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1. Introduction

D-branes [30] have become the most important ingredient of the new picture of string
theory that has emerged in recent years. They have shaped a new understanding of non-
perturbative effects in string theory and of low-energy effective theories associated with
string theories. In the latter context, systems of many branes are of particular importance,
since they provide a natural way to include non-abelian gauge theories into string theory
[40]. Systems of several branes of different dimensions, most notably of D1- and D5-branes,
play a major role in proposals of how to derive the Bekenstein-Hawking entropy of black
holes from string theory [39,27]. More recently, stacks of branes and anti-branes have been
reconsidered in connection with a K-theoretic classification of branes [41], based on results
concerning tachyon condensation in [37].

Some qualitative features of such systems can be uncovered within a target space approach.
But e.g. the process of brane-antibrane annihilation in the last-mentioned application, or
the properties of near-extremal black holes involve the analysis of non-BPS states for
which the world-sheet approach is better suited, since it does not critically depend on
supersymmetry. Computation of CFT correlation functions is indispensable if one wants
to deal with problems like Hawking radiation off D1-D5-systems, or for a clean discussion
of bound state formation [23].

The world-sheet formulation of string sectors with branes is well known in string theory,
although mainly in connection with flat targets. The general setup involves boundary con-
formal field theory as introduced and developed by Cardy [8,9,10] and first exploited for
string theory by Sagnotti [34]. CFT on surfaces with boundaries exhibits a very interesting
internal structure and finds interesting applications beyond string theory: For many s-wave
dominated scattering processes, the universal behaviour is described by a boundary CFT
in two dimensions, irrespective of the dimensionality of the original system. The most
famous problem that could be tackled with boundary CFT methods is the Kondo effect in
condensed matter physics [1].

In string theory, methods of boundary CF'T are not only valuable in the study of situations
without the BPS-property, but also to uncover non-classical features like unexpected mod-
uli [37,33] and non-commutative geometry; see e.g. [15,35,36,3,16] and references therein.
Moreover, they allow one to analyze D-branes in non-geometric string compactifications
such as Gepner models [29,38,32,24,6,13].

In this paper, we ask how to compute CFT correlators describing string amplitudes of
arbitrary closed and open string vertex operators in the presence of multiple flat branes
in RP. The open strings involved stretch between two or more different branes, which
may have different dimensions. It appears that no systematic method for the computation
of those string diagrams, which contribute to scattering processes in higher orders of the
string coupling constant, is available in the literature. See, however, [25] for some sample
computations of scattering amplitudes in the presence of a pair of branes.

The world-sheet description requires surfaces with several boundary components. We
restrict our attention to diagrams without internal closed string loops so that we can
map the world-sheet to the disk or to the upper half-plane, but with different boundary
conditions assigned to consecutive intervals on the boundary; see Figure 1. We focus on
parallel branes here; thus we can reduce our analysis to a one-dimensional target. Results
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for RP with D > 1 follow by taking tensor products. The boundary state for a p-brane
involves p + 1 Neumann and D — p — 1 Dirichlet boundary states of single free bosons.
The interesting transitions between boundary conditions in a one-dimensional target are
those from Neumann to Dirichlet or vice versa. They are mediated by boundary fields of
a special type, namely boundary condition changing twist fields.

— - e S ——eo--  -——o——eX---

Figure 1: The upper half-plane with a sequence of Neumann (solid intervals)
and Dirichlet (dashed intervals) boundary conditions along the real line. The dots
between Neumann and Dirichlet intervals mark insertions of boundary condition
changing twist fields, while crosses on the boundary or in the interior refer to
insertions of ordinary open resp. closed string vertex operators. Such a world-
sheet diagram can be understood as Hawking radiation (closed string states) from
a system of branes (multiple changes of boundary conditions) with simultaneous
inner excitations (open string states).

Conformal boundary conditions which preserve the chiral algebra VW of the theory are
parametrized by certain automorphisms 2 of WV, together with the amplitudes of one-
point functions [32]. If W is the U(1) current algebra, 2 can act as +id on the currents,
and the 1-point functions determine the location of a brane. If the boundary condition is
constant along the boundary, arbitrary n-point functions can be expressed in terms of the
usual conformal blocks of W; see e.g. [8,32,19].

If the gluing conditions described by an automorphism €2 of W remain constant along the
boundary the computation of correlation functions is not, in principle, a difficult problem.
Otherwise, the simple Ward identities for the symmetry algebra W are broken, and one
has to find new methods to construct the “twisted chiral blocks” involving a new type of
boundary condition changing operators which correspond to twisted rather than ordinary
representations of W. It is the aim of this article to develop a convenient formalism for
computing such correlation functions in the case of a flat target space.

The plan of this paper is as follows: In the next section, we look at correlation functions
which contain just one insertion of a boundary twist field. We shall provide a complete
operator construction of the boundary CFT, from which one can derive correlators with
an arbitrary number of closed string vertex operators inserted in the bulk. When there are
more than two twist fields on the boundary, such techniques are no longer available. Our
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strategy is then to derive Ward identities for the correlation functions. They will lead us
to Knizhnik-Zamolodchikov-like differential equations which describe the effect of moving
insertion points for bulk and boundary fields in terms of a flat connection. We explain this
idea in Section 3 and exploit it in the fourth section to give explicit integral formulas for the
correlators. While some of the technical steps in setting up the Knizhnik-Zamolodchikov
equations are rather involved, parts of our final results can be related to electrostatics.
Section 5 comments on possible generalizations and applications.

2. Operator formalism for a single twist field insertion

As a simple example, we consider open strings propagating freely in the target R, with
Dirichlet boundary conditions imposed at one end of the string and Neumann boundary
conditions at the other. We thus have to deal with a free bosonic field X (¢, ) defined for
space variables o € [0, 7] and subject to

AX(t0)=0 .,  9,X(t7w) =0

for all ¢t € R. Mapping the strip to the upper half-plane H by z = exp(t + io), X(z, 2)
satisfies Dirichlet boundary conditions for z € R+ and Neumann boundary conditions for
z € R<0 :

X(z,2) = x¢ for z=2>0 , (0—-0)X(2,2) =0 for z=2<0 . (1)

Our task is to compute correlation functions in this bosonic theory which involves two
insertions of twist fields on the boundary (see [12] for an early treatment of that problem).
Conformal symmetry allows us to place these boundary condition changing operators at
z1 =0 and 5 = 0.

We propose to construct operators X (z, z) satisfying (1), as well as open and closed string
vertex operators, and then to derive differential equations on the correlation functions from
the algebraic properties of these operators and from the symmetries of the theory. First,
we have to determine the space our fields are to act on.

2.1 The spectrum of boundary twist fields. @ The space in question is spanned
by excited states of open strings stretching between a Neumann and a Dirichlet boundary
condition — hence the name “boundary condition changing operators” for the boundary
fields uniquely associated to these states. There is a relatively simple technique to de-
termine the spectrum of boundary condition changing operators that intertwine between
two constant conformal boundary conditions By = (1, a1) and By = (2, a3) in some
boundary CFT. The state space of this boundary theory is denoted by Hi2. Because of
the state-field correspondence, the spectrum of boundary condition changing operators is
described through the partition function of the boundary theory,

Z12(q) = Tryy, qH(H) where H" = L0_2_c4



By an interchange of space and time coordinates (“world-sheet duality”), the open string
1-loop diagram underlying Z;5 may be viewed as a closed string tree diagram, i.e.

Zialg) = (Bi|@"" |B)  where H® = L{" + L™ - — .

where ¢ = exp(—2mi/7) is related to the variable ¢ = exp(2mit) as usual. The closed
strings propagate between the boundary states | B;) = |a;)q, associated with the boundary
conditions B;. They allow to transfer boundary conditions from the upper half-plane
(where the Hamiltonian is H*) into a CFT on the full plane (with Hamiltonian H"),
see [26,9].

The boundary states implementing Dirichlet and Neumann conditions along the whole
boundary are of course well known, see e.g. [7]. Let al”, @'/’ be two commuting sets of
oscillator modes (in the plane CFT) with standard commutation relations. The ground
states |k) of their Fock spaces are labeled by the momentum & € R. Neumann and Dirichlet
boundary states are given by

|N - exp{ Z (P) —(P) } |O

n>1

|D( )) /dk etkxo exp{ Z (P) —(P) } |k3

n>1

(2)

where xg € R, as in (1), denotes the location of the “D-brane”, i.e. Z |D(x¢)) = x¢ |D(xq))
for the center of mass coordinate Z.

If we build the boundary state |p) for a p-brane in RP as a tensor product of |N)
(p+ 1 times) and |D(x)) (i = p+2,...,D) from eq. (2), the partition function Z,,(q)
counts boundary fields that do not change the boundary condition. They describe exci-
tations of open strings attached to the p-brane. These open string vertices have the form
Epn iy OXH - QX e X with certain Lorentz tensors €u1...pn and with momentum £ par-
allel to the Neumann directions. The case n = 1 (where the polarization ¢, is transversal)
contains the massless modes: gauge fields living on the brane world-volume.

The partition function of the theory with Neumann boundary conditions on one side and
Dirichlet on the other follows from the boundary states as explained above,

Znp(q) = Tryyp, ¢° = (N |G~ 2 | D(x0))

1 oo 1 oo 1
— —Oe_Zn 1na"anqLO 246 m= 1"”a m G—m 0 . 3
750 0) ®
Orthonormality of the Fock ground states implies that only the contribution from the vac-
uum sector survives in the second line. In particular, Zyp is independent of the parameter
xp. Computation of the vacuum expectation value above is straightforward. The result
can be written as

Znp(q :%ﬁl—q”%_:%i

4
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Our main conclusion concerns the conformal weights of the boundary fields that can induce
a transition between Dirichlet and Neumann type boundary conditions. The lowest weight
that appears is h = %. Above this value, the spectrum of conformal weights has half—
integer spacings. The boundary condition changing operator with conformal weight h = E
corresponding to the lowest-energy state |o) in the whole sector Hyp will be called o(x).
We will also refer to o(z) as a “twist field” since the sum of irreducible Virasoro characters
in (4) can alternatively be regarded as the character of a twisted U(1) representation. The
absence of a vacuum state and the half-integer energy grading are symptoms for the fact
that the jump from Neumann to Dirichlet destroys the simple U(1) Ward identities that
are present in a boundary CFT with constant Neumann or Dirichlet condition all along
the boundary. See [21] for general results about twist fields and partition functions in
boundary conformal field theory.

It will be our main concern in the following to find “substitutes” for the broken Ward

identities, namely twisted Knizhnik-Zamolodchikov equations.

2.2 Construction of the basic fields. In order to construct a field X (z, z) obeying the
boundary conditions (1) on H = Hyp, we introduce a set of oscillator modes a,- labelled by
half-integers r € Z + % (We drop the superscript () for operators of the upper half-plane
theory.) They are supposed to obey the relations

[aryas] = T(Sr,—s y G = Gy .

Creation operators a,., r < 0, generate the Fock space H out of the ground state |o), which
is annihilated by modes a, with index r > 0. All the fields we shall consider act on this
state space H. It is simple to verify that the decomposition X (z, z) = X (z) — X (2) of the
bosonic field yields the desired properties if

To make the square root well defined, we have to introduce a branch cut in the plane, which
extends from z = 0 to —oo. Once the bosonic field is known, we obtain chiral currents as

J(z) == i0X(z,2) Z ar 27" J(2) = i0X(2,2) = — Z a, 271

r€Z+2 TEZ—i—%

Finally, the components T'(z) and T(z) of the stress energy tensor are given by

1) =t 5 (076 - s )

w—z 2 (w—z)

and likewise for T'(%). Since T' and T are quadratic in J and J, they satisfy the usual
boundary condition T'(z) = T'(z) all along the real line Imz = 0. By the usual arguments
[8] this implies that the modes

L, ::/ d—'z,z”+1T(z)+/ d—'z,z”“T(z)
C

L 2w o 2mi
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obey commutation relations of the Virasoro algebra with central charge ¢ = 1. Here
Cy — C_ is a closed oriented contour surrounding the origin, with C; contained in the
upper half-plane and C'_ contained in the lower half-plane. The commutation relation
between L,, and a, is easily checked to be of the form

[Ln,ar] = =7 apiy -

It is convenient to introduce two generating fields T and J by the formal sums

T(w) = ZL” w2 J(w) = Z ar, w L

nez T‘GZ—'—%

One may think of T as being defined on the entire complex plane with T(w) = T'(w) in the
upper half-plane, Imw > 0, and T(w) = T(w), for all w with Imw < 0. The generating field
J naturally lives on the two-fold branched cover of the complex plane defined by w? = w.
By introducing the branch cut from x = 0 to —oo we have specified a coordinate patch on
this surface with the local coordinate being denoted by w. In this chart, J(w) = J(w) for
Imw > 0 and J(w) = —J(w) for Imw < 0.

The commutation relations for the modes L,,a, with the bosonic field X(z, z) can be
expressed in terms of T and J as follows

[ T(w), X(2,2) | =0X(2,2) §(z —w) +0X(2,2) §(Z —w) ,

[J(w), X(2,2) | =id(z—w) + id6(Z—w) ,

where

o= 22 () =1 2 ()

nez TEZ—!—%

We state two simple consequences of these formulas that shall be important below. We
split J and T into two parts J(w) = Js (w) + J<(w) and T(w) = T~ (w) + T (w) such that

Js(w) = Z ar w0 To(w) = Z L, w2 .
r>1/2 n>—1

In the next subsection, we will use the commutation relations between the singular parts
T-,Js of the generating fields T, J and the bosonic field X (z, z):

). X =-(2) T MW, X6 = ——ax(). 6

w w—z w—z

Moreover, we will need the following lemma, a proof of which is given in Appendix A.

Lemma 1: One may rewrite the generating field T(w) in terms of the objects J< (w) and

J<(w), namely

T(w) = 5 (J(w)dw) + w)s(w)) + o= (©

N =
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2.3 Bulk and boundary primary fields. Our next aim is to construct primary bulk
and boundary fields. Here, the latter term refers to open string vertex operators which
can be inserted on Ry or Ry without changing the boundary condition. They are in
one-to-one correspondence to states in Hpp or Hyn, not to states in Hyp. We will see
that bulk fields can be regarded as products of such boundary fields W,(z). Therefore we
discuss these “chiral fields” first — admitting arbitrary complex insertion points, not just
z € OH. The fields W, (2) are labeled by a real parameter g and enjoy the properties

[T(w), ¥g(2)] = 9:Wg(2) 0(z —w) + hWg(z) 0:6(2 —w) ,

[J(w), Vg(2)] = gWg(z) 6(z —w) .

We have used the definition of the formal d-function specified above and h = % g2. For the
commutators of the T (w), Js (w) with the fields Wy (x), this implies

[To ), %ela)] = = 2Wy(a) + =2y Wale) @
Do), (5] = ()7 By ®)

Lemma 2: The unique solution (up to normalization) Y4(z) to the requirements (7,8)
s given by

-\ h
Ug(2) = (%) heeX<(2) ¢igXo(2) where X (2) = ZZ %z—r

and X< (z) = X(2) — X>(2). Note that Uy (2) is normal-ordered, i.e., the annihilators
ar, T > 0, appear to the right of the creation operators.

A proof can be found in Appendix A.
Our next aim is to describe the U(1)-primary bulk fields ¢4 (2, Z). By definition, they obey
the following commutation relations with respect to Js and T,

[To (0. 66(2.9)] = 7 06(202) + 5z du(39 9

h _
w=27 Pg(2,2) ,

o). 629 = (2) 2 en- (2) Eogen . (0

w w—z w w—z

I 5 _
+ E 8¢g(z,z) —|—

Note that each term from egs. (7,8) appears a second time with z being replaced by the
variable zZ. One can easily work out commutation relations between the full generating
elements T(w), J(w) and the bulk primary fields ¢4 (2, ). It is obvious from our discussion
of boundary fields that bulk fields ¢4 (2, Z) can be written as products of chiral vertex
operators,

Pg(2,2) = Wg(2) Wg(2) .
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The formulas we have reviewed here would enable us to perform a direct computation of
arbitrary correlations functions G(Z) for bulk-fields ¢g4(z, Z) with two twist fields o inserted
at x =0 and z = o0,

G(Z) = (o|p1(21,21) ... On(2n, Zn)|o) where ¢u(20,2,) = 05, (20,2,) -

The calculations would proceed by moving all annihilation operators to the right until they
act on the ground state |o). The same techniques would apply if there are extra boundary
fields W4 (x) inserted in addition to the bulk fields ¢4(%2, Z). Since we will develop another,
more generally applicable approach to the computation of correlation functions below, we
do not enter details here.

Before we conclude this subsection, we would like to derive bulk-boundary operator product
expansions which allow to expand our bulk fields ¢, (2, Z) in terms of boundary operators
[10]. The essential idea is that, in the presence of a boundary, bulk fields split into products
of chiral vertex operators inserted at points which are obtained from each other by reflection
at the real axis and with opposite charges (“method of image charges”). In order to obtain
concrete formulas, we first rewrite the bulk fields ¢4(z,2) = Uy(2)V_4(Z) in terms of

Xo(2,2) = Xs(2) — X5 (2) and X (2,2) = X (2) — X (2),

be(2,2) = <%)2h (zz)~" <%)2h g8 X<(2:2) pigX>(2.2) (11)

We have used the expression in Lemma 2 and then normal-ordered the right hand side
with the help of the BCH formula, which leads to the additional \/z- andy/z-dependent
factor.

Lemma 3 (bulk-boundary OPE):  For arguments z = x + iy close to the boundary, i.e.,
y > 0 small, the operators ¢4(z,Z) can be expanded in a series involving boundary primary
fields, with leading asymptotics

eigXO
y2h

for >0,

¢g(zv 2) ~
0g(2,2) ~ Y Wag() for <0 ,
where 1 s the identity field.

Proof: Let us begin with the case x > 0 in which \/z — v/Z — 0 as y becomes very small.

.\ 2h -~ _ . 2h
2y ~ o _
¢g(z, 2) = <%) (25)_h <Z+Z+—ZZ> eZgX< (z,z)eng> (2,2)

z—Z

N o 22\ 1
~ — xr - 1= —1.
2 o y2h
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We have also used that X_(z,z) = x¢ and X~ (x,z) = 0 for z > 0, which is a direct
consequence of the Dirichlet boundary condition.

If x < 0 and y tends to zero, the sum /z + +/Z vanishes and we can estimate the behaviour
of ¢g (2, Z) according to

i 2h 5 3 2h
) — _ >\—h — igX<(Za2) igX>(Za2)
2,2) = 27z — -] e e
b(2,2) (2) (+2) (z+z_272)

i 2h i 2h ‘ ‘
~ <§) .’13_2h <%) engX<(x)621gX>(x) — y2h \Ilgg(fll) ) .

Observe that boundary condition changing operators themselves do not arise from the
bulk-boundary OPE of bulk fields. Let us finally note that operator product expansions
for bulk fields or for boundary fields can be worked out with the same techniques. Those
for bulk fields ¢4(z, Z) of course agree with the usual OPE of primary fields in the bulk.

2.4 Correlation functions and the Knizhnik-Zamolodchikov equation. This
subsection contains the main result of this section, namely a derivation of the Knizhnik-
Zamolodchikov equation for correlation functions of bulk and boundary primaries in the
presence of a transition from Dirichlet to Neumann boundary conditions at the origin. Let
us look more closely at correlation functions containing n chiral fields Wq(2),

F(Z) = (o|Vi(z1) ... Yp(zn)|o) where W, (2,) = Vg (2) .

Before we start, let us state two elementary formulas for the action of Js (w), T~ (w) on
the ground state |o) :

Ts(w) |o) = (%th%L_l) o) (12)

() o) = Y aploywt =0, (13)

r>1/2

where h, is the conformal weight of the state |o). We will recover the equation h, = %

in a moment. The object (o| dual to |o) obeys the relations (o|J-(w) =0 = (o] T (w).

A first differential equation is obtained by inserting the generating field T(w) into the
correlation function:

(o] T(w)T1(z1) ... Yp(zn) o) = (0| Ts(w)¥1(21) ... Vn(zn) |o)

— i 1 o +L _|_h_‘7
B w—2z, (w— z,)? w?

F(3) +% (0| U1 (1) . U (2) Ly o)

v=1

Here, we have commuted T+ (w) through the fields ¥, (z,) until it acts on the ground state
|o) so that we can use formula (12).



Now we want to compute the same correlation function with the help of the affine Sugawara
construction, i.e. by exploiting eq. (6):

(o] T(w)¥qi(z1) ... Vp(2n) |o)

1
= 5 (o[> (W) ()T (1) ... Unlzn) [0) + 755 (0] Wi(z1) - .. Unl2n) o)
I~ (2\Y2 g 1 .
=52 (%) gog ). W) ) + g )
1 Vv gveu 1 -
B [2 VZ; w  (w—z)(w—z,) * 16w? (%)
Comparison with our first formula for the insertion of T(w) yields h, = 7=. From the
residue at w = 0 we get
1 8v8u 1
v o U(zn) Lo = = F .
(e ¥l o) = 5 3 P9
Finally, from the residue at w = 2, we obtain
h 2, g
0, F(z) = |[-Z& cR2YRE | F(2) . 14
PG = | Y B (14

HFV

This is the Knizhnik-Zamolodchikov equation we were after. Note that the terms in square
brackets determine a flat connection, as in the ordinary Knizhnik-Zamolodchikov equation.

We can solve (14) by a simple coordinate transformation. In fact, if we introduce coordi-
nates u, = /2, and the function F,(ui,...,u,) =[], vt F(u?,...,u2), then the system
(14) of first order differential equations becomes

2 n
g2 8,84 88,
By Fo(tigs .. ) = [ — ) [ _ ] Fy(uy,. .. ) . 15
Y (UI ! ) ( 2ul’ " n=1 Uy — U’H Uy —|—Uu ) <UI ! ) ( )
e

This equation is formally identical to the usual Knizhnik-Zamolodchikov equation with 2n
fields of charges +g, inserted at the points +u,. The solution to (15) is given by

2
. — 5z Uy — Uy \ Even
Rt =s- T ™ T ()™ 09)
v=1 1<v<u<n

The free parameter x can be determined from the boundary condition of the bosonic field
X on the positive real line, i.e. kK = K(xg) depends on the position xq of the D-brane.
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3. Twisted Knizhnik-Zamolodchikov equation for multiple
transitions

In the following, we study n-point functions of a free bosonic field theory on the half-plane
with several insertions of twist operators placed along the boundary. In the corresponding
string diagrams, open strings stretch between three or more branes of various dimensions.
As long as only one DN-jump occurs, a simple Hilbert space formulation of the boundary
CFT is available, and we can solve, in principle, for correlation functions by purely algebraic
techniques, as indicated in the last section. In the presence of many boundary condition
changing twist fields, it may be simpler to resort to OPE methods and to the theory of
complex functions on higher genus Riemann surfaces, and this is the approach we pursue
in the present section. We begin with a very brief review of relevant input from the
theory of hyperelliptic surfaces. We then discuss Ward identities in the second subsection.
The latter allow us to derive a system of linear first order differential equations for the
correlation functions similar to the Knizhnik-Zamolodchikov equations. Note that free
bosons on higher genus surfaces without boundaries (i.e. higher loop diagrams of closed
strings propagating in a flat target) have been studied in great detail in [4,31].

3.1 Hyperelliptic surfaces. Our aim is to investigate a scenario in which a bosonic
field X (z, z) is defined on the upper half-plane with boundary conditions switching between
Dirichlet and Neumann at 2g 4+ 2 points z;,7 = 1,...,2g9 + 2, on the boundary. Without
loss of generality, we shall assume that xo449 = 0o =: x5. To be more precise, we impose
Dirichlet boundary conditions in the intervals |z;, z;+1[ for i odd and Neumann boundary
conditions along the rest of the boundary, i.e.,

X(Z,Z) = Xlg for z =2 € D = ]xgk_l,xgk[
and
0,X(2,2) = 0 for 2z =2 € Ny = |wop_2,Top_1]

The variable y is defined through z =z + iy, and k =1,...,g+ 1. In terms of the chiral
currents J(z) = 10X (z,2) and J(Z) = i0X(z, ), these conditions become

J(z) = —J(z) for x € D, and J(z) = J(z) for z € N,

As in the previous section, it is convenient to work with a single field J that contains all
information about the two chiral currents J and J. Such a field necessarily lives on a
two-fold branched cover of the complex w-plane, namely on the hyperelliptic surface, M,
of genus g which is described by the equation

2g+1
w? = P(w) = H (w— x;)
i=1
Introducing branch cuts along the intervals Ny = [ror—2, T2k—1], we obtain a particular

coordinate patch of this surface with local coordinate w. In this chart, J(w) satisfies
J(w) = J(w) for Imw > 0 and J(w) = —J(w) for Imw < 0. The Virasoro field T' obeys the
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gluing condition T'(x) = T(x), all along the boundary, since it is quadratic in the currents.
Consequently, _the generating field T(w) is defined on the complex w-plane and coincides
with T' (resp. T') on the upper (resp. lower) half-plane.

The coordinate w on the complex plane lifts to a meromorphic function of degree 2, also
denoted by w, on the hyperelliptic surface M. This function defines a two-fold covering of
the sphere branched over 2g + 2 points Q1, ..., Q24+2, where w(Q;) = x;. A basis for the
space of holomorphic 1-forms on M is then given by

k—1
Wy = w for k=1,....9 .
P(w)

It will be convenient to work with a canonical homology basis {7vx, 4%} on M chosen as in
Figure 2. We denote by ; the period of the 1-form w; along the cycle v, i.e.,

wtdw
le ::j{ wi :j{ —_— .
Yk Tk P(w)

The basis of holomorphic 1-forms, {(x}, dual to the canonical homology basis {7y, Y} is
defined by the equation
7{ G = O -
Tk

In particular, we have the relation

g
Wy = E Wk G
=1

and the matrix (2 is invertible. The period matrix 7 is given by

Thi ;:% G,
Yk

and it is known to be symmetric and to have positive definite imaginary part. The surface
M has an anti-holomorphic involution induced by complex conjugation on the complex
plane. In terms of the functions w and w = \/P(w), it can be written as
(w,w) — (0,w) .
This involution will be used to extend the theory from the upper half-plane to the lower
half-plane while taking care of the boundary conditions on the real axis. There is a second
holomorphic involution that interchanges the two sheets of M and that can be written as
(w,w) = (w, —w) .

This involution is used when passing from the sphere with cuts to its cover M.

12



3.2 The Ward identities. @ To begin with, we introduce the correlations that we
plan to investigate below. Besides the primary bulk fields ¢4(z, 2) := exp(igX (%, 2)), they
involve 2g+2 boundary twist fields inserted at the points x;, which induce changes between
Dirichlet and Neumann boundary conditions. From our discussion in the previous section
we know that there is an infinite number of boundary condition changing operators that
we could insert. But it is sufficient to study the fields o(z) of conformal weight h = 1—16,
since all others can be obtained out of o(z) by OPE with chiral fields. Thus, our discussion
deals with correlators of the form

G(g, f) = <¢1 (21, 21) . gbn(zn, Zn) 0'(331> .. .0‘(1‘29+1)> (17)
where we use the notation ¢, = ¢g,, and where the boundary field o(z2442) = o(00) is
absorbed in the notation (...) = (o] ...|0), with |0) denoting the vacuum state. We could
insert further boundary fields W, (z). Their interpretation depends on whether they are
inserted in an interval with Dirichlet or Neumann boundary conditions. In the former
case, they could induce jumps in the Dirichlet parameters x if they are associated with
open strings stretching between branes at different positions. A boundary operator W, (z)
inserted in one of the Neumann intervals, on the other hand, creates an open string which
has both ends on the same brane (a Euclidean 1-brane, in our case) and moves with some
definite momentum along its world-volume.

As far as Ward identities are concerned, correlation functions of such boundary fields are
actually more fundamental, since one may split the bulk fields ¢4(2, ) into a product of
U, (z) and ¥_4(Z). For this reason, most of our investigations below involve the correlation
functions

F(Z,7) =

(Wi(21) ... Wy(2n) o(x1)...0(22941)) (18)
from which the correlators G(Z.

,¥) can be reconstructed.

Our analysis will make essential use of the Mittag-LefHler theorem, and hence it is based on
the study of singularities in correlation functions. The latter are encoded in the operator
product expansions between chiral fields and the bulk and boundary fields appearing in
(17,18). For the Virasoro field T one has the standard expansions:
h 1

b0 | ) (19)

(w—2)2 w-—z

T(w) o(z) ~ [ (w}f@ﬁ ! xax} o(z) . (20)

w —

Here and in the following, the symbol ~ means “equal up to terms which are regular as
w — 2”. According to the rule ¢4(2, 2) = W, (2)¥_4(Z), the operator product expansions
of T with ¢ contain further terms in which z is replaced by Z (note that hy = h_gz). These
formulas may be compared with equations (7) and (12) in Section 2. For our correlation
functions, egs. (19,20) imply

(T(w) V(1) ... Vp(2n) o(x1) .. .0(22941))

_i hy+16+2§1h0+16
n (w—2,)2 w—2z, 0z, (w—z;)?  w—uxz; Ox;

v=1 =1

13



The situation is more subtle for the current J(w), which we recall is only well-defined on
a surface of genus g. More precisely, J(w)dw is a meromorphic 1-form on a hyperelliptic
surface. For the operator product expansion of J(w) with the field ¥4(z), we shall use

g P(z)

T VPw) w2

Indeed, the right hand side has a first order pole at w = 2z with residue g and is regular
otherwise. Equation (22) generalizes formula (8) in Section 2.2. To determine the oper-
ator product expansion between J and the twist field o(x), we observe that the leading
contribution

J(w) ¥g(z) dw U, (2) dw . (22)

Jw)o(z) ~ (w—z)t7=17he 7(z) 4. ..

must involve a field 7 of conformal weight h, = h, + 1/2 + Z. Otherwise, the expansion
would not be consistent with the periodicity properties of J close to the branch point
at w = x. Among the boundary condition changing operators, there is one field with
conformal weight h, = % + 1—16 which gives rise to the most singular contribution diverging
with (w — 2)71/2, cf. the spectrum (4) computed above.

After multiplication of the previous equation with dw, we are supposed to study the right
hand side in the local coordinate £ = \/w — x. The outcome is rather simple: The form
(w— x)_l/zdw = 2d¢ on the right hand side is regular at ¢ = 0 so that we conclude

Jw)o(z)dw ~ 0 (23)

i.e., the singular part of the operator product expansion between J(w)dw and the twist
field o(z) vanishes.

As we will see, the following important formula is a consequence of these operator product
expansions:

<J(U)) \1/1(21) ce \Iln(zn) 0'(1131) . . .0'(.’1329+1)>

F(Z7) (24)

where

and the parameters AFxg := xf — xF** are obtained from the values of the bosonic field

at the boundary.

To derive the formula (24) we exploit the fact that a meromorphic 1-form on a compact
Riemann surface is determined by its principal part up to some holomorphic 1-from. Op-
erator product expansions, on the other hand, contain all information about the principal

14



part. Hence, from eqgs. (22,23) we conclude that

(J(w) \I}1<Zl) . \I/n<2n) 0'(.’131) .. .0'(11329+1)>

8

Z,

Z \/ w— 2z, ’ — P(w)

Note that the insertion points z, and x; parametrize a whole family of meromorphic 1-
forms, and the coefficients 0 may depend on them. Actually, we can determine this
dependence completely. To this end we integrate the above equation along a loop ~; which
surrounds the interval [zok, Tog+1], as shown in Figure 2. On the right hand side of our
equation, this integral may be expressed in terms of the matrix €2 and

: ()dw 26
. /P w—z ' (26)

Note that the matrix elements Qz; and the functions B*(z) depend on the insertion points
;. With these conventions we find

VP pagy 4 3 BEDET

f dw (ths. of (25) = 3 g BH=) FED+ Y b

Next, let us analyze the integral over the left hand side of equation (25). By a deformation,
we can make the integration contour v, symmetric under a reflection v — % along the
real line. Now, we may split v into two parts v, vy with the property Imy; > 0 and
Imv; < 0, so that each piece lies entirely in one of the half-planes. With these conventions,
our contour can be written as a composition 75 = ;7 o 5 which obeys 5 = —y¢ . If we
recall, in addition, that the field J coincides with J on the upper and with —.J on the lower
half-plane we deduce

]{mxw) dw = L J(w)dw-l-[y?j(w)dw _ i/y?dX(w,w) k)

In the penultimate step, we have expressed the currents through the bosonic field X by
J(w) = i0X (w,w) and J(w) = i 90X (w,w). The contour integral over the differential dX
is finally determined by the values of X at the boundary. For the integration over the left
hand side of (25), this result implies that

]{ dw (Lh.s. of (25)) = i(xk —xF™ F(2,7) = i AFxo F(Z, %)
Yk

—

Putting all this together, we arrive at the following formula for the function G (Z, Z):

R(2,2) = > <2AXO—ZgV V) F(Z,2) = on(Z,7) F(Z7)

=1
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The functions «j, introduced here depend on the insertion points z,, z;, the charges g, and
the values xf of the bosonic field at the boundary. Additional information, e.g., on the
unknown function F'(Z,Z), is not needed. This concludes our derivation of eq. (24).

Figure 2: The curves 7, run counterclockwise around the Neumann cuts on the
real line. The curves 7, run clockwise and close on the second sheet through
Neumann intervals.

3.3 The twisted Knizhnik-Zamolodchikov equations. @ We now start to exploit
formula (24) together with the Sugawara construction of the energy-momentum tensor T
to compute the effect of inserting the field T into our correlation functions. If we include
one extra field Wy (u) into eq. (24), differentiate with respect to v and set g = 0, we obtain
as a consequence of J(u) = é@uwg(uﬂgzo

(J(w) () Uy (z1) ... U (2) o(x1) ... 0(T2941))

— < gveu \/P(Zl,> \/P(ZM> J
u,uzzl \/P(“)\/P(w) W—2zy U—2zy, +;V:1\/Pu Plw) w—2z

9 k=1, 1—1
apoqw”tu 1 d P(u) _ _ o
T Z ( _kalBl(u)wk ! F(Z,2) .

2 /P /Pl) | /Plw) du

At this stage we can subtract the term 1/(w — «)?, multiply by a factor 1/2 and perform
the limit © — w. A short and elementary computation gives

(T(w) V(1) ... Vp(2n) o(z1)...0(x2941))
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|y s VPG VPG | sy alE D e e P

]2 L Plw) w=2z, w-2z, P(w) w — 2y,

V= k=1v=1

1 & apaquhti=2 P(w)” 1 & Q' B (w) wk! L
5 Z - kil F(Z,ZL’) .

Pw) 4./ P(w) 2 k,lz_l P(w)

The same correlator has been computed in eq. (21) directly with the help of operator
product expansions between the Virasoro field T and V¥,, o from (19,20). Comparison
of the residues at w = z, in the two different expressions gives the z-components of the
Knizhnik-Zamolodchikov equations:

R V Zu g h’l/ J g Zk_ RN
0, F(Z,%) = £ =X | F(z,%)
;j / )Zl/ — Z Z

If we restrict to the case of two twist field insertions, i.e. ¢ = 0, the last term vanishes.
Putting 1 = 0 and hence P(w) = w, formula (14) is recovered.

Computation of the residues at w = x; yields a formula for the derivative of I’ with respect
to the position x; of twist fields. Using that

1/
P
Res, (Y2W) ) _ 1 P
4./ P(w) 8 i LT
and

9 O=1plf N, k-1 g k—1
Q. B (w) w 1 x; 1
Res,, Ej ki :Ele/ i d¢
k=1 P(w) k=1 2 VP&~

we obtain

0., F(7,8) = L ( AL SO zg: ar(Z, ) x’?*)

k=1
1 1 1 < k-t
—= —Z Q! : ¢ | F(z,7) . (27
8;%—%‘ 4k,zz_1 lfi P ) | TG

To conclude this section, we come back to the original correlators G(Z, Z) of bulk-fields
¢g(2,Z) and boundary twist fields o(x;). The differential equations they obey will be
formulated with the help of the following functions:

_ 1 \/P(w)_\/P(w A _ Bl(@
wo(z,w) = PG | 2 —w @ = P02 Qp (B (w) = BY( >) )
B 2g+1 1 P(Z) g Zk_l . l L
Mo(2) = =5 Z z—x P(z) z—Z a MZZI P(2) U (B -5 ()

oaz) = >
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Taking into account the equation ¢g(z, 2) = Wq(2)¥_4(Z), we conclude that the correlation
functions G(Z, Z) must satisfy the following set of first order linear differential equations:

0:G(Z, %) = Ae G(Z,7) forall £=2z2,,%Z,,%; (28)

with the connection matrices A, , Az, and A,, being defined by

sz = Z guguWO(Zua zu) + ggAO(ZV) + igVO-A<ZV) ’ (29)
nAV
AZV — Z gugHWO(ZIM zy) + gg)\O(ZV) + igVUA<Zu) 9 (30)
HFV
1 - ’
Ag, = 3 xli)n%(a: —x;) <Z gowo(x, z,) + iUA({IJ)>
‘ v=1
0;H;(x;) !
B 2 ¢ . (31)
8HZ(1‘1) k —1 A/ P ) — ajl

We have introduced the function H;(z;) := [[;,(zi — x;). Note that the term in brackets
has a simple pole at x = x; which we cancel by the extra factor x — x; before performing
the limit. Equations (28) through (31) constitute the main result of this section.

4. Construction of correlation functions

It remains to reconstruct the correlation functions G(Z, %) from the system of linear first
order differential equations that we obtained in the previous section. Integration of the
equations is, in principle, straightforward, but it leaves one constant factor undetermined.
The latter is found explicitly in terms of the boundary conditions. Moreover, we shall
manage to express the correlators G(Z, Z) in terms of rather elementary building blocks.

4.1 Integration of the z-connection. To begin with, we simplify our problem by
fixing the insertion points of the boundary twist fields o(x;) and considering only the
dependence of Gz(Z) = G(Z, %) on the positions (z,, z,) of bulk fields. This means that
we have to integrate the z-connection A, dz, + Az dz, defined in egs. (29,30) . The result
will be written with the help of two functions Go(z,w) and Sp(w) which are given by

Go(z,w) = 2 Re/z wo (&, w)dE (32)
So(z) = gl_{ri { 2 Re /z Ao(§) d€ —log(v — v) — Relog P(v) | . (33)

Here, the point x is chosen to lie in the Dirichlet-interval |x1,z3[. The integrand in eq.
(32) is regular on the real axis and hence the integral is well defined. One can easily see
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that its value neither depends on the starting point x € |x1, z3[ nor on the choice of the
curve v from z to z. In contrast, the integrand A\g(€) in our definition of Sy(z) has a simple
pole on the real axis. This is the reason why we subtract the divergent term log(v — v)
before taking the limit v — x. The contribution —Relog P(v) is added to render the whole
function independent of the integration contour and, in particular, of the starting point x.
More details on the definition of Sp(z) and a discussion of its properties can be found in
Appendix B.

The two functions we have just defined possess a number of abstract properties that char-
acterize them uniquely. First of all, it is not difficult to see that Go(z,w) is simply a
Green’s function on the upper half-plane, i.e., it obeys

A,Go(z,w) = 4né(z —w) for Imz >0

and the boundary conditions

0

G — 0 f D; |
o(z,w) or z € s

Go(z,w) = 0 for z € N;

A standard computation shows that Go(z,w) is symmetric in its arguments, Go(z,w) =
Go(w, 2).

The function Sy(z), on the other hand, is harmonic throughout the whole upper half-plane,
ie. A,Sp(z) = 0. It diverges at the boundary with a leading singularity of the form

D;

N (34)

So(z) ~ Flog|lz—2z| + ... for Rez € {

We are now in a position to integrate the differential equations (29,30) for the correlators
of bulk fields ¢4(%, Z). The result is given by

log Gz / (A,,dE, + Az dE))  + A(WD)

1 n ig, g-l—l
= Y mGolan ) +Zgy50 (=) +Z B / (&,2) de . (35)
75#1

v, p= 1=
v

In the first line we have chosen some arbitrary curve in the configuration space of n particles
in the upper half-plane starting at points w, with Imw, > 0. The integration “constant”
A(w) depends on the choice of the starting point and has to be fixed such that the resulting
function log Gz(2) satisfies the desired boundary conditions. In passing to the second line,
we have extended the integration to w, = x on the boundary and inserted the definitions
(32,33) of the functions G and Sp. Then we use the auxiliary formula

g+1

k—1
Z Xh=—— Go(2,€)dé = 2Re Z 5 Q' Alxg dé + xp -
A7 81 13
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To prove this formula one should notice that the function on the lL.h.s. of the equation is
harmonic in the upper half-plane, that it satisfies Neumann boundary conditions along
the intervals N and that it approaches the constant values xf for z € Dy. By explicit
computation, one can establish the same behaviour for the function on the r.h.s. Since
these properties are sufficient to determine the functions uniquely, the desired equation
follows. We employ it to bring the third term of eq. (35) into a form that allows the most
explicit control of the boundary behaviour and hence is quite appropriate for fixing the
remaining A(zx).

4.2 Integration of the x-connection. Before we address the integration of the full
connection (29,30,31) below, we investigate another simplified situation in which there
are no bulk fields present. Consequently, the charges g, in the equation (27) can be set
to zero, and we are confronted with the problem of solving the following equation for
ZA(T) := G(D):

zg: Laly kel ! 1 Zg: 1 i H,
QHZ (92 lOg ZA(.’E) = QA X0 {Zli_ —— aiHi_— O i 7 df ,
k=1 . 4 2 500 M VPO - )

where H; denotes the function H; = [[;_,;(z; — z;) as before, and A = {Alxy}. These
differential equations were solved by Zamolodchikov in [42]. Here we simply quote the final
result:

2g+1
g Akonlxo Tkl

ZA(Z) = H (m; — $j>_% det_%(Q) eslﬂ Zk,zzl

i>j

4.3 The correlation functions G(Z,&). The results of the previous two subsections
can be combined into explicit expressions for the correlators G (2, Z) of bulk fields ¢g4(z, Z)
and boundary twist fields o(z). To see this we note that solutions of the differential
equations (28) can be found by integrating the connection 1-form A, dw, + Ag, dw, +
Ag,d¢; along an arbitrary curve v(t) = (vz(t),vz(t)), t € [0,1], that ends at the point (2, Z)
in the (2n + 2¢g + 1)-dimensional real configuration space.

With some care (see the first subsection) we can start the integration with all insertion
points being on the real axis. Furthermore, we may choose v such that all twist-fields are
moved to their final position at  before we begin moving the bulk fields into their desired
locations.

In more mathematical terms this means that ~ consists of two parts v = () o v(1) with

8157;1)(15 € [0,3]) = 0 and 81573(32)(15 € [4,1]) = 0. Aslong as t < 3, the bulk fields are
located at points w, = 7, (t) belonging to the first Dirichlet interval Dy =]zq,z2[. This
implies wo(z,v,(t)) = 0 for ¢ € [0, 3], so that one term in our expression (31) for A4,
drops out. Hence, we are precisely in the situation considered in the previous subsection,
and the integration of our connection 1-form over v in the interval ¢ € [0, %] gives Z(Z).
When we continue the integration to t = 1, we add the expression for log Gz(Z) computed
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in eq. (35). After some rewriting, the following result for the correlations function G(Z, %)
is obtained:

G(2,%) = Za() exp (Zgis()(zy) exp (E ig, (") zy>> : (36)

Here, <I>)(£_1) (z,,) denotes the potential that is created by n—1 charges g, at points z, # z,
in the presence of the boundary with mixed boundary conditions,

g+1

_ 1
(‘D)((Z 1)<Zu) = §/Im d*w GO Zw Zgﬂ w— ZH Z/ 081 13 (g,zy) a -

w>0 wtv

It is quite instructive to interpret each of the three factors in our final expression for the
correlation function G(Z,Z) directly within conformal field theory. For the moment, let
us specify the number of bulk fields in G by some extra superscript, i.e. we shall write
G(z,%) = G™(Z,Z). Now consider the object

! G (z, )
P(z) = ,—log( exp(g2So(z,)) G =D (2, T) )

where 2" denotes the set of n — 1 bulk coordinates z,, © # v. It is easy to determine the
behaviour of ®(z,) as a function of the bulk coordinate z, from the bulk and bulk-boundary
operator product expansions of the fields ¢4(2,, Z,), cf. Subsect. 2.3:

A, ®(z,) = 27 Z gu 0(zy — 2)
AV

0

Olmz,

d(z,) = xb for 2, € D; , ®(z,) = 0 for z € N;
These properties characterize the function ®(z,) uniquely, and by standard formulas from

electrostatics we obtain that ®(z,) = <I>(n_1)( ). An iteration of this construction along
with GO(Z) = Za (%) leads to our product formula (36) for the correlation function
G(z, ).

The three factors can be interpreted as follows: Za(Z) is a “partition function” corre-
sponding to some line charge distribution provided by the twist fields alone; the term

Z 0% )(:5 1) (2v)

is the electrostatic potential corresponding to a configuration of n point particles with
charges g1, ..., g, located at the points 21, ..., z, and line charges distributions along the
Dirichlet intervals. The term .

> g2 So(z)

v=1
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can be interpreted as a renormalized electrostatic self-energy of the point particles located
at 21,..., 2n.

4.4 Path integral approach and extensions. Before we conclude, let us briefly
sketch how the theory can be formulated in the path integral approach. This is important
for the following two reasons: First, as long as one is only interested in free bosons, the
path integral approach is a powerful alternative to our analysis above involving Knizhnik-
Zamolodchikov connections. The path integral formulation allows for a more direct com-
putation of the correlation functions (but it does not easily extend to non-abelian group
targets.) Secondly, using path integrals we will be able to describe rather easily possible
extensions of our analysis to compact targets and to D-branes with B-fields.

To begin with, we consider once more the familiar situation of a non-compact 1-dimensional
target and Dirichlet parameters xj. We denote by G the Green’s function of the Laplacian
on the upper half-plane,

AG(z,w) = 0(z—w),

subject to the boundary conditions

0 forzeD,
0 forxeN.

The Gaussian measure with covariance G and mean 0 is denoted by ug, and we use y
for the corresponding random variable. With the help of the Dirichlet parameters xg, we
define a real-valued function £ on the upper half-plane by

AE =0,
£|Di = Xé? (9y£

N, =0, 2=1,...,9+1.

The effect of the Dirichlet parameters is incorporated through a shift of the random variable
x by & which gives us the bosonic field X = x4+ &£. It appears when we construct the basic
fields of the theory, namely the vertex operators

0g(2,2) = :e9%X=2),

In this framework we could recover the correlation functions above by integrating products
of fields ¢4(z, Z) using the Gaussian measure.

When the free boson X takes values in a circle S, the boundary conditions depend both
on Dirichlet parameters x{, and on Neumann parameters denoted by y§. The Neumann
parameters determine the Dirichlet parameters of the T-dual theory and can be thought
of as the strength of constant Wilson lines turned on along a Neumann direction. In Sect.
3, we have worked in a local chart with the Neumann intervals cut out. Information on
Neumann parameters is, therefore, lost unless we take a second chart into account which
has cuts along the Dirichlet intervals. As above, we can derive Knizhnik-Zamolodchikov
equations for each chart; the full correlation functions of the compactified theory are to
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be built up from the respective solutions in such a way that the boundary conditions are
met.

The path integral computation of correlators is rather easy to adjust to the compacti-
fied situation: if we set Neumann parameters to zero and restrict attention to the fields
©q(2, ), we can use precisely the same formulas as above.

In order to incorporate non-vanishing Neumann parameters y{ and to compute more gen-

eral correlators for fields @éf)g(z, z) with (g,g) taken from an even, self-dual Lorentzian

lattice, we introduce a real-valued function n on the upper half-plane defined by

An = 0,

Then, we set
w@y,.(w) = gG'(w,z) + n(w) ,

where G’ denotes the Green’s function of the Laplacian on the upper half-plane with
interchanged Dirichlet and Neumann boundary conditions, i.e.,

AG (w,2) = §(w —2),
9y G (x,z)= 0 forzeD,
G'(r,z)= 0 forzeN.

We now introduce the disorder operators D(z, Z) satisfying
Dy(2,2)F|dX] = FldX + *dw, .] ,

for any functional F'. The left- resp. right-moving chiral vertex operators can then be
written as

77[]9(2) = @%(272>D%(27 2) s JJ@(Z) = @g(z,é)D_g(Z,Z) )

see also [17] for more details and for an application to soliton quantization in 2-dimensional
theories. The basic fields of the compactified theory are products

0l (2,2) = Py(2)Pg(2)

where (g, g) lies in some even, self-dual Lorentzian lattice. For another approach to the
rational compactified boson, the reader is referred to [22].

Another extension would involve the appearance of B-fields on our D-branes. This has
attracted some interest recently, because of its relation with non-commutative geometry,
see e.g. [15,35,36, 3,16] and references therein. Non-trivial B-fields can only exist if one of
our branes is at least 2-dimensional. For simplicity, we shall focus on a pair of a Dp-and a
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DO-brane. The field strength on the Dp-brane will be denoted by B. In terms of boundary
conditions for a multi-component free bosonic field, the situation is described as follows

X% t,0) = 0 and 09,X%t,w) = B} 9,X%t,w) for a,b=1,...,p .

The spectrum of the associated boundary condition changing operators and the Green’s
functions in the presence of two twist fields have been discussed at various places (see
e.g. [36,11]). Our techniques from Sections 3 and 4 allow to extend such investigations to
the case of multiple twist insertions. Instead of giving the details here, we simply state
how one has to adjust the path integral computation to the new scenario. This is rather
easy: All it requires is to replace the function G above by some matrix valued Green’s
function Gp = (G%). The latter is a Green’s function for the Laplacian 1, A on the
upper half-plane (1, denotes the p-dimensional identity matrix), subject to the boundary
conditions

GY(z,w)= 0 forx € D,

9y G¥(v,w) = iB% 0,GE¥(x,w) forx € N .

With the help of this function, the calculation of correlators proceeds as before.

5. Outlook

We have succeeded in decomposing the complete bulk and boundary correlators in the
presence of DN-transitions into functions with rather natural interpretations — both from
the point of view of electrostatics and from the CF'T perspective. This is useful for carrying
out the remaining step in the computation of string amplitudes, namely the integration
over insertion points of fields on the world-sheet. The calculation of such string amplitudes
gives effective actions involving a hyper-multiplet x which comes with the twist fields. To
leading order, the bosonic part of these actions can be found in [14, 27,25]. Multiple twist
insertions allow to compute higher order corrections.

When we turn on a B-field, the string amplitudes may be described through field theories
on some non-commutative space. It was suggested in [36] that these theories are related to
some model on an ordinary commutative space through a complicated non-linear transfor-
mation. This statement can be checked order by order in the effective description. After
the appropriate (but straightforward) extension to non-vanishing B-fields, the considera-
tions presented above may be used to perform a similar analysis for theories which contain
a hyper-multiplet .

Keeping the bulk insertions fixed, the sequence of correlators with arbitrarily many twist
field insertions can be viewed as building blocks of the perturbation series of a relevant
perturbation by the twist field. This “tachyon condensation” is responsible, e.g., for the
formation of DO-D2 bound states, as discussed in [23]. Upon integrating over twist field
insertion points in the one-point functions Za (%) exp{g?So(z)}, one would arrive at one-
point functions which characterize the boundary theory after tachyon condensation. Sen’s
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approach [37] and the results of [33] allow one to circumvent the relevant boundary flow
and to replace it by a combination of marginal bulk and boundary deformations. However,
some questions as to the equivalence of both procedures remain open, and it might be useful
to have an independent check of these methods. The correlation functions constructed here
provide a starting point.

For applications to superstring theory, it is mandatory to extend our analysis to free
fermions. This does not pose serious problems, since systems of an even number of fermions
can be bosonized.

Problems of the type of our free boson problem are encountered in general boundary CFT
as soon as the “parent” CFT on the plane admits different boundary conditions. For some
general results on the rational case, see [20,21,22]. The spectrum of boundary condition
changing operators can be derived as in Sect. 2, once boundary states for the “constant”
boundary conditions are known. Again, the computation of correlators becomes non-trivial
if boundary conditions with different gluing automorphisms are combined. In non-abelian
WZW models, which constitute and important generalization of the free boson case, the
Sugawara construction can be exploited in a similar fashion as for the free boson and
leads to twisted, non-abelian Knizhnik-Zamolodchikov equations. The partition functions
counting BCCOs in non-abelian boundary WZW models are linear combinations of the
twining characters investigated in [18] (see also [5] and references therein). Apart from the
models with affine Lie algebra symmetry, there is the rather large class of so-called “quasi-
rational CFTs” [28] on the plane for which generalizations of Knizhnik-Zamolodchikov
equations exist even without a Sugawara form for the energy-momentum tensor [2]. It
might be interesting to see how such structures extend to boundary CFT.
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Appendix

A: Proofs of Lemma 1 and Lemma 2.

Proof of Lemma 1: We start from the usual expression for T in terms of J and rewrite it
until we can perform the limit w; — ws.
o) Sws) —
wy)w2) — 5
(w1 — w2)?
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1
(w1 — wy)?

1/2 1/2
p(m) +a(:) -

(w2 —wy)?

= J(w1)J(w2) + J(wa)ds (w1) + [I= (w1), J(w2)] —

= Jo(w1)J(wa) + J(wa)Jds (w1) +

We can now perform the limit wy — wy =: w to recover the generating field T(w) from
the last formula

1 11
T(w) = 5(J<(w)J(w) +J(w)Js (w)) + ==
Cut? /2 -2 1
where we used lel_)ml )2 =< .

Proof of Lemma 2: The derivation of the commutation relation with J< (w) is straightfor-
ward. So, let us turn directly to the calculation of the commutator with T~ (w). Recall
that h = g?/2. Then,

[T>(w), Wg(2)]

h
— <_) ([T>(w), eigX<(Z)] ei8X>(2) + e X<(2) [T (w), eigX>(Z)]>

-\ h
— <22_z> c'8X<(2) <z’g [T>(w), X<(2)] = h [ X< (), [X<(2), T> (w)]]

+ g [Ts(w), X5 (2)] + h [Xs(2), [X5(2), T> (w)] ]) ¢ieX>(2)

.\ h
:<i> ei8X<(2) ig [Ts(w), X (2)]+ h( Z w22 S

2z
r,s<0,n>—1

_ Z w—n—2zn 5r+s,—n> eigX> (2)

r,s>0,n>—1
i\" ig 1
. g X< (2) X -n—-2_n, - ig X~ (2)
(22) e w—zaz (Z>+h(,;w 2"n wz) e
.\ P
1 1 - - z 1 1
— s igX< (%) 518X > (2) hlZ v
w—z (22) (9Z<e © )+ (w(w—z)2 wz) 5(2)
1 1 h 1 1
w—z g(z)+w—zz s(2) + ((w—z)2 z(w — z2) 5(%)
1 h

In the process of this computation we have inserted the commutation relation between
L,,a, and eq. (5). The rest involves only standard algebraic manipulations. n
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B: The function S,(z).

In this appendix we want to explain a number of properties of the function Sy(z) that is
introduced in Section 4.1. To show that the limit lim,_,, exists, we insert the definition
of A\o(&) into eq. (33) . After splitting off all non-singular terms in Ay we obtain:

So(z) = lim [ 2 Re / " (€ dé — log(v — 1) —RelogP(v)}

v—T

= lim{ —2Re/z £%g_dg—log(fu—@) —l—regv_w]

vV—X

= lim [ lOg(’U — @) - lOg(Z - 2) - IOg(U - @) + reg/v—>m ]

Since the singularity from the integral cancels against the term log(v — v), the limit can
be taken.

Our second aim is to understand that Sy(z) = S§(z) does not depend on the choice of z.
Let us displace x by some small amount a € R such that x + a is still in the Dirichlet
interval D;. Comparison of S (z) and S§T%(2) gives

So(2) = 857 (2)

r v+a
= lim | 2 Re/ Ao(§) d§ — Relog P(v) + Relog P(v + a) }
i v+a 29—1 1
) > P(v+a)
=1 -2 2 _d log ————=
Jim Re/v ;{—xi &+ Relog =505
r 2g+1
L Plota) | _
= gl_r)% —Re ; (log(v +a — z;) —log(v — z;)) + Relog Py | T 0 .

In passing to the second line we omitted all terms in the integrand which vanish when &
comes close to the real axis.

Finally, we investigate the behaviour of Sy(z) at the boundary. Basically, one repeats
the analysis we have sketched above in our discussion of lim,_,,. If the end-point z of
our integration approaches one of the Dirichlet intervals, this leads to the singularity
~ —log|z — z|. In the argument one needs that the quotient /P(z)/P(Z) in front of the
singular term 1/(z — z) satisfies lim,_,, /P(2)/P(z) = 1 for « € Dy. This is no longer
true when z is sent to the real axis in one of the Neumann intervals Ni. In fact, upon
moving = from a Neumann into a Dirichlet interval, the polynomial P(z) changes sign,
causing the quotient P(z)/P(z) to surround the origin of the complex plane once. After
taking the square root we conclude that lim,_,, \/P(z)/P(z) = —1 for z € Ny and hence
So(x) ~ log |z — Z| near the Neumann intervals.
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