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Nonlinear and perturbative evolution of distorted black holes: Odd-parity modes
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We study fully nonlinear and perturbative evolutions of nonrotating black holes with odd-parity distortions.
Perturbative methods proved to be useful in order to interpret the nonlinear results. In particular, they provided
insight on the nonlinear dependence of the wave forms with the distortion paraetxplaining it in terms
of the multipole coupling. We also found an increase in the frequency of the wave forms in the nonlinear
regime which results from the loss of a noticeable part of the initial total mass of the system to gravitational
radiation producing effectively a drifting of the quasinormal frequencies. The nonlinear evolutions have been
performed(and cross checkedvith the 3D parallel code for numerical relativitgacTus, and an independent
axisymmetric code1AGOR. The linearized ones using the Regge-Wheeler formalism.

PACS numbses): 04.25.Dm, 04.30.Db, 95.30.Sf, 97.60.Lf

Coalescing black holes are considered one of the modingularity avoiding slicings, generally break down before
promising sources of gravitational waves for gravitationalcomplete wave forms can be extracted. A perturbative ap-
wave observatories such as the Laser Interferometric Gravproach may be necessary in such cases to extract the relevant
tational Wave Observatory(LIGO) and VIRGO-GEO- Wwave form physics.

TAMA network under construction. Reliable wave form in-  All work to date in this area of comparing full scale nu-
formation about the merger of coalescing black holes can bE€erical simulations with perturbative approaches has dealt
crucial not only to the interpretation of such observationsWith even-parity distortions of Schwarzschild-like black

but also could greatly enhance the detection rate. Numericdl0les. See for instance R¢B], referred to here as paper |,

relativity is expected to provide a detailed theoretical under!Vhere we compared perturbative techniques, based on the

standing of the coalescence process. Zerilli approach, with fully nonlinear evolutions of even-

There are at least two important ways in which a perturparity distorted black holes. The more general black hole

bative treatment can actually aid the numerical simulationc@S€ has both even- andd-parity distortions, and also in-

First, as shown in Refd], it is possible to use perturbative VOIV€S black holes with angular momentum. Our starting
evolutions to provide good outer boundary conditions for gPoint is represented by a distorted black hole initial data sets

numerical simulation, since away from the strong field re-developed originally by Brandt and Seiddi] to mimic the

gion one expects to see low amplitude gravitational waveSoalescence process. These data sets correspond to “arbi-

propagating on a black hole background. This informationtrarily” distorted rotatingsingle black holes, such as those

can be exploited in the outer region in providing boundarythat Will be formed in the coalescence of two black holes.
data. Second, this combined approach can be used in futufdthough this black hole family can include rotation, in this

applications of perturbative approaches to “take over” andfI'St Step we resrict ourselves to the non-rotating liftfie
continue a previously computed full scale nonlinear numeri-S0-called “odd-parity distorted Schwarzschild'The details

cal simulation. For example, if gravitational wave forms are©f this initial data procedure are covered #), so we will go
of primary interest in a simulation, once the system ha£Ver them only briefly here. We follow the standare B

evolved towards a perturbative regirteg., two coalescing Armowitt-Deser-Misner(ADM) decomposition of the Ein-
black holes form a distorted Kerr hole, or evolve closeStein equations which give us a spatial metric, an extrinsic

enough that a close limit approximation is valithen one curvature, a lapse and a shift. We choosg our.system such
may be able to extract the relevant gravitational wave datdhat we have a conformally flat three-metrig defined by

and evolve them on the app_ropriate black hole background to d=W4(d 7%+ d 6%+ sirfode?), 1)
extract wave form$2]. As discussed above, 3D black hole

evolutions using traditional ADM style formulations, with where the coordinateg and ¢ are the usual spherical coor-
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dinates and the radial coordinate has been replaced by an 2 oM
exponential radial coordinate [r=(M/2)e"]. 31| i=0=— —3( - —)
The extrinsic curvature is chosen to be r r
0 0 Hg " (4-1) (4=D(+1)
q J—
Ky=¥2h,=¥2 0 0 He|, (1-2)1(1+2) % (-2)l
He Hg O
where , (7TM—=3r)
. .’ X r777qG—i_ aan (8)
He=0ge((n'+1)—(2+n")sirh)sin" 19, 3 [ 2m
ryl——
, r
Hg=—4,qccosdsin’ 6, (4)
_ (17— 7m0)? The 2D fully nonlinear evolutions have been performed
de=Qo| €XP — o2 with a code,MAGOR, designed to evolve axisymmetric, ro-

tating, highly distorted black holes. In a nutshell, this non-

linear code solves the complete set of Einstein equations, in
(5  axisymmetry, with maximal slicing, for a rotating black hole.
The code is written in a spherical-polar coordinate system,
with the rescaled radial coordinate that vanishes on the
Biack hole throat. An isometry operator is used to provide
rBoundary conditions on the throat of the black hole. All three
‘components of a shift vector are employed to keep all off
diagonal components of the metric zero, except forghe

2
o] - 7|
g

The various functions have been chosen so that the mome
tum constraints are automatically satisfied, and have the for
of odd-parity distortions in the black hole extrinsic curvature
The functionqg provides an adjustable distortion function,

which satisfies the isometry operation, and whose amplitUdSOmponent which carries information about the odd-parity
is controlled by the paramet€l,. Since we will be compar- '

) 0 . . éaolarization of the radiation. For more details of the code,
ing cases with different masses we will refer to an amplitud see Ref[4]

Qo=Qo/M? normalized by the ADM mass of the initial  The last of our approaches for evolving these distorted
slice. If Qo vanishes, an unperturbed Schwarzschild blackyjack hole data sets utilizes full 3D nonlinear numerical rela-
hole results. The parametef is used to describe an “odd- tivity, and is based orAcTUS. For this papercAcTus was
parity” distortion. It must be odd, and have a value of atysed to assemble a set of 3D initial data, evolution modules,
least 3. The functionV is the conformal faCtor, which we and ana|ysis routines needed for the Comparisons with
have abstracted from the metric and extrinsic curvature agyacor and the perturbative approach described above. All
Cording to the factorization given by Lichnerowicz. This de- Operations have been carried out in 3D Cartesian coordi-
composition is valuable, because it allows us to solve thgates, from initial data to evolution to wave form extraction.
momentum and Hamiltonian constraints separately. The evolutions are carried out with a formulation of Ein-
The theory of metric perturbations around a Schwarzsstein's equations based on the conformal, trace-free approach
child hole was originally derived by Regge and Whe¢f&r  developed originally by Shibata and Nakamui@] and

for odd-parity perturbations and by Zeri[] for even-parity  Baumgarte and Shapif®], and further tested and developed
ones. The spherically symmetric background allows for gn [10].

multipole decomposition even in the time domain. Moncrief  First, we compare the 2D nonline@maGoRr) evolutions

[7] has given a gauge-invariant formulation of the problem,with the results of the Regge-Wheeler perturbative approach.
which like the work of Regge-Wheeler and Zerilli, is given we consider the nonlinear evolution of a family of data sets
in terms of the three-geometry metric perturbations. For speyith parameters Qq,n’ =3,7,=2,0=1). For low ampli-

cial combinations of the perturbation equations, the famoug,de cases Witl,<8, we are in the linear regime and even
Regge-Wheeldi5] wave equation, resulted for a single func- the nonlinear evolutions exhibit strongly linear dynamics. In

tion ¢ im) : Fig. 1 we show =3 wave form results obtained from the 2D
5 5 nonlinear code, for the casgy=2. When we compared with
9 bam) N 3 b am) Ry —0 © Regge-Wheeler evolutions of theb(d,¢) system we have
a2 or*2 1 (1) bam =0 found that the agreement was so close that the two curves

could not be distinguished in the plot. The perturbative-
Because we are considering only axisymmetric perturbationgumerical agreement is equally good with the other linear
all components wittm#0 vanish identically. We will sub- wave forms at low amplitude so we will leave the perturba-

sequently suppress tma labels. tive results out of the plots and focus on the transition to
For the specific initial data given above we obtain nonlinear dynamics. Figure 1 shows ire3 gauge-invariant
Moncrief wave forms for a sequence of such evolutions of
&1]i=0=0, (7) increasing amplitud€,. The wave forms have all been nor-
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FIG. 1. Thel=3, odd-parity wave form, extracted at isotropic ~ FIG. 2. Forn’=3, the|=5 multipole is generated by cubic
coordinates = 15M from the fully nonlinear 2D evolution code, for products of the odd-parity wave. Still higher nonlinearities switch
a series of evolutions with paramete@q,n’ =3,7,=2,0=1). For N forQp=32 and show the generic increase in the frequency of the
Q=8 the linear regime is maintained, while f@,=32 nonlin-  Wave.
earities are well noticeable. The effect of nonlinear contributions
increases the scaled amplitude of the wave form and increases iiﬁg' and larger amplitudes for the later parts of the wave
frequency. form. At Qu=32 then’=3 case shows a roughly 10% in-

- crease in frequency. Since the final state of the system will
malized by the amplitude factd@,=Q,/M? to accentuate pe a black hole, we expect quasi-normal ringing in the late-
nonlinear effects. If the system is in the linear regime, theime behavior of the system regardless of the size of the
normalized wave forms will all line up, as is clearly the caseinitial perturbations. This is indeed what we see in the wave
in the regimeQ,=8. For the large amplitude ca&®=32, forms, except that the ringing is at a higher frequefreya-
the normalized wave form is much larger, indicating thattive to the initial mass of the systerthan we expected. This
here we are well into the nonlinear regime. indicates that the final ringing black hole has less mass than

The wave forms we have shown so far are the only oneshe ADM mass of the initial data. The perturbations have
predicted to linear order in perturbation theory. We wouldgrown large enough to generate radiation amounting to a
need to apply higher order perturbation theory to predichoticeable fraction of the total ADM mass leaving behind a
wave forms for the even-parity or highkodd parity modes. slightly smaller black hole. The smaller mass of the final
Nevertheless general considerations from the perturbativelack hole is also consistent with larger amplitudes, since the
point of view do provide some expectations on the scaling of5jeq perturbatiod,=Q,/M? is larger relative to a
the other nonlinear wave form modes within the familiesgmgjier mass black hole. The arrival time of the wave pulse
considered here. We return to the=3 family for an ex- i not strongly affected by the change in mass because the
ample. The leading contribution to the'=3, |=5 odd-  {ime and wave extraction points are both scaled against the
parity waveform comes from the cubic coupling of the first;yitial mass.
order|=3 odd-parity mode discussed aboimcluding the Having successfully tested the 2D fully nonlinear code
coupling of thel =3 odd-parity mode with the second order \acor for odd-parity distortions against perturbative evolu-
even-parityl =2 mode expected via the source term contri-tions. we can now test the 3D codecTus against the 2D
bution to the solution of the Hamiltonian constraint in the gpe. IncacTus, the initial data are evolved in the fulho
initial datg. Thus, this wave component should appear at th%ctan) 3D mode, with a second order convergence algo-
third perturbative order. We verify this expectation by plot- rithm  maximal slicing, and static boundary conditions. Note
ting the numerical results for tHe=5 odd-parity wave forms e perform the conformal-traceless scheih@ for this evo-
scaled this time b3 in Fig 2. Although the magnitudes of lution.
these wave forms are far smaller than those of th8 mode The runs presented in Fig. 3 show very nice agreement
we again see very nice agreement, belQy=8, with the  with the 2D codghence also with perturbation thegriNote
perturbative expectation, that the wave forms should supethat the spatial resolutionAx'=0.19M=0.3) is not high.
pose. Here we show wave forms faryM <30. The runs dmot

Let us now take another look at Fig. 1 to consider what iscrash afterwards, but become less accurate due to the low
happening as we move into the nonlinear regime where theesolution and boundary effects, and even later to collapse of
wave forms no longer superpose. In the graph we see thie lapse. Thé modes shown in Fig. 3 are essentially domi-
same general features arising as begin to drive the systenated(for Qo=2) by the linear initial distortion of the black
into the nonlinear regime. These are higher frequency ringhole. Those are the modes that we can compare with first
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FIG. 3. Thel=3, odd-parity Moncrief wave form, extracted FIG. 4. Thel =5, odd-parity Moncrief wave form produced by

from the fully nonlinear 3D evolution codeacTus (dotted line. the 3D codecacTus (dotted ling with initial data having @

The spatial grid consists of 25@oints with a separation of 0.1 |_=3’Q°=3d2’779:|2’0d:. 1) and'\SA.DMZ 2b777 -Lhis Is ell. pure(I%/ non-
The ADM mass of the black hole iM—20 and p'—30Q, éarmode, its leading term being cubic in the amplitje Com-

—2,79=2,0=1). For comparison we also plot the results of evoly- P2rison with the 2D resuiltssolid line) show a good rate of conver-
ing the same initial data with the fully nonlinear 2D evolution code geg%fﬂ,ﬂ%the grid spacindfrom Ax=0.6M/2.777 to Ax
MAGOR (solid line). =0. T77).

we scale it by the facto,/M? so that, if the system is
order perturbation theory. Since we have two nonlinearesponding linearly t®@, all the wave forms will lie exactly
codes we can now compare their predictions for modesn top of one another. Using this procedure we are able to
dominated by nonlinear effects. That is the case of the odtecognize the emergence of nonlinear dynamics. Considering
mode|=5 when the initial data parameter is =3. This  the mixing of perturbative modes also enables us to under-
mode has a linear contribution only for=3. For =5 is  stand the results of one case which displays strictly nonlinear
easy to see that to generate an odd mode we need at le&ghavior, thd =5 wave form of the initial data witin’ =3
cubic contributions. Thus this mode will scale @§. To be (see Figs. 2 and)4 This wave strictly vanishes to linear
able to verify the agreement between the 2D and 3D code@rder in Qo and scales at lower amplitudes Iik@3. The
we amplified this mode takin@o= 32 and checked thel-  Perspective of perturbation theory allows us to create a full
mosy quadratic convergence GAcTusto the correct results  Picture, identifying and explaining aspects of the nonlinear
as shown in Fig. 4. We emphasize that in all plots the agreedynamics even when the perturbations are beyond the linear
ment among wave forms has been achieved without the aitf9Ime- In this case we find that linearized dynamics provide

of any free parameters and thereby stand as a strong verift V€'Y 900d approximation of the systems'’ behavior until the
cation of these techniques radiation constitutes a significant portion of the initial mass,

Although the distorted black hole initial data configura- producing a smaller final black hole and, for example, higher

. . . . uasi-normal ringing frequencies.

tions we consider here are not necessarily astrophysmall?

relevant, our analysis provides an example of the usefulness We would like to thank our colleagues at AEI, especially
of perturbation theory as an interpretive tool for understandGabrielle Allen. M.C. holds a Marie-Curie Fellowship
ing the dynamics produced in fully nonlinear evolutions. In (HPMF-CT-1999-0033¢ The nonlinear computations have
order to distinguish the cases of linear and nonlinear dynambeen performed on the SGI Origin 2000 at AEI and the Cray
ics we simply show the output of the full nonlinear code, butT3E at MPI-Garching.
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