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Abstract

The heteroticEg x Eg string compactified on an orbifolﬁ“/ZN has gauge groug x G’ with
(massless) states in its twisted sectors which are charged under both gauge group factors. In the
dual M-theory on(T4/Z ) ® (51/Z5) the two group factors are separated in the eleventh direction
and theG and G’ gauge fields are confined to the two boundary planes, respectively. We present
a scenario which allows for a resolution of this apparent paradox and assigns all massless matter
multiplets locally to the different six-dimensional boundary fixed planes. The resolution consists
of diagonal mixing between the gauge groups which live on the connecting seven-planes (6d and
the eleventh dimension) and one of the gauge group factors. We present evidence supporting this
mixing by considering gauge couplings and verify local anomaly cancellation. We also discuss open
problems which arise in the presencdgffactors. 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The r6le of M-theory for string duality is undisputed. Nevertheless, we are far from
understanding this 11-dimensional theory at a fundamental level. We know that at
particular points in its moduli space all known string theories are recovered. Moreover,
the low energy physics is captured by 11-dimensional supergravity. Compactification and
duality symmetries provide data which allow us to gain some insight into the structure of
M-theory (see, e.g., Refs. [1-3] for reviews).

Y Research supported in part by the US—Israeli Binational Science Foundation, the US National Science
Foundation (grant #PHY-95-11632), the Robert A. Welsh Foundation, the German-Israeli Foundation for
Scientific Research (GIF), by the European Commission TMR programme ERBFMRX-CT96-0045, the Israel
Science Foundation and by DFG-SFB-375.

* Corresponding author.

E-mail addresscobi@post.tau.ac.il (J. Sonnenschein).

0550-3213/00/$ — see front mattér 2000 Elsevier Science B.V. All rights reserved.
PIl: S0550-3213(00)00460-0



124 V. Kaplunovsky et al. / Nuclear Physics B 590 (2000) 123-160

In this paper we concentrate on 10-dimensiofal x Eg heterotic string theory
compactified oi"*/Z y orbifolds and its dual M-theory description. THg x Eg heterotic
string is dual to M-theory or§*/Z, ~ I. Hofava and Witten have shown [4,5] that one
Eg factor lives on each of the two boundary ten-plaheand that the corresponding
gauge multiplets are confined to it. There is no a priori M-theoretical explanation of the
appearance of th&g gauge group on each of the two ten-planes, but they are needed
for local anomaly cancellation. Thus, anomaly cancellation provides important constraints
which teach us about the structure of M-theory.

Considering the proposed duality between the heterotic strifg®dn® (74/Zy) and
M-theory onR>1® (T*4/Z y) ® (S1/Z,) one immediately encounters the following puzzle.
Suppose both ten-planés groups are broken in the six-dimensional theory;dek G’

C Eg x Eg denote the surviving subgroup. The twisted sectors of heterotic orbifolds
generally contain massless states which are charged botte andG’. In the Hdava—

Witten theory howevelG; is G andG’ is G’, they live on different ten-plains and nowhere

the twain shall meet, so there does not seem to be any place where a massless state can be
simultaneously charged with respect to batandG’. Indeed, how would a state residing

at one end of the eleventh dimension know about the gauge group acting on the other
side? Somehow, in the effective seven-dimensional gauge the®yb® (5*/Z,) gauge
quantum numbers ought to ‘flow’ from one end of th&! to the other end; the main
objective of our work is to understand how this works.

The same problem also arises in the phenomenologically more interesting examples
of orbifold compactifications to four dimensions. In fact, our initial motivation was to
understand how the gauge quantum numbers work in the four-dimensional orbifolds, but
the situation in six dimensions turned out to be easier. In particular, we got very useful
hints from the requirement of local anomaly cancellation, which are much stronger in
d =6 than ind = 4. Consequently, in this article we restrict ourselves to the discussion
of the six-dimensional theories with the intention to come back to the four-dimensional
case in the future.

In M-theory, anA,,_1 singularity of the K3 compactification — such ag afixed point
of an orbifold — supports aBU, gauge theory on the corresponding seven-pRhé®
{f.p.} ® (§1/Z,). The Cartan subalgebra arises from the zero modes of the three-form
potential of 11d SUGRA and the completion3bJ, is achieved by M2-branes wrapped on
a vanishing 2-cycle in the orbifold limit of the smooth K3 compactification manifold. These
seven-plane gauge groups play a vital réle in our resolution of the paradaxigal;’
charges of the twisted states: at one end of the eleventh dimension, s&y=a0, the
seven-plan&sU, mixeswith a similar factor ofG — the unbroken subgroup of theg
living on the ten-plane boundary of the entire 11d spacetime. The mixing happens along
the six-planes where the fixed seven-planes intersest'the 0 ten-plane, but it has global
consequences for the resulting effective theory:dlagonalten-plane/seven-plarigU,
gauge groumppearsto be a subgroup of the ten-plagke but actually reaches along the
fixed seven-planes to the other end of thé. Consequently, along the six-planes where the

1 Throughout we refer to an extended object adame E.g., a ten-plane has ten spacetime dimensions.
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fixed seven-planes carrying ti8J, intersect the second ten-plane carryitig we have
bothSU, andG’ gauge fields at the same location in space — and hence the twisted states
living on those six-planes may have both ﬂwf'ag and theG’ charges in a perfectly local
fashion.

The bottom line is, the twisted states have locdlx SU'F charges but from the
global point of view, they have simultaneous charges unde6thend the diagonabU,
gauge groups. The apparent paradox of simultanéBuand G charges is due to mis-
identification of the diagonal ten-plane/seven-pl&té as a subgroup of the ten-plane
G C Eg. This mis-identification is natural in the perturbative heterotic string theory where
the entire eleventh dimension is invisible and everything lives in ten dimensions. In the
M-theory, one needs to be more careful.

In this article, we shall marshal three lines of evidence for the mixing of ten-plane and
seven-plane gauge groups. First, this is the only way to reconcile the massless spectra of
heterotic orbifolds with locality of the dual M-theory description. Second, the heterotic
gauge couplings (which can be computed exactly in six dimensions) will show that some
SU, gauge groups cannot be of purely perturbative origin but must be diagonally mixed
with several non-perturbative factors,

SUI=6 = diag S x (SU°™P)"]. (1.1)

and the number of the non-perturbativBU, factors will always turn out to be equal to the
number of fixed seven-planes in M-theory that ca8ty, gauge groups. Finally, each six-
plane in M-theory suffers from local anomalies which are sensitive to spectra of massless
particles living on the six-planes themselves, on the seven-planes, on the ten-planes and
in the eleven-dimensional bulk as well as inflow and intersection anomalies due to the
M-theory’s Chern—Simons terms. In six dimensions, it is very difficult to cancel the local
anomalies unless one has correcial spectra of all the fields — and we shall see that the
ten-plane/seven-plane gauge group mixing indeed provides for cancellation of all the local
anomalies.

The rest of this paper is organized as follows: we begin with an illustrative example of
a Z, orbifold. In Section 2 we take a close look at the seven-plane and the tenSllane
gauge groups of this orbifold and discuss their mixing from both heterotic and M-theory
points of view. In particular, we show how the mixing explains 8id, charges of the
twisted states as well as the exact value of 8 gauge coupling. In Section 3 we
confirm our solution by verifying local anomaly cancellation. In these two sections we
try to be as explicit as possible. Section 4 generalizes our approach t&Zgttmbifolds.
The subtleties that arise in non-prime orbifolds are treated in detail.

Unfortunately, our proposed solution works for sofg orbifolds but has difficulties
with others. Section 5 describes two common types of complications, both associated
with broken seven-plang8U, groups. In some orbifolds (discussed in Section 5.1), the
perturbative ten-plane gauge groups don’'t mix with the non-perturbative seven-plane
groups. As far as the effective six-dimensional effective theory is concerned, the seven-
plane groups are completely invisible, but the local anomalies on the six-planes are not
so blind. To cancel the anomalies, we have to assume that the seven-plane gauge groups
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are notSU,’s but rather their Cartan subgrouUé”_l). Alas, from the seven-dimensional
point of view, allZ,, fixed planes are created equal and we have no idea how or why does
the M-theory decide that such fixed planes carry 8lll, gauge groups in some orbifolds
but only the CartarU{”’l) subgroups in others. Worse problems plague orbifold models
where the ten-plane and the seven-plane gauge groups do mix but the mixing involves
abelian factors. In Section 5.2 we show that in such models local anomaly cancellation
does not seem to work and we speculate how the seven-dimensional Chern—Simons terms
might remedy this problem.

Section 6 summarizes our results. Appendices A, B and C contain some useful data

about the anomalies in six dimensions and as well as some related group theory.

2. Compactification on 2,
2.1. Heterotic vs. M-theory point of view

Consider the perturbative compactification of thg x Eg heterotic string on the
T4/Z, orbifold limit of K3. Z, acts as(zl,z%) — —(z1.z%) on the two complex
coordinates of7'*. Under this transformation all four moduli of the torus are invariant
and are thus also moduli of the orbifold. There are sixteen orbifold fixed points. This
compactification hagd = 1 supersymmetry i@ = 6 (eight supercharges). We represent
the discreteZ, transformation in theEg x Eg gauge lattice via the shift vectdr =
(3,3,0,0,0,0,0,0;1,0,0,0,0,0,0,0). This results in the gauge group x G’ = [E7
x SWp] x SO C Eg x Eg. The massless matter in the untwisted sector consists of hyper-
multiplets transforming a&56, 2; 1) and (1, 1; 128. They only carry charges @ or G'.

The untwisted sector also includes the four moduli which are gauge singlets. The massless
matter in the twisted sector consists of sixteen half-hyper-multiplets, one localized at each
fixed point, transforming aél, 2; 16). They carry quantum numbers undsth G and

G’. This is the complete massless matter spectrum of this compactification. The rules
to determine the massless states of heterotic K3 orbifold compactifications have recently
been reviewed in [6]. The spectra of some of the models considered in this paper were
constructed in [7]. We note that the difference of the number of hyper-multiplgfsgnd

of vector-multiplets g y) satisfiesiy —ny = 244, as required for a consistent perturbative
heterotic compactification.

We want to study this compactification within the context of the conjectured duality
between the heterotic string on K3 and M-theory ong851/Z,) ~ K3 ® I. In the latter
description, the gauge fields 6f x G’ are confined to one of the two ten-planes at the
ends of thex!! interval. We will denote them by 10P and 10Respectively. Since none
of the perturbative gauge fields live in the bulk, it is therefore not a priori clear how the
twisted matter fields, which are charged undeand G’, can be accommodated in the
M-theory picture. From the six-dimensional point of view each of the sixteen fixed points
of the heterotic compactificatioh*/Z, is a fixed six-plane. In the M-theory picture there
are sixteen seven-planes, denoted by 7P, of infinite extent in six spacetime directions and
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of finite extent in thex! direction,x! € I = [0, = R11]. Their boundaries are six-planes
which are the intersection of the 7P with the two ten-planestat= 0 andx! = 7 Ry1.

It is here where the perturbative heterotic gauge groups are lodatsaly atx'! = 0 and

G’ atx! = 7 R11. The sixteen intersection six-planes on fiyex SU; side will be denoted
as 16 and those on th&0Oy6 side by 18. All the 16 are of course completely equivalent, as
are the 16.

From this geometric picture it is reasonable to expect that the 7P’s do play a central role
in the resolution of the puzzle with the massless twisted heterotic states in the M-theory
context. They are the only objects which connect both sides ofthiterval.2 On their
worldvolume we have a seven-dimensional supersymmetric gauge theory.

For eachZ; fixed point of the orbifold there is an associated harmonic two-form, the
Kahler form of thes? which has shrunk to zero size at the orbifold singularity. In M-theory
onT*/Z, the three-form potential’ of eleven-dimensional supergravity with two internal
indices and one spacetime index has thus a zero mode associated with each orbifold fixed-
point. In other words, there is &; vector, and by supersymmetry, a complete seven-
dimensional vector-multiplet for each fixed pomtWrapping M2-branes around ths#
gives rise to additional massless states in the limit of zero volume offhdaking
into account two possible orientations givekh as the maximal gauge group. We now
compactify further to six dimensions ofi/Z,. This breaks half the supersymmetry
and each seven-dimensional vector-multiplet decomposes into a six-dimensional vector-
multiplet V7 and a hyper-multiplet; (the subscript reminds of their seven-dimensional
origin). If the five-dimensional compact manifold is the direct prod@ét/Z,) ® (S1/Z>),
the vector components which arise fr@hare projected out. This is becauSés odd under
Zo: x11 — —x11[4,5]. In particular, the vector components must vanish on the intersection
six-planes. There is no such restriction on the hyper-multiplet components.

The analysis of this model which we present in Sections 2 and 3 as well as the analysis
of other models in Section 4 requires some modification of the set-up such that we
retain vectors of the non-perturbative gauge group. In fact we will argue that the vector-
components of the full non-perturbati®l, survives on I6and the hyper component on
16. This clearly requires a departure from the direct product geometry assumed above to
a ‘twisted product’. We must admit that we do not know how this works in detail. We
believe that the proposed field content on any of the planes involved, in particular on the
7P and the 16 and [6is correct. We give several pieces of strong evidence. Rather than
being able to specify how exactly the twist acts, we can only state the effect it has on the
boundary conditions of théf; and V7 fields. To understand what is meant here, recall
that the presence of the ten-planes, or in other words, dividinghyreaks half of the

2 Our discussion is restricted to massless states. Their masslessness is protected by their chirality. There are
massive states which are charged under Wothand SOj6. Since theN = 1 SUSY algebra in =6 has no
central charge, they are not BPS and their masses are not protected against perturbative and non-perturbative
corrections. One may speculate that these states originate from open M2-branes stretched between the two ten-
planes [4,5]. From now on we only consider massless states.

3 Since H2(K3) = 22, there are six additional vector-multiplets which are not attached to an orbifold
singularity. Upon compactification, their components arrange themselves, together with components of the metric,
to the supergravity multiplet, a tensor multiplet and four moduli hyper-multiplets.



128 V. Kaplunovsky et al. / Nuclear Physics B 590 (2000) 123-160

supersymmetries, 8 of the 16 supercharges which would be present in M-theory on K3 are
even and 8 are odd under tde. This entails that under the 7¢ 6d decomposition the
vector and the hyper components of the seven-dimensional vector-multiplet have opposite
(free vs. fixed) boundary conditions at each end of the interval. The choice of the boundary
conditions on both sides will be crucial below. As we shall see, we have to impose Dirichlet
boundary conditions for th8U, vector components on the’l&nd Neumann conditions

on the 16. This is to be compared with thi vectors which are not associated to orbifold
fixed points (see the previous footnote). Here the boundary conditions are such that the zero
mode for their hyper components are retained. The vector components are projected out
by theZ twist. We want to stress once more that we are not able to derive these boundary
conditions from first principles but we will present compelling arguments in favour of
them.

Now that we have introduced the main ingredients of the model from the M-theory point
of view, we can give a qualitative description of how they are assembled into a picture that
is consistent with the heterotic description. This will involve the non-perturbative gauge
groups in an essential way and we will in fact establish thaBitgevisible in the heterotic
description is the diagonal subgro8p®! = diag SU®" x (SU;°P°")16],

By looking at the heterotic spectrum of the model, it is clear that the charged states in
the untwisted sector live on the ten-planes,, 8@) on 10P and (11; 128 on 10P. The
major new ingredientin the M-theory description of the model is the presence of additional
gauge groups, the non-perturbat®ie,’s, one on each 7P, i.e., one for each orbifold fixed-
point. This means that we have to reconsiderShk charge assignments of the fields in
the twisted sector. Th&7 and theSO,e gauge factors are unaffected by the presence of
the non-perturbativeU,’s. The twisted matter fields necessarily live either on the 16 or 16
intersection planes. As they are charged undeiSBg;, which is confined to 10Pthey
are located on the 18, one half-hyper-multiplet on each. It then also follows that we have
to attribute theilSU, quantum numbers to the non-perturbatBid, which lives on the 7P
which is bounded by the 16The situation is illustrated in the Fig. 1.

We conclude that thah twisted matter multiplet transforms ék6, 2) of Sdl%e"’ l10p X

Sugnmpemhp,., wherei = 1,...,16. In particular it does not couple to the perturbative
SU,. For this picture to be consistent, we have to impose adequate boundary conditions
for H; and V7. The twisted matter multiplet can couple to the gauge field only if we
impose free (Neumann) boundary condition Wnat the 16 end of the 7P. As explained
before, this implies fixed boundary conditions f&r, which is thus invisible at 16 We
now have to cope with the fact that in the heterotic picture there is onlySahegauge
factor. This will be consistent with the M-theory description if the perturbaie which

is confined to 10P mixes with the sixteen non-perturbafie’s such that the heterotic
SU, is the diagonal subgroU)®' = diag S*" x (SUL°™P°"16]. This requires that the
SU, vector-multipletsV7 are locked to the perturbati®, on 10P. That is to say that we
have to impose

Azon_pert(xl, e, x6, = O) = Azert(xl, e, x6, x =x8=x%=x10=- 0),

foru=1,...,6, (2.2)
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Fig. 1.

and likewise for the gauginos and at all other fixed points. Imposing fixed boundary
conditions forV7 on 10P requires free boundary conditions for the adjoint hyper-multiplet
H7. Thus the latter is visible on the 16. This is also indicated in the figure.

In the following we will substantiate this picture in two independent ways. In Section 2.2
we consider the heterotic gauge couplings and we will find that indee8Uheoupling
has both a perturbative contribution, which is dueSo,|10p and a non-perturbative
contribution which we interpret to arise from the sixte®bh|7p's. In Section 2.3 we
then show that the local anomalies on all intersection six-planes cancel. In particular this
includes quantum contributions from eithéf or H7 and also inflow contributions from
the bulk and the seven-planes. This is another check on the assignment of the fields to the
different planes, as summarized in the figure.

2.2. Consideration of the gauge couplings

The gauge kinetic energy of the six-dimensional low-energy effective- 1 SYM
theory is, in string frame, up to a numerical constant [8]

E~§Z(vae_¢+ﬁa)trF3. (2.2)
o

Here¢ is the unique dilaton of the perturbative heterotic string. Additional dilatons arise
if we allow for additional tensor-multiplets, but this we will not do in this papef® ~
VoI(K3)/A12L,a’2, whereiy is the heterotic coupling constant. The sum is over all gauge
group factorsv andv are dimensionless constants. For perturbative gauge groups,
— it is in fact the level of the Kac—Moody algebra — amdarises at one loop. For
non-perturbative gauge groups, on the other hang, 0 andv is fixed at tree level.



130 V. Kaplunovsky et al. / Nuclear Physics B 590 (2000) 123-160

The coefficiente andt are related, via supersymmetry, to the coefficients of the anomaly
polynomial which must factorize to allow a Green—Schwarz mechanism to cancel the
anomaly. For further explanation we refer to Appendix B. Factorizability of the anomaly
polynomial imposes the constraint

by =6(vy + Vq), (23)

whereb,, is the coefficient of the one-loop beta-function of the- 4 SYM theory that one
obtains upon further compactification @%. Given the matter content of the theory we can
thus computéy, .

The Hd'ava—Witten theory, at least when applied to compactificationssmanthK3,
relatesv to the net magnetic chargeon the ten-plane on which it lives. The field strength
G of the three-from potential’ satisfies [8]

G [s(c") (trR2 —tr Fun )

162
+8(x™ = 7 R12) (U R? — tr Fa A Fp) faa (2.4)

from which the magnetic charge of the ten-planes is determinkgdas n12—12.n12 =

E%Z Jiatr Ffz are the instanton numbers on the two sides of the interval. In perturbative
compactifications, i.e., in the absence of freely floating M5-branes; n; = 24 and
thereforek;1 + k2 = 0. Also, integrating the anomaly polynomial of the ten-dimensional
heterotic theory over a smooth K3 one deriigay = lkl_z and thusv; + v2 = 0. In
particular, if two group factors arise from the saifig they should have the sanie For

the model at handi; = 8 andny = 16. Therefore, if the above analysis applied, we would
find v = 42 for the SOy factor andv = —2 for both theE7 and theSU, factor. However,
using (2.3) and the field content of the theory, we find

b(E7)=-6 — 0(E7)=-2,
h(S) =90 — ¥(SWUy) =14,
b(SOE) =18 — #(SOe) =2. (2.5)

We thus realize that for the orbifold compactification thefél@—Witten formulae work
for the E7 and theSOy coupling, but they do not give the correésth, couplingosy, =
k/2+ 16=14. As we have argued before, the origin of the additional contributibé
has to do with the fact that theU, that we actually observe is the diagonal subgroup of
the perturbativ&sU, and 16 non-perturbativ@U,’s on the 7P’s.

In the heterotic theory the non-perturbative gauge fields do not contribute additional
degrees of freedom but they do show up in the valuefof the gauge factor with which
they mix. The gauge coupling constantSiﬂz1et is thus

=Y @9

Shet 810 ; &87P
where the sum is over all those non-perturbative gauge groups which mix with the
perturbative gauge group on the ten-plane. All coupling constants in Eq. (2.6) are in the
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six-dimensional theory. The subscripts on the right-hand side refer to their origin. For the
model considered in this section, the sum is over all sixteen non-perturBativiactors.

Also, 1/g2, = 1/a’ (Vol(K3)/A%,a’? + Bper) With Tipert = k/2. The seven-dimensional
gauge couplings are/22|7p ~ R11/ lfl ~ 1/a’ wherel11 is the eleven-dimensional Planck
length. We thus find

k
sy, = ?1 + #(7P groups that mix 2.7)

The non-perturbative contribution comes with an overall coefficient one. This coefficient
was fixed using supersymmetry, which relafe® the anomaly polynomial which gave
vsu, = —2 + 16. We give further supporting evidence for this interpretation, based on the
structure of the anomaly polynomial, in Appendix B.

Itis now also straightforward to check that the above discussion supports the distribution
of fields that we have put forwarfl. The non-perturbative gauge groups mix with the
perturbativeSU, and thus must be locked to it on each 16 intersection plane. For it not to
produce extra massless degrees of freedom in the heteroti®imit- 0, we must impose
boundary conditions such that there are no zero modes, neitheéy far for H;. Since, as
discussed above, they have opposite boundary conditions (free vs. fixed) we must impose
for both, the vector-multiplet and the hyper-multiplet, Neumann conditions on one end
of thex! interval and ‘Dirichlet’ on the othe?. In particularV7 then has free boundary
conditions on 16. The situation fdid7 is reversed.

We have already pointed out one difference between the compactification of the heterotic
string on a smooth K3 and on a singular K3. In the former case we alwaysihave'2
whereas this is not true in the latter case for those gauge group factors which mix with
the non-perturbative gauge groups on the fixed seven-planes. Another difference between
the smooth and the singular geometry is the fact that whereas in the former case the rank
of the gauge group is reduced, this is not so in the l&tdhe rank reduction in the
smooth case is due to the presence of a non-trivial gauge bundle with instanton numbers
n1,2. On the orbifold aZ,, singularity can support a singuldy, instanton with instanton
number ¥n, which breaks the gauge group without reducing its rank. E.g.Zorthe
gauge group is reduced {&7 x SW]/Z, or Spin(16)/Z,, depending on the choice of
the Z, C Eg [9]. For the model considered in this section the instanton number on the
E7 x SU; side is eight, i.e., there is one instanton of instanton numji2ial each fixed
point. On theSOj6 side, we have instead one instanton of instanton number one at each
fixed point.

4 We should however stress that we do not have a truly M-theoretic derivation of these results.

5 Note that the locking condition (2.1) is not exactly Dirichlet, but has the same effect on mode counting for the
seven-dimensional fields. Both, hyper and vector components, have half-integer modes only, i.e., no zero-modes.

6 This presumes & symmetric torus of generic size and Ag x Eg Wilson lines onT#. In the completely
generic case of asymmetric orbifolds of a Naraifg compactification of the heterotic string the resulting gauge
group can have rank as high as 20 or can be lower than 16.
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3. Considerations of local anomaly cancellation

One important consistency condition that the low-energy effective field theory has to
satisfy is anomaly freedom. This requirement is particularly powerful in six dimensions
since in addition to pure gauge anomalies there are potential gravitational and mixed
anomalies [10]. They all have to cancel. It is straightforward to verify that the anomaly
of the six-dimensional field theory factorizes and the presence of one antisymmetric tensor
in the massless spectrum guarantees that this anomaly can be cancelled via the Green—
Schwarz mechanism.

In the M-theory description of the heterotic orbifold we have allocated all massless fields
(perturbative and non-perturbative) to the bulk (gravity and moduli) and the various types
of planes which are present. We can now consider the field theory on any one of these
planes and since anomalies are a UV phenomenon, we need to require that they cancel
locally, i.e., on any plane separately. In the bulk and on the seven-planes this is automatic,
they are odd-dimensional. On each of the two ten-planes, away from the intersection six-
planes, there are 16 supercharges and an efAgrgauge group. Anomaly cancellation
works in exactly the same way as in the fidea—Witten theory. The situation on the
intersection six-planes, however, involves new features: here supersymmetry is broken
further to eight super-charges and the gauge group is broken to a subgroup. The issue
of anomaly cancellation on the six-planes has to be addressed and in fact we will find that
it provides a non-trivial check on the scenario advocated in Section 2.

We now turn to the evaluation of the anomaly on the intersection six-planes. It gets con-
tributions from two sourcesi) Quantum contributions: they arise from the massless states
which are charged under the gauge group operating at the particular IGizetbplane we
are considering. Fields residing in the bulk, on the ten-plane into which the six-plane is em-
bedded, on the seven-plane which is bounded by the six-plane and the fields confined to the
six-plane do contributgii) Inflow and intersection contributions: they arise from gauge
variance of the 11d SUGRA action. There is a contribution from a modified Bianchi iden-
tity and contributions arising from Chern—Simons (CS) terms. We first discuss the quantum
contributions. Some basic results which we will be using are collected in Appendix A.

(1) Bulk fields: gravity multiplet, selfdual tensor multiplet and four moduli hyper-
multiplets. In this work we analyze only compactifications with one tensor multiplet in
the bulk, thus restricting the discussion to the perturbative heterotic string. Recall that in
the Hd'ava—Witten theory the gravitational anomaly is distributed evenly over the two end-
of-the-world ten-planes. By the same logic we distribute the contribution of the bulk fields
between all 2< 16 fixed 16 and 16 planes and obtain as their contribution to the anomaly
on each intersection six-plahe

1 7 244 44 1 4T 1 )
bulk = — ——trR4 — trR2 _— —trR4 — trR2
Acbulky 2-16[ 230" Kt g5 K7 }r 2-16[240 + 1551 R
1 1 2
= trR*+ —(trR?)". 3.1
3 K+ gt k) (3.1)

" The correctly normalized anomaly polynomialdn= 6 is (—i/192713)A.
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The first term in the first line is the contribution from the gravity multiplet and the tensor
multiplet whereas the second term is the contribution from the four moduli fields.

(2) Ten-plane fields: these are vector and hyper multiplets from the untwisted sector.
We have to distinguish between 16 and jflanes, as they are embedded in 10P and,10P
respectively, which carry different perturbative gauge groups and untwisted matter, charged
under G (for 16) and G’ (for 16’). N' = 1 supersymmetry demands that the fermions
in a vector-multiplet have opposite chirality than the fermions in a hyper-multiplet and
consequently they contribute to the anomaly with opposite sign. Thus generically

A= (ng nv)<240trR + 192(trR ) )

— %tr R3(Try F2 —Try F?) + (Try F*—Try F*), (3.2)

whereny andny is the number of hyper-multiplets and vector-multiplets, respectively.
Distributing the anomaly of the untwisted fields charged untiex SU, evenly over the

16 16 planes, we havél = -(56,2) andV = [(133 1) + (L, 3)]. Taking into account
the gauge quantum numbers we arrive, after a little algetfra at

1 1 2 3 13
AAOP = ——— trR* — —(tr R +tr R?( —tr F2. — —tr F3
AT 128( )+ 32 F1 327 TSk
3 22, O 2 2,9 .2 2
—E(trFE7) +E(”Fsu2) + g Fsy, Fg,. (3.3)

Similarly, at each I6 plane with G’ = SO we haveH = (128 and V = (120,
leading to

1 1 1
A(LOP) = ——tr R*+ —_(trR?)” — _trR?-tr 2o,

480 384 32
3 2
+ 75t Féo,)" —tr Fég, (3.4)

(3) Seven-plane fields: each of the sixteen 7P’s connects (across‘thgirection)
an 16 plane to an I6plane. As explained in the previous section, each 7P carries an
SUS°™Pwith ad = 7 vector-multiplet whose reduction to= 6 gives a vector-multiplet
and an adjoint hyper-multiplet. With the assignment of boundary conditions as specified
before, the hyper-multiplet component contributes to the anomaly on 16 whereas the
vector-multiplet component contributes or.I&here is however one subtlety concerning
the precise contribution. A priori the contribution from both the vector and the hyper
components is distributed evenly over the two bounding six-planes. The local boundary
conditions however determine whether they do in fact give rise to an anomaly. This is only
the case if the fields satisfy free boundary conditions. This is a manifestation of the local
consistency assumption: what happens at a given boundary is sensitive only to the boundary
conditions imposed there and is blind to what happens at another, distant boundary. In other
words, the fact that each multiplet, due to the chosen boundary conditions, contributes to

8 See Appendix C for the group theory involved in this derivation.
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the anomaly only on one of the two ends does not affect the amount by which it contributes.
In summary, the contribution to the local anomaly from the 7P fieldalifof that of aSU,
vector-multiplet on I6andhalf of that of an arSU, adjoint hyper-multiplet on 16. We then

find

ATP = =t R+ = (tr k2 — Tt 2t PGy, + (i3, )

160 128 4
on the 16 and
ATP) = L pris i(trRZ)2 + Ler? F&,, — (tr Fsu,)’ (3.5)
160 128 4
on the 16.

(4) Six-plane fields: these are the massless fields which are entirely confined to the 16
(16") planes. In the models which we investigate there are no such tensor or vector states and
the only contribution arises from hyper-multiplets which appear in the twisted sectors of
the heterotic theory. For th&, model considered here the twisted sector contains sixteen
half-hyper-multiplets, one localized at each fixed point and transformin@,&s 16). It
should be assigned to the' Kide since it is charged under the gauge groups residing here,
namely SU; x SOie). There are no six-plane fields on 16. Note that 8ld, quantum
numbers should be understood as those pertaining to the dia§bbaroup. We thus
find®

A(6P) =0,
1 a, 1 2)2 2 2 1 12
A6P') = R+ 1—2(trR )" —tr RE(tr F§y, — 3 tr F5o,,)
3
+tr Fdo + (tr Fou,)* + St Py, P, (3.6)

This completes the enumeration of the quantum anomalies.

In addition to the quantum anomalies there are additional contributions which have their
origin in the gauge-variance of the classical low-energy M-theory effective action [11].
More precisely, these ‘inflow’ contributions arise from the CS coupli@gs G A G and
C A (tr R* — %(tr R?)?) in the eleven-dimensional bulk action. Hefeis the three-form
potential andG its field strength with (magnetic) sources on the ten-planes and the six-
planes. This produces an anomaly in the gauge theory on the six-planes [11]

A(inflow) = —g<}tr RY - i(trRZ)Z) - 3—g<tr F2 — }trRz)z (3.7)
8 32 4 02 ' '
Fyp are the gauge fields on the ten planes only, Geor G’ andg is the magnetic charge

of the six-plane. To the best of our knowledge the coefficients of these terms have not
been reliably determined. We have fixed the normalizations such as to make the anomaly
cancellation work for this model. Once fixed we use them for all other models which we

9 |f there were vector-multiplets confined to the six-planes, they would contribute in an obvious way. If there

weren 7, tensor multiplets, there would be an additional contribution gf( 2% tr R* — 155 (tr R?)?).
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considerl® Below we will give independent arguments in support of the normalizations

in (3.7). The magnetic charges are easy to determine. We have found in Section 2.2 that
the magnetic charge of the ten-plane£is. In the orbifold limit the geometric and the
gauge curvatures are restricted to the orbifold singularities. Hence this is also where the
magnetic charge is sitting. We thus get the following sum rule for the magnetic charges of
the six-planes

Zgiot = kq. (38)

The sum extends over all six-planes on a given side of#iénterval ande = 1, 2. For

the problem at han#; » = +4 and since all 16 are related by symmetry (and likewise the
16") we findgig = 1/16- (—4) = —1/4 andg,g = 1/16- 4 = +1/4. We thus obtain for the
inflow contributions to the anomalies on the six-planes:

. 1 4 1 2\2 3 2 2 1 2 ?
A(lnflow)=3—2trR —Es(trR) +1—6<trFE7+trFSU2—§trR

on each 16 plane and

1 1 3 1 2
Alinflow) = — > tr R*+ 1—28(tr R?)% - 1—6<tr Fsg, = 5 trRz) (3.9)

on each I6plane. Adding the quantum and the inflow anomalies, we obtain
; 3 2 1 2 2 2 1. .2
A(quantumy- inflow) = > (tr Féy, — 1—6trR ) : (tr Fg, +rFgy, — > tr R
and

A(quantumy inflow) = E<tr F§y, — EtrR ) : <tr FSo, — étrR : (3.10)

Note that these expressions factorize into two terms, the first of a seven-plane origin and
the second of a ten-plane origin.

Consistency of the theory requires, in the absence of tensor multiplets on the 16 and 16
planes, that the anomaly vanishes identicallyThus, were it only for these contributions
to the local anomaly, the theory would be inconsistent. The factorization pattern of (3.10)
does suggest yet another contribution to the anomaly. Indeed, we still have to take into
account the intersection anomaly [11]. It arises from the electric coupling of the @P to
This gives rise to a CS term on each 7P worldvolume of the f6rmY, which leads to a
contribution to the anomaly on the intersection six-planes

. . 1
A(intersection = <tr Flzo— étrR2> x Ya (3.11)
with
10We would like to point out that our relative normalization differs by a crucial factor three from that of
Ref. [11].

11n the presence of extra tensor multiplets one could invoke the GS mechanism provided the anomaly factorizes
appropriately.
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3
Y4=§(n tr R — p tr F7). (3.12)

Here F7 refers to the 7P gauge fields aigp to the ten-plane gauge fieldg.and p are

as yet free parameters. They should follow from seven-dimensional physics and should in
particular not depend on the details of the boundary conditions imposed at the ends of the
interval. We will come back to this issue in Section 4. However, comparing Egs. (3.10) and
(3.11) requires that for th#, orbifold model considered here,

1
T and p=1. (3.13)

So far we have presented a consistent scenario for the M-theory description of the
heteroticT“/Zz orbifold with gauge groupE7 x SU;] x SOpe. In the remaining sections
we will generalize the analysis to othEf/Z y orbifolds.

4. Examples of 4, Z4 and Zg orbifolds

In this section we generalize the discussion of the two preceding sections to orbifolds
with higher order fixed points. In Section 4.1 we recall some basic facts afyidty
orbifolds. We then discuss one model fégr= 3, 4, 6 each. We will stress the new issues
which arise for non-prime orbifolds, i.e., fof = 4, 6. We first analyse the gauge couplings
(Section 4.2) and then turn to the analysis of local anomalies (Section 4.3) of these models.
In Section 4.4 we ‘derive’ the values for the paramefe@ndn in (3.12). We give two
independent arguments. The first is based on a comparison between the heterotic anomaly
and the M-theory anomaly. The second argument does not rely on anomaly considerations
but uses the duality between M-theory on K3 and heterotic theor§riTo help the
reader through the discussion of the various models, we have collected the data concerning
their spectra, gauge couplings and magnetic charges in three tables. They can be found in
Section 4.2.

4.1. Some facts aboiit*/Z y orbifolds

To ensured =6, N = 1 supersymmetry (eight unbroken superchargesy iz y
compactifications of the heterotic string,has to be restricted tv € {2, 3, 4, 6}. Whereas
for theZ orbifold the number of moduliis four, for the remaining cases there are only two
moduli. This follows by considering which of the (1) forms on the torus are invariant
under theZy twist. Recall that if74 is parametrized by two complex coordinates
andz?2, the discreteZ y transformation acts ast — az!, z2 — «¥ 172, whereaV = 1.
The action is such that:* A dz? survives, since this is the (R) form which we need for
a K3 compactification or the orbifold limits thereof. Its presence also guarantees at least
eight unbroken supercharges. There are various ways to embed the geometrical twists as
shifts in the gauge lattice, leading to different spectra. In the absence of Wilson lines there
are 2 (512, 59) different embeddings faf, (Z3, Z4, Zs) with different gauge groups
G x G’ C Eg x Eg and matter content [12,13]. The number of fixed points is given by the
Lefshetz fixed-point formula as
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42, forZo,
32, forz
1_ 2 1_ * 2= 5 3 41
Q-0 1-a) 22 forza (4.1)
1, forZs.

For the other possible lattice automorphismsg {5, 8, 10, 12}, the fixed point formula
(4.1) does not give an integer. The precise fixed-point structur&/fapn-prime will be
discussed when we consider thg andZg examples below.

Much of the M-theory discussion from Section 2 carries over verbatim to the general
case. The fixed seven-planes are again denoted by 7P and they carry a non-perturbative
gauge groupg 7, which for aZ i fixed point is (at mostpUy . The intersection six-planes
are again 16 (at ' = 0) and 16 (atx'! = 7 R11). There is one 16, I6pair for each orbifold
fixed point. For non-prime orbifolds there are fixed points of different orders. This leads
to new features which we will discuss in detail below. But first we present another prime
orbifold.

4.2. Analysis of the gauge couplings

Z3 orbifold

The discussion here follows very closely the discussion of #he orbifold in
Section 2. We will thus be brief. Since this is a prime orbifold, there is only one
type of fixed points, namely nings fixed points. Consequently there are nine seven-
planes. They are bounded by nine 16 planes and ninelénes. The 16 are related
by symmetry and are thus completely equivalent and likewise for the T\o of
the four moduli of theT? are invariant under theZs twist. If we chooses =
2(-2,1,1,0,0,0,0,0;3, 3, 3. 3. 3. 3. 3. 3) as shift vector, the gauge grouplsx G’ =
(Es x SUg) x SUq. In addition to the states in the corresponding vector-multiplets, there are
twist-invariant massless states which comprise hyper-multiplets transformi@g,&s 1)
and (1, 1; 84). As for the massless twisted matter there is one hyper-multiplet 9)
located at each of the nine fixed points. This part of the spectrum and other data pertaining
to this model are summarized in Table 1.

Given the massless spectrum, it is straightforward to compute the one-loop beta-function
coefficients for each group factor and from this, via (2.3),#thecf. (2.2). We find

3
b(Ee)=—3 — U(Ee)= %

h(SU) =51 — #(SUs) = —g 49,

b(SUp) =15 — f)(SUg)z—i-g. (4.2)

We thus learn thatig, = k1/2 and dsy, = k2/2 with k1 = —3 and k2 = 43, but
Usu, = k1/2+9. In analogy with th&, example we conclude that the heter@ids gauge
factor is a linear combination of the perturbat®; and the nine non-perturbati&tJs’s
on the seven-planes; i.€SUs)her= diad SU" x (SU;>™P°"9]. Since the twisted hyper-
multiplets are charged und&U, they must be located on the’lglanes and they carry
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Table 1
The Z3 orbifold with gauge grougEg x SU3) x SUy. The magnetic charges will be computed in
Section 4.3, where also the notatign g etc. will be explained

Example 2:Z3 orbifold

Shift vector (-%,%,%,o,o,o,o,o) (_,% 111141
Gauge group Eg x SUg SUg
Matter " Two moduli
0 (27,3 1) (1,184

H 9% (139
b(G) b(Eg) = —3, b(SUz) = 51 b(SUg) = 15
UG 5E6=—%,55U3=—%+9 55U9=+%
k=n—12 -3 +3
816 _% +%
010 3273 - (78,1 - (1. 9)} {84 — (80))
Os - 39
G7 SUs

1 1

07 2 8 ) 8

quantum numbers of a non-perturbatids. The boundary conditions of the hyper and the
vector components under the 7€ 6d decomposition must be chosen such that the vector
component enjoys Dirichlet boundary conditions of the type (2.1) orEthe SUs side

and Neumann conditions on tt&Jy side; i.e., there is on8U; adjoint hyper-multiplet

on each 16 and one vector-multiplet on each bhis allocation of fields leads to local
anomaly cancellation on the six-planes as we will demonstrate in Section 4.3.

Z 4 orbifold

This is our first example of a non-prime orbifold. It possesses two types of fixed points:
four Z4 fixed points and 1& 2 C Z4 fixed-points. The latter are obviously also fixed under
Z and the twelve remaining fixed points lie pair-wise oz, orbits. There are thus
four Z4 and sixZ; fixed points. All fixed points of a given type are completely equivalent.
The two type we have to treat separately, though. The results of the ensuing below of a
particularZ4 orbifold model are collected in Table 2.

We embed th& 4 twist into the gauge sector via the shift vecies ;11(—3, 1,1,1,0,0,0,
0,—4,3, 3,3 3 3 1 1), which leads to a breaking of the gauge grofip x Eg
— (SO x SG;) x (SUg x Slp) = G x G'. The massless charged matter in the un-
twisted sector consists of one hyper-multiplet transformingl&és4; 1, 1) and one hyper-
multiplet transforming asl, 1; 28 2). These states, which we denote Hy, clearly live

on 10P.



V. Kaplunovsky et al. / Nuclear Physics B 590 (2000) 123-160 139

Table 2
The Z4 orbifold with gauge grougSO;g x SUg) x (SUg x SUp)

Example 3:Z4
i 3111 71111111
Shift vector (_?1’71’71’?1’0’0’0’0> (‘@g»g»@g»g»@g)
Gauge group SO x Sy SUg x SU»
Matter H Two moduli
0 (16.4:1.1) (1.1:28.2)
Hy 4x (1,481
Hy 10x 3(1,6:1,2) +6x (10,1, 1,2)
b(G) b(SOy) = 6, b(SUy) = 30 b(SUg) = 6, b(SUy) = 42
G Uso,p =0, sy, =0+4 Usy =0, sy, =0+6
k=n-—12 0 0
Z5 fixed points: see Sections 2 and 3
Z 4 fixed points:
816 -3 +3
010 —{(45.1) + (1.19)} —3{(63.1) + (1.3)}
+55(10,6) + (16, 4) +5570. D) + (28,2
06 - 1L481)+11612
G7 SUg
0 1.15 -1.15
7 2 =2 2 =2

Since for non-prime orbifolds there are different types of fixed-points, one has to be
careful with the allocation of the twisted matter. Thgorbifold has three types of twisted
sectors. States in the first and the third twisted sectors combine into particle and anti-
particle pairs and into complete hyper-multiplets, which we denofé;a3 hese states are
necessarily located at tig, fixed points. Straightforward application of the rules reviewed
in [6] gives H1 = 4 x (1,4; 8,1). The double-twisted sector contains both particles and
their anti-particles. These states we catp. One findsH, = 10 x %(l, 6;1,2 + 6
X %(@, 1;1,2). The correct assignment of these states to the various fixed points is as
follows. At eachZ, fixed point: 3(1, 6; 1, 2) + 3(10, 1; 1, 2) and at eaclZ4 fixed point:
3(1,61,2).

Note that the states at each of tHe fixed points combine into representations of
SO x (E7 x SUp) which is the group left unbroken by the shiflS:Z%[(;, 6;1,2)

+ (10, 1; 1, 2)1(s010xSQy) x (SUsxSUp) = 3(16: 1, 2)s0,6x(E7xSUy) - AlSO, locally at theZ
fixed points, there are four moduli hyper-multiplets. In fact, the local physics at each of
the sixZ; fixed points of thisZ4 orbifold is identical to that encountered in tAe model
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discussed before. Since there arespseven-planes, we expegiy, = k2/2+ 6. We will
verify this shortly.
It remains to discuss the four, fixed points with twisted massless mattér 4; 8, 1)
+ %(;, 6; 1, 2). Each of thez, seven-planes supports a non-perturbeilg ~ SG; gauge
group. This, together with the gauge quantum numbers of the twisted states, suggests that
the twisted matter lives on the’lplanes and transforms as#d 6under a non-perturbative
SUy, respectively. Also, in complete analogy to the previous examples, this would imply
sy, = (k1/2) + 4 and thusSU;e' = diagSUZert X (SLﬂon'pen)“]. That this is correct can
be easily verified, given that

b(SQo) =6 — v(SQo) =0,

b(SQ) =30 — #(SQy) =0+4,
b(SUg) =6 — ©(SUs) =0,
b(SW) =42 — #(SUp)=0+6. (4.3)

We also findk; = k2 = 0, i.e., the 24 instantons are distributed evenly over the two sides.
Itis now also clear how to distribute the seven-plane fieldSUa adjoint hyper-multiplet
lives on each of th&@4 16 planes and &U, vector-multiplet on eac4 16’ plane.

Zg orbifold

As in the previous examples, the data of the particular model we will discuss in this
section are collected in a Table 3 which can be found at the end of this subsection.

As Zg has two non-trivial subgroup®y andZ3, aZg orbifold has fixed points of orders
2, 3 and 6. The Lefshetz fixed point theorem gives Bgdixed point which is of course
also fixed under th&, andZ3 subgroups. The remaining eighs fixed points lie on four
Zg orbits. The 1525 fixed points not fixed undefg lie on 5Z¢ orbits. AZg orbifold thus
has oneZg, four Z3 and fiveZ, fixed points. Of the four moduli of"4, two are invariant
under theZg twist, i.e., we have two moduli hyper-multiplets.

To proceed, we need to specify the shift vector. Our ch&iﬁe%(—S, 1,1,1,1,1,0,0;
-5,1,1,1,1,1,1,1) leads to the gauge group x G’ = (SUs x SUs x SW) x SUy.
Locally at theZ3 fixed points the gauge group is that corresponding to the shift vector
28. One finds(Eg x SUs) x SUy and thus recovers the situation of tFg orbifold
model discussed above. At th% fixed points the shift 8 leads to the gauge group
(E7 x SW) x Eg, i.e., theZy C Zg subgroup leaves the secoiiid unbroken. We will
discuss thiZ, orbifold in some detail in Section 5. For the present purposes it suffices to
state the following facts. The untwisted matter for thismodel isHg = (56, 2; 1) and the
twisted matter igf; = 16 x {%(5_6, 1, D) +2(1,2 1)}. Since the secondg is unbroken, all
24 instantons must sit in the firélg, i.e.,k = 12. Finally, theSU, gauge-factor is purely
perturbative, i.e., it does not mix with the seven-plane gauge group.

The untwisted massless matter of the orbifold consists of a single hyper-multiplet
Ho = (6, 3,2; 1) which lives on 10P. The twisted matter states Hie= (6, 1, 1; 9): this
hyper-multiplet is necessarily located at thg fixed point; H, = 4 x (1, 3,1; 9): there is
one such hyper-multiplet at each of the fay fixed points; the states in the third-twisted
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Table 3
The Zg orbifold with gauge groupgSUg x SUz x SUp) x SUg

Example 4:Zg
; 511111 51111111
Shift vector (-g,g,g,g,g,—,&O) (-gggggggg)
Gauge group SUg x SU3 x SU SUg
Matter { Two moduli
Ho
6321
Hy 6119
Hp 41319
H3 6x $(20,1,1;1) +5(6,3,1; 1)
+101, 1,2, 1)
b(G) b(SUg) = 18,bh(SU3) = 36,b(SUp) =12 b(SUg) =0
G Usyg =1+1,0sy; =1+4,0sy,=1 Usyy = —1
k=n-12 2 -2
Z,, fixed points: see Section 5
Z3 fixed points: see Example 1
Zg fixed point:
816 -5 +5
010 ~24E51L D+ (18D +(L13) 1384 - 2,80
~26.3.2 + 331531 + £520.1.2)
06 - 6.1L9+2201,11)
G7 SUg
1 1
07 539 23

sector,Hz = 6 x %(A), 1,1, D)+5%x(6,3,1,1)+10(1, 1, 2; 1), are assigned to the different
fixed points as follows. At each of the fiv& fixed points there is é(5_6, D +21,2
hyper-multiplet of E7 x SUp. Under E7 x SU; — SUs x SUs x SU; it decomposes as
%(A), 1,1 +6,31 +2,1,2). This leaves on%(@, 1,1; 1) half-hyper-multiplet at
the Zg fixed points. To summarize, the massless twisted matter content @stfired
pointis (6, 1. 1: 9) + 3(20. 1. 1; 1).

The coefficients of the one-loop beta-functions and the resulting valugsark easily
found to be

b(SUs) =18 — #(SUs)=1+1,
b(SUs) =36 — #(SUs)=1+4,
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h(SW) =12 — #(SUy) =1,
h(SUg) =0 —  #(SUg) = —1. (4.4)

Since the maximal non-perturbative gauge grougli, we conclude that the value of
Usy, must be that of a perturbati®Ug factor. Consequentlysy, = k2/2 andky = —2,

k1 = +2. Fromusys = 2 it then follows that the non-perturbati&ls mixes with the
perturbativeSUg, i.e., SU® = diag SLE™" x SUL™P®"]. The fact thatisy, = 1 + 4 is

in agreement with our expectation that four non-perturbadille factors located at the
four Z3 seven-planes mix with the perturbati8ek. As for vsy, we would naively expect
vsu, = k1/2+ 5. This would in fact be required if at th&, fixed points the local physics
were that of theZ, orbifold discussed in Section 2. However, as already mentioned above,
for the Z; orbifold with gauge grougE; x SUp) x Eg we will find in Section 5 that the
SU, factor is completely perturbative, i.e., there is no mixing with the non-perturbative
seven-plane gauge group.

It is now straightforward to give the field content on thg 16 and 16 planes. On 16
with perturbative gauge groupUs x SUs x SUp there are no twisted matter states. They
are all located at I6 Since they carnsUs quantum numbers, the non-perturbat®ies
vector-multiplet must be free on’lénd theSUgs adjoint hyper-multipletis free on 16.

4.3. Local anomaly cancellation

We will now generalize the discussion of Section 3 to the models of the previous
subsection. In particular we will confirm the relative normalization of the two contributions
in (3.7).

Z3 orbifold

The discussion of the local anomalies for this model is almost identical to the one given
in Section 3. One difference is that now we have only two moduli multiplets. Also, when
distributing bulk fields and ten-plane fields over the various six-planes we have to take
into account that we now have nine fixed points. With= —3 andk, = +3, the magnetic
charges of the nine 16 and the niné Banes argis = —1/3 andg;g = +1/3, respectively.

Itis straightforward to determine the quantum + inflow contribution to the local anomaly
on the six-planes to

A(quantum4- inflow on 16)

3 2 1 2 2 2 1 2

A(quantumy- inflow on 16)
3 1 1
= E(tr F&y, — gt R2> : <tr F&y, - étrRZ). (4.5)

As in our discussion in Section 3, this anomaly can be cancelled by an intersection-anomaly
of the form (3.11), provided that we choose the parameters asn = 1/9 andp = 1.
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Z4 orbifold

For this model the discussion is complicated by the fact that we have two different types
of fixed points. As we have explained before, the local physics aZ thfixed points is
identical to that of th&» orbifold model of Sections 2 and 3. This in particular means that
anomaly cancellation on th& six-planes works in exactly the same way as before. When
computing the bulk and the ten-plane contribution to the anomaly oA lsé-planes, we
must however first subtract the contribution already accounted for od tlpanes and
then distribute the remaining anomaly over the fdymplanes.

Before illustrating this for the charged ten-plane fields, we will introduce some
convenient notation. We will denote the multiplet content of the charged ten-plane fields
which contribute to the anomaly b@10. This splits into hyper-multiplets and vector-
multiplets. Taking into account the opposite chirality of the fermions in these multiplets,
we write Q10 = Hig — V1o. The net number of states will be denoted/y,,. Let us
consider theSGs x SOy side. At theZ;, fixed six-planes, the local physics is as in the
Z> model of Sections 2 and 3, i.e., the untwisted states consisBaf @vector-multiplet
and one(128)so,, hyper-multiplet. We now assume that the contribution to the anomaly
of a Z, six-plane is exactly that of such a six-plane in the orbifold, i.e., that of one
sixteenth of &80y vector-multiplet and of one sixteenth of a 18¥per-multiplet. Taking
into account that there are six 16 of this type and four 16 fixed uZdemwe get forQ10

1 6
Qo= 4_1{[(1_6’ 4) — (451 — (1, 19]s04xs05 — E[(1_28) - (1_20)18016}

5 3 1

In the second step we have decomposedS3fgs representation unde8Q g — SOy x
SOo. Also,ng,, = 1/4.

It follows from the construction of the states in the untwisted sector that all components
of the decomposition of th€48) g, underEg — SGs x SOy have definiteZ4 eigenvalue,
namelye?%* where P is a Eg root ands the shift vector in theEg. One finds 248=
(15, 1)1+ (1,49 41+ (6.10) 1+ (4,16)1; + (4, 16) ; = a(248). The subscripts are the
Z4 eigenvalues. Here denotes th& 4 generator whose action on a rootky is specified
by the shift vector. Introducing the functidi(x) = x /8 + x2/32, whose argument can be
either a complex number or an operator, we can rewrite (4.6) as

Q10=—T(x)(2498. 4.7)

The justification for introducing this notation is that one can define a fun@tian for all
Z y orbifolds and this function is universal for any givah independent of the choice of
shift vector. Specifically,
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X
— N =2,
16’
X
A N=31
9
T(x)=14 y 2 (4.8)

o An’ N=41
8 + 32
X + x2 + X3 N — 6
6 18 48 -

We will need the values' (1) = {16, 3 352, 144} and 2ReT (e271/m)) = 3 9,

16, 72} for n = {2, 3,4, 6}, respectively. One checks that for every orbn‘old model
we are considering) s 7(1) = Y |g T(1) = 1 and -2 s R&T (eZ7/")) = -2 s
xRe(T (e%71/m)) = % - #(moduli), where in the case of non-prime orbifolds different types
of fixed points have to be summed over.

For theSUs x SU, side of theZ, orbifold one finds in a similar way

1
Q10 = Z{[(Ai 2) - (63 1) — (1, 3)]Isuxsu,
6
- (562~ (133 1)~ @ §>]E7Xsu2}

5 3 1
= —T(a)(248) (4.9)

withng, , =—1/4.

In addition to the ten-plane fields, on any six-plane there is also the contribution from
the seven-plane fields with free boundary conditions on the six-plane, again with a relative
sign between hyper and vector multiplets. In analogy to the notation introduced above, we
will denote them ag)7. The subscript denotes the seven-dimensional origin of these states.
Including a factor of 12, which was explained in Section 3 and denoting the fields by their
SUZOWert representation, we have for tlq orbifold 07 =1/2-15andQ+ = —-1/2-15.

As for the six-plane fields, there are none on the 16 planesZ Atwisted matter fields
live on the 18 planes. l.e., in the by now familiar notatio@s = % and Qg = (1,4; 8, 1)
+3(1.6:1,2).

If we defineQ = Q10+ Q7 + Qs We can summarize the contribution of all charged
matter fields to the quantum anomaly as

1 1 1
=Tro F*— ZtrR? Try F? —trR*+ —(trR? 4.1
A(Q) =Trg 4tr ro +nQ<240tr + 192(tr ) (4.10)
With the help of the functiol” we can also express the contribution to the anomaly of
the bulk fields, namely
244 44

A(SUGRA+ tensoj = = T(l)[—2—40t rR + @(trR ) ]

A(moduli) = —2 Re(T (e7/™)) [Ziotr R*+ %Z(trR ) } (4.11)
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Note, e.g., that foiZs planes, T (1) = 3(1 — 6/16) and —2Re(T4(e?™/™)) = 55(2 —

4.6/16), where for the latter we have taken into account thaj arbifold has two moduli

whereas & orbifold has four moduli. (4.11) holds for both the 16 and thedg planes.
The total quantum anomaly is thus

1
A(quantum = Trg F* — 20 R?Trg F?

- i(nQ — 1227 (1) — 2ReT (2"/N)) tr R

240
- %2 (ng + 22T (1) — 2ReT (e2"/N)) (tr R?)?. (4.12)

This expression is valid for ever¥y six-plane of anyZy orbifold, onceQ has been
specified.

To compute the inflow contribution (3.7) we need the magnetic charge of the six-planes.
It can be determined from the sum rule (3.8). We have to distribute the total charge
over all fixed planes on a given side of th&" interval. For prime orbifolds they are all
related by symmetry and carry the same magnetic charge. For non-prime orbifolds some
care is required. E.g., on tHeOp x SG; side of theZ, model, with total charge zero
(k1 = k2 = 0), there are si¥ » fixed planes with local gauge gro@® s, each with charge
1/4. The fourZ 4 fixed planes must thus carry a total charge-6f- 1/4 or —3/8 each. l.e.,
gle = —3/8 andg,gy = +3/8.

Note that there is a minimal magnetic charge any fixed plane must carry. This is
obtained ifk = —12, which corresponds to an unbrokgg In this case there are no gauge
instantons. It is straightforward to compute the minimal magnetic charges of the various
Z, planes. They can be conveniently summarized in the for@@j%: (1—n?)/2n. The
allowed magnetic charges are thetf) = g +m/n where the non-negative integercounts
the number o, instantons sitting at the fixed point.

We have now provided all ingredients necessary to compute the quantum and the inflow
anomaly for theZ4 model. A short calculation gives

A(quanturmy inflow on 16)

3 2 S . 2 2 2 1. 52
= E(trFSU4 - 3—2trR > . (trFSOw+trFSQi - EtrR ,
A(quantumy- inflow on 16)

3

5 1
— E(tr F&y, - 5 R2> : (tr F&y, +1rF&,, — 5 trRz). (4.13)
We once again find that this anomaly can be cancelled via (3.11) avithl andn =
T(1) =5/32.

Zg orbifold

We will be very brief here. We only have to check anomaly cancellation o grex-
planes. The ten-plane gauge groups3lds x SUz x SU; on 10P and&Uy on 10P. Using
T (x) as given in (4.8) it is straightforward to show that
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Q10=—T(2)(248
P EEL D+ AE D)+ (L1 - (632
VY e L A

13 135
=—.84——. 4.14
010 == -84~ 780 (4.14)
where the decomposition is with respect to the ten-plane gauge groups. Also, the discussion

in Section 4.1 gave

13 _ - 19
—(153 1) +--(2012
+ 72( 57 3! )+ 144(_07 = _)7

= 1
and
1 1
—>.35 = _>.35 4.16
Q7=75-35 07 535 (4.16)

where the latter states are with respectSid)°™™". The magnetic charges are easily
determined t@s = —5/12 andg;e = +5/12.

For both the 16 and the I&lanes, the quantur inflow anomaly can be cancelled via
an intersection anomaly (3.11) with= 1 andn = T (1) = 35/144.

4.4, Common features

We have demonstrated in all four examples that the local anomaly on each intersection
six-plane cancels. This is to say that in the sum of quanrtimflow + intersection anomaly
the coefficients of tR%, (tr R%)2, tr R and of the term without dependence on the Ricci-
form vanish separately. The four conditions for this to happen are:

no=1221(1) + T(ezni/”) + T(efzm'/”) + 30g,
n=T(Q),

1 2_ 2 2
3TrQF =ptrFy + (g +2n)tr Fip,

2
3Tro F4:trF120(§tr Fi+ ptr F72). (4.17)

In particular, local anomaly cancellation fixed the coefficigrandp in (3.12) ton = T'(1)

andp = 1, respectively. There is another way to see why these values are generic, which
we will now present. It also uses anomaly arguments and it involves a direct comparison
of the heterotic and the M-theory point of views.

In the heterotic theory, anomaly cancellation is of course guaranteed by the well-
established consistency of the perturbative heterotic string. However, by realizing that the
massless fields which contribute to the heterotic anomaly on a given fixed six-plane are
precisely those which, in M-theory, contribute on a 16, p&ir which is connected by a
seven-plane, we can, by comparison, determine the coeffigjetd o.

The boundary conditions of the seven-plane fields were chosen such that in the limit
R11— 0 there are no additional massless states. This is reflectod i1 Q7 = 0. Also,
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the magnetic charges satisys + g = 0. We then hav@net= 0 + Q' = Q10+ 07
+ Q6+ Qg and the first condition in (4.17) givesy, ., = 2447 (1) + 4 ReT (eZ7i/™), which
is correct in the heterotic context without any reference to M-theory.

We can now compute the anomaly on a 16, p&ir from the heterotic and from the
M-theoretic point of view. The former gives (cf. Appendix B)

2 2 1
SA= 3 Tr0wF* = S0 R Trgu P2+ T(D)(r R?)

= (tr R* =Y Fj) A (T(l) trR* =" iy try FZ). (4.18)

Computing the same anomaly in the M-theory picture produces instead (use the last two
equationsiin (4.17))

2
3A= (tr R? —tr F7y— tr F3y) A (n tr R% + %(tr FR—trFay) +ptr F72). (4.19)

Comparison gives once mone= 7' (1) and

- 1 -
vio=vig=1 and 9= > E g=—"110,
fixed
planes

v7=0 and u7=p. (4.20)

The seven-plane gauge groups thus have the characteristic of non-perturbatively
generated gauge groups. However, in the heterotic dual, which is completely perturbative,
they are not visible as additional gauge group factors. This leaves two optipmss 0

andp is the level of the gauge groug;. This is the situation we have encountered in all
four examples considered so far. The seven-plane gauge group mixes with the ten-plane
gauge group, as, e.g., in (2.7i) p = 0: this case will be discussed in Section 5.

So far we have determined the parameteesdn using anomaly arguments. However,
ultimately these parameters should come from seven-dimensional physics. In fact, we will
now give an independent ‘derivation’ of the valuesiiandp, which does not rely on any
anomaly arguments.

In M-theory on K3, the parametersand p enter through the electric coupling of the
seven-plane to the three-form potent@lof 11-dimensional supergravity via the term
C A Yy, cf. (3.12) and [11]. The eleven-dimensional origin of this term are the two CS terms
CAGAG andC A (tr R*— %(tr R?)2). However, itis easier to discuss these couplings from
the dual point of view, exploiting the duality between M-theory on K3 and the heterotic
theory on73 [1,14].1?

This heterotic — M-theory duality id = 7 relates the field strength 6f, denoted byG,
to the field strengttH of the Kalb—Ramond fiel® of the heterotic theory and vice versa:

H < *G. The moduli spaces of the heterotic compactificationfénand of M-theory
on K3 are isomorphic. At a generic point on the Narain lattice, the gauge symmetry of

12 This seven-dimensional heterotic theory is of course completely different from trevasanitten theory we
have discussed so far.
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the heterotic string compactified af® is U (1)%? which is also the gauge group of the
M-theory at a generic point of the K3 moduli space. On the heterotic side, the Bianchi
identity reads

22
dHO('[I'RZ—‘r Z dijFiFy, (421)
1,J=1

whered;; is a Lorentzian metric with signaturé+)3, (—)1°) which is also the signature
of the intersection matrix of the K3 homology 2-cycles. Duality now impdiésG) « d H
and thus an electric coupling C A d H. At special points in the Narain moduli space the
heterotic gauge symmetry acquires non-Abelian components which contriki#g fice.,
(4.21) gets modified to

dH octr R? — " tr F? + Abelian part (4.22)

For the M-theory the gauge group enhancement happens at the orbifold points of the K3
moduli space. The additional states which comprise the non-Abelian gauge multiplets are
provided by M2-branes wrapping the vanishing cycles (cf. the discussion in Section 1). At
the orbifold points the seven-dimensional gauge groupsugé X Uf for theZ, orbifold,

S x U for Z3, SU x SU; x Uy for Z4 andSWS x SU3 x SUs x U7 for Ze.

From the eleven-dimensional point of view the Abelian part lives in the bulk and is
completely broken after compactification to six-dimensions. It is thus of no further interest
for us. The non-Abelian part, on the other hand, contributes to thedbsals coupling on
the seven-planes asC A Y_; tr F2. The sum is over all fixed seven-planes. As far as the
C A tr R? piece of this coupling is concerned, it has to be apportioned between all seven-
planes. The apportioning happens in exactly the same manner as with the bulk anomaly
in previous sections, namely 1) tr R2. The reason for this is the same as before. The
contribution on & y plane depends only oN, independent of the orbifold model.

We thus find that the relevant coupling is proportional to

C A <trR2—ZtrF72i) =C/\Z(Ti(1)trR2—trF72i). (4.23)
i i

Comparing this withC A )", Y4; leads to the identification=7'(1) andp = 1.

We should point out that we have not been careful with the overall normalization of
the C A Y4 coupling. In fact, this coupling is somewhat controversial since it is related to
the normalization of the two eleven-dimensional CS terms. Nevertheless the normalization
must be universal and it can be fixed by considering any orbifold model, such &s the
model of Sections 2 and &3

131f one changed theelative normalization of the two terms in (3.7) one would find that the second of the
conditions in (4.17) will be modified(and 7 (1) will no longer be proportional to each other), in contradiction
with the independent arguments given here.
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5. Open problems

All the orbifold models we have discussed thus far followed a common pattern from the
M-theory point of view: eaclz,, fixed seven-plane carries a non-perturbai$ gauge
theory which mixes with a perturbative gauge theory living on one of the two ten-planes.
The resulting theory contains &U, gauge group which appears to be a subgroup of the
G C Eg (or G’ C Eg) butisn't actually confined to one side of thé! interval. Instead, it
reaches to the other side along the fixed seven-planes — and that’s how the twisted states
living on the 16 intersections manage to have charges under botBlthe- G and theG’
gauge groups.

However, in many other orbifold models, the non-perturbative gauge groups living on
thez, fixed seven-planes turn out to be proper subgraeps: SU, rather that complete
SU,’s. Furthermore, such reduced non-perturbative groups — or some of their factors —
do not mix with the perturbative gauge group factors but simply decouple from the massless
states of the six-dimensional theoly. At present, we do not know any M-theoretical
rules governing breaking of the non-perturbative gauge groups or their mixing with the
perturbative gauge group factors. All we have are the ‘experimental data’ about the non-
perturbative gauge groups implied by the quantum numbers of the twisted states in a score
of orbifold models we have studied in some detail.

We see no point in boring the reader with technical details of too many models. Instead,
we shall simply present examples of two common problems we have seen in several
models. In the following Section 5.1 we discuss models with the unbrékerauge group.
‘Experimentally’, all such models havg; = (U1)""~Y, the Cartan subgroup of ti&U,,
and none of the non-perturbativg factors mixes with any perturbative gauge groups.
Furthermore, the local anomaly cancellation requires the non-perturliatiseo have
p = 0, in blatant contradiction with the seven-dimensional arguments of Section 4.4.

In Section 5.2 we present an example of a more complicated model where the combined
guantum, inflow and intersection anomal@snot cancel oufor any G7 consistent with
the twisted states’ quantum numbers. This problem occurs in all models with mixed
perturbative/non-perturbative Abelian gauge fields, although it may affect the non-Abelian
fields as well. We speculate how seven-dimensional Chern—Simons couplings may solve
this problem, but a thorough analysis has to be postponed to a later publication.

5.1. Models with an unbrokefig

To exemplify the problems that arise in this class of models, consider the best known
heterotic orbifold, namely th&, orbifold with the standard imbedding of the spin
connection into the gauge group, i.& (-3, +3,0,0,0,0,0,0;0,0,0,0,0,0,0,0). In
this model, the firsiEg is broken down toG = E7 x SU, while the secondtg remains
unbroken. Note that we have already encountered ggdixed points in theZg orbifold

14 Technically, the locking boundary conditions (2.1) at one side offHenterval are replaced with the simple

Dirichlet boundary conditionssx[lom)ert(x1l =0)=0.
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Table 4
The Z5 orbifold with the (E7 x SUp) x Eg gauge group

Example 5:Z, orbifold with unbrokenEg

Shift vector (3 %4.0.00000) (0,0,0,0,0,0,0,0)
Gauge group E7 x SUy Eg
Matter Four moduli

Hp {

(56,2, 1) -

Hy 16x {$(56,1; 1) +2(1, 2: 1)
b(G) b(E7) = 42,b(SUy) = 42 b(Eg) = —30
i g, =6, 05y, =6 Upy = —6
k=n—12 +12 -12
816 +73{ —23{
010 £1(56.2) — (133 1) - (1.3)) — - (248
06 3(56,1;10) +2(1, 2; 19 -
G7 Uy C SUp
07 -3-10 3-1°

in Section 4, but let us take a closer look now. The hypermultiplet spectrum and other
technical details of the ‘standard’ orbifold are summarized in Table 4.

Note that unlike the ‘non-standard orbifold discussed in Section 2, the ‘standafd’
orbifold hasv = k/2 for all gauge group factors includirgjl,; indeed, on theZ7 x SU,
side, we havek = +12 andvsy, = 6 rather thanvsy, = 6 + 16 = 22. According to
Eq. (2.7), this indicates that in the standargl orbifold, the SU, gauge factor is purely
perturbative and does not mix with any non-perturbative factors. Consequently, no massless
states in this model can be simultaneously charged und&tthand theEg gauge groups
— and indeed there are no such states in the standard orbifold.

The non-perturbative gauge grodp; on each of the 16 fixed seven-planes must fit
inside anSU, (bigger groups are not available At singularities such a&; fixed points),
but because it does not mix with the perturbatiié(2), we may have eitheG; = SUW,
or G7 = U1. The choice ofG7 affects theQ7 contribution to the quantum anomaly at
each end of tha®: given our general rule of opposite boundary conditions on opposite
ends (two avoid non-perturbative massless states in 6d) and the requirement for free vector
fields at either end to form a closed subgroup of ¢hg it follows thatn(Q({)) =F3/2
for G7 = SU(2) butn(Q%’)) =Fx1/2for G; = U;. Since thng) and Q(1% contributions to
the anomaly on each side are completely fixed by the massless spectrum of the orbifold,
and sincek = +12 implies g = £3/4, the need to cancel theRf term in the local
anomaly at each end (cf. first Eq. (4.17)) requit€®7) = —1/2 on theE7 x SU; side
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andn(Q%) = +1/2 on theEg side — and henc&7 = U1 C SU, rather tharG7 = SU (2).

Without going into any more details of Eqgs. (4.17), let us simply state that for
G7 =U(1), the entire local anomaly polynomial$ on both 16 and I6planes cancel,
provided (1) all the twisted stata3e are neutral with respect to the non-perturbatitie
and (2)p = 0 in the intersection anomaly term, all the arguments in Section 4.4 fol
notwithstanding; note however that= 1/16= 7' (1) as required by the second Eq. (4.17).
At present, we have no explanation for the ‘experimental factp e O except that its
required to cancel the anomalies locally. Likewise, we have no M-theoretical explanation
for theG7 = Uy, only the brute fact that this too is required to cancel the anomalies locally.
The theory would have to wait for a later publication.

In lieu of theory, we offer a summary of ‘experimental’ data to show a common
pattern ofinvisible non-perturbative Abelian gauge groups, which do not mix with any
perturbative gauge group factors and don't couple to any twisted massless states (i.e., the
hypermultiplets living on 16 and I6are neutral with respect to the invisible groups). In
particular, inall Z,, orbifolds (2 = 2, 3, 4, 6) with an unbrokerEg group15 we can cancel
all anomalies locally, provided: (1) eacky(Z, plane = (U1)"~ P, the Cartan subgroup
of the SU,; (2) none of the non-perturbativié;’s mixes with any of the perturbative
groups; (3) all twisted states are neutral under all the non-perturliatiseand (4) all the
non-perturbativé/;'s havep = 0. In addition, many 4 andZg orbifolds have a locally-
unbrokenEg on theZ, or Z3 fixed planes — and all such fixed planes carry invisitile
or (U1)? gauge groups, exactly like similar fixed planes in the correspordingr Z3
models. For example, th&s orbifold of Section 4 has such an invisiblg; = U; on each
of its Z fixed planes.

It is easy to see that any invisiblé; gauge field must have = 0 for the sake of local
anomaly cancellation. Indeed, an invisible seven-planéas no quantum anomalies —
since all the chiral fields are neutral — and no inflow anomalies — which involve only
the ten-plane groups or thesible seven-plane groups that mix with them. Consequently,
any invisibleU; factor should also decouple from the intersection anomaly, which means
it must havep = 0. Unfortunately, this anomaly-counting argument does not tell us how
the invisible seven-plane gauge groups differ from the visible seven-plane droopthe
seven-dimensional point of viewo the M-theoretical origins of thgnyisiple = 0 remain
obscure.

5.2. Models with perturbativé/; factors

The invisible Abelian groups of the previous section are puzzling from the M-theoretical
point of view, but as far as the local anomaly cancellation is concernedyisitde
Abelian groups are much more troublesome. Generally, the combined quantum, inflow

and intersection anomalies in such models cancel each other globally but not locally in
11
X ’

15There are ten distinct heterotic orbifolds of this type, including the stan@iardrbifold, two differentZ3
orbifolds, twoZ,4 orbifolds and fiveZg orbifolds.
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A(I6) + A(16') =0, but.A(16) # 0+ A(I6"). (5.1)

In other words, the anomalies cancel locally in ten dimensions (which always works in any
perturbative heterotic orbifold) but not the eleventh dimension.

As an example of such anomaly trouble, let us consid&y arbifold summarized in
Table 5.

Note that all data in Table 5 are completely determined by the perturbative heterotic
string theory — except of course for the inherently non-perturbativand Q7. However,
the model must havé; D SU, x U (1) since the gauge couplings of the perturbafis

Table 5
A Z 4 orbifold with the (SO g x SUy) x (Eg x SUp x U71) gauge group and anomaly troubles

Example 6:Z4 orbifold

;i 3111 111
Shift vector (—z,z,z,z,o,o,o,o) (—j,z,z,o,o,o,o,o)
Gauge group SOy x SUg Eg x SUp x Uz
Matter Two moduli
Ho { -1 +3
(16.4:1,1,0) (Lu2z2ZA)+(1u12 22)
+3 -3 16 1- +3
Hy ax{(1412572)+2(1411 575) + (18111 572))
Hy 0%1011.20+5x(16120)
b(G) b(SO1p) = b(SUy) = +18 b(Ep) = —6,b(SUp) = +54,b(U1) = +30
k=n—-12 +4 _4
UG USO = Usy, = +2 Vg = —2, sy, =48, iy, = +4
si=0-5% 8950y, = 805U, =0 80, = 0,805y, =6+ 4,80y, =4 x 3
Z5 fixed points: see Sections 2 and 3
Z 4 fixed points
816 4+3 -3
210 —3%{(4_5, 1H+@1.19) —3%{(7_, 10+@130+1 L0}
1 1 -1 +3
+ 15(16.9) +E{<—7’Z’ —12>+(le, —12>}
3 3 2
+510.6) +3(221 %)
o 43 1 =3 _
%6 (l’ 42 7 12) + 2<l’ %1 2JT2)
T6.1:1 43 )4 1
+(181153)+ 300120
G7 G7DOSU, xU1; G7CSUy

07 2777 272772
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andU; group factors indicates their mixing with the non-perturbative gauge fields living
on theZ, fixed seven-planes. Actually, tf&J, factor gets non-perturbative contributions
from bothZ; andZ4 fixed planes, hencésy, — (k/2) = 6 + 4. In theU; case however,
only theZ, fixed seven-planes are involved, but there appear to be a non-trivial mixing
angle, thugiy, =4 x 3/2 rather than simply 4.

The question at this point is whether any consistent choice;aind Qg’) would lead to
a local cancellation of all the anomalies on the 16 aridolénes. The answer turns out to
be negative in an interesting way: the requirement of local anomaly cancellation does have
a unigue solution

1
0r=-0j=-5@0- (2 62

o)
)
In terms of the seven-plane fields and their boundary conditions, this nieassSUs
x U; C SUg whereSUs D SU; x Uy while theU; factor is invisible. InSUz x U; terms,
07= %{10 — 8%}, which means free (Neumann) boundary conditions for all eiglsgf
vector fields at 16 on th&0,g x SU; end of x11. Consequently, the fields living on the
16 intersection plane should form complete multiplets of (8o x SUy)Pe" x SUQ"O'
gauge group visible at 16. Unfortunately, they do not — cf. therow of the Table 5 —
which means the solution (5.2) to the local anomaly problems is inconsistent with group
theory. Group-theoretically, the only possibilities consistent with all the quantum numbers
areG7 =SU; x Uy andG7 = SU, x U1 x U;. Both choices lead to non-zero net gauge,
gravitational and mixed local anomalies on both the 16 and thintérsection planes.

This type of local anomaly miscancellation is common in orbifolds with perturbative
abelian groups. Generally, the quantum numbers of the twisted states in such models
require some fixed seven-planes to caibeliannon-perturbative gauge fields that lock
onto the perturbativé/; fields on one side of the eleventh dimension, say at 16, but have
free boundary conditions on the other side atl®cally on the 16 plane, there are nﬁl‘}l
inflow or intersection anomalies (since thig does not lock onto the ten-plane gauge fields
onthatside) but there is a non-zero quanttl?j}l1 anomaly because there dre charged
hyper-multiplets (twisted states) but no charged vector-multiplets (if there were charged
vector fields, the group would not be Abelian). Altogethttbe Abelian gauge anomaly
Fz‘,l does not cancel locallgn the 16 plane.

‘Experimentally’, in all the models we have studied, a miscancelled Abelian gauge
anomaly is accompanied by miscancelled anomalies involving other non-perturbative
gauge fields living on the same plane as well as gravity. On the other hand, all anomalies
involving the un-mixed purely perturbative gauge fields do cancel out. Algebraically,

A(16) = —A(16") = P(F7, R) (5.3)

for some quartic polynomiaP in seven-dimensional gauge and gravitational curvature
two-forms F7 andR.

The algebraic structure (5.3) of the net local anomaly suggests that it may ultimately
cancel against a Chern—Simons action term in the effective theory on the fixed seven-plane.
Indeed, consider
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ActionD/h, (5.4)
7P

where/l7 is a Chern—Simons 7-form which varies under gauge transformations by a total
derivative,§I7 = dlel. Consequently,

8Action = f zg=f1g_/1g, (5.5)
16

a(7P) 16/

which looksexactlylike local anomalies on the 16 and'lIBoundary six-planes with exactly
opposite anomaly polynomials

Ig(16") = —Ig(16) = d I7. (5.6)

Therefore, ifdI7 = P(F7, R) (cf. Eq. (5.3)) or ratherdl; = P/(19273%), then all
anomalies would cancel locally.

We are currently investigating whether such Chern—Simons terms do actually cancel
the residual local anomalies of orbifold models with Abelian gauge factors. There are (at
least) two issues that must be addressed. First, there is a question of normalization: gauge,
gravitational and mixed Chern—Simons terms all have quantized coefficients, which may
turn out to be consistent or inconsistent with the local anomaly cancellation in various
models. The second open problem is the physical origin of the 7d Chern—Simons terms.
All anomalies cancel locally in models considered in Sections 2—4 without any help from
the CS terms, so why should the CS terms appear in other models? At the moment the CS
terms still seem to pose as many new questions as they are able to answer. We hope to be
able to report some progress on this issue in the near future.

6. Summary and discussion

In this paper we have investigated the correspondence between perturbative heterotic
Eg x Eg orbifolds on T4/ZN (N = 2,3,4,6) and their M-theory duals. Our aim was
to obtain information about the structure of M-theory orbifolds, in particular the spatial
locations of all the charged fields and the gauge groups that act upon them. Our main
tools were constraints arising from local consistency of quantum numbers, from the gauge
coupling considerations and from the requirements of local anomaly cancellation. We have
put forward a scenario which allowed us to resolve an apparent paradox associated with
the existence of twisted massless states simultaneously charged under gauge groups which
appear to live on two different boundary ten-planes. The resolution relies on the mixing of
a factor (or factors) of the gauge groapliving on one boundary ten-plane with thie;
gauge groups living on the fixed seven-pla®®st @ {f.p.} ® S1/Z, of the orbifold. The
twisted states which live on the’lplanes where the fixed seven-planes reach the other
ten-plane boundary thus have perfectly loGalx G’ charges. Thanks to mixing, however,
the G7 charges of those states masquerade as the perturléativerges from the six-
dimensional point of view, hence the appearance of the simultane@nsl G’ charges in
the heterotic perturbation theory.
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Considerations of the gauge couplings confirm that there is a mixing between the non-
perturbative gauge groups on the seven-planes and the perturbative gauge group on the
boundary planes. Another confirmation comes from the overall 6d anomaly polynomial.
The most powerful test however is the local anomaly cancellation. Here the correct
allocation of all states — in particular the hyper and vector component of the seven-plane
gauge multiplets — to the six-planes where the anomaly is required to cancel is absolutely
crucial. A consistent assignment of states was only possible after a judicious choice of
boundary conditions on the seven-plane fields which projects out the vector components
on one side and the hyper-component on the other. This also guaranteed that there are no
additional massless states in tRg; — 0 heterotic limit.

There are three contributions to the net local anomaly: quantum anomalies, inflow
anomalies and intersection anomalies. Given a correct identification of all the locally
relevant fields, the quantum one-loop anomalies are fairly straightforward, but the inflow
and intersection anomalies involve un-settled issues of the overall normalization. In
principle, the overall normalization of the inflow anomalies follows from that of the Chern—
Simons terms in eleven-dimensional SUGRA, but the derivation is rather subtle and the
result is controversial. Instead, we simply calibrated the normalization by requiring local
anomaly cancellation in th&, model (cf. Section 3), then used the same normalization in
all the other models of Section 4; eventually, this normalization ought to be confirmed by
a direct derivation.

Likewise, then and p parameters of the intersection anomaly (cf. Egs. (3.11) and
(3.12)) should follow from the seven-dimensional Chern—Simons terms (which in turn
follow from the M-theory) and indeed the analysis of Section 4.4 gives specific values
n=T(1) and p = 1. Alternatively, we can treat them as free parameters, fixed by the
anomaly cancellation requirements of each model. According to Eqgs. (4.£/),(2) is
indeed universally valid, but the parameter is more trickys = 1 works for model with
G7 = SU, (cf. Sections 3 and 4) but models with the invisible Abel@n= U\"""" (cf.
Section 5.1) requirep = 0 instead. Unfortunately, we do not know yet the M-theoretic
origin of the seven-plan8U, breakdown to its Cartan subgroup in these models, and we
do not know how this Cartan subgroups ends up with O either.

A worse anomaly trouble plagues models with Abelian factors in their perturbative
gauge groups, cf. Section 5.2. In those models, the local anomalies simply do not cancel for
any consistent choices of the seven-plane gauge fields and their boundary conditions at the
two ends of ther1. This presumably means one of the two things: either we do not know
how to correctly interpret such models in M-theory terms or else there must be additional
sources of local anomalies. For example, a Chern—Simons term in the seven-plane effective
action has an effect of transferring local 6d anomaly from one boundary of the seven
plane to the other boundary, thus possibly helping to cancel the local anomalies on both
boundaries. Much work is needed however before we know whether this mechanism really
works.

Our main conclusion is that the heterotic orbifolds do have consistent M-theory duals
with identical massless spectra and gauge couplings and locally cancelled anomalies.
Unfortunately, while the duality and the local anomalies telwisat should happen on



156 V. Kaplunovsky et al. / Nuclear Physics B 590 (2000) 123-160

every six-, seven- or ten-plane of the dual model, we do not underb@mmit happens
in M-theory. The big mystery is the dynamic origin of the boundary conditions for the
seven-plane fields. In particular, we know that each seven-plane field always has exactly
opposite boundary conditions on the two boundaries of the 7P, but the M-theoretic reasons
for this twist remain completely obscure. Another mystery whyzhedixed seven-planes
carry full SU, gauge groups in some models while in other models3blg is broken to
a subgroup; in fact, we are not even sure of the mechanism of such seven-plane symmetry
breaking. We are however quite certain that the eventual resolution of these issues will shed
much new light on the basic structure of the M-theory.

We conclude this article with a few comments on M-theory duals of the four-dimensional
heterotic orbifolds. Generally, such models liveloh® @ (T%/I") ® (S1/Z,) comprising
the 11d bulk, fixed seven-planes, fixed five-planes as well as their respective ten-plane, six-
plane and four-plane boundaries. The bulk, the seven-planes and their boundaries should
behave just as they do in the 6d orbifolds (modulo orbifolding of their extra compact
coordinates), it's the five-planes that radically complicate the physics. The problem with
the fixed five-planes is that they are poorly understood from the M-theory point of
view. We know that the singular five-planes in M-theory carry superconformal theories
whose excitations include both massless particles and tensionless strings. Generally, the
superconformal theories in five dimensions are associated with infinite-coupling gauge
theories, but the M-theory tells us nothing about the gauge group, only the global
symmetries (if any) and some gauge-invariant operators — and these data are quite
insufficient for the model building purposes. Also, the constraints of local anomaly
cancellation on the four-plane boundaries of the five-planes are rather weak, simply
because the anomalies in four dimensions are much simpler than in six. Consequently,
although we have tentatively identified the M-theory duals of a few 4d heterotic orbifolds,
we do not have enough constraints to be confident in our identification at the time of this
writing. This work is in progress and we hope to present some interesting results in the
near future.
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Appendix A. Anomaly polynomials for A = 1 multiplets in d = 6
This appendix summarizes the six-dimensional gravitational, gauge and mixed anomaly

contributions of all relevant six-dimension&l” = 1 multiplets, see, e.g., [15]. The
representation content of each such multiplet is spelled out in terms of the little group
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SOy >~ SU, x SU, for massless particles in 6d. The correctly normalized anomaly
polynomials are
—i
=— A,
41(27)3
but since we usel instead oflg throughout this paper, the anomalies below are written in

terms of A4 as well.
e Gravity multiplet[(3, 3) +2(2, 3) + (1, 3)]:

=———1IrR —(trR=)". A.2
Agiav= =25 R+ 1551 K) (A2)
tr is the trace in the vector representatiorSai(6).

e Vector-multipletsay [(2, 2) + 2(1, 2)]:

I (A.2)

1
Ay = — N R4 — n—v(trRZ)z + ZtrR%Try F2 — Try F4, (A.3)

240 192 4

since the vector multiplets comprise the adjoint representation of the gauge@rdup
is the trace in the adjoint representation and= dim(G).

e Hyper-multipletsi 4 [2(2, 1) + 4(1, D)]:

IH 4, MH 22 1 2 2 4
=—1{rR ——(trR°)" — —trR“Try F Ty F A.4
240" K+ 102 R) "~ 3 HEZ AT (A4)

where Ty is the trace in the representation 6f comprised of all the hypermultiplets
(whatever such representation might be in any particular modely grid the net number
of hypermultiplets in the model.
e Selfdual-tensor multiplgt(3, 1) + 2(2, 1) + (1, 1)]:

29, ., 7

— 2R
Arensor= 275 R — 755

An

(tr R?)?. (A.5)

Appendix B. Further anomaly considerations

In Section 2.2, we mentioned that in perturbative K3 compactifications of the heterotic
string, the gauge couplings are related to the 6d anomaly polynomial. In this appendix, we
explain this relation.

The anomaly we are concerned with here is the overall anomaly of the 6d effective
theory rather than local anomalies on some singular six-planes. In perturbative K3
compactifications, there is just one tensor fig]gd,, hence the Green—Schwarz mechanism
of anomaly cancellation worlanlyif the net anomaly happens to factorize in the form [8]:

2 ~
A= <trR2 - v ter) A (trR2 - T ter) SN (B.1)
o o

Furthermore, the\' = 1, d = 6 supersymmetry relates the couplings of #g, tensor
fields to those of the heterotic dilat@n hence the factorization coefficient and, in
this formula also show up in the exact Eqgs. (2.2) for the gauge couplings.
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The Green-Schwarz mechanism does not cancel the irreduciife term in the
anomaly polynomial, hence anomaly-free theories with just one selfdual-tensor multiplet
must haveny — ny = 244, cf. individual multiplets’ anomalies listed in Appendix A.
Consequently, the net anomaly can be summarized as

2 1 2
§A=(trR2)2— étrRz Trg_y F2+§Tr[.[,v F4, (BZ)

were the notation Ty_y denotes the trace taken over all hyper-multiplets minus the
trace over all vector-multiplets. The relative minus-sign follows from opposite chiralities
of fermions in N = 1, d =6 hyper- and vector-multiplets. Comparing the mixed
gauge/gravitational anomaly terms in Egs. (B.2) and (B.1), we see that Green—-Schwarz
anomaly cancellation requires

Try_y F?= Z 6(ve + Ter) tr F2. (B.3)
o

(See Appendix C for exact normalizations of various traces.) Curiously, T2 also
appears in beta-function coefficients &f = 2, d = 4 gauge theories (including but
not limited to toroidal compactifications of th& = 1, d =6 theories); specifically,
Try_y F? = Y oo batr Fj. Comparing this formula to Eq. (B.3), we immediately arrive
at Eq. (2.3).

From the M-theory point of view, there is another interesting way to write the anomaly
polynomial as a sum of two factorized terms, each associated with the boundary at the
corresponding end of!1. For smooth K3 compactifications (perturbative or otherwise)
with instanton numbers; + np = 24 (hence exactly one selfdual-tensor multiplet), we
have [16]

2 1 1
§A= (EtrRz - Zvaltr Fjl) A (Z(nl —8)trR% — ZﬁaltrF31>
o o

1 1
+ (5 tr R?2 — Z Vg2 tr F§2> A <Z(n2 —8)tr R2 — Z Va2 tr F(fz). (B.4)
o o

There are similar expressions for singular K3's such as orbifolds. For examplgzthe
model of Section 2 has

2 1
3A= <§trR2 —trF§, — trFSZUZ) A (2trFE, — 141rF)

1
+ (5 tr R —tr FSZQG) A(2trR? = 2trFé,  — 16rF§,). (B.5)

We observe that one of the gauge factors, nan$tly, now appears on both sides but
only non-perturbativelyy = 0, ¥ = 16) on theSOjs side. This lends support to the
M-theory description of this model that we have put forward in Section 2. We have a non-
perturbatively generated gauge groi®J)16. Each of thesé&SU,’s hast = 1 and they

mix with the perturbativ&sU, such that only the diagon&\U, contributes in the heterotic
description of the model, i.e., only oi®), is visible. ThisSU, is however visible on both
sides of ther L interval.
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Appendix C. Some results from group theory

We collect some group theoretical results which are needed to verify anomaly
cancellation. The notation is such thatgTis always the trace in the representati®n
whereas tF? means), F*F“. The normalizations are such that the long roots are
normalized to length 1.

SU,
1 1 2
Tro F2=ZtrF2 Tro F4 = = (tr F?
2 2 ’ 2 8( ) ’
Trs F?=2trF2, Tra F* =2(tr F2)?, (C.2)
SU;
1 1
Trg F2= St F?2,  TrgF%= é(tr F?)?,
9
Trg F2=3trF?,  TrgF'= 21(tr F?)?, (C.2)
SUy, N >4
1 3 2 1
Try F2=Ztr F2, Try F4= —(tr FA)" — Ztr F4,
N FE=3 N F =g F) =2
2 2 4a_3 »n2 N 4
TragFc = NtrFe, TragF =§(N+4)(trF ) - EtrF ;
N-2
Trg F2 = —5 F2,
3 2 N
Trg F*= —(N — 4)(tr F? 2—— |trF?
B 16( )(tr F?) +< 4) )
1
Trg F2 = 2V = 2)(N — 3)tr F?,
3 1
TrgF*= S (N° = ON +22)(r F?)° — S(N* — 17N + 54w F*. (C.3)
SOy, N =5
Try F2=tr F?, Try Fé=tr F4,
TradF2=(N — QU F%,  TragF*=3(tr F2)%+ (N — 8)tr F*,
d df 3 2 1
TrspinQer = é tr F2, TrspinorF4 = Z [1—6(tr F2) - Z tr F4} , (C4)

where d= 271 (N even) and o= oM (N odd) is the dimension of the spinor
representation.
Eg

3
Trp7 F2=31trF?, Trp7 F4 = Z(tr F2)2,

9
TrigF2=12tF?,  TrigF*= 5 (tr F2)?, (C.5)
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E7
2 _ 2 4 3 212
Trsg F =6 trFe, Trse F =§(trF )"
TrizaF? =18 trF?, Tryss F* = 6(tr F2)2, (C.6)
Eg
Trag F2 =30 trF?, Traa F* = 9(tr FZ)Z. (C.7)
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