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Energy of magnetic vortices in a rotating superconductor
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We carry out a systematic analytic investigation of stationary and cylindrically symmetric vortex configu-
rations for simple models representing an incompressible nonrelativistic superconductor in a background,
which is rigidly rotating with the angular velocit{2. It is shown that although the magnetic and kinetic
contributions to the energy per unit length of such a vortex are separately modified by the background angular
velocity, its effect on the total energy per unit length cancels out. For a type Il superconductor threaded by a
parallel array of such vortices, this result implies that the conventionally defined local magnetic field strength
H will not be equal to the local space avera@®) of the magnetic inductioB (as has previously been
suggesteq but instead thaH will simply be equal to the London fielB, = — (2m/q){) (wherem andq are
the mass and charge of the condensate patrticles

[. INTRODUCTION conclusion of our work, as will be shown in Sec. V, is that
the conventionally defined local macroscopic field stremth
The physical motivation behind this work is the need toWill simply be given by the expressiof®) for the London
clear up some confusion that has arisen in the context df€ld B., and not by the average val(iB) as was previously
neutron star mattérabout the relation between the macro- Suggested.

; e The essential feature of the models to be dealt with is just
scopic magnetic f|e_Id.strengH1 :_:md the average valu) the usual postulate that the relevant charged superfluid con-
of the local magnetic inductioB in a rotating type Il super-

q hreaded b llel f ' stituent is represented by a locally variable number density
conductor threaded by a parallel array of vortices. n, of bosonic particles that are characterized by an effective

. For many .materials it is very complicated, if not_ impos- massm, chargeq, and a momentum covector having space
sible, to obtain analytic expressions for the “material equacomponents

tions” H[(B)] that relate the so-called macroscopic field _

strengthH to the average magnetic flux dens{8), as these mo;+qA =4V, ()
relations may be highly nonlinear and can depend on varioughere # is the Dirac-Planck constanfy; is the magnetic
circumstances like, for example, the previous states of th@ector potential, an is a scalar with period # represent-
material as in the case of ferromagnets. However, the case @{g the phase variable of the boson condensate. In ordinary
type II superconductors is relatively simple, since one canaporatory applications the particles would represent Cooper-
often safely assume the dominant “response” of the mediumype electron pairs, characterized in terms of the charge and
to electromagnetic flux to be determined by the property oimass of the electron by the exact relatipa —2e, and to a
superconductivity alone, and neglect all other contributiongyood approximation byn=2m,, whereas in the context of
from microscopic polarizations, spin alignments, atomic curneutron star matter they would represent proton pairs, char-
rents, etc. It has to be noted that in laboratory supercondugacterized byg=2e and an effective mass given roughly in

tivity contexts the magnetic field strength is often intro-  terms of that of the proton byn~2m,. The quantity;
qUCEd as belng linked to the “external” currents Only, WhICh appearing in Eq(l) is the so-called Superﬂuid Ve|ocity'

in some cases could possibly be seen as corresponding {ghich will be the same as the actual mean particle transport
averaging over the whole sample at once. In the contexts Wgectory' if there is no “entrainment” of the current by the
are interested in, it is necessary to keep a perfecttal charge neutralizing background medium.

macroscopic description of the superconductor, and therefore The scenarios we shall consider will be of the usual kind,
the construction of the derived field quantiywill be based in which each individual vortex is treated as a stationary
on a local averaging procedure over length scales, which focylindrically symmetric configuration consisting of a rigidly

a type Il superconductor have to be large compared with theotating background medium with uniform angular velocity
vortex dimensions, but small compared with the lengthQ), say, together with a charged superfluid constituent in a
scales characterizing the global structure of the system undetate of differential rotation with a velocity, which tends at
consideratior(e.g., a superfluid layer in a neutron gtar large distance towards the rigid rotation value given(hy,

In order to clarify the issue we shall proceed on the basisvherer is the cylindrical radial distance from the axis. It will
of the same kind of simplification that was postulated as théve supposed that the local charge density is canceled by the
basis of the earlier discussidmworking in terms of a broad background so that there is no electric field, but that there is
category of nonrelativistic incompressible superfluid modelsa magnetic induction field with magnitud® and direction
that includes, but is not restricted to, the special case chaparallel to the axis, whose source is the axially oriented elec-
acterized by the standard Ginzburg-Landau ansatz. The matromagnetic current whose magnitudeill be expressible in
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terms of the number density, say, of the freely conducting relation between the total energy per unit length of the vortex
particles involved, byj=qn(v—Qr), which can be rewrit- and the total flux independently of the details of the structure

ten in terms of the “superfluid velocity in the form of the vortex. In Sec. V we apply our result for one vortex to
the case of an array of aligned vortices and obtain our main
j= qns(; —Qrn), 2 result concerning the macroscopic field strengthSections

. . _ . ... Vland VIl are concerned, respectively, with the outer and
wherens is the “superfluid particle number density,” which jyner solutions representing the vortex. In Sec. VIII we

may differ fromn due to “entrainment.” It will be supposed gy juate explicitly the energy contributions as functions of
that the superfluid particle number densigvanishes on the  he core parameters and Sec. IX summarizes this work.
axis and is a monotonically increasing function of the cylin-

drical radius variable, tending rapidly to a constant value

. . Il. HOMOGENIZATION OF THE SYSTEM
n, at large distances from the axis;=n,, for r=¢, say,

whereé is a parameter interpretable as the core radius. For given values of the relevant physical constantsnd
The relevant Maxwellian source equation for the mag-q and the rotation rat€), and subject to the provision that
netic field will have the familiar form the structure function fong has been prescribed in advance,
the foregoing equations will constitute a linear differential
d_B: —4mj. &) system relating the variable functiops B,_A to the integer-
dr valued parametel. Before proceeding, it will be useful to

The other relevant Maxwellian equation is the one governinqake advantage of the possibility of transforming the preced-

the axial componend (which in an appropriate gauge wil ng system of equations to a.form that i_s not just linear but
be the only ongof the electromagnetic potential covector, also homogeneous by replacing the variabies, A by the

which will be related to the magnetic induction by corresponding variables, B, A, which are defined by

d(rA) V=v-0r, (6)
ar =rB. (4)
B=B-B_, (7)
The essential property distinguishing the “superconducting
case” from its “normal” analog is the London flux quanti- A=A—-3rB_. (8)

zation condition, which in the present contexthere all
physically relevant quantities depend only on the cylindrical
radiusr) will be expressible in the well known form

HereB, is the uniform background magnetic field value that
would be generated by a rigidly rotating superconductor and
is given by the London formula

~ A N7 5 om
mo+QqA=——, 5 BL:_?Q’ ©)

obtained by combining Eq<¢5) and (4) in the specialized

It is to be noted, of course, that by themselves the fore€aS€ of rigid corotation, which i=0. .
going equations are not quite sufficient to fully characterize, N t€rms of these new variables EG) will be trans-
the model: in order to obtain a complete system it is alsd®'med to the form
necessary to have some well-defined prescription for the ra- d(r A)
dial dependence of the number density, which will be =rB, (10)
referred to below as thstructure function The available dr
literature does not seem to provide any fully adequate genhile the other differential equatiof8) will be transformed
eral purpose ansatz for such a structure function, though variy the form
ous, more or less satisfactory, phenomenological prescrip-
tions have been put forward in particular contexts. One of the daB )
simplest proposals is to postulate that falls discontinu- m:_df’”’ 1D
ously from its asymptotic constant valme to zero. Such a
simple ansatz is in fact perfectly adequate for many purin which we shall have
poses, since, as will be seen below, much of the relevant .
physics turns out to be insensitive to the detailed structure of J=ansy. (12)

the core. However, no such specific prescription for therinally the flux quantization conditiots) will be converted
structure function will be needed to obtain the general resulfg the form

whereN is the relevant phase winding number, which must
be an integer.

of Sec. V.
The plan of this paper is the following. In Sec. I, we N7
transform our system of equations to a simpler form by con- my+gA=—, (13

sidering the deviations of all quantities with respect to their

asymptotic values corresponding to rigid rotation. Section lllwhich can be used to transform E40) to the form
is devoted to the demonstration of the cancellation between

the rotation-induced terms of the kinetic energy and the mag- m d(vr) B (14)
netic energy. In Sec. IV, we show that there is a simple qr dr
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The advantage of this reformulation is that unlikeB, and m .

A, the new variable®), B, and.A are subject just to homo- Ekin=§ns(vz—92r2)- (21)
geneous boundary conditions: they must all tend to zero as

r—oo, while at the inner boundary, as-0, there is just the Note that in addition to the “dynamic” contributiot gy,
regularity requirement thaf should be bounded, so that we =UmagtUkin. the total energy per unit lengt,, of the
have B— B, for some finite limit valueB,, which by Eq. Vvortex will contain an extra potential energy tet,, asso-
(10) entails automatically thatl should tend to zero. Since ciated with the breakdown of superfluid condensation in the
the number density'S is postulated to vanish at the Origin, COI‘e‘, but this W|” nOt be relevant for the-Work of the pr_esent
there is no corresponding restriction oh We have thus Section. In the limiting case of an ordinary superfluid, as
obtained a homogeneous linear system of equations relatirglaracterized by vanishing charge=0, the kinetic contri-
the integerN to the set of three functions consisting of the bution would be the dominant one, but in the context of
excess(with respect to the backgrounehagnetic induction ~Superconductivity, i.e., wheq is nonzero, it is commonly
variable3 and the corresponding excess potential variable Overlooked, perhaps because of the small value of the elec-
together with the relative velocity variable or, equiva- tron mass thatis relevantlln Igboratory applications. The pur-
lently, the current magnitudg as given by Eq(12). This  Pose of the present section is to show not only that the ki-

means that they will be expressible in the form netic contribution will not in general be negligible compared
with the magnetic contribution, but also that its inclusion
B=NB. A=NA (15) brings about considerable simplification.

To start with, using the decompositién) of the magnetic
field, it will be possible to express the magnetic energy den-

V=NV, j=Nj, (16) sity contribution in the form
in terms of corresponding rescaled functid®sA, v, andj, B2 B.B
which will be fully determinedindependently not just of the Cmag= gt 7 (22)

rotation parameteB, = —2mQ/q but also of the winding

numberN) just by the physical constanta andq and the  While, similarly, using the decompositid8) of the velocity,
specification of the structure function giving the radial de-it will be possible to express the corresponding kinetic en-
pendence of the number density. ergy density in the analogous form

m
IIl. ROTATION ENERGY CANCELLATION LEMMA EkinZEns(Vz-i- 20Vr), (23

One of_the Mmain purposes of the present work is 1o der.n\'/vhich can usefully be rewritten in terms of the current mag-
onstrate, in the present section, a useful lemma concermqqtudej using Eqs(12) and (9), as

mutual cancellation-independently of the radial depen-
denceof the relevant particle densitys—between the back- j
. . . — 2
ground rotation-dependent term in the magnetic energy per Gin=5 NV =~ 5B (24)

unit length, ) ) )
Using the Maxwell source equatiofil) this can be con-

verted to the form

U mag= f EmadS, 7

2
B, d (13) B B 25

m 2
Gan=5 "Vt T Gr 8] T A
in which the second term can be seen to be a pure diver-
gence, while the last term can be seen to be equal in magni-
Ukm:f EandS, (18)  tude but opposite in sign to the last term in E2&), so that
there will be a cancellation between them when the magnetic
with and kinetic contributions are combined.
At an integrated level, in view of Eq22), it will be
dS=2smrdr. (190  Possible to express the magnetic energy in terms of quanti-
. ] ) ties Umag and ®, which are specified independently Bf ,
In the above expressions,,, is the extra magnetic energy n the form
density arising from a nonzero value of the phase winding
numberN, i.e., the local deviation from the magnetic energy
density due just to the uniform field, associated with the
state of rigid corotation at the angular velociiy, namely,

and the corresponding term in the kinetic energy per unit
length,

—, (26)

where the part that would still be present if the background
B2 B2 were nonrotating is given by
B 20)
Emag= 87 8w’ (

N B?

Umag: f S_st (27)
while &, is the corresponding deviation of the kinetic en-
ergy from that of the state of rigid corotation at the angularand where the coefficienb is a flux integral of the simple
velocity (), namely, form
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where we recall thalN is the winding number anﬁdyn de-
pends only on the physical constamsand g and on the
form of the radial distribution of the number density. A

simple form fordeyn will be given in the next section.

<D=f BdS=Ng, (29
where ¢ is the usual flux quantum, given by

_ 27h

. (29 IV. AXIS-FIELD ENERGY FORMULA

In a similar manner, it will be possible to express the kinetic

contribution in terms of quantitied , and®,;,, which are
also specified independently €, or equivalently ofB, , in

The preceding result, namely, the cancellation of the con-
tributions due to the background rotation, was obtained sim-
ply with the background London equati@®) without using
the full, i.e., local London quantization conditidd). The

the form ultimate cancellation of th8, -dependent contribution is at-
B tributable at a local level to the fact that tiBg -dependent
Ugin=Ujin+ —chkin, (30  contribution to the combined energy density is a pure diver-
4 .
gence:
where the part that would still be present if the background m B g
S _ L
were nonrotating Is given by 87T(gmag+ gkin)262+47r—] Y+ T a(r28) (36)
. m
Ukinzz—f jvds, (3)  We can obtain a stronger result if we now invoke the more
q specialized relatioi14) which is a consequence of the quan-
and where the coefficierib,;, is given by tization condition(5) that specifically characterizes super-

conductivity. This condition can be seen to imply that the
,dB ) whole of the right hand side of E¢36) will be expressible
(I)kin:ﬂ'f r Wdrsz’ d(r B)—J 2mrBdr, (32)  as a divergence, since we shall have

which corresponds to the last two terms on the right hand 2 m. m d
side of Eq.(25). The first term in this expression clearly B +4”EJVZ_JJ(WB)' (37)
vanishes when the integration is taken over the whole range
from the center, where=0, to the large radius limit where It can thereby be seen, using Ef) again, that the combined
r’8—0, as can be seen from the explicit soluti@Y). We  energy density will be expressible as
are thus left with the second term, the kinetic analog of the 1 d N
magnetic flux contr|bl.Jt|0.n, to V\{hlch it is ewdgntly equal in R —[(BLr2+rA— _) B}. (38)
magnitude but opposite in sign; i.e., we obtain 9 87r dr q

Dpin=—o. (33 In the outer limit, ag — o, the rapid fall-off of 3 will ensure

that the quantity inside the divergence will tend to zero. In

It can thus be seen that there is a remarkable cancellatiofe inner limit, asr—0, the first term in the divergence
whereby the dependence B, or equivalently od}, inthe  gpviously gives no contribution, and the consideration that
separate magnetic and kinetic energy contributions will canshould be bounded ensures that the second term also gives
cel out when they are combined, so that we are left simplyo contribution, so we shall be left with the contribution just

with a resuilt of the form from the final term, which is proportional to the winding
- numberN. The final outcome of the integration of E(R8)
+U=U 0= [ | — + —n? can be stated as follows.
Yimag Uiin=Umagt Uian f 8w 2 nsy )dS Axis-field energy lemm&ubiject to the London quantiza-

(349  tion[as given by Eq(5) abovd the combination of the mag-
éﬁ_etic and kinetic contributior@s defined using the formulas
(26) and (30) abovd to the energy per unit length for a
vortex with given winding numbeX and corresponding total
flux ® as specified by Eq28) will be provided just by the
the axis-field valug3, according to the proportionality law

Since the terms in this expression are both quadratically d
pendent on fields, namely, and B, which by Egs(15) and
(16) will just be proportional to the winding numbé¥, we
obtain the following conclusion.

Rotation energy cancellation lemm&/hereas the sepa-
rate values of the the magnetic and kinetic contributi@ss DB
defined using the formula&6) and (30) abovq to the en- Ugyn=U mag* Ukin:_oa (39)
ergy per unit length of the vortex will be affected by the rate 8
of rotation of the backgroun€ (or equivalently the corre-
sponding London field, = —2m(}/q), the combination of
these two contributionsvill not depend directly or{) and
can be simply expressed in the fofas a result of EqY15) B.=B.—B (40)
and (16)] oo P

where 5, is the value on the axis of theelative magnetic
field valueB as given by Eq(7); i.e., it is the difference

5 between the central valug, of the magnetic inductioB and
U dyn= U mag+ Ukin= U gyaN?, (35 its asymptotic London valuB, .
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A corollary of this second lemma is that the combination Evort= Emag+ Exin+ Econs (46)
of the kinetic and magnetic energy per unit length will re- . o
main the same whatever the internal structure, as long as tH¥1€ré€magand&yi, are the magnetic and kinetic energy con-
total flux and the axis magnetic field are the same. The sim/ibutions discussed in the preceding sections &gglis the
plest such configuration is given by a fieliretaining the ~Ccondensation energy contribution depending just on the ra-
same uniform central valuB, out to a cutoff where it drops dial distribution of the condensate number density(in a

discontinuously to its asymptotic valug . This cutoff ra- Manner that is unimportant for our present purppasich

diusR, say, is adjusted so as to give the same total flux as i cans that the corresponding additional contribution

the actual model, i.e., so as to satisfy the specification
ucon:f EeordS (47)
D ¢ _ .
7R :B_o:'fa’_o' (41)  to the vortex energy per unit length can be treated just as a

constant as far as the present section is concerned. It follows

Since the quantityB,, i.e., the value on the axis of the re- that we shall have

scaled field defined by Eq15), depends only on the physi- (Evord=Uvore (48)
cal constantsn andq and on the form of the structure func- _ _ o
tion specifying the radial dependence of the number densitwhereU is the total energy per unit length of an individual

n., it follows that the same applies to the effective radiys ~ VO'€X as given by the combination
which will thus be independent i, as well as of the back- _

. ' . Uyort=U magt Ukint U cons 49
ground rotation raté) = — B /2m. The conclusion that the _ vt mag kin eon 49
effective magnetic radius depends only on the structure fundgh which the first two contributions will separately depend on
tion specifyingn, is interpretable as a restatement of our firstthe background rotation velocit2 (or equivalently on the

lemma, since it can be seen that the coefficiépy, in Eq. London fieldB,) but in which, by the cancellation lemma
expressed by Ed34), the total(like the final term will not.

(35) will be given just in terms of this effective radilis by Since each vortex is associated with a momentum circu-

the formula lation of magnitude 7N, there will be a corresponding
72 generalized vorticity, in the sense of momentum circulation
U = == - (42)  Pper unit area, with large scale average given by
2q2R2
(wW)y=27mhANwp. (50
V. AVERAGE OVER AN ARRAY OF ALIGNED In terms of this quantity the large scale aver#gé) of the
VORTICES extra energy due to the deviation from a configuration of

. ) . . unmagnetized rigid corotation will be given by
Let us now consider the typical situation in a type Il su-

perconductor, in which we have not just a single vortex but a B2 (W) Uy

parallel array of such vortices with sufficiently low mean (&= EJF omh N (52)
number density per unit surface area,say, for the separa-

tion distance between neighboring vortices to be large comFor a large scale variational description it is convenient to
pared with the penetration lengthSince according to Egs. use(w) and(B) as the independent variables. In terms of
(7) and(28), each vortex carries an extra magnetic filboin ~ these, the London field can be seen from E4B) to be
addition to the contribution from the uniform London field expressible as

B, , the macroscopic average magnetic field will be given by

8~ (8)- 52

(BYy=B_ +vd. (43 L q’

This defines our averaging process as taken over lengtéo Eq.(51) gives

scales large compared with the vortex dimensions.

As compared with the average energy density of a con- _(BY? (BYw) (W)® (W) Uy

figuration in rigid corotation with the given angular velocity (&)= 87 41rq + 87> 2mh N (53

Q, but with no magnetic field, the extra energy density av-

eraged over a large number of vortices will be given by We are interested in the derived macroscopic field quan-

tities H and M, which are related to the macroscopic flux

(&)=E +(Evor) (44)  density in the usual way, i.e.,

where&, is the uniform contribution from the London mag- (BY=H+4mwM. (54)

netic field, i.e., ) ) )
From the basic assumption that the material response of a

B2 superconductor is completely determined by the quantization
e (45 relation (1), together with our averaging process, it is to be
expected that thdocal) magnetic polarizatiooM of the ma-
and where( €, is the large scale average of the contribu-terial should only be due to the circular currents around the
tion given locally for the separate vortices by vortices, and therefore the magnetic polarization should be

&
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proportional to the vortex density. This observation togethe;nagnetic field, or equivalently the effective radRscan be
with the definitions(43) and (54) already suggests that the explicitly computed depending on the model of the internal
field strengthH will describe the flux density “in between”  structure. We shall focus here on the solution outside the
the vortices, i.e.B,_. In order to Verify this pTEdiCtion in a core, which is a|Ways the same up to a normalization con-
rigorous manner, we constructed the macroscopic energant, which can be determined only with knowledge of the
density (£) in Eq. (53) of the rotating superconductor internal structure. This will be the purpose of the next sec-
threaded by a parallel array ¢fvidely separatedvortices,  tjon.
based on the foregoing results about a single vortex. In the region outside the core, i.e., in the range¢,

The independent variables in our model &endv. For  \yhere the the number density is uniform with value
a macroscopic treatment, it is convenient, as in (5§) and
following Mendell and Lindblon?, to work with (w) and Ns=nN.., (60)
(B) as the basic variables of our model. Variation of the

energy density with respect to the basic variables, i.e., the equation obtained from Eqd.1) and(14) by eliminating

B will have the form

r2

_ L 2
d(E)=nd(w)+ 5 HA(B)+ -, (55 L4V, AV |—2+1)v:o, 61

dr? Tar

defines the derived quantitiésand the coefficient, which _ _ _
was first introduced by Bekarevich and Khalatnikoas Wherel is a fixed length scale given by
functions of the basic variables. In general there could be
further derived quantities, depending on the model param- 12— m (62)
k . e
eters we are taking into account, e.g., the temperature, etc. 4mqn,
Since by Eq.(39) the ratioU,./N will be given by the

and which is called the London penetration length.
formula

Equation(61) is of the well-known Bessel type, whose
most general asymptotically bounded solution is expressible

U
Yvort_ d’_BO+ con. (56  in the form(see Ref. b
N 8 N

. . =CKy{x},

in which all dependence oB_ and thus also oqB) has V=CKaixi 63
canceled out, it can immediately be seen that the converwhere the independent variabtas defined by

tional definition(55), i.e.,

&) =1 (64
H= 4#@, (57)
C is a normalization constant, and}; is a modified Bessel
for the magnetic field strengtH will simply give function.
It follows immediately from the flux quantization condi-
H=B_; (58 tion (13 that the magnetic potential deviation defined by Eq.

ie., H is directly identifiable with the London field. The (&) Will be given by

corresponding magnetic polarizatiom, as defined in the m P
usual way, Eq(54), will be expressible as A=— —CK{x}+ S (65)
q ar

= ﬂ: VNﬁ_ (590  Wwhere® is the magnetic flux integral given by E(R8).
4mq 29 Using the fact thaK is related to the Bessel functidgy

As anticipated, this expresses the fact that the most convé’r’-y
nient and natural choice of basic variables in the averaged K.=—K! K= —K!—x~1K 66
description of our simple model yields a magnetic polariza- 1= 7 oy Ro= 7™ X TRy, (66)
tion due to the circular currents around the vortices. Thavhere a prime stands for differentiating with respect to the
“response” of the medium to magnetic flux consists eitherargumentx, it is straightforward to obtain the corresponding
of flux expulsion or of nucleation of vortices, the only ex- solution of Eq.(14) for the magnetic field deviation, which
ception being the uniform London fieB , which is due to  will be expressible in the simple form
the rotation of the superconductor.
m
VI. OUTER VORTEX SOLUTION 5= ECKO{X}' 67

In the previous sections we have been able to establisfihe outer configuration for the magnetic vortex has thus far
very useful properties concerning the energy density per unibeen determined up to the normalization const@nitt will
length of a vortex, without needing the specification of abe seen in the next section how, on the basis of a suitable
internal structure. This section and the next one will consideansatz for the radial dependencengf the solution inside the
this question and show in particular how the unspecified paeore can be used to fix this const&)tand thus to determine
rameter of the previous section, the axis value of the relativeompletely the configuration of the vortex.
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VII. INNER VORTEX SOLUTION while the required normalization consta@tis finally ob-

Instead of directly specifying the way in which the num- tained in the form

ber densityng varies from zero on the axisr €0) to its
asymptotic valuen,. at the core radiugwherer=¢, i.e., =,
where x=x=¢/1), it is more convenient to work with an ImK
ansatz based on an explicit prescription for the current ma
nitude j, which will have a qualitatively similar behavior in

N7
(76)

%h terms of a dimensionless guantity that is given by

the core, ranging from zero on the axis to a vajuat the o X3 4
core radius, which according to Eqd2) and (63) will be K=| 1+ 2x® | XK + 3x%Ko=—=| eK+<K, |, (77)
; b 8 8 X
given by
= qn.CK,, 69) in which the only dependence on the internal structure is that

3 3 embodied in the dimensionless numfzewhich can be seen
using the obvious abbreviatioki; =K {x}. The current in to be given in terms of the boundary valugsand ¢ of the
the core, i.e., where<x, will therefore be expressible in the functionsy and{ by the simple formula
form
§ e=2y—{. (78
j=oi, (69) _ . _
This quantitye can be interpreted as the value at the core

whereo is a dimensionless function ofthat is required to boundaryx=X of a functione of x given by

vanish,o0=0, forx=0 and to increase to unity;=1, where

x=x (o plays here the role of the structure function men- X
tioned in the Introduction For any suitably prescribed func- e=2-X—¢, (79
tion o with these properties, there will be corresponding X

functions,y and ¢, say, that are defined by the requirement. . . -
that they t0o should vanish on the axis, i,g= =0 for x in terms of which the solution for the potential differende

=0, and by the requirement that they should be obtained ir\1NIII be given by

the region B=x=x as solutions of the differential equations mC( X2 )
A= —| Kox+ —Ky€e]. 80
.dy d(x0) 2q |70 4Tt (59
X——=20, X =4xy. (70) . . L.
dx dx The corresponding expression for the magnetic field excess

In terms of such a set of functions, the relevant solution of/Vill have the form
Eq. (11) will evidently be given by

mC| . X.
= Ko+§K1(X_X) .

B=By—2méi x. (71) 5=

and the corresponding solution of E40) will be given by  Using the solution76) for C, the central value needed for
the energy formuld@39) can be seen to be obtainable as

(81

A= 31 Box— 3 mé L. (72)
N7 XK (8- X2
The requirement that the magnetic field should be continuous Bo= 2“2( — l _ ¢ ))_ (82
(so that the current densifyremains finit¢ entails that the qlox 4K
inner solution(71) should match the corresponding outer so-
lution (67) wherex=x, so we obtain a boundary condition VIII. EXPLICIT ENERGY CONTRIBUTIONS
of the form
Using the axis-field energy formul@9) together with the
.m . solution (82) for the axis field3,, we can immediately ob-
30—2W§JX=aCKo, (73 tain the total “dynamical” energyJ 4, as
while the corresponding continuity requirement for the po- 2Ko+XxK;
tential gives a second boundary condition of the form Uayn=Uo oK ' (83)
s P o2m o where
Bo— =—»——CK;j. 74
o~ mEj L 2 qe (74) o
This pair of boundary equations can be solved to give the UOE(TZ . (84

central magnetic field difference in the form

Using the outer solution fo3 and ), one can obtain the
outer magnetic and kinetic energy contributions, defined in

m
By=—C Egs.(27) and(31), in the form

ql

Ro%ikl) , (75)
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= (KI-K$) (85)

mC
2 Let us summarize the results of the present work. We

Oext _ (_
mag 2q
have first shown that the contributions linearly dependent on
and () in the magnetic and kinetic energieanceleach other. As
0¥y a consequence, we find that the macroscopic magnetic field
Oe_xt:(ﬂ:> X" (86) strengthH is simply the London field. It is to be observed
kin—\ 2q/ 2 ' that the extra energy density contribution arising from the
second term in Eq26) would give an extra contribution of
where the core structure dependence is contained exclusivelife form B (w)/4mq in Eq. (53). By including this extra
in the constanC. This constantC, using the solutior(76),  term—overlooking the fact that, according to E83), it will
can be related to thécore structure independgntonstant be canceled by the second term in the kinetic contribution

)2)“(2 IX. CONCLUSIONS

2. . . .
;MM—(K%—K%)

U, defined just above by the simple relation (30), which was not taken into account—the analysis by
Mendell provided the erroneous conclusion that there would
mC\? U, be no magnetic polarization or, in other words, tHathould
E) :ﬁ, (87 be identified not with the London field but simply with

the mean induction, meaning the replacement of(E§). by
where, obviously, all the dependence on the core structure id =(B).

contained in the dimensionless teif The identification(58) of H, as given by the conventional
As a consequence, the total outer vortex energy contribud€finition (57), with the uniform London fieldB, has been
tion can be rewritten in the simple form established here as a precise mathematical relation in the
framework only of a particularly simple model. The problem
R XK oK 1 of generalization to more sophisticated models, allowing for
U= — 5 Uo, (88) compressibility, relativistic effects, and other relevant com-

plications, remains to be dealt with in future work.

which can be decomposed in two similar expressions for the
magnetic and kinetic contributions. The sum of the magnetic ACKNOWLEDGMENTS
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