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Bogomol’nyi limit for magnetic vortices in a rotating superconductor
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This work is the sequel to a previous investigation of stationary and cylindrically symmetric vortex con-
figurations for simple models representing an incompressible nonrelativistic superconductor in a rigidly rotat-
ing background. In the present paper, we carry out our analysis with a generalized Ginzburg-Landau descrip-
tion of the superconductor, which provides a prescription for the radial profile of the normal density within the
vortex. Within this framework, it is shown that the Bogomol’nyi limit condition marking the boundary between
type | and type Il behavior is unaffected by the rotation of the background.

[. INTRODUCTION lar with period 27) of the boson condensate, according to
the expression

The present work is the sequel to a previous investigation L _
on the energy of vortices in a rotating superconductor, where mu +qA=#AaVe. D
it was shown in particular that the magnetic and kinetic con- ) . ) o
tributions to the energy density that are proportional to thdn this formula, % is the Dirac-Planck constan is the
background angular velocity remarkably cancel. The motivarmagnetic vector potential, and the velocity of the Bose
tion which brought us to study vortices in rotating supercon-condensate. The whole system will be described, in addition
ductors is the study of the interior of neutron stars, more© the relation(1), by the Maxwell equation
specifically their inner core which is believed to contain a L R
proton superconductor. Although we worked out the macro- VXB=4mj, 2
scopic description of an array of magnetic vortices and su- = L .
perfluid vortices in a general relativistic framewbmkeces- vyhereB is the magnetic f'eIQ’ Eela'ied EO the Ln_agnetlc poten-
sary for refined analysis of neutron stars, thus generalizin%]",JII vector by the usual relatioB=V X A, andj is the elec-
the earlier work of Mendell and Lindblotrin a Newtonian i€ current, which consists of the sum of the currents due to

approach, we have here restricted our analysis to a NewtorSF: cor;giensate compor;ent anq[ tqntge ordinary dcoméjonrtlantt.
ian framework for simplicity. e ordinary component current will be supposed to be tha

In our previous work, we left undetermined the explicit of a rigidly rotating fluid. To be able to solve the coupled

structure of the vortex core. One of the puUrboses of thesy:stem of equations, one needs a prescription concerning the
. . ' . purp . Spatial evolution of the condensate particle number density.
present work is to provide a specification for the profile of

It will be given by an energy minimization principle, using

the condensate particle density, base_d on a Ginzburqhe energy functional corresponding to a generalized
Landau-type approach. Our treatment will, however, not b‘tinzburg-Landau approach.

restricted just to the widely used standard Ginzburg-Landau The plan of the paper will be the following. In Sec. II, we

description, but will also be valid for a generalized versiongna|| use the cylindrical symmetry and introduce new vari-
(more readily justifiable by heuristic consideratibisleav-  aples to simplify the system of coupled equations. Section Il
ing arbitrary the coupling constagt that enters the gradient will be devoted to the energy minimization principle, which

energy density. will give a prescription for the determination of;. And

The second purpose of this work is to reexamine the quesinally, Sec. IV will deal with the Bogomol'nyi limit condi-
tion of the Bogomol'nyi limif in the context of a supercon- tion.
ductor in a rotating background. The conclusion will be that
the usual_ boundary between type | and type Il superconduct- IIl. SYSTEM OF COUPLED EQUATIONS
ors remains unaffected by the rotation of the background.

Before entering into the details of this work, let us recall The scenarios we shall consider will be of the usual kind,
the essential features of the model and define the relevain which each individual vortex is treated as a stationary,
quantities. The superconducting matter will consist of acylindrically symmetric configuration consisting of a rigidly
charged superfluid component, represented by a locally variotating background medium with uniform angular velocity
able number densitgs of bosonic particles characterized by (), say, together with a charged superfluid constituent in a
an effective masm, a chargeg, and an ordinary component state of differential rotation with a velocity, which tends at
of opposite charge which locally compensates the charge dérge distance towards the rigid rotation value given(hy;
the first component. The essential property that distinguishesherer is the cylindrical radial distance from the axis. It will
the superfluid constituent from ordinary matter is that itsbe supposed that the superfluid particle number dengity
momentum is directly related to the phase variapléa sca- a monotonically increasing function of the cylindrical radius
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variabler, tending asymptotically to a constant valog, dB .

say, at large distances from the axis. It will be supposed that ar —4mj, (12)
the local charge density is canceled by the background so

that there is no electric field, but that there is a magnetién which, rewriting Eq.(3), we shall have

induction field with magnitud® and direction parallel to the _

axis, whose source is the axially oriented electromagnetic J=qnsV. (13

current whose magnitudewill be given by Finally, the flux quantization conditiof6) will be converted

i =qny(v—Qr). 3) into the form
The relevant Maxwellian source equation for the magnetic N7
field (2) will have the familiar form my+qA= -, (14
dB which can be used to transform Ed.J1) into
ar Aqj. (4)
r m d(Vr)
The other relevant Maxwellian equation is the one governing qr dr =B (15)

the axial componen& (which in an appropriate gauge will ) o .
be the On'y Compone}]bf the e|ectr0magnetic potentia| Ccov- The adVantage of this reformulation is that Unl[k,eB, and

ector, which will be related to the magnetic induction by A, the new variable3, 5, and.A are subject just to homo-
geneous boundary conditions, which are simply that they all

d(rA) tend to zero ag—ce.
ar =rB. (5)

The essential property distinguishing the superconducting

case from its “normal” analog is the London flux quantiza-  The equations of the previous section are not sufficient by
tion condition (1), which in the present contextvhere all  themselves to fully determine the system. In order to specify
physically relevant quantities depend only on the cylindricalthe radial distribution of the condensate particle number den-

IlI. ENERGY MINIMIZATION PRINCIPLE

radiusr) will be expressible in the well-known form sity ng we will use an energy minimization principle based
on a model in which the condensate energy density is postu-
_ N_ﬁ lated to be given as the sum of a gradient contribution and a
mu + A= ) (6) ) N ;
r potential energy contribution by an expression of the form
Yx?eengrN is the phase winding number, which must be an Ecor=Egract Vs (16)

Before proceeding, it will be useful to take advantage ofwhere the contributiody,.4is proportional to the square of
the possibility of transforming the preceding system of equathe gradient ofng with a coefficient that, like the potential
tions to a form that is not just linear but also homogeneousenergy contributiofV, is given as an algebraic function o§
by replacing the variablas, B, A by corresponding variables by some appropriate ansatz. The use of such a model as a

V, B, A, which are defined by fairly plausible approximation is justifiable by heuristic
consideratiorfsthat motivate the use of an ansatz of what we
V=v-Qr, (7)  shall refer to as the Ginzburg type, according to which the
energy contribution is postulated to have the form
B=B—-B,, (8)
g2h? (dns)2
A=A- %rBL, ) Eoed™gmng | dr | - 17

where g, is a dimensionless coupling constant, while the

where B, is the uniform background magnetic field value potential energy density is given in terms of some constant

that would be generated by a rigidly rotating superconductor, ... tionality factors. . sav. by the formula
which is given by the London formula prop y c» S, DY

B,_=—2—mQ, (10 V=¢&
q
obtained by combining Eq$6) and(5) in the special case of
rigid corotation, i.e., withv=Qr.
In terms of these new variables Eth) will be trans-
formed into the form

ng\?2
1—n—> , (18)

o]

which provides a particularly convenient ansatz for interpo-
lation in the theoretically intractable intermediate region be-
tween the comparatively well understood end points of the
allowed range &ngs=<n.,. The constant. is interpretable
as representing the maximum condensation energy density.
d(r.A) Its value is commonly expressed in terms of the correspond-
d =rB, (1)  ing critical valueH., say, representing the strength of the
r . Cr
maximum magnetic field that can be expelled from the su-
while the other differential Eq4) will be transformed into  perconductor by the Meissner effect, to which it is evidently
the form related by the formula
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Hﬁ for the first two terms in the combinatid20), it can be seen
~an (190 that the total energy density arising from the presence of the
vortex will be given by
The total energy density associated with a vortex will be of
the general form

&

B2 H2 by, Na diy\? 5
5=gmag+5kin+gconr (20) EZg—Fg(l—d/ ) +ﬁ gcﬁa +(mVl,0)
where Enqg, Ein, and &g, are, respectively, the magnetic, B d(r2B
kinetic, and condensate energy contributions. More pre- L (r’B) _ (27)
cisely, Enagis the extra magnetic energy density arising from 8mr dr

a nonzero value of the phase winding numbéri.e., the

local deviation from the magnetic energy density due just t
the uniform fieldB, (associated with the state of rigid coro-
tation characterized by the given background angular velo

®rhe equation governing the distribution of the condensate
cparticle number densityg is obtained by requiring that the
integral of the energy densit27) be stationary with respect

ity 2), namely, to variation ofng or, equivalently, of/, which gives the field
B2 BE equation for the latter in the form
S 8r B 2y
222
while &, is the corresppndlng dev_latlon of the kinetic en gch” a r_lﬂ SV (1 — ). 28)
ergy from that state of rigid corotation, namely, mr dr\ dr N,
m 2 2,2 . . . . e .
Ekin=7 Ns(0"— Q7). (22)  when this equation is satisfied, it can be seen that the energy

density(27) will reduce to a value given by
It is convenient for many purposes to express such a model
in terms of a dimensionless amplitugethat varies in the
range G<¢=<1 according to the conventional specification B2 H2 1d r28  g2h%n.r dy?
E=—+—1—-¢yH+-—|Bo—+——— —|,
2 87 8w r dr 8 4dm  dr
ne=4°n.. . (23 (29
Within the general category of Ginzburg-type models as thus
described, the special case of the standard kind of Ginzburg

; . e n which the last term is a divergence that goes out when
Landau model is characterized more specifically by the POSihtegrated, so that for the total ener er unit length one is
tulate that the gradient coupling constapnt should be ex- 9 ' ayp g

actly equal to unity. This ansatz has the attractive feature OIF ft simply with

allowing the theory to be neatly reformulated in terms of a

complex variablel = € ¢ whereg is the phase that appears 1

in Eq. (1) in a manner that is evocative of the Satiirger U= —f [B2+HZ(1—y*]dS. (30
model for a single particle. Indeed, it is easy to verify that in 87

the case 0§.=1, the gradient termil7) and the kinetic term

in Eq. (22) can be rewritten, using Eq&l) and(23), to give

the usual Ginzburg-Landau-type gradient term, i.e., IV. BOGOMOL'NYI INEQUALITY
Y m . k2. . We shall now try to rewrite the energy density associated
(Vng)?+ = new?=——|DV¥|?, (24)  with the vortex in a different form. Let us begin by writing
8mn. 208 2m :
s the relation

where the covariant derivative is defined as

. . ig. dy\? 5 dy 2 )
DEV—XA. (25 gcha +(mVy) = gcﬁm+mvw +ghqy B
However, although there are physical readdns expecting gchmd(rj)
that g, should be comparable with unity, the seductive sup- * qn. rar (3D

position that it should exactly satisfy the Landau condition
g.=1 is more dubious.This more specialized ansatz will
not be needed for the work that follows, which applies to thewhich can be obtained by rewriting(dy/dr) in terms of
generalized Ginzburg category with no restriction on the pasdij/dr anddV/dr, the latter term being transformed by use
rameterg,. of the Maxwell equatior(15). In the first term on the right
Using the expression hand side of Eq(31), one takes the minus sign ¥ is posi-
tive, the plus sign otherwise. We are thus able to obtain a
877(Emagt Skin)=52+4ﬁgiV+ % %(VZB) (26) E;)gomol’nyi type reformulation of E¢(27), which is given
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g.hqn. 1 /|8 wgchign. 2 It is to be observed that all the terms in expresgi@h will
&= m |B| ﬁ(? T(lﬂ —1)) be non-negative provided the quantitis chosen not only so
as to lie in the range €f<1 but also so as to satisfly
n. dy 2 [HZ  mg?h2qPn? <k, a requirement that will be more restrictivesf<1. In
+ ﬁ( gcﬁm—mww + P " the latter case we can maximize the first term on the right of
™ 2m Eq. (34) by choosingf = «, thereby incidentally eliminating
1.d (B.r2B  gdirlj| the second term, so that we obtain the lower limit
><(1—¢2)2+——< += ) (32)
rdr\ 8w 2q He
ksSl=—=—. (39
which generalizes the original versfbby inclusion of the (P~ 4

term with the coefficienB, , which allows for the effect of |t =1, we shall be able to chooge-1, thereby eliminat-
the background rotation veloci . Since this extra term is jnq the final term in Eq(34), so that we obtain the inequality
just the divergence of a quantity that vanishes both on the

axis and in the large distance limit, it gives no contribution to U H,

the corresponding integral expression, which therefore has K= 1:>W> P (40

the same form as the usual Bogomol'nyi relation for the non

rotating casé.More generally, performing the Bogomol’nyi More particularly it can be seen that choosifig 1 will

trick (31) just for a fractionf of the combined kinetic and eliminate both the second term and the last term on the right
gradient contribution, one can see that for a vortex withof Eq. (34) in the special Bogomol'nyi limit case character-
(relative magnetic flux ized the condition

k=1. (42)

b= f Bds, (33
[Readers should be warned that much of the relevant

literature’® follows a rather awkward tradition in which the

symbol « is used for what in the present notation scheme

would be denoted by/2«, which instead of Eq(41) makes
fH, H2 £2 the critical condition come out to b&=1/y/2.] In this

a ||+ 8_( 1- —2)f (1—y?)2dS Bogomol'nyi limit, the energy per unit flux per unit length,
K ™ K Eq. (34), will be minimized by imposing the conditions

the total vortex energy per unit length and per unit of flux
will be expressible in the form

U=

HZ ( (1B f(1-y?)\?
_c U__( ) ds dy
8m) \H¢ K gcha=m|v|¢ (42
fn., dy 2 . , . : :
+ _f 9 ——mVy| dS (with the sign adjusted so as to make the right hand side
2m dr positive), and
<1—f>nwf ( dy)’ .
+— —| +
o g.h ar (mVy)<|dS, (34 18| = gcop (1— y?). 43
4m\?
in which « is a dimensionless constant given by the defini- . N
tion which (as when the background is nonrotatigwill auto-
matically guarantee the solution of the field equations in this
mH, case, annihilating the last two terms in E8&4) so that one is
K= m (35 left simply with
It will be convenient to introduce the so-called London pen- i: E (44)
etration length\, defined by the expression |®| 4

The qualitative distinction between what are kndivas

N2= m (36) Pippard-type or type | superconductors on the one hand and
47rq2noo’ as London-type or type Il superconductors on the other hand
is based on the criterion of whether or not, for a given total
and the usual flux quantum flux, the energy will be minimized by gathering the flux in a
_— small number of vortices, each with large winding numier
_em _ or by separating the flux in a large number of vortices, each
¢= T sothat®=N¢, (87 just with unit winding number. Within the framework of our

analysis, a model may be characterized as type | if the de-
where the integeN is the so-called winding number of the riyative with respect tg®| of U/|®| is always negative, i.e.,
vortex. This allows us to express the critical fi¢dd as if dU/d|®|<U/|®|, in which case the vortices will effec-
tively be mutually attractive, and as being of type Il if the
derivative with respect tod| of U/|®| is always positive,

He=gex —2 (39)
=0k N2 i.e., if dU/d|®|>U/|®|, in which case the vortices will
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effectively be mutually repulsive. One can of course envisddentical to that of the case with a nonrotating background, it
age the possibility of models that are intermediate in thecan also be concluded that the conclusions of the pioneering
sense of having a sign for the derivative Wf|®| that de- analysis of Kramerwill remain valid, i.e., that in the sense

pends onN, so that the minimum is obtained for some largeof the preceding paragraph the system will be of the Pippard

but finite value of the winding number. kind (type ), if k<1, i.e.,
What can be seen directly from E@4) is that within the
category of models characterized by the Ginzburg-Landau 2 du v
ansatz, the special Bogomol'nyi limit case lies precisely on 4mNHe<gcd= d|c1>|<|c1>| ’ (46)
the boundary between type | and type Il, since it evidently o . .
satisfies the exact equality and that it will be of the London kindtype Il), if «>1,
ie., if
du U
Bt T I . - @
T = >,
=~ 97 o] @]

for all values of|®|. The implication of our work is that the
well-known conclusiof® that there is neither repulsion nor at least as long as the winding numidéand the parameters
attraction between Ginzburg model vortices in thex andg. are not too far from the neighborhood of unity, in
Bogomol'nyi limit case will remain valid even in the pres- which the numerical investigations have been carried out. It
ence of a rotating backgroundt has also been shown to be does not seem that the possibility of an intermediate sce-
generalizable to cases where self-gravitation is allowed for imario, withU/|®| minimized by a winding numbeN that is
a general relativistic framework:'3 finite but larger that 1, can occur within the framework of
Since the change of variables performed in Sec. Il hassinzburg-type models except perhaps for parameter values
transformed the system to a representation that is formallyhat are too extreme to be of likely physical relevance.
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