves to the non-rotating limit~the
so-called ‘‘odd-parity distorted Schwarzschild’’!. The details
of this initial data procedure are covered in@4#, so we will go
over them only briefly here. We follow the standard 311
Arnowitt-Deser-Misner~ADM ! decomposition of the Ein-
stein equations which give us a spatial metric, an extrin
curvature, a lapse and a shift. We choose our system s
that we have a conformally flat three-metricg i j defined by

ds25C4~dh21du21sin2udw2!, ~1!

where the coordinatesu andw are the usual spherical coo
©2000 The American Physical Society01-1
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dinates and the radial coordinate has been replaced b
exponential radial coordinateh @ r̄ 5(M /2)eh#.

The extrinsic curvature is chosen to be

Ki j 5C22hi j 5C22S 0 0 HE

0 0 HF

HE HF 0
D , ~2!

where

HE5qG„~n811!2~21n8!sin2u…sinn821u, ~3!

HF52]hqGcosu sinn8u, ~4!

qG5Q0FexpS 2
~h2h0!2

s2 D
1expS 2

~h1h0!2

s2 D G . ~5!

The various functions have been chosen so that the mom
tum constraints are automatically satisfied, and have the f
of odd-parity distortions in the black hole extrinsic curvatu
The functionqG provides an adjustable distortion functio
which satisfies the isometry operation, and whose amplit
is controlled by the parameterQ0. Since we will be compar-
ing cases with different masses we will refer to an amplitu
Q̃05Q0 /M2 normalized by the ADM mass of the initia
slice. If Q0 vanishes, an unperturbed Schwarzschild bla
hole results. The parametern8 is used to describe an ‘‘odd
parity’’ distortion. It must be odd, and have a value of
least 3. The functionC is the conformal factor, which we
have abstracted from the metric and extrinsic curvature
cording to the factorization given by Lichnerowicz. This d
composition is valuable, because it allows us to solve
momentum and Hamiltonian constraints separately.

The theory of metric perturbations around a Schwar
child hole was originally derived by Regge and Wheeler@5#
for odd-parity perturbations and by Zerilli@6# for even-parity
ones. The spherically symmetric background allows fo
multipole decomposition even in the time domain. Moncr
@7# has given a gauge-invariant formulation of the proble
which like the work of Regge-Wheeler and Zerilli, is give
in terms of the three-geometry metric perturbations. For s
cial combinations of the perturbation equations, the fam
Regge-Wheeler@5# wave equation, resulted for a single fun
tion f ( lm) :

2
]2f ( lm)

]t2
1

]2f ( lm)

]r * 2
2Vl

2~r !f ( lm)50. ~6!

Because we are considering only axisymmetric perturbat
all components withmÞ0 vanish identically. We will sub-
sequently suppress them labels.

For the specific initial data given above we obtain

f l u t5050, ~7!
12770
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] tf l u t5052
2

r 3
S 12

2M

r
D

3H ~42 l !

~ l 22!l ~ l 12!
qG2

~42 l !~ l 11!

~ l 22!l

3F ]h
2qG1

~7M23r !

rA12
2M

r

]hqGG J . ~8!

The 2D fully nonlinear evolutions have been perform
with a code,MAGOR, designed to evolve axisymmetric, ro
tating, highly distorted black holes. In a nutshell, this no
linear code solves the complete set of Einstein equations
axisymmetry, with maximal slicing, for a rotating black hol
The code is written in a spherical-polar coordinate syste
with the rescaled radial coordinateh that vanishes on the
black hole throat. An isometry operator is used to prov
boundary conditions on the throat of the black hole. All thr
components of a shift vector are employed to keep all
diagonal components of the metric zero, except for theguw

component, which carries information about the odd-pa
polarization of the radiation. For more details of the cod
see Ref.@4#.

The last of our approaches for evolving these distor
black hole data sets utilizes full 3D nonlinear numerical re
tivity, and is based onCACTUS. For this paper,CACTUS was
used to assemble a set of 3D initial data, evolution modu
and analysis routines needed for the comparisons w
MAGOR and the perturbative approach described above.
operations have been carried out in 3D Cartesian coo
nates, from initial data to evolution to wave form extractio
The evolutions are carried out with a formulation of Ei
stein’s equations based on the conformal, trace-free appro
developed originally by Shibata and Nakamura@8# and
Baumgarte and Shapiro@9#, and further tested and develope
in @10#.

First, we compare the 2D nonlinear~MAGOR! evolutions
with the results of the Regge-Wheeler perturbative approa
We consider the nonlinear evolution of a family of data s
with parameters (Q0 ,n853,h052,s51). For low ampli-
tude cases withQ0,8, we are in the linear regime and eve
the nonlinear evolutions exhibit strongly linear dynamics.
Fig. 1 we showl 53 wave form results obtained from the 2
nonlinear code, for the caseQ052. When we compared with
Regge-Wheeler evolutions of the (f,] tf) system we have
found that the agreement was so close that the two cu
could not be distinguished in the plot. The perturbativ
numerical agreement is equally good with the other lin
wave forms at low amplitude so we will leave the perturb
tive results out of the plots and focus on the transition
nonlinear dynamics. Figure 1 shows thel 53 gauge-invariant
Moncrief wave forms for a sequence of such evolutions
increasing amplitudeQ0. The wave forms have all been no
1-2
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BRIEF REPORTS PHYSICAL REVIEW D 62 127701
malized by the amplitude factorQ̃05Q0 /M2 to accentuate
nonlinear effects. If the system is in the linear regime,
normalized wave forms will all line up, as is clearly the ca
in the regimeQ0<8. For the large amplitude caseQ0532,
the normalized wave form is much larger, indicating th
here we are well into the nonlinear regime.

The wave forms we have shown so far are the only o
predicted to linear order in perturbation theory. We wou
need to apply higher order perturbation theory to pred
wave forms for the even-parity or higher-l odd parity modes.
Nevertheless general considerations from the perturba
point of view do provide some expectations on the scaling
the other nonlinear wave form modes within the famili
considered here. We return to then853 family for an ex-
ample. The leading contribution to then853, l 55 odd-
parity waveform comes from the cubic coupling of the fi
order l 53 odd-parity mode discussed above~including the
coupling of thel 53 odd-parity mode with the second ord
even-parityl 52 mode expected via the source term con
bution to the solution of the Hamiltonian constraint in t
initial data!. Thus, this wave component should appear at
third perturbative order. We verify this expectation by plo
ting the numerical results for thel 55 odd-parity wave forms
scaled this time byQ̃0

3 in Fig 2. Although the magnitudes o
these wave forms are far smaller than those of thel 53 mode
we again see very nice agreement, belowQ058, with the
perturbative expectation, that the wave forms should su
pose.

Let us now take another look at Fig. 1 to consider wha
happening as we move into the nonlinear regime where
wave forms no longer superpose. In the graph we see
same general features arising as begin to drive the sys
into the nonlinear regime. These are higher frequency ri

FIG. 1. Thel 53, odd-parity wave form, extracted at isotrop

coordinatesr̄ 515M from the fully nonlinear 2D evolution code, fo
a series of evolutions with parameters (Q0 ,n853,h052,s51). For
Q0<8 the linear regime is maintained, while forQ0532 nonlin-
earities are well noticeable. The effect of nonlinear contributio
increases the scaled amplitude of the wave form and increase
frequency.
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ing, and larger amplitudes for the later parts of the wa
form. At Q0532 then853 case shows a roughly 10% in
crease in frequency. Since the final state of the system
be a black hole, we expect quasi-normal ringing in the la
time behavior of the system regardless of the size of
initial perturbations. This is indeed what we see in the wa
forms, except that the ringing is at a higher frequency~rela-
tive to the initial mass of the system! than we expected. This
indicates that the final ringing black hole has less mass t
the ADM mass of the initial data. The perturbations ha
grown large enough to generate radiation amounting t
noticeable fraction of the total ADM mass leaving behind
slightly smaller black hole. The smaller mass of the fin
black hole is also consistent with larger amplitudes, since
scaled perturbationQ̃05Q0 /M2 is larger relative to a
smaller mass black hole. The arrival time of the wave pu
is not strongly affected by the change in mass because
time and wave extraction points are both scaled against
initial mass.

Having successfully tested the 2D fully nonlinear co
MAGOR for odd-parity distortions against perturbative evol
tions, we can now test the 3D codeCACTUS against the 2D
one. In CACTUS, the initial data are evolved in the full~no
octant! 3D mode, with a second order convergence alg
rithm, maximal slicing, and static boundary conditions. No
we perform the conformal-traceless scheme@10# for this evo-
lution.

The runs presented in Fig. 3 show very nice agreem
with the 2D code~hence also with perturbation theory!. Note
that the spatial resolution (Dxj50.15M50.3) is not high.
Here we show wave forms fort/M<30. The runs donot
crash afterwards, but become less accurate due to the
resolution and boundary effects, and even later to collaps
the lapse. Thel modes shown in Fig. 3 are essentially dom
nated~for Q052) by the linear initial distortion of the black
hole. Those are the modes that we can compare with

s
its

FIG. 2. For n853, the l 55 multipole is generated by cubi
products of the odd-parity wave. Still higher nonlinearities swit
on forQ0532 and show the generic increase in the frequency of
wave.
1-3
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BRIEF REPORTS PHYSICAL REVIEW D 62 127701
order perturbation theory. Since we have two nonlin
codes we can now compare their predictions for mo
dominated by nonlinear effects. That is the case of the
mode l 55 when the initial data parameter isn853. This
mode has a linear contribution only forl 53. For l 55 is
easy to see that to generate an odd mode we need at
cubic contributions. Thus this mode will scale asQ0

3. To be
able to verify the agreement between the 2D and 3D co
we amplified this mode takingQ0532 and checked the~al-
most! quadratic convergence ofCACTUS to the correct results
as shown in Fig. 4. We emphasize that in all plots the ag
ment among wave forms has been achieved without the
of any free parameters and thereby stand as a strong v
cation of these techniques.

Although the distorted black hole initial data configur
tions we consider here are not necessarily astrophysic
relevant, our analysis provides an example of the usefuln
of perturbation theory as an interpretive tool for understa
ing the dynamics produced in fully nonlinear evolutions.
order to distinguish the cases of linear and nonlinear dyn
ics we simply show the output of the full nonlinear code, b

FIG. 3. The l 53, odd-parity Moncrief wave form, extracte
from the fully nonlinear 3D evolution codeCACTUS ~dotted line!.
The spatial grid consists of 2563 points with a separation of 0.15M .
The ADM mass of the black hole isM52.0 and (n853,Q0

52,h052,s51). For comparison we also plot the results of evo
ing the same initial data with the fully nonlinear 2D evolution co
MAGOR ~solid line!.
o,
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we scale it by the factorQ0 /M2 so that, if the system is
responding linearly toQ0 all the wave forms will lie exactly
on top of one another. Using this procedure we are able
recognize the emergence of nonlinear dynamics. Conside
the mixing of perturbative modes also enables us to und
stand the results of one case which displays strictly nonlin
behavior, thel 55 wave form of the initial data withn853
~see Figs. 2 and 4!. This wave strictly vanishes to linea
order in Q̃0 and scales at lower amplitudes likeQ̃0

3. The
perspective of perturbation theory allows us to create a
picture, identifying and explaining aspects of the nonline
dynamics even when the perturbations are beyond the lin
regime. In this case we find that linearized dynamics prov
a very good approximation of the systems’ behavior until
radiation constitutes a significant portion of the initial ma
producing a smaller final black hole and, for example, hig
quasi-normal ringing frequencies.
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FIG. 4. Thel 55, odd-parity Moncrief wave form produced b
the 3D codeCACTUS ~dotted line! with initial data having (n8
53,Q0532,h052,s51) andMADM52.777. This is a purely non-
linear mode, its leading term being cubic in the amplitudeQ0. Com-
parison with the 2D results~solid line! show a good rate of conver
gence with the grid spacing~from Dx50.6M /2.777 to Dx
50.3M /2.777).
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