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Energy of magnetic vortices in a rotating superconductor
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~Received 4 January 1999; revised manuscript received 4 February 2000!

We carry out a systematic analytic investigation of stationary and cylindrically symmetric vortex configu-
rations for simple models representing an incompressible nonrelativistic superconductor in a background,
which is rigidly rotating with the angular velocityV. It is shown that although the magnetic and kinetic
contributions to the energy per unit length of such a vortex are separately modified by the background angular
velocity, its effect on the total energy per unit length cancels out. For a type II superconductor threaded by a
parallel array of such vortices, this result implies that the conventionally defined local magnetic field strength
H will not be equal to the local space average^B& of the magnetic inductionB ~as has previously been
suggested!, but instead thatH will simply be equal to the London fieldBL52(2m/q)V ~wherem andq are
the mass and charge of the condensate particles!.
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I. INTRODUCTION

The physical motivation behind this work is the need
clear up some confusion that has arisen in the contex
neutron star matter1 about the relation between the macr
scopic magnetic field strengthH and the average valuêB&
of the local magnetic inductionB in a rotating type II super-
conductor threaded by a parallel array of vortices.

For many materials it is very complicated, if not impo
sible, to obtain analytic expressions for the ‘‘material equ
tions’’ HW @^BW &# that relate the so-called macroscopic fie
strengthHW to the average magnetic flux density^BW &, as these
relations may be highly nonlinear and can depend on var
circumstances like, for example, the previous states of
material as in the case of ferromagnets. However, the cas
type II superconductors is relatively simple, since one c
often safely assume the dominant ‘‘response’’ of the medi
to electromagnetic flux to be determined by the property
superconductivity alone, and neglect all other contributio
from microscopic polarizations, spin alignments, atomic c
rents, etc. It has to be noted that in laboratory supercond
tivity contexts the magnetic field strengthHW is often intro-
duced as being linked to the ‘‘external’’ currents only, whi
in some cases could possibly be seen as correspondin
averaging over the whole sample at once. In the contexts
are interested in, it is necessary to keep a perfectlylocal
macroscopic description of the superconductor, and there
the construction of the derived field quantityHW will be based
on a local averaging procedure over length scales, which
a type II superconductor have to be large compared with
vortex dimensions, but small compared with the leng
scales characterizing the global structure of the system u
consideration~e.g., a superfluid layer in a neutron star!.

In order to clarify the issue we shall proceed on the ba
of the same kind of simplification that was postulated as
basis of the earlier discussion,1 working in terms of a broad
category of nonrelativistic incompressible superfluid mod
that includes, but is not restricted to, the special case c
acterized by the standard Ginzburg-Landau ansatz. The m
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conclusion of our work, as will be shown in Sec. V, is th
the conventionally defined local macroscopic field strengthH
will simply be given by the expression~9! for the London
field BL , and not by the average value^B& as was previously
suggested.1

The essential feature of the models to be dealt with is
the usual postulate that the relevant charged superfluid
stituent is represented by a locally variable number den
ns of bosonic particles that are characterized by an effec
massm, chargeq, and a momentum covector having spa
components

mṽ i1qAi5\¹ iw, ~1!

where \ is the Dirac-Planck constant,Ai is the magnetic
vector potential, andw is a scalar with period 2p represent-
ing the phase variable of the boson condensate. In ordin
laboratory applications the particles would represent Coop
type electron pairs, characterized in terms of the charge
mass of the electron by the exact relationq522e, and to a
good approximation bym.2me , whereas in the context o
neutron star matter they would represent proton pairs, c
acterized byq52e and an effective mass given roughly
terms of that of the proton bym'2mp . The quantityṽ i
appearing in Eq.~1! is the so-called superfluid velocity
which will be the same as the actual mean particle trans
vectorv i if there is no ‘‘entrainment’’ of the current by the
charge neutralizing background medium.

The scenarios we shall consider will be of the usual kin
in which each individual vortex is treated as a stationa
cylindrically symmetric configuration consisting of a rigidl
rotating background medium with uniform angular veloc
V, say, together with a charged superfluid constituent i
state of differential rotation with a velocityv, which tends at
large distance towards the rigid rotation value given byVr ,
wherer is the cylindrical radial distance from the axis. It wi
be supposed that the local charge density is canceled by
background so that there is no electric field, but that ther
a magnetic induction field with magnitudeB and direction
parallel to the axis, whose source is the axially oriented e
tromagnetic current whose magnitudej will be expressible in
9740 ©2000 The American Physical Society
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terms of the number densityn, say, of the freely conducting
particles involved, byj 5qn(v2Vr ), which can be rewrit-
ten in terms of the ‘‘superfluid velocity’’ṽ in the form

j 5qns~ ṽ2Vr !, ~2!

wherens is the ‘‘superfluid particle number density,’’ whic
may differ fromn due to ‘‘entrainment.’’ It will be supposed
that the superfluid particle number densityns vanishes on the
axis and is a monotonically increasing function of the cyl
drical radius variabler, tending rapidly to a constant valu
n` at large distances from the axis:ns5n` for r *j, say,
wherej is a parameter interpretable as the core radius.

The relevant Maxwellian source equation for the ma
netic field will have the familiar form

dB

dr
524p j . ~3!

The other relevant Maxwellian equation is the one govern
the axial componentA ~which in an appropriate gauge wi
be the only one! of the electromagnetic potential covecto
which will be related to the magnetic induction by

d~rA !

dr
5rB. ~4!

The essential property distinguishing the ‘‘superconduct
case’’ from its ‘‘normal’’ analog is the London flux quant
zation condition, which in the present context~where all
physically relevant quantities depend only on the cylindri
radiusr ) will be expressible in the well known form2

mṽ1qA5
N\

r
, ~5!

whereN is the relevant phase winding number, which mu
be an integer.

It is to be noted, of course, that by themselves the fo
going equations are not quite sufficient to fully character
the model: in order to obtain a complete system it is a
necessary to have some well-defined prescription for the
dial dependence of the number densityns, which will be
referred to below as thestructure function. The available
literature does not seem to provide any fully adequate g
eral purpose ansatz for such a structure function, though v
ous, more or less satisfactory, phenomenological presc
tions have been put forward in particular contexts. One of
simplest proposals is to postulate thatns falls discontinu-
ously from its asymptotic constant valuen` to zero. Such a
simple ansatz is in fact perfectly adequate for many p
poses, since, as will be seen below, much of the relev
physics turns out to be insensitive to the detailed structur
the core. However, no such specific prescription for
structure function will be needed to obtain the general re
of Sec. V.

The plan of this paper is the following. In Sec. II, w
transform our system of equations to a simpler form by c
sidering the deviations of all quantities with respect to th
asymptotic values corresponding to rigid rotation. Section
is devoted to the demonstration of the cancellation betw
the rotation-induced terms of the kinetic energy and the m
netic energy. In Sec. IV, we show that there is a sim
-
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relation between the total energy per unit length of the vor
and the total flux independently of the details of the struct
of the vortex. In Sec. V we apply our result for one vortex
the case of an array of aligned vortices and obtain our m
result concerning the macroscopic field strengthH. Sections
VI and VII are concerned, respectively, with the outer a
inner solutions representing the vortex. In Sec. VIII w
evaluate explicitly the energy contributions as functions
the core parameters and Sec. IX summarizes this work.

II. HOMOGENIZATION OF THE SYSTEM

For given values of the relevant physical constantsm and
q and the rotation rateV, and subject to the provision tha
the structure function forns has been prescribed in advanc
the foregoing equations will constitute a linear different
system relating the variable functionsv, B, A to the integer-
valued parameterN. Before proceeding, it will be useful to
take advantage of the possibility of transforming the prec
ing system of equations to a form that is not just linear b
also homogeneous by replacing the variablesv, B, A by the
corresponding variablesV, B, A, which are defined by

V5 ṽ2Vr , ~6!

B5B2BL , ~7!

A5A2 1
2 rBL . ~8!

HereBL is the uniform background magnetic field value th
would be generated by a rigidly rotating superconductor a
is given by the London formula

BL52
2m

q
V, ~9!

obtained by combining Eqs.~5! and ~4! in the specialized
case of rigid corotation, which isV50.

In terms of these new variables Eq.~4! will be trans-
formed to the form

d~rA!

dr
5rB, ~10!

while the other differential equation~3! will be transformed
to the form

dB
dr

524p j , ~11!

in which we shall have

j 5qnsV. ~12!

Finally the flux quantization condition~5! will be converted
to the form

mV1qA5
N\

r
, ~13!

which can be used to transform Eq.~10! to the form

m

qr

d~Vr !

dr
52B. ~14!
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The advantage of this reformulation is that unlikev, B, and
A, the new variablesV, B, andA are subject just to homo
geneous boundary conditions: they must all tend to zero
r→`, while at the inner boundary, asr→0, there is just the
regularity requirement thatB should be bounded, so that w
haveB→B0 for some finite limit valueB0, which by Eq.
~10! entails automatically thatA should tend to zero. Sinc
the number densityns is postulated to vanish at the origin
there is no corresponding restriction onV. We have thus
obtained a homogeneous linear system of equations rela
the integerN to the set of three functions consisting of th
excess~with respect to the background! magnetic induction
variableB and the corresponding excess potential variableA
together with the relative velocity variableV or, equiva-
lently, the current magnitudej as given by Eq.~12!. This
means that they will be expressible in the form

B5NB̃, A5NÃ, ~15!

V5NṼ, j 5N j̃ , ~16!

in terms of corresponding rescaled functionsB̃, Ã, Ṽ, and j̃ ,
which will be fully determined~independently not just of the
rotation parameterBL522mV/q but also of the winding
numberN) just by the physical constantsm and q and the
specification of the structure function giving the radial d
pendence of the number densityns.

III. ROTATION ENERGY CANCELLATION LEMMA

One of the main purposes of the present work is to de
onstrate, in the present section, a useful lemma concer
mutual cancellation—independently of the radial depen
denceof the relevant particle densityns—between the back
ground rotation-dependent term in the magnetic energy
unit length,

Umag5E EmagdS, ~17!

and the corresponding term in the kinetic energy per u
length,

Ukin5E EkindS, ~18!

with

dS52prdr . ~19!

In the above expressions,Emag is the extra magnetic energ
density arising from a nonzero value of the phase wind
numberN, i.e., the local deviation from the magnetic ener
density due just to the uniform fieldBL associated with the
state of rigid corotation at the angular velocityV, namely,

Emag5
B2

8p
2

BL
2

8p
, ~20!

while Ekin is the corresponding deviation of the kinetic e
ergy from that of the state of rigid corotation at the angu
velocity V, namely,
as

ng
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Ekin5
m

2
ns~ ṽ22V2r 2!. ~21!

Note that in addition to the ‘‘dynamic’’ contributionUdyn
5Umag1Ukin , the total energy per unit lengthUvort of the
vortex will contain an extra potential energy termUcon asso-
ciated with the breakdown of superfluid condensation in
core, but this will not be relevant for the work of the prese
section. In the limiting case of an ordinary superfluid,
characterized by vanishing chargeq50, the kinetic contri-
bution would be the dominant one, but in the context
superconductivity, i.e., whenq is nonzero, it is commonly1

overlooked, perhaps because of the small value of the e
tron mass that is relevant in laboratory applications. The p
pose of the present section is to show not only that the
netic contribution will not in general be negligible compar
with the magnetic contribution, but also that its inclusio
brings about considerable simplification.

To start with, using the decomposition~7! of the magnetic
field, it will be possible to express the magnetic energy d
sity contribution in the form

Emag5
B 2

8p
1

BLB
4p

, ~22!

while, similarly, using the decomposition~6! of the velocity,
it will be possible to express the corresponding kinetic e
ergy density in the analogous form

Ekin5
m

2
ns~V 212VVr !, ~23!

which can usefully be rewritten in terms of the current ma
nitude j, using Eqs.~12! and ~9!, as

Ekin5
m

2
nsV 22

j

2
BLr . ~24!

Using the Maxwell source equation~11! this can be con-
verted to the form

Ekin5
m

2
nsV 21

BL

r

d

dr S r 2B
8p D2

BLB
4p

, ~25!

in which the second term can be seen to be a pure di
gence, while the last term can be seen to be equal in ma
tude but opposite in sign to the last term in Eq.~22!, so that
there will be a cancellation between them when the magn
and kinetic contributions are combined.

At an integrated level, in view of Eq.~22!, it will be
possible to express the magnetic energy in terms of qua
ties Ûmag andF, which are specified independently ofBL ,
in the form

Umag5Ûmag1
BL

4p
F, ~26!

where the part that would still be present if the backgrou
were nonrotating is given by

Ûmag5E B 2

8p
dS, ~27!

and where the coefficientF is a flux integral of the simple
form
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F5E BdS5Nf, ~28!

wheref is the usual flux quantum, given by

f5
2p\

q
. ~29!

In a similar manner, it will be possible to express the kine
contribution in terms of quantitiesÛkin andFkin , which are
also specified independently ofV, or equivalently ofBL , in
the form

Ukin5Ûkin1
BL

4p
Fkin , ~30!

where the part that would still be present if the backgrou
were nonrotating is given by

Ûkin5
m

2qE jVdS, ~31!

and where the coefficientFkin is given by

Fkin5pE r 2
dB
dr

dr5pE d~r 2B!2E 2prBdr, ~32!

which corresponds to the last two terms on the right ha
side of Eq. ~25!. The first term in this expression clear
vanishes when the integration is taken over the whole ra
from the center, wherer 50, to the large radius limit where
r 2B→0, as can be seen from the explicit solution~67!. We
are thus left with the second term, the kinetic analog of
magnetic flux contribution, to which it is evidently equal
magnitude but opposite in sign; i.e., we obtain

Fkin52F. ~33!

It can thus be seen that there is a remarkable cancella
whereby the dependence onBL , or equivalently onV, in the
separate magnetic and kinetic energy contributions will c
cel out when they are combined, so that we are left sim
with a result of the form

Umag1Ukin5Ûmag1Ûkin5E S B 2

8p
1

m

2
nsV 2DdS.

~34!

Since the terms in this expression are both quadratically
pendent on fields, namely,V andB, which by Eqs.~15! and
~16! will just be proportional to the winding numberN, we
obtain the following conclusion.

Rotation energy cancellation lemma.Whereas the sepa
rate values of the the magnetic and kinetic contributions@as
defined using the formulas~26! and ~30! above# to the en-
ergy per unit length of the vortex will be affected by the ra
of rotation of the backgroundV ~or equivalently the corre-
sponding London fieldBL522mV/q), the combination of
these two contributionswill not depend directly onV and
can be simply expressed in the form@as a result of Eqs.~15!
and ~16!#

Udyn5Umag1Ukin5ŨdynN
2, ~35!
c

d

d

e

e
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-
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e-

where we recall thatN is the winding number andŨdyn de-
pends only on the physical constantsm and q and on the
form of the radial distribution of the number densityns. A
simple form forŨdyn will be given in the next section.

IV. AXIS-FIELD ENERGY FORMULA

The preceding result, namely, the cancellation of the c
tributions due to the background rotation, was obtained s
ply with the background London equation~9! without using
the full, i.e., local London quantization condition~5!. The
ultimate cancellation of theBL-dependent contribution is at
tributable at a local level to the fact that theBL-dependent
contribution to the combined energy density is a pure div
gence:

8p~Emag1Ekin!5B 214p
m

q
jV1

BL

r

d

dr
~r 2B!. ~36!

We can obtain a stronger result if we now invoke the mo
specialized relation~14! which is a consequence of the qua
tization condition~5! that specifically characterizes supe
conductivity. This condition can be seen to imply that t
whole of the right hand side of Eq.~36! will be expressible
as a divergence, since we shall have

B 214p
m

q
jV52

m

qr

d

dr
~rVB!. ~37!

It can thereby be seen, using Eq.~5! again, that the combined
energy density will be expressible as

Emag1Ekin5
1

8pr

d

dr F S BLr 21rA2
N\

q DBG . ~38!

In the outer limit, asr→`, the rapid fall-off ofB will ensure
that the quantity inside the divergence will tend to zero.
the inner limit, asr→0, the first term in the divergenc
obviously gives no contribution, and the consideration thaA
should be bounded ensures that the second term also g
no contribution, so we shall be left with the contribution ju
from the final term, which is proportional to the windin
numberN. The final outcome of the integration of Eq.~38!
can be stated as follows.

Axis-field energy lemma.Subject to the London quantiza
tion @as given by Eq.~5! above# the combination of the mag
netic and kinetic contributions@as defined using the formula
~26! and ~30! above# to the energy per unit length for
vortex with given winding numberN and corresponding tota
flux F as specified by Eq.~28! will be provided just by the
the axis-field valueB0 according to the proportionality law

Udyn5Umag1Ukin5
FB0

8p
, ~39!

whereB0 is the value on the axis of therelative magnetic
field valueB as given by Eq.~7!; i.e., it is the difference

B05B02BL ~40!

between the central valueB0 of the magnetic inductionB and
its asymptotic London valueBL .
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A corollary of this second lemma is that the combinati
of the kinetic and magnetic energy per unit length will r
main the same whatever the internal structure, as long as
total flux and the axis magnetic field are the same. The s
plest such configuration is given by a fieldB retaining the
same uniform central valueB0 out to a cutoff where it drops
discontinuously to its asymptotic valueBL . This cutoff ra-
dius R̃, say, is adjusted so as to give the same total flux a
the actual model, i.e., so as to satisfy the specification

pR̃25
F

B0
5

f

B̃0

. ~41!

Since the quantityB̃0, i.e., the value on the axis of the re
scaled field defined by Eq.~15!, depends only on the phys
cal constantsm andq and on the form of the structure func
tion specifying the radial dependence of the number den
ns, it follows that the same applies to the effective radiusR̃,
which will thus be independent ofN, as well as of the back
ground rotation rateV52qBL/2m. The conclusion that the
effective magnetic radius depends only on the structure fu
tion specifyingns is interpretable as a restatement of our fi
lemma, since it can be seen that the coefficientŨdyn in Eq.
~35! will be given just in terms of this effective radiusR̃ by
the formula

Ũdyn5
\2

2q2R̃2
. ~42!

V. AVERAGE OVER AN ARRAY OF ALIGNED
VORTICES

Let us now consider the typical situation in a type II s
perconductor, in which we have not just a single vortex bu
parallel array of such vortices with sufficiently low mea
number density per unit surface area,n, say, for the separa
tion distance between neighboring vortices to be large c
pared with the penetration lengthl. Since according to Eqs
~7! and~28!, each vortex carries an extra magnetic fluxF in
addition to the contribution from the uniform London fie
BL , the macroscopic average magnetic field will be given

^B&5BL1nF. ~43!

This defines our averaging process as taken over le
scales large compared with the vortex dimensions.

As compared with the average energy density of a c
figuration in rigid corotation with the given angular veloci
V, but with no magnetic field, the extra energy density a
eraged over a large number of vortices will be given by

^E&5EL1^Evort&, ~44!

whereEL is the uniform contribution from the London mag
netic field, i.e.,

EL5
BL

2

8p
, ~45!

and wherê Evort& is the large scale average of the contrib
tion given locally for the separate vortices by
he
-

in

ty

c-
t

a

-

y
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-

Evort5Emag1Ekin1Econ, ~46!

whereEmag andEkin are the magnetic and kinetic energy co
tributions discussed in the preceding sections andEcon is the
condensation energy contribution depending just on the
dial distribution of the condensate number densityns ~in a
manner that is unimportant for our present purpose!, which
means that the corresponding additional contribution

Ucon5E EcondS ~47!

to the vortex energy per unit length can be treated just a
constant as far as the present section is concerned. It foll
that we shall have

^Evort&5nUvort, ~48!

whereU is the total energy per unit length of an individu
vortex as given by the combination

Uvort5Umag1Ukin1Ucon, ~49!

in which the first two contributions will separately depend
the background rotation velocityV ~or equivalently on the
London fieldBL) but in which, by the cancellation lemm
expressed by Eq.~34!, the total~like the final term! will not.

Since each vortex is associated with a momentum cir
lation of magnitude 2p\N, there will be a corresponding
generalized vorticity, in the sense of momentum circulat
per unit area, with large scale average given by

^w&52p\Nn. ~50!

In terms of this quantity the large scale average~44! of the
extra energy due to the deviation from a configuration
unmagnetized rigid corotation will be given by

^E&5
BL

2

8p
1

^w&
2p\

Uvort

N
. ~51!

For a large scale variational description it is convenient
use ^w& and ^B& as the independent variables. In terms
these, the London field can be seen from Eq.~43! to be
expressible as

BL5^B&2
^w&
q

, ~52!

so Eq.~51! gives

^E&5
^B&2

8p
2

^B&^w&
4pq

1
^w&2

8pq2 1
^w&
2p\

Uvort

N
. ~53!

We are interested in the derived macroscopic field qu
tities H and M, which are related to the macroscopic flu
density in the usual way, i.e.,

^B&5H14pM. ~54!

From the basic assumption that the material response
superconductor is completely determined by the quantiza
relation ~1!, together with our averaging process, it is to
expected that the~local! magnetic polarizationM of the ma-
terial should only be due to the circular currents around
vortices, and therefore the magnetic polarization should
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proportional to the vortex density. This observation toget
with the definitions~43! and ~54! already suggests that th
field strengthH will describe the flux density ‘‘in between’
the vortices, i.e.,BL . In order to verify this prediction in a
rigorous manner, we constructed the macroscopic ene
density ^E& in Eq. ~53! of the rotating superconducto
threaded by a parallel array of~widely separated! vortices,
based on the foregoing results about a single vortex.

The independent variables in our model areV andn. For
a macroscopic treatment, it is convenient, as in Eq.~53! and
following Mendell and Lindblom,3 to work with ^w& and
^B& as the basic variables of our model. Variation of t
energy density with respect to the basic variables, i.e.,

d^E&5ld^w&1
1

4p
Hd^B&1•••, ~55!

defines the derived quantitiesH and the coefficientl, which
was first introduced by Bekarevich and Khalatnikov,4 as
functions of the basic variables. In general there could
further derived quantities, depending on the model para
eters we are taking into account, e.g., the temperature, e

Since by Eq.~39! the ratioUvort/N will be given by the
formula

Uvort

N
5

fB0

8p
1

U
con

N
, ~56!

in which all dependence onBL and thus also on̂B& has
canceled out, it can immediately be seen that the conv
tional definition~55!, i.e.,

H54p
]^E&
]^B&

, ~57!

for the magnetic field strengthH will simply give

H5BL ; ~58!

i.e., H is directly identifiable with the London field. Th
corresponding magnetic polarizationM, as defined in the
usual way, Eq.~54!, will be expressible as

M5
^w&
4pq

5
nN\

2q
. ~59!

As anticipated, this expresses the fact that the most co
nient and natural choice of basic variables in the avera
description of our simple model yields a magnetic polari
tion due to the circular currents around the vortices. T
‘‘response’’ of the medium to magnetic flux consists eith
of flux expulsion or of nucleation of vortices, the only e
ception being the uniform London fieldBL , which is due to
the rotation of the superconductor.

VI. OUTER VORTEX SOLUTION

In the previous sections we have been able to estab
very useful properties concerning the energy density per
length of a vortex, without needing the specification of
internal structure. This section and the next one will consi
this question and show in particular how the unspecified
rameter of the previous section, the axis value of the rela
r
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magnetic field, or equivalently the effective radiusR̃, can be
explicitly computed depending on the model of the intern
structure. We shall focus here on the solution outside
core, which is always the same up to a normalization c
stant, which can be determined only with knowledge of t
internal structure. This will be the purpose of the next s
tion.

In the region outside the core, i.e., in the ranger>j,
where the the number densityns is uniform with value

ns5n` , ~60!

the equation obtained from Eqs.~11! and~14! by eliminating
B will have the form

r 2
d2V
dr2

1r
dV
dr

2S r 2

l 211DV50, ~61!

wherel is a fixed length scale given by

l 25
m

4pq2n`
, ~62!

and which is called the London penetration length.
Equation~61! is of the well-known Bessel type, whos

most general asymptotically bounded solution is express
in the form ~see Ref. 5!

V5CK1$x%, ~63!

where the independent variablex is defined by

x5
r

l
, ~64!

C is a normalization constant, andK1 is a modified Besse
function.

It follows immediately from the flux quantization cond
tion ~13! that the magnetic potential deviation defined by E
~8! will be given by

A52
m

q
CK1$x%1

F

2pr
, ~65!

whereF is the magnetic flux integral given by Eq.~28!.
Using the fact thatK1 is related to the Bessel functionK0

by

K152K08 , K052K182x21K1 , ~66!

where a prime stands for differentiating with respect to
argumentx, it is straightforward to obtain the correspondin
solution of Eq.~14! for the magnetic field deviation, which
will be expressible in the simple form

B5
m

ql
CK0$x%. ~67!

The outer configuration for the magnetic vortex has thus
been determined up to the normalization constantC. It will
be seen in the next section how, on the basis of a suita
ansatz for the radial dependence ofns, the solution inside the
core can be used to fix this constantC, and thus to determine
completely the configuration of the vortex.
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VII. INNER VORTEX SOLUTION

Instead of directly specifying the way in which the num
ber densityns varies from zero on the axis (r 50) to its
asymptotic valuen` at the core radius~where r 5j, i.e.,
where x5 x̌[j/ l ), it is more convenient to work with an
ansatz based on an explicit prescription for the current m
nitude j, which will have a qualitatively similar behavior in
the core, ranging from zero on the axis to a valueǰ at the
core radius, which according to Eqs.~12! and ~63! will be
given by

ǰ 5qn`CǨ1 , ~68!

using the obvious abbreviationǨ15K1$x̌%. The current in
the core, i.e., wherex< x̌, will therefore be expressible in th
form

j 5s ǰ , ~69!

wheres is a dimensionless function ofx that is required to
vanish,s50, for x50 and to increase to unity,s51, where
x5 x̌ (s plays here the role of the structure function me
tioned in the Introduction!. For any suitably prescribed func
tion s with these properties, there will be correspondi
functions,x andz, say, that are defined by the requireme
that they too should vanish on the axis, i.e.,x5z50 for x
50, and by the requirement that they should be obtaine
the region 0<x< x̌ as solutions of the differential equation

x̌
dx

dx
52s, x̌

d~xz!

dx
54xx. ~70!

In terms of such a set of functions, the relevant solution
Eq. ~11! will evidently be given by

B5B022pj ǰ x, ~71!

and the corresponding solution of Eq.~10! will be given by

A5 1
2 lB0x2 1

2 pj2 ǰ z. ~72!

The requirement that the magnetic field should be continu
~so that the current densityj remains finite! entails that the
inner solution~71! should match the corresponding outer s
lution ~67! wherex5 x̌, so we obtain a boundary conditio
of the form

B022pj ǰ x̌5
m

ql
CǨ0 , ~73!

while the corresponding continuity requirement for the p
tential gives a second boundary condition of the form

B02pj ǰ ž5
F

pj2 2
2m

qj
CǨ1 . ~74!

This pair of boundary equations can be solved to give
central magnetic field difference in the form

B05
m

ql
CS Ǩ01

x̌

2
x̌Ǩ1D , ~75!
g-
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e

while the required normalization constantC is finally ob-
tained in the form

C5
N\

lmǨ , ~76!

in terms of a dimensionless quantity that is given by

Ǩ5S 11
ě

8
x̌2D x̌Ǩ11 1

2 x̌2Ǩ05
x̌3

8 S ěǨ11
4

x̌
Ǩ2D , ~77!

in which the only dependence on the internal structure is
embodied in the dimensionless numberě which can be seen
to be given in terms of the boundary valuesx̌ and ž of the
functionsx andz by the simple formula

ě52x̌2 ž. ~78!

This quantity ě can be interpreted as the value at the co
boundaryx5 x̌ of a functione of x given by

e52
x̌

x̌
x2z, ~79!

in terms of which the solution for the potential differenceA
will be given by

A5
mC

2q
S Ǩ0x1

x̌2

4
Ǩ1e D . ~80!

The corresponding expression for the magnetic field exc
will have the form

B5
mC

ql
S Ǩ01

x̌

2
Ǩ1~ x̌2x! D . ~81!

Using the solution~76! for C, the central value needed fo
the energy formula~39! can be seen to be obtainable as

B05
N\

ql2x̌2 S 22
x̌Ǩ1~82 ž x̌2!

4Ǩ D . ~82!

VIII. EXPLICIT ENERGY CONTRIBUTIONS

Using the axis-field energy formula~39! together with the
solution ~82! for the axis fieldB0, we can immediately ob-
tain the total ‘‘dynamical’’ energyUdyn as

Udyn5U0

2Ǩ01 x̌x̌Ǩ1

2Ǩ , ~83!

where

U0[S Nf

4p l D
2

. ~84!

Using the outer solution forB and V, one can obtain the
outer magnetic and kinetic energy contributions, defined
Eqs.~27! and ~31!, in the form
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Ûmag
ext 5S mC

2q D 2 x̌2

2
~Ǩ1

22Ǩ0
2! ~85!

and

Ûkin
ext5S mC

2q D 2 x̌2

2 F2

x̌
Ǩ0Ǩ12~Ǩ1

22Ǩ0
2!G , ~86!

where the core structure dependence is contained exclus
in the constantC. This constantC, using the solution~76!,
can be related to the~core structure independent! constant
U0 defined just above by the simple relation

S mC

2q D 2

5
U0

Ǩ2
, ~87!

where, obviously, all the dependence on the core structu
contained in the dimensionless termǨ.

As a consequence, the total outer vortex energy contr
tion can be rewritten in the simple form

Ûext5
x̌Ǩ0Ǩ1

Ǩ2
U0 , ~88!

which can be decomposed in two similar expressions for
magnetic and kinetic contributions. The sum of the magn
and kinetic inner contributions can then of course be o
tained by using the relationÛ int5Udyn2Ûext.
y

ely

is

u-

e
ic

IX. CONCLUSIONS

Let us summarize the results of the present work. W
have first shown that the contributions linearly dependent
V in the magnetic and kinetic energiescanceleach other. As
a consequence, we find that the macroscopic magnetic
strengthH is simply the London field. It is to be observe
that the extra energy density contribution arising from t
second term in Eq.~26! would give an extra contribution o
the form BL^w&/4pq in Eq. ~53!. By including this extra
term—overlooking the fact that, according to Eq.~33!, it will
be canceled by the second term in the kinetic contribut
~30!, which was not taken into account—the analysis
Mendell1 provided the erroneous conclusion that there wo
be no magnetic polarization or, in other words, thatH should
be identified not with the London field but simply wit
the mean induction, meaning the replacement of Eq.~58! by
H5^B&.

The identification~58! of H, as given by the conventiona
definition ~57!, with the uniform London fieldBL has been
established here as a precise mathematical relation in
framework only of a particularly simple model. The proble
of generalization to more sophisticated models, allowing
compressibility, relativistic effects, and other relevant co
plications, remains to be dealt with in future work.
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