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Bogomol’nyi limit for magnetic vortices in a rotating superconductor
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This work is the sequel to a previous investigation of stationary and cylindrically symmetric vortex con-
figurations for simple models representing an incompressible nonrelativistic superconductor in a rigidly rotat-
ing background. In the present paper, we carry out our analysis with a generalized Ginzburg-Landau descrip-
tion of the superconductor, which provides a prescription for the radial profile of the normal density within the
vortex. Within this framework, it is shown that the Bogomol’nyi limit condition marking the boundary between
type I and type II behavior is unaffected by the rotation of the background.
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I. INTRODUCTION

The present work is the sequel to a previous investigat1

on the energy of vortices in a rotating superconductor, wh
it was shown in particular that the magnetic and kinetic c
tributions to the energy density that are proportional to
background angular velocity remarkably cancel. The moti
tion which brought us to study vortices in rotating superco
ductors is the study of the interior of neutron stars, m
specifically their inner core which is believed to contain
proton superconductor. Although we worked out the mac
scopic description of an array of magnetic vortices and
perfluid vortices in a general relativistic framework2 neces-
sary for refined analysis of neutron stars, thus generaliz
the earlier work of Mendell and Lindblom3 in a Newtonian
approach, we have here restricted our analysis to a New
ian framework for simplicity.

In our previous work,1 we left undetermined the explici
structure of the vortex core. One of the purposes of
present work is to provide a specification for the profile
the condensate particle density, based on a Ginzb
Landau-type approach. Our treatment will, however, not
restricted just to the widely used standard Ginzburg-Lan
description, but will also be valid for a generalized versi
~more readily justifiable by heuristic considerations4,5!, leav-
ing arbitrary the coupling constantgc that enters the gradien
energy density.

The second purpose of this work is to reexamine the qu
tion of the Bogomol’nyi limit6 in the context of a supercon
ductor in a rotating background. The conclusion will be th
the usual boundary between type I and type II supercond
ors remains unaffected by the rotation of the background

Before entering into the details of this work, let us rec
the essential features of the model and define the rele
quantities. The superconducting matter will consist of
charged superfluid component, represented by a locally v
able number densityns of bosonic particles characterized b
an effective massm, a chargeq, and an ordinary componen
of opposite charge which locally compensates the charg
the first component. The essential property that distinguis
the superfluid constituent from ordinary matter is that
momentum is directly related to the phase variablew ~a sca-
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lar with period 2p) of the boson condensate, according
the expression

mvW 1qAW 5\¹W w. ~1!

In this formula, \ is the Dirac-Planck constant,AW is the
magnetic vector potential, andvW the velocity of the Bose
condensate. The whole system will be described, in addi
to the relation~1!, by the Maxwell equation

¹W 3BW 54p jW, ~2!

whereBW is the magnetic field, related to the magnetic pote
tial vector by the usual relationBW 5¹W 3AW , and jW is the elec-
tric current, which consists of the sum of the currents due
the condensate component and to the ordinary compon
The ordinary component current will be supposed to be t
of a rigidly rotating fluid. To be able to solve the couple
system of equations, one needs a prescription concerning
spatial evolution of the condensate particle number dens
It will be given by an energy minimization principle, usin
the energy functional corresponding to a generaliz
Ginzburg-Landau approach.

The plan of the paper will be the following. In Sec. II, w
shall use the cylindrical symmetry and introduce new va
ables to simplify the system of coupled equations. Section
will be devoted to the energy minimization principle, whic
will give a prescription for the determination ofns . And
finally, Sec. IV will deal with the Bogomol’nyi limit condi-
tion.

II. SYSTEM OF COUPLED EQUATIONS

The scenarios we shall consider will be of the usual kin
in which each individual vortex is treated as a stationa
cylindrically symmetric configuration consisting of a rigidl
rotating background medium with uniform angular veloc
V , say, together with a charged superfluid constituent i
state of differential rotation with a velocityv, which tends at
large distance towards the rigid rotation value given byVr ,
wherer is the cylindrical radial distance from the axis. It wi
be supposed that the superfluid particle number densityns is
a monotonically increasing function of the cylindrical radi
9748 ©2000 The American Physical Society
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variable r, tending asymptotically to a constant valuen` ,
say, at large distances from the axis. It will be supposed
the local charge density is canceled by the background
that there is no electric field, but that there is a magne
induction field with magnitudeB and direction parallel to the
axis, whose source is the axially oriented electromagn
current whose magnitudej will be given by

j 5qns~v2Vr !. ~3!

The relevant Maxwellian source equation for the magne
field ~2! will have the familiar form

dB

dr
524p j . ~4!

The other relevant Maxwellian equation is the one govern
the axial componentA ~which in an appropriate gauge wi
be the only component! of the electromagnetic potential cov
ector, which will be related to the magnetic induction by

d~rA !

dr
5rB. ~5!

The essential property distinguishing the superconduc
case from its ‘‘normal’’ analog is the London flux quantiz
tion condition ~1!, which in the present context~where all
physically relevant quantities depend only on the cylindri
radiusr ) will be expressible in the well-known form7

mv1qA5
N\

r
, ~6!

where N is the phase winding number, which must be
integer.

Before proceeding, it will be useful to take advantage
the possibility of transforming the preceding system of eq
tions to a form that is not just linear but also homogeneo
by replacing the variablesv, B, A by corresponding variable
V, B, A, which are defined by

V5v2Vr , ~7!

B5B2BL , ~8!

A5A2
1

2
rBL , ~9!

where B` is the uniform background magnetic field valu
that would be generated by a rigidly rotating superconduc
which is given by the London formula

BL52
2m

q
V , ~10!

obtained by combining Eqs.~6! and~5! in the special case o
rigid corotation, i.e., withv5Vr .

In terms of these new variables Eq.~5! will be trans-
formed into the form

d~rA!

dr
5rB, ~11!

while the other differential Eq.~4! will be transformed into
the form
at
so
ic

ic

c

g

g

l

f
-

s,

r,

dB
dr

524p j , ~12!

in which, rewriting Eq.~3!, we shall have

j 5qnsV. ~13!

Finally, the flux quantization condition~6! will be converted
into the form

mV1qA5
N\

r
, ~14!

which can be used to transform Eq.~11! into

m

qr

d~Vr !

dr
52B. ~15!

The advantage of this reformulation is that unlikev, B, and
A, the new variablesV, B, andA are subject just to homo
geneous boundary conditions, which are simply that they
tend to zero asr→`.

III. ENERGY MINIMIZATION PRINCIPLE

The equations of the previous section are not sufficient
themselves to fully determine the system. In order to spe
the radial distribution of the condensate particle number d
sity ns we will use an energy minimization principle base
on a model in which the condensate energy density is po
lated to be given as the sum of a gradient contribution an
potential energy contribution by an expression of the form

Econ5Egrad1V, ~16!

where the contributionEgrad is proportional to the square o
the gradient ofns with a coefficient that, like the potentia
energy contributionV, is given as an algebraic function ofns
by some appropriate ansatz. The use of such a model
fairly plausible approximation is justifiable by heurist
considerations4 that motivate the use of an ansatz of what w
shall refer to as the Ginzburg type, according to which
energy contribution is postulated to have the form

Egrad5
gc

2\2

8mns
S dns

dr D 2

, ~17!

where gc is a dimensionless coupling constant, while t
potential energy densityV is given in terms of some constan
proportionality factorEc , say, by the formula

V5EcS 12
ns

n`
D 2

, ~18!

which provides a particularly convenient ansatz for interp
lation in the theoretically intractable intermediate region b
tween the comparatively well understood end points of
allowed range 0<ns<n` . The constantEc is interpretable
as representing the maximum condensation energy den
Its value is commonly expressed in terms of the correspo
ing critical valueHc , say, representing the strength of th
maximum magnetic field that can be expelled from the
perconductor by the Meissner effect, to which it is eviden
related by the formula
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Ec5
Hc

2

8p
. ~19!

The total energy density associated with a vortex will be
the general form

E5Emag1Ekin1Econ, ~20!

whereEmag, Ekin , and Econ are, respectively, the magneti
kinetic, and condensate energy contributions. More p
cisely,Emag is the extra magnetic energy density arising fro
a nonzero value of the phase winding numberN, i.e., the
local deviation from the magnetic energy density due jus
the uniform fieldBL ~associated with the state of rigid coro
tation characterized by the given background angular ve
ity V), namely,

Emag5
B2

8p
2

BL
2

8p
, ~21!

while Ekin is the corresponding deviation of the kinetic e
ergy from that state of rigid corotation, namely,

Ekin5
m

2
ns~v22V2r 2!. ~22!

It is convenient for many purposes to express such a m
in terms of a dimensionless amplitudec that varies in the
range 0<c<1 according to the conventional specification

ns5c2n` . ~23!

Within the general category of Ginzburg-type models as t
described, the special case of the standard kind of Ginzb
Landau model is characterized more specifically by the p
tulate that the gradient coupling constantgc should be ex-
actly equal to unity. This ansatz has the attractive feature
allowing the theory to be neatly reformulated in terms o
complex variableC[ceiw wherew is the phase that appea
in Eq. ~1! in a manner that is evocative of the Schro¨dinger
model for a single particle. Indeed, it is easy to verify that
the case ofgc51, the gradient term~17! and the kinetic term
in Eq. ~22! can be rewritten, using Eqs.~1! and~23!, to give
the usual Ginzburg-Landau-type gradient term, i.e.,

\2

8mns
~¹W ns!

21
m

2
nsvW

25
\2n`

2m
uDW Cu2, ~24!

where the covariant derivative is defined as

DW [¹W 2
iq

\
AW . ~25!

However, although there are physical reasons4 for expecting
that gc should be comparable with unity, the seductive su
position that it should exactly satisfy the Landau conditi
gc51 is more dubious.5 This more specialized ansatz wi
not be needed for the work that follows, which applies to
generalized Ginzburg category with no restriction on the
rametergc .

Using the expression

8p~Emag1Ekin!5B 214p
m

q
jV1

BL

r

d

dr
~r 2B! ~26!
f
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for the first two terms in the combination~20!, it can be seen
that the total energy density arising from the presence of
vortex will be given by

E5
B 2

8p
1

Hc
2

8p
~12c2!21

n`

2m F S gc\
dc

dr D 2

1~mVc!2G
1

BL

8pr

d~r 2B!

dr
. ~27!

The equation governing the distribution of the condens
particle number densityns is obtained by requiring that the
integral of the energy density~27! be stationary with respec
to variation ofns or, equivalently, ofc, which gives the field
equation for the latter in the form

gc
2\2

mr

d

dr S r
dc

dr D5mV 2c2
4

n`
Ecc~12c2!. ~28!

When this equation is satisfied, it can be seen that the en
density~27! will reduce to a value given by

E5
B 2

8p
1

Hc
2

8p
~12c4!1

1

r

d

dr S BL

r 2B
8p

1
gc

2\2n`r

4m

dc2

dr D ,

~29!

in which the last term is a divergence that goes out wh
integrated, so that for the total energy per unit length one
left simply with

U5
1

8pE @B 21Hc
2~12c4!#dS. ~30!

IV. BOGOMOL’NYI INEQUALITY

We shall now try to rewrite the energy density associa
with the vortex in a different form. Let us begin by writin
the relation

S gc\
dc

dr D 2

1~mVc!25S gc\
dc

dr
7mVc D 2

6gc\qc2B

6
gc\m

qn`

d~r j !

rdr
, ~31!

which can be obtained by rewritingc(dc/dr) in terms of
d j /dr and dV/dr, the latter term being transformed by us
of the Maxwell equation~15!. In the first term on the right
hand side of Eq.~31!, one takes the minus sign ifV is posi-
tive, the plus sign otherwise. We are thus able to obtai
Bogomol’nyi type reformulation of Eq.~27!, which is given
by
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E5
gc\qn`

2m
uBu1

1

2p S uBu
2

1
pgc\qn`

m
~c221! D 2

1
n`

2m S gc\
dc

dr
2muVuc D 2

1S Hc
2

8p
2

pgc
2\2q2n`

2

2m2 D
3~12c2!21

1

r

d

dr S BLr 2B
8p

1
gc\r u j u

2q D , ~32!

which generalizes the original version6 by inclusion of the
term with the coefficientBL , which allows for the effect of
the background rotation velocityV . Since this extra term is
just the divergence of a quantity that vanishes both on
axis and in the large distance limit, it gives no contribution
the corresponding integral expression, which therefore
the same form as the usual Bogomol’nyi relation for the n
rotating case.8 More generally, performing the Bogomol’ny
trick ~31! just for a fractionf of the combined kinetic and
gradient contribution, one can see that for a vortex w
~relative! magnetic flux

F5E BdS, ~33!

the total vortex energy per unit length and per unit of fl
will be expressible in the form

U5
f Hc

4pk
uFu1

Hc
2

8p S 12
f 2

k2D E ~12c2!2dS

1
Hc

2

8pE S uBu
Hc

2
f ~12c2!

k D 2

dS

1
f n`

2mE S gc\
dc

dr
2muVuc D 2

dS

1
~12 f !n`

2m E F S gc\
dc

dr D 2

1~mVc!2GdS, ~34!

in which k is a dimensionless constant given by the defi
tion

k5
mHc

2gcp\qn`
. ~35!

It will be convenient to introduce the so-called London pe
etration lengthl, defined by the expression

l25
m

4pq2n`

, ~36!

and the usual flux quantum

f5
2p\

q
so that F5Nf, ~37!

where the integerN is the so-called winding number of th
vortex. This allows us to express the critical fieldHc as

Hc5gck
f

4pl2 . ~38!
e

as
n

h

-

-

It is to be observed that all the terms in expression~34! will
be non-negative provided the quantityf is chosen not only so
as to lie in the range 0< f <1 but also so as to satisfyf
<k, a requirement that will be more restrictive ifk<1. In
the latter case we can maximize the first term on the righ
Eq. ~34! by choosingf 5k, thereby incidentally eliminating
the second term, so that we obtain the lower limit

k<1⇒ U

uFu
>

Hc

4p
. ~39!

If k>1, we shall be able to choosef 51, thereby eliminat-
ing the final term in Eq.~34!, so that we obtain the inequalit

k>1⇒ U

uFu
>

Hc

4pk
. ~40!

More particularly it can be seen that choosingf 51 will
eliminate both the second term and the last term on the r
of Eq. ~34! in the special Bogomol’nyi limit case characte
ized the condition

k51. ~41!

@Readers should be warned that much of the relev
literature9,8 follows a rather awkward tradition in which th
symbol k is used for what in the present notation sche
would be denoted byA2k, which instead of Eq.~41! makes
the critical condition come out to bek51/A2.] In this
Bogomol’nyi limit, the energy per unit flux per unit length
Eq. ~34!, will be minimized by imposing the conditions

gc\
dc

dr
5muVuc ~42!

~with the sign adjusted so as to make the right hand s
positive!, and

uBu5
gcf

4pl2
~12c2!. ~43!

which ~as when the background is nonrotating10! will auto-
matically guarantee the solution of the field equations in t
case, annihilating the last two terms in Eq.~34! so that one is
left simply with

U

uFu
5

Hc

4p
. ~44!

The qualitative distinction between what are known11 as
Pippard-type or type I superconductors on the one hand
as London-type or type II superconductors on the other h
is based on the criterion of whether or not, for a given to
flux, the energy will be minimized by gathering the flux in
small number of vortices, each with large winding numberN,
or by separating the flux in a large number of vortices, ea
just with unit winding number. Within the framework of ou
analysis, a model may be characterized as type I if the
rivative with respect touFu of U/uFu is always negative, i.e.
if dU/duFu,U/uFu, in which case the vortices will effec
tively be mutually attractive, and as being of type II if th
derivative with respect touFu of U/uFu is always positive,
i.e., if dU/duFu.U/uFu, in which case the vortices wil
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effectively be mutually repulsive. One can of course env
age the possibility of models that are intermediate in
sense of having a sign for the derivative ofU/uFu that de-
pends onN, so that the minimum is obtained for some lar
but finite value of the winding number.

What can be seen directly from Eq.~44! is that within the
category of models characterized by the Ginzburg-Lan
ansatz, the special Bogomol’nyi limit case lies precisely
the boundary between type I and type II, since it eviden
satisfies the exact equality

4pl2Hc5gcf⇒ dU

duFu
5

U

uFu
, ~45!

for all values ofuFu. The implication of our work is that the
well-known conclusion9,8 that there is neither repulsion no
attraction between Ginzburg model vortices in t
Bogomol’nyi limit case will remain valid even in the pres
ence of a rotating background.~It has also been shown to b
generalizable to cases where self-gravitation is allowed fo
a general relativistic framework.12,13!

Since the change of variables performed in Sec. II
transformed the system to a representation that is form
e

,

-
e

u
n
y

in

s
ly

identical to that of the case with a nonrotating background
can also be concluded that the conclusions of the pionee
analysis of Kramer9 will remain valid, i.e., that in the sens
of the preceding paragraph the system will be of the Pipp
kind ~type I!, if k,1, i.e.,

4pl2Hc,gcf⇒ dU

duFu
,

U

uFu
, ~46!

and that it will be of the London kind~type II!, if k.1,
i.e., if

4pl2Hc.gcf⇒ dU

duFu
.

U

uFu
, ~47!

at least as long as the winding numberN and the parameter
k andgc are not too far from the neighborhood of unity,
which the numerical investigations have been carried ou
does not seem that the possibility of an intermediate s
nario, withU/uFu minimized by a winding numberN that is
finite but larger that 1, can occur within the framework
Ginzburg-type models except perhaps for parameter va
that are too extreme to be of likely physical relevance.
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