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Abstract. We formulate and analyse the Hamiltonian dynamics of a pair of massive spinless
point particles in(2 + 1)-dimensional Einstein gravity by anchoring the system to a conical infinity,
isometric to the infinity generated by a single massive but possibly spinning particle. The reduced
phase spacEeq has dimension four and topolo@®? x S1. I'ieq is analogous to the phase space

of a Newtonian two-body system in the centre-of-mass frame, and we fing.ga canonical

chart that makes this analogue explicit and reduces to the Newtonian chart in the appropriate limit.
Prospects for quantization are commented on.

(Some figures in this article appear in black and white in the printed version.)

PACS numbers: 0420F, 0420H, 0460K

1. Introduction

Einstein gravity in 2 + 1 spacetime dimensions provides an arena in which many of the
conceptual features @8 + 1)-dimensional Einstein gravity appear in a technically simplified
setting [1]. One of these simplificationsis thatin 2+1 dimensions the theory can be consistently
coupled to point particles. The spacetimes containing point particles can be described in terms
of 10(2, 1) holonomies around nontrivial loops [2, 3], and there exists considerable work on the
global structure of these spacetimes [4—13], much of it motivated by the observation that the
spacetimes may contain closed causal curves. Several variational formulations of the dynamics
have been introduced, both for examining the classical solution space in its own right and also
as a starting point for quantization [14—24].

In a spatially open universe, a variational formulation of Einstein gravity must specify
boundary conditions at the infinity. In 3 + 1 dimensions, the spacelike infinity of an isolated
system can be taken to be asymptotically Minkowski, and one can introduce in the Hamiltonian
formulation a fall-off that anchors the system to an asymptotic Minkowski spacetime [25-27].
The 4-momentum and angular momentum of the system, defined as surface integrals at the
infinity, can be interpreted respectively as a constant timelike vector and a constant spacelike
vector in the asymptotic Minkowski spacetime, and the asymptotic P@risametry group
can be used to choose an asymptotic centre-of-mass Lorentz frame [25].
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By contrast, in 2 + 1 dimensions, the spacelike infinity of an isolated system is not
asymptotically Minkowski but conical [28,29]. The neighbourhood of the infinity has only two
independent globally-defined Killing vectors, a timelike one generating time translations and
a spacelike one generating rotations, but none that could be understood as generating boosts
or spatial translations. It follows that the neighbourhood of the spacelike infinity contains
information that defines an analogue of a centre-of-mass frame also in 2+ 1 dimensions: in the
special case of a spacetime containing a single massive and possibly spinning point particle, the
metric near the infinity uniquely determines the locus of the particle world line [2]. However,
as the 1@2, 1) holonomy around the infinity is nontrivial, with a nontrivial(® 1) part,
the ‘momentum’ and ‘angular momentum’ cannot be understood as constant vectors in an
asymptotia2 + 1)-dimensional Minkowski spacetime, and the analogue of the centre-of-mass
frame cannot be realised as a Lorentz frame in an asymptotic Minkowski spacetime.

With point particle sources in a spatially opght+ 1)-dimensional spacetime, there is thus
a certain tension between two different viewpoints on the dynamics. On the one hand, one
expects the conditions at the conical infinity to be crucial for defining what evolution means,
for finding a Hamiltonian that generates this evolution, and for discussing symmetries and
conservation laws. On the other hand, the relative motion of the particles takes a simple form
when expressed in small patches of Minkowski geometry valid ‘between’ the particle world
lines, but not valid globally, and in particular not valid in a neighbourhood of the infinity:
this suggests formulating the dynamics first in terms of fields and variables that are defined
locally, in small patches valid between the particles, and only later glueing the patches into a
more globally-defined formulation that incorporates the conditions at the infinity. Each of the
variational formulations of [14—24] strikes a different balance between these two viewpoints.
An example near one extreme is [23], which specifies the trajectory of a single particle in terms
of a reference point in the spacetime and a reference frame at this point. The purpose of the
present paper is to approach the opposite extreme: we anchor the particle trajectories to the
conical infinity at the very outset.

We concentrate on the case of two massive spinless particles, which can be regarded as
the Kepler problem in2 + 1)-dimensional Einstein gravity. Briefly put, we shall formulate
and solve the Hamiltonian dynamics of tt#+ 1)-dimensional Einstein—Kepler problem in
(the (2 + 1)-dimensional analogue of) the centre-of-mass frame.

To state the technical input more precisely, we assume the two-particle spacetime to have
a spacelike infinity whose neighbourhood is isometric to a neighbourhood of the infinity in the
spacetime of a single, massive, but possibly spinning, point particle [2], with a defect angle
less than 2. This is equivalent to assuming that the relative velocity of the two particles is
less than the critical velocity found in [5—7], and it implies that the spacetime has no closed
causal curves. The neighbourhood of the infinity admits a coordinate system that is adapted
to the isometries, and these conical coordinates foliate the neighbourhood of the infinity by
spacelike surfaces. We adopt these conical coordinates as the asymptotic structure to which
the Hamiltonian dynamics will be anchored.

We take advantage of the well-known description of two-particle spacetimes in terms of a
piece of Minkowski geometry between the particle world lines [5-10]. We first translate this
description into one that relates the world lines of the particles to the conical infinity. We then
use this explicit form of the classical solutions to reduce the first-order gravitational action,
and we find on the reduced phase space a canonical chart analogous to that in a nongravitating
two-particle system in the centre-of-mass frame. As expected from the nongravitating case,
the reduced phase space has dimension four. The reduced Hamiltonian is bounded both above
and below, in agreement with the general arguments of [28, 29], it has the correct relativistic
test particle limit when the mass of one particle is small, and it has the correct nonrelativistic
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limit when the masses and velocities of both particles are small. The functional form of
the Hamiltonian is nevertheless complicated, given only implicitly through the solution to a
certain transcendental equation. Quantizing this reduced Hamiltonian theory would thus seem
to present a substantial challenge.

The plan of the paperis as follows. Insection 2 we review the spacetime of a single spinning
point particle and introduce the conical coordinates. Section 3 describes the two-particle
spacetimes as anchored to the conical infinity. Section 4 recalls the first-order action [23] of
(2 + 1)-dimensional Einstein gravity coupled to massive point particles. The action is reduced
in section 5, and the reduced phase space is analysed in section 6. Section 7 contains brief
concluding remarks.

We use unitsinwhich = 47 G = 1 (Planck’s constant will not appear). The Hamiltonian
of a conical spacetime in these units is equal to half of the defect angle [23], and the mass of
a point particle is then by definition half the defect angle at the particle world liRé€2, ©
and 1Q.(2, 1) stand respectively for the connected components@f O and 102, 1).

2. Spacetime of a single spinning point particle

In this section we briefly review the spacetime of a single spinning point particle [2]. The main
purpose is to establish the notation, in particular the conical coordinates (2.4).

Let M be the(2 + 1)-dimensional spacetime obtained by removing a timelike geodesic
from (2 + 1) Minkowski space, and le¥ be the universal covering spaceMt We introduce
on M the global coordinate&’, R, #) in which the metric reads

ds? = —dT? + dR? + R?d6?, (2.1)

such thatR > 0, —co < T < oo, and—oo < 6 < oco. The only linearly-independent
globally-defined Killing vectors o/ aredr andds.
Consider oM the isometry/ := exp(2r Sor + 2w ady),

J:(T,R,0)— (T +27S,R,0+270), (2.2)

wherea > 0 andS € R. We interpretd/J as the spacetime generated by a spinning point
particle atR = 0 [2]. The mass of the particle in our unitssigl — «), and we refer t&§ as
the spin. We take the mass to be positive, and we thus have G< 1.
M J can be described in terms of a fundamental domain and an identification across its
boundaries. Aa < 1, this fundamental domain can be embeddeM jrand the identification
is then a(2 + 1)-dimensional Poinc@rtransformation, consisting of a2 rotation about the
removed timelike geodesic and a 2 translation in the direction of this geodesic. One choice
for the fundamental domain is the wedgec® < 27 a.
We refer to Zr« as the opening angle andda= 27 (1 — «) as the defect angle. When
S =0, M/J is the product spacetime of the time dimension and a two-dimensional cone, and
this terminology conforms to the standard terminology for two-dimensional conical geometry.
We introduce on the coordinategr, R, @) by

T=t+Sp, (2.39)

0 =agp, (2.30)
sothatR > 0,—0co < T < o0, and—oo < 6 < oo, and the metric reads

ds? = —(dr + Sdp)? + dR? + «®R2dy? . (2.4)

In these coordinate$ = exp(27 d,), so that
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With the usual abuse of terminology, we refertoR, ¢) with the identification(z, R, ¢) ~
(t, R, ¢ + 27) as theconical coordinateson M/J. The only linearly-independent Killing
vectors onM /J ared, = dr andd, = ady + Sor.

The conical coordinates aif/J are uniquely defined up to the isometries generated by
9, andd,. 9, is timelike, whiled,, is spacelike foR > |S|/«, null for R = |S|/«, and timelike
for R < |S|/a. One can think ob, as the generator of time translations @p@s the generator
of rotations. M/J has closed causal curves, but none of them are contained in the region
R > |S|/«.

3. Two-particle spacetimes with a conical infinity

In this section we describe thi2 + 1)-dimensional Einstein spacetimes with a pair of massive
spinless point particles, assuming the spacelike infinity to be isometric to that of a single
spinning point particle spacetime. In subsection 3.1 we recall the well-known description
in terms of a patch of Minkowski geometry between the particle world lines [5-10]. In the
remaining three subsections we translate this description into one in which the particle world
lines are specified with respect to the conical infinity.

3.1. Local description

We label the particles by the indéx= 1, 2. If the spacetime contains a collision of the
particles, we consider either the part outside the causal past of the collision or the part that is
outside the causal future of the collision.

In a neighbourhood of the world line of each particle, the geometry is the spinless
special case of the conical geometry of section 2. The defect angles at the particles are
8 = 2n(1 — o;). We regard these defect angles as prescribed parameters, and we write
c; = €096;/2), s; ‘= sin(8;/2). We take the masses of the particles to be positive, which
implies 0 < §; < 2r, and the condition that the far-region geometry be conical implies
81 + 8> < 21 [7]. It follows thats; > 0 andc; + ¢, > 0.

The description of the spacetime in terms of a sufficiently small piead# Minkowski
spacetime ‘between’ the particles is well known [5-10]. Each particle world line is a timelike
geodesic on the boundary &f. The boundary segments 6f can in most cases be chosen
as timelike plane segments joining at the particle world lines; the only exception is when
the particle world lines are not in the same timelike plan®iand one of the defect angles
is greater thanr, in which case the boundary segments need to be chosen suitably twisted
(see subsection 3.4 below). The identification across the two boundary segments joining at
the world line of particle is a rotation about this world line by the angle The effect of
encircling in the spacetimeothparticle world lines appears in the Minkowski geometryof
as the composition of the two rotations, and this composition is a P@itr@arsformation that
may in general have a translational component as well as a Lorentz-component. Assuming the
far-region geometry to be conical implies that the Lorentz-component is a rotation (and not a
null rotation or a boost); this condition is equivalent to [7]

—1 < c1¢9 — s152 coshg (3.1

whereg denotes the relative boost parameter of the particle trajectoris in
Our task is to translate this description into one anchored to the conical infinity. We
proceed in the following steps:

e Cut D into two along a suitably-chosen timelike surface connecting the particle world
lines.
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e Rotate the two halves db about the world line of particle 1 so that the wedge originally
at particle 1 closes.

o In the resulting new fundamental domain, find a set of Minkowski coordindteX, Y)
and cylindrical Minkowski coordinated’, R, 0) in which the identification of the infinity-
reaching boundary segments has the form (2.2).

e Introduce the conical coordinatés R, ¢) (2.3) in a neighbourhood of the infinity, extend
this neighbourhood inward to the particle trajectories, and read off the particle trajectories
in the conical coordinates.

When the particle trajectories are in the same timelike plane in the Minkowski geometry
of D, the boundary segments Hfand the timelike surface along whidhis cut can each be
chosento be in atimelike plane, and implementing the above steps is relatively straightforward.
However, when the particle trajectories in the Minkowski geometrp afre not in the same
timelike plane, the timelike surface along whithis cut cannot be chosen to be in a plane,
and when in addition one defect angle is larger thathe boundary segments Bfcannot be
chosen to be in timelike planes arbitrarily far into the future and the past (see subsection 3.4
below). The geometry in this latter case is thus quite subtle.

We divide the analysis into three qualitatively different cases, proceeding from the simplest
one to the most intricate one. First, when the particle trajectories in the Minkowski geometry
of D are parallel, the spacetime is static and has in particular vanishing spin. Second, when
the particle trajectories in the Minkowski geometry ofare in the same timelike plane but
not parallel, the spacetime has a vanishing spin but is not static, and it contains a collision of
the particles. Third, when the trajectories in the Minkowski geometty afe not in the same
timelike plane, the spacetime has a nonvanishing spin: this is the ‘generic’ case. We devote a
separate subsection to each case.

We record here the result, noted in [7] and to be verified below in all our three cases,
that the defect angl& of the far-region conical geometry is the unique solution in the interval
0 < § < 27 to the equation

COSS/Z) = C1C2 — 5152 COShﬂ . (32)

Note that this implies > §; +4§,, equality holding iff§ = 0. The parameter of the far-region
conical geometry is

a=1-38/@2r). (3.3)

3.2. 8 = 0: static spacetimes

Wheng = 0, the particle world lines on the boundary bfare parallel in the Minkowski
geometry ofD. We introduce inD Minkowski coordinates?, %, ) such thaty; points to
the future, the world line of particle 1 ig, X, ) = (1, 0, 0), and the world line of particle
2is(,%,y) = (r, —a, 0), wherea is a positive constant. Hevestands for a proper time
parameter individually on each world line.

We chooseD so that its boundary segments are half-planes bounded by the particle world
lines and its intersection with the surface= 0 is as shown in figure 1. The spacetime is
clearly static.

To obtain an equivalent fundamental domain that is better adapted to the infinity, we
proceed as outlined in subsection 3.1. We first work in the plane of figure 1 and then extend
into the time dimension by staticity.

We cutthe planar fundamental domain of figure 1 into two along the straightline connecting
the particles, and we rotate the two halves with respect to each other about particle 1 so that
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Figure 1. A constantt surface of the fundamental domain for a static spacetime. The parts not
belonging to the fundamental domain are shown as shaded. The particle world lines are orthogonal
to the plane of the paper, and the orthogonal spatial distance of the world lineShe boundary
segments marked by a single (double) stroke are identified by a rotation about particle 1 (2) by the
anglesy (82).

the wedge on the right closes. The new planar fundamental domain is shown in figure 2: the
corner labelled 1 is at the first particle, while the corners labelled 2 aade?both at the
second particle. In this new planar we introduce fundamental domain polar coordiRafes
in which the boundary segments from 2 anddanfinity are at constartt: the origin of these
polar coordinates lies outside the domain and is labelled in figure2. b/e denote the value
of R at corner 1 byR;, and that at corners 2 anflt/ R,. Elementary planar geometry yields

asr

k=62 (349)
_ asy
27 sinG/2) (3.40)

wheres = §;1 +8,. Choosing the corner 1 to be@t= 0, the corners 2 and are respectively
atd = +(r —§/2).

The new spacetime fundamental domaiis the product of the planar fundamental domain
of figure 2 and the time axis. In the cylindrical Minkowski coordinatésR, 0) (2.1) in D,
the two infinity-reaching boundary segmentdbére in the half-plane = +(x — §/2), and
their identification is a pure rotation about the (fictitious) axi®at 0. A spacetime picture
of D is shown in figure 3. The spacetime near the infinity is thus conical with vanishing spin,
ands is the defect angle. Note that this discussion verifies equation (3.2) in the special case
B =0.

We now introduce near the infinity the conical coordindte®, ¢) asin (2.3), withS = 0
and witha given by (3.3), except in that we addga@ constant-¢g that is defined modulos2
The conical coordinates are valid in a neighbourhood of the infinity, and we can extend this
neighbourhood inwards (in@dependent way if; # §») so that the boundary of the extended
neighbourhood contains the trajectories of both particles. The world line of particle 1 is then
at(z, R, ) = (A, Ry, ¢o), and that of particle 2 is at, R, ¢) = (A, R, o + 7).

To summarize, we have introduced a neighbourhood of the infinity covered by the conical
coordinated?, R, ¢) and expressed the particle trajectories as lines on the boundary of this
neighbourhood. The values of the radial coordinRtat the particles are given by (3.4), and
the values of the angular coordingtare respectively, andgg+7: in this sense, the particles
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Figure 2. A constantl” surface of the fundamental domainfor the static spacetime of figure 1.

The corner labelled 1 is at the first particle, and the corners labelled 2’zare 2t the second
particle. The particle world lines are orthogonal to the surface. The single-stroked boundaries
are identified by a rotation about particle 1 by the ardgleand the double-stroked boundaries are
identified by a rotation about the (fictitious) origin by the angleS = §; + §2. Note thatO lies
outsideD. The (fictitious) distanceg; of the particles fromO are given by (3.4).

0.5

Figure 3. The boundary of the fundamental domdinfor the static spacetime in the Minkowski
coordinateg7, X, Y). D is behind the boundary, and the parameterssaee 2r/5, 82 = 4n/5,

anda = 1. The viewpoint is on the negativE-axis. The grid on the two segments between
the particles is adapted to the identification of these segments, and similarly for the grid on the
two segments reaching the infinity. Note that the identifications do not affect the Minkowski time
coordinater .

are diametrically opposite each other. The paramgiespecifies the orientation of the two-
particle system relative to the conical coordinates, and spacetimes differing only in the value
of ¢g are clearly isometric.
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3.3. 8 # 0, § = 0: spacetimes with colliding particles

When B # 0 but the particle trajectories in the Minkowski geometryldfare in the same
timelike plane, the spacetime contains a collision of the particles. We consider either the
part outside the causal past of the collision or the part that is outside the causal future of the
collision.

As in subsection 3.2, we introduce id Minkowski coordinatess, ¥, y) in which the
world line of particle 1 is(7, X, ¥) = (&, 0,0). We now choose these coordinates so that
the world line of particle 2 is7, X, y) = (AcoshB, —isinhg, 0) atx < 0. The particles
collide at(7, x, y) = (0,0,0). Forg > 0 (8 < 0, respectively), the particles are receding
(approaching).

We chooseD so that its intersection with the surface= 0 is as shown in figure 4. The
boundary segments @ are continued t@ = 0 in the half-planes bounded by the respective
particle world lines.

Figure 4. A constanf surface of the fundamental domdirfor a spacetime with colliding particles.
The world line of particle 1 is orthogonal to the plane of the paper, while the world line of particle
2 has the boost parametgr# 0. Forg > 0 (8 < 0), particle 2 is moving to the left (right),
and the surface shown isat- 0 (f < 0). The spatial distance of the particles in the constant
surface, along the dashed line/i@nhp. The angle; is determined by, andg as the unique

solution to cod2/2) = ¢z (1 +s3 sint? ﬁ)_l/z in the interval O< 8, < 2. The single-stroked
(double-stroked) boundaries are identified by a rotation about the world line of particle 1 (2) by the
angles; (3,). Note that equation (3.1) impligs + 3, < 27, even when one of the defect angles

is greater thamr: this guarantees that the straight lines in the figure, at the boundaries bf the
always reach the infinity without intersecting.

To find a fundamental domain better suited to the infinity, we proceed as outlined in
subsection 3.1. We cub into two along the totally geodesic timelike surface between
the particle world lines, and we rotate the two halves with respect to each other about the
world line of particle 1 so that the wedge originally at particle 1 closes. In the resulting
new fundamental domaif, we introduce Minkowski coordinat&d’, X, Y) and cylindrical
Minkowski coordinatesT, R, 6) in which the identification of the infinity-reaching boundary
segments has the form (2.2). We choose these coordinates so that particle 1 alvaysthas
and the collision of the particles is éf, X, Y) = (0, 0, 0).

The algebra in finding7, R, 0) is lengthy but straightforward. A constafitsurface of
D is shown in figure 5, witth" > 0 (T < 0) for 8 > 0 (8 < 0). The first particle is at the
corner labelled 1, atT, R, 6) = (T, T tanhgy, 0), and the second patrticle is at the corners
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Figure 5. A constantT surface of the fundamental domain for the spacetime with colliding
particles. The corner labelled 1 is at the first particle, and the corners labelled 2 areda2 the
second particle. The world lines of the particles have the nonvanishing boost pargfné85

with respect to the Minkowski coordinatés, X, Y). Forg > 0, 8; andT are positive and the
velocities are in the directions shown; fr< 0, 8; andT are negative, and the directions are

the opposite. The single-stroked boundaries are identified by a rotation in the spacetime about the
world line of particle 1 by the angl&,. The double-stroked boundaries are identified by (2.2).
The distances of the particles frof in (the extension beyonf) of) the constanf” surface are

R; := T tanhg,;.

labelled 2 and 2 respectively atT, R, 6) = (T, T tanhB,, £(r — §/2)), wheres is defined
by (3.2) ands; by

. _ stinhﬂ
sinhg; = W (3.59)
. _ Sj_Sinh,B

B; are thus the boost parameters of the particle world lines with respect to the coordinates
(T, X, Y). The boundary oD between edges 1 and 2 is the timelike plane sector connecting
these edges, and similarly for the boundary between edges 1’ arfith@ infinity-reaching
boundaries are in the timelike plangs= +(r — §/2), and their identification is by the map
(2.2) with § = 0. The spacetime near the infinity is thus conical with- 0, and the defect
angle iss. A spacetime picture ab (with 8 > 0) is shown in figure 6.

Near the infinity, we introduce conical coordinatesr, ¢) as in (2.3), except in that we
replacet by t — to and¢ by ¢ — ¢, Wherety and g are constants, the latter one defined
modulo 2Zr. The resulting conical coordinates are valid in a neighbourhood of infinity, and
we extend this neighbourhood inwards so that the particle trajectories lie on its boundary.
The trajectory of particle 1 i, R, ¢) = (o + A coshpy, A sinhpBy, ¢o), and that of particle
2is(t, R, ¢) = (to + L coshB,, A sinhB,, ¢o + ). The particles are thus again diametrically
opposite at each and the constagy, is the conical angle of particle 1, specifying the orientation
of the two-particle system with respect to the infinity. The constdathe value of the conical
time at the collision of the patrticles.

3.4. § # 0: spinning spacetimes

When the particle trajectories in the Minkowski geometnyibfre not in the same timelike
plane, we again introduce i Minkowski coordinatest, ¥, y) such thab; points to the future
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Figure 6. The boundary of the fundamental domdirfor the colliding-particle spacetime in the
Minkowski coordinatesT, X, Y). The collision is in the past) is behind the boundary, and the
parameters al®y = 27/5,82 = 47 /5, andB = 0.2. The viewpointis atT, X, Y) = (0.7, —2, 0).

The grid is adapted to the identifications of the boundaries asin figure 3. Note that the identifications
do not affect the Minkowski time coordinafe

and the world line of particle 1§, %, ) = (1, 0, 0). We now choose the coordinates so that
the world line of particle 2 i7, x, y) = (A coshB, —a, —A sinhB), wherea > 0 andg # 0.

We choose the intersection &f with the surface = 0 as shown in figure 7. If neither
defect angle is greater than one possible choice for the boundary segment® afould
be to continue them off the = 0 surface as timelike half-planes bounded by the respective
particle world lines [5, 10]. If one defect angle is greater thansuch half-planes would
however eventually intersect the trajectory of the other particle, and the boundary segments
need to be chosen suitably twisted. It is fortunately not necessary to specify here precisely
how the boundary segmentsbfare chosen: we shall construct a new fundamental domain
as outlined in subsection 3.1, and we shall specify the boundary segmdntis af way that
is more easily described directly in termsf In particular, we choose the infinity-reaching
boundary segments @ not to be in timelike planes for any values of the defect angles.

We first choose irD a timelike surface that connects the world lines of the two particles.
We take this surface to contain the spacelike geodesic that connects the particlesOat
shown as the dashed line in figure 7; the choice of the surface $610 will be specified
shortly. We cutD into two along this surface, and we rotate the two halves with respect to
each other about the world line of particle 1 so that the wedge originally at particle 1, in figure
7 on the right, closes. The= 0 surface of the resulting domaim is shown in figure 8. The
corner labelled 1 is at the first particle, and the corners labelled 2’ard Both at the second
particle.
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Figure 7. The surface = 0 of the fundamental domaif for a spinning spacetime. The angle
8, is determined by, and as the unigue solution to c@3/2) = ¢z (1 — s2 tani? ,B)_l/2 in the

interval 0< 8> < 2. The extension oD beyond the surface= 0 is described in the text. In the
spacetime, single-stroked (double-stroked) boundary segments are identified by a rotation about
the world line of particle 1 (2) by the angbe (52). The rotation about particle 1 takes the- 0
sections of the single-stroked boundary segments to each other, but the rotation about particle 2
does not take the= 0 sections of the double-stroked boundary segments to each other.

Figure 8. A surface of the fundamental domaihfor a spinning spacetime. We have first dt

into two along a timelike surface that connects the world lines of the patrticles, as explained in the
text. We have then rotated the two halves with respect to each other about the world line of particle
1 so that the wedge originally at particle 1, in figure 7 on the right, closes. The corner labelled 1 is
at the first particle, and the corners labelled 2 ahdr@ at the second particle. In the spacetime,
the single-stroked (double-stroked) boundary segments are identified as described in the text.

Finding in D Minkowski coordinateg7, X, Y) and cylindrical Minkowski coordinates
(T, R, 0) in which the identification of the infinity-reaching boundary segments has the
form (2.2) is again lengthy but straightforward. L&be defined by (3.2), les; be defined
by (3.5), and let

asp coshp,

PL= "SinG/2) (3.6)

]
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asy coshB;
= 3.6)
2= TSines/2) (3.80)
Let (T1, Ry, 61) stand for the cylindrical Minkowski coordinates of the edge labelled 1 in
figure 8, and le{(T3, Ry, 62) and (T», Rx, 6>) similarly stand for the respective cylindrical
Minkowski coordinates of the edges labelled 2 ahdve choose the point= 0 at edge 1 to
be atT; = 0 = 6,. We then find

Ry = P1 ’ (3.761)
coso
Ry = Ry — 02 ’ (3.70)
coso
Tl — M tano s (3851)
sinhg
h h inh
e cos ﬂ_l coshgy 5152 SiN B , (3.80)
sinhp sin(3/2)
Ty =a w tano — —Sls_z sinhf , (3.8)
sinh sin(8/2)
and
o =o. (3.99)
b — o ran (3.9)
0y =0 —am, (3.%)

whereo € (—3m, 1) is a parameter along each of the three edges. gFer 0 (8 < 0),
o grows towards the future (past). The map that identifies the infinity-reaching boundary
segments oD, taking in particular edge’ 20 edge 2, is (2.2) with
_asis2sinhB
~ wsin@/2)

In the Minkowski coordinate¢T’, X, Y), the tangent vector of edge 1(isoshpB;, sinhj;, 0),
the tangent vector of edge 2 i{goshg,, — sinhB, sin(§/2), — sinhB, cogs/2)), and the
tangent vector of edge’ & (coshgy, sinhB,sin(§/2), — sinhB, co968/2)). B; are thus the
boost parameters of the respective edges with respect to the coordifia}esy ), as in the
colliding-particle spacetimes of subsection 3.3.

Having found the edges on the boundaryi®f we are ready to specify the rest of the
boundary. First, note that the identification of edges 2 dridk&s a point on edge @ith a
given value ofo to a point on edge 2 with theamevalue ofo. We can therefore choose the
boundary segment between edges 1 and 2 to consist of geodesics joining edge 1 to edge 2 at
thesamevalue ofo on the two edges, and similarly for the boundary segment between edges
1 and 2: this specifies the way in which was cut in two. All these geodesics are spacelike.
Finally, we take the boundary segment from edge 2 to infinity to consist of half-lines at constant
T and#, and similarly for the boundary segment from edg&2nfinity.

Figure 9 shows the = 0 configuration ofD in the Minkowski coordinatesT, X, Y),
with the T-coordinate suppressed: the plane of the paper7s2at0 and corner 1 is in this
plane, while corner 2 is above and cornébglow this plane foB > 0, and conversely for
B < 0. Figure 10 shows the configuration at a larger value @fith theT -coordinate similarly
suppressed: this configuration is later (earlier) o 0 (8 < 0). A spacetime picture of
D is shown in figure 11 (fop > 0). Note how all the boundary segmentsi»twist as the
particles evolve irf": none of these segments is in a timelike plane.

(3.10)
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Figure 9. A spatial section oD for a spinning spacetime at= 0. The figure shows the projection

to the(X, Y)-plane and suppresses the coordirfatéf the plane of the paper is &t = 0, then the
corner labelled 1 is in this plane, while the corner labelled 2 is above and the corner labéled 2
below this plane fop > 0, and conversely fof < 0. §;, given by (3.5), are the boost parameters
of the particle trajectories with respect to the coordingfesx, Y): for 8 > 0, B; are positive and

the velocities are in the directions shown, whereagfer 0, 8; are negative and the directions are
the opposite.p; andp; are as given in (3.6). The single-stroked boundaries (neither of which is
parallel to the plane of the paper) are identified by a rotation in the spacetime about the world line
of particle 1 by the anglé;. The double-stroked boundaries (each of which is parallel to the plane
of the paper but not in this plane) are identified by (2.2). Note that the origin qthg) plane,
labelledO, is outsideD.

Figure 10. A spatial section oD for a spinning spacetimeat> 0. The coordinat& is suppressed
as in figure 9. The single-stroked (double-stroked) boundaries are identified as in figtirar®d
R, are given by (3.7).

Near the infinity, we introduce conical coordinafesR, ¢) as in subsection 3.3, replacing
in the transformation (2.3) by r — 1o andg by ¢ — ¢o, and we extend the neighbourhood
of the infinity inwards to the particle world lines. In terms of the parametethe particle
trajectories in the conical coordinates are then given by (3.7) with

(p1=(po+0/0l, (31]&)
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X 9
2
2
o T
-2
2 0 2
Y

Figure 11. The boundary of the fundamental domairfor the spinning spacetime in the Minkowski
coordinateg7, X, Y). D is behind the boundary, and the parameterssaee 2r/5, 82 = 4n/5,

a =1,andB = 0.2. The viewpoint is on the negativé-axis. The grid is adapted to the respective
identifications of the boundaries as in figures 3 and 6. Note how the identifications affect the
Minkowski time coordinatd’.

Q2=gotojatm, (3.11b)

n=th=1tgta |:—COSh'B.l coshpz tano — sz STP .Sinh'B U] .
sinhB o Siné/2)
The particles at a gives are thus on thesameconstantr surface. Equation (3.12) can
be uniquely inverted fos as a function of € (—o0, 00), and the resulting functioa (¢)
vanishes at = 7. Substituting thisr (¢) in (3.7) and (3.11) yields the particle trajectories in
the form(z, R;(¢), ¢; (¢)).
Equations (3.11) show that the particle world lines intersect a conssamtace at values

of ¢ that differ byx. In this sense, at eactihe particles are again diametrically opposite each
other. To understand geometrically the constangndyo, we observe that the length of the
geodesic connecting the particles at a givén

R ¢ 1+sfs223inhzﬂsin20 (3.13)
‘" coso sif@$/2) '

(3.12)

which reaches its minimum at = 0, or in other words at = 1y, at which momenip; = ¢y.

to is therefore the moment of conical time at which the particles are at their smallest spatial
separation, angy is the conical angle of particle 1 at this moment. The constgraad¢g

thus encode the zero-point of time and the orientation of the two-particle system relative to the
conical coordinates.
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It follows from the general considerations of [5—7] that the spacetime does not have closed
causal curves. In particular, it can be verified thaare larger than the critical radiiS| /o at
which closed causal curves appear in the spacetime of a single spinning particle.

Finally, note that the static spacetimes of subsection 3.2 can be obtained from the spinning
spacetimesinthe limg — 0. The correctlimiting forms for formulas involving the parameter
o (which becomes ill-defined in the limit) arise after first replacingy the new parameter
A = ao/B, which always increases towards the future. Similarly, the colliding-particle
spacetimes of subsection 3.3 can be obtained from the spinning spacetimes in the-hnit
with fixed 8 # 0, provided one first restricts— ¢ to having only one sign, positive (negative)
values yielding a spacetime to the future (past) of the collision. If the sign-eft is
unrestricted, the limit — 0 with fixed 8 # 0 is ambiguous: the reason is that foe£ 0, the
particles scatter off each other so that each conical angle changes from the asymptotic past to
the asymptotic future byt /«) sgn(8), and thea — 0 limit of this quantity with fixed8 # 0
depends on the sign @¢f. Constructing a colliding-particle spacetime that contains both the
past and the future of the collision thus requires additional assumptions: an example is the
elastic collision discussed in [13].

4. Action in the connection formulation

In this section we recall a first-order formulation of 2 + 1 gravity [30-33] with massive point
particles [23]. We follow the notation of [32—34], with the exception that we use units in which
dn G = 1[23].

4.1. Bulk action

The (2 + 1)-dimensional gravitational field in the connection formulation is a connection in an
10.(2, 1) bundle over the three-dimensional spacetime manifold. With our spacetime topology
the relevant bundle is the trivial onet, and we can, without loss of generality, work in a global
trivialization. The gravitational field can then be written as the globally-defing@, @)
connection 1-formA/, taking values in the Lie algebrd2, 1) =~ s/(2, R), and the globally-
defined co-tria@,; 1-form, taking values in the dual of this Lie algebra. The internal indices
1, J,...take valuesir0, 1, 2}, and they are raised and lowered with the internal Minkowski
metric,n;; = diag(—1, 1, 1). The indicesu, b, ... are abstract spacetime indices.

The bulk action reads

S=1 / Bx 7% e, FL (4.1)
M

whereij*> is the Levi-Civita density and. is the curvature of the connection,
Fy. = 20,,Al +e' kA AS . (4.2)

The structure constantd ;¢ are obtained from the totally antisymmetric symhg}x by
raising the index with the Minkowski metric. Our conventiords, = 1. When the co-triad is
nondegenerate, the metég e; has signaturé—, +, +), and the field equations derived from
(4.1) imply flatness of the metric, which is equivalent to the metric satisfying the vacuum
Einstein equations.

T Our spacetime is topologically the product of a twice-punctured plane and the real line, and the tangent bundle of
this spacetime is trivial. A nondegenerate triad provides a linear isomorphism between the tangent bundle and the
bundle of local Lorentz frames.
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Changing the global trivialization of the K®, 1) bundle gives rise to the gauge
transformation

ALK > (RY AVK +RTI,R, (4.39)
e RY, @ +Daw’) (4.3)

where the matriR takes values in the defining representation ef201), D, is the gauge-
covariant derivative determined by/,

f)avK = 8aUK — EI]KAL{UI s (44)

andK; are theo(2, 1) adjoint representation basis matrices with the compongais’;, =
1
€ JL»

0O 0 O 0O 0 -1 010

Ko=<0 0 —1), K1=<0 0 0), K2=<1 0 O). (4.5)
01 O -1 0 O 0 0O

We recall for future use the identities

RK,R'=R’,K,, (4.6)
Tr(K,KJ) =2771]. (4&))

If the transformation (4.3) is connected to the identity, it leaves the action (4.1) invariant. If
the transformation is not connected to the identity, the action (4.1) may acquire a topological
additive constant.

We now take the spacetime manifold tolbe 3, whereX is the plane with two punctures.
The 2 + 1 decomposition of the bulk action reads [31-33]

Soulk = %/dt/ d?x [E{ (3,A1) + A!D, E] +§é,,F,§ﬁf-f] . (4.7)
X

The abstract indices j, . .. live on X, andz is the coordinate of®. The Q(2, 1) connection
Al is the pull-back ofA] to =, F/ is its curvature, given by

Fl=20,Al + €' x Al AT (4.8)

andij/ is the Levi-Civita density ofT.. The vector density¥/ is given byE] = 7j/ie;;, where
eis is the pull-back o,; to . D; is the gauge-covariant derivative @hdetermined byA’,

DjUK zajUK—EIJKA]‘(UI. (49)
The canonical pair is thu(s4§., E{), and the Poisson brackets read
{A{(x), E;'(x/)] = 287605 (x. x') . (4.10)

wherex andx’ denote points orE. &; and A/ act as Lagrange multipliers enforcing the
constraints

Fl=0 (4.11)
DBl =0. (4.11)
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4.2. Boundary conditions and boundary terms

We now turn to the boundary conditions. From now on we assume that the c@frigl
nondegenerate everywhere &h We write A’ := Aldx“, &’ := eldx?, A" := Aldx/,
el :=eldx/.

Near the infinity, we introduce o polar coordinatesr, ¢), identified as(r, ¢) ~
(r, ¢ + 2m), such that the infinity is at — oco. We assume that in some neighbourhood
of the infinity the variables take the form

e’ =dr+Sdg, (4.129)
et =dr, (4.1D)
e? =ardy, (4.1%)
A = qdy, (4.12)
Al=A2=0, (4.1%)

wherea andS may depend on, and they satisfg > 0, —o0 < § < oo. The integral defining

Spulk is then convergent at the infinity (since the integrand in (4.7) vanishes when (4.12) holds),
and the variation ofS,y acquires from the infinity the boundary tersr [ dr So. This
boundary term is cancelled provided we addigyx the infinity boundary action

Seo =7 / dr (@ —1). (4.13)

The constant term in the integrand in (4.13) has been chosen for later convenience.
The field equations for the ansatz (4.12) are equivalent to-thdependence af andsS.
Wheno and S arer-independent, the metric obtained from (4.12) is the conical metric of
section 2, andt, r, ¢) are a set of conical coordinates. The infinity behaviour (4.12) and the
boundary action (4.13) therefore reproduce the desired classical solutions near the infinity.
Consider then the particles, which we label by the intlex 1, 2 as in section 3. We
denote the masses by;, we regard these masses as prescribed parameters, and we assume
0 <m; <m,0<mi+my < . Near each particle, we introduce Brlocal polar coordinates
(r, @), identified agr, ¢) ~ (r, ¢ +27), such that the particle is at the puncturenétr — O,.
(We suppress on these coordinates the index pertaining to the particle.) The boundary actions
at the particles read [23], in our notation,

Si = %/dt o dp Al e, —/dt ¢ [5Tr(uy) — cosmy)] , (4.14)

whereg; is a Lagrange multiplier and; is the SL(2, R)-holonomy ofAj around the particle,

=21
w; = Pexp[%/ . do (A),_, y:] : (4.15)

whereP exp is the path-ordered exponential and theZmatricesy,, are a basis fas/ (2, R),

w=(50) w=(Q ) ne(3 ) wm

u; depends on the choice of the coordinates), via SL(2, R) conjugation, corresponding
to changing the direction @ = 0, but as T¢u;) is invariant under conjugatiors;, (4.14)

is independent of this choice. With the variation4ff unrestricted, the variation of the total
action with respect toi! then yields at- = 0 the constrainte(f, = 0: this means that the
co-triad becomes degenerate in the limit> 0. in such a way that the proper circumference
aboutr = 0 vanishes. The variation with respect;tg/ields the constraint

$Tr(u;) — cosm;) = 0. (4.17)
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As discussed in [23], this implies that the extremal geometry is neab a spinless conical
geometry whose defect andlesatisfies co@; /2) = coqm;). We require the defect angles to
satisfy 0< §; < 2r: this can be achieved by adopting neat 0 suitable fall-off conditions
whose detailed form is not important here. With these conditions, the boundary actions (4.14)
therefore reproduce the desired classical solutions near the particles.

To summarize, the desired classical solutions are recovered by varying the action

Stotal *= Sbulk + Sec + 51+ 52 (4.18)

under our boundary conditions. The constraint algebra and the gauge transformasigs of
are discussed in [23].

5. Hamiltonian reduction

In this section we reduce the action by imposing on the canonicadzpj‘;\irll"}) the constraints

and fixing the gauge. We take advantage of the explicit knowledge of the classical solutions in
the form given in section 3: restricting in this section our attention to the spinning spacetimes,
we parametrize the initial da(af, E{) in terms of the quadrupl, a, ¢g, o), which specifies

a spinning spacetime and a spacelike surface in it near the infinity, and we then show that
(B, a, po, o) provides a (noncanonical) chart on the reduced phase space and evaluate the
symplectic structure. Those readers not interested in the technicalities of the gauge-fixing
conditions and the evaluation of the reduced action may wish to proceed directly to equations
(5.20)—(5.22), which give the reduced action in terms of the quad(gple, o, o).

5.1. Embedding of in a fictitious two-particle spacetime

The constraints irfitq imply that the fields(Aj., E{) on ¥ are induced by embedding
in some (for the moment fictitious) two-particle Einstein spacetime of the form discussed in
section 3. We assume from now on that this embedding spacetime has nonvanishing spin: the
embedding spacetime is then specified up to isometries by thépaly with 0 < « < 1 and
S # 0, or equivalently by the paiiB, a) with 8 # 0 anda > 0.

We introduce ork the simply-connected fundamental regi@rcoordinatized by the pair
(A, ) as shown in figure 12€ := {(A,w) | A > 0, —7 < w < 7}. The boundaries af2 at
w = *m are identified asA, w) ~ (A, w + 21r). Particle 1 is on the boundary ©f at the line
A = 0, while the second patrticle is on the boundangéat the two points labelled 2 and, 2
respectively atx, ) = (1, 7).

In the neighbourhood of the infinity, the embeddingbis by construction in a spacelike
surface of constant conical time. We specify this surface by the quadipie o, o). We
wish to specify the embedding so that near the infifiityw) are the spatial conical coordinates
of the embedding spacetime, while near the parti¢les) are suitably adapted to the motion
of the particles.

To achieve this, we introduce the three numbeysi1, anda,, satisfyinghy < A1 < Ap,
such thatyg is greater than the conical radii (3.7) of the particles in the embedding spacetime
at this conical time. For technical convenience, we may assymel. We now specify the
embedding separately in the regions Q. < Ag, Ao < A < A1, A1 < A < Ag, and) > Ao (see
figure 12).

Throughout the region > 1o, we take the embedding to be in the surface of constant
conical time, and in this region we relate, ) to the spatial conical coordinatér, ¢) by

R=%, (5.13)
¢ =w+(go+o/ah(r), (5.1b)
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Figure 12. The fundamental half-stri® := {(A, w) | A > 0, —7 < @ < 7} on the surfacex.

On the boundary of2, particle 1 is at the dashed line= 0, while the points labelled 2 and,2
respectively ati, w) = (1, £), are both at the second particle. The boundary segments indicated
by a single (respectively double) stroke are identified. The dashedlires\;, i € {0, 1, 2},
divide € into regions in which the gauge choice is as explained in the text.

whereh (1) is a smooth monotonic function satisfying

1, A< AL,
h()) = (5.2)
0, AZ A2 .
For A > A, the coordinategh, w) are then the spatial conical coordinates of the embedding
spacetime, as desired. Baf < A < Aq, A is still the conical radius, bub has been made to
co-rotate with the particles so thatvanishes at the conical angle of particlesl= ¢g + 0o /«.
The interpolation between the conical coordinates and the co-rotating coordinates takes place
in the intermediate region; < A < Ap.
The remaining and most technical part is to specify the embedding$ok G< A¢. Recall
from subsection 3.4 the embedding of the fictitious two-particle spacetime into the Minkowski
fundamental regioD. In terms of this embedding, the boundariesoatig < 1 < A4 lie
at the boundaries db, and they further lie on the spacelike sectionhown in figure 10,
on the boundaries indicated there by double strokes. We now use this embedding to specify
the boundaries of2 everywhere ak. < A3 (and thus in particular at < Ag): the stroked
and double-stroked boundaries@fin figure 12 are taken to be at the corresponding stroked
and double-stroked boundaries of the spacelike sectiob shown in figure 10. On the
double-stroked boundaries ©f we set

9, = f(A)[coSo + am)dy +sin(oc £+ am)dy] , (5.3)

0, = Sor +a[—sin(c + am)dx + coqo £ am)dy] , (5.30)
where the upper (lower) sign pertains to the boundary component from) Zof@ards
increasingx. Here f (1) is a positive function that is equal to 1 fap < A < A1 and
whose detailed form for £ A < Xg is not important: it is introduced to account for the fact
that the points 2 and 2re ath. = 1 butR = R; (3.7b). On the single-stroked boundari€s,
we set
0, = £ Sdr +[Roc090 + am) — Ry C0So] dx +[R2SiN(o + am) — Rysino]dy, (5.4a)
0, = — Siny4 dx + cosy [sinhB; 97 + coshBy dy] , (5.4b)
where the upper (lower) signs pertain to the boundary component between 1 dhdakd2
the angleg/ .. are defined by

— h
cosyrs = c1 F s1coshg; tano 7 (5.5)

\/1 + cosH B tart o
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+s1 — ¢ coshp; tano

\/l+cosﬁﬂ1 tart o .

Equations (3.6)—(3.10) show that (5.4a) is the tangent vector to the affinely parametrized
spacelike geodesic from 1 to 2'Y24,, (5.4b) has been determined from the conditions that
it is orthogonal ta; and to the vecton; := coshp; o7 + sinhB; 9y (which is the velocity of
particle 1 inD), and pointing outward (inward) on the boundary from 1 to’2. (@/e note for
future use the decomposition

sinyy = (5.50)

3, = (acysinhpy tano) vy +a(1 + cosk g, tar? a)l/2 us, (5.6)
where the spacelike unit vectoy. is given by
Uy = COSyy dy + Sinyy [SinhBy 7 + coshBy dy] . (5.7)

The three vectorsgvy, u+, 9,,) thus form a Lorentz-orthonormal triad adapted to the velocity
of particle 1 and to the relative positions of the points 1 and 2 (respectiYely2is obtained
by rotatingdy aboutv; by the angley.., andd,, is obtained by rotatingyx aboutv, by the
angley. + /2. Note that (5.5) implieg/. = ¢_ — §; mod 2r, which must be the case by
the construction oD.

It now follows from the identifications of the boundaries Bfthat our embedding of
¥ in the fictitious two-particle spacetime & across the identified boundaries@f and in
particular the vectors, andd, are continuous everywhere @h The embedding is smooth
for A > Ao, and it can clearly be chosen smooth everywhere by introducing suitable additional
conditions, and we now consider this to be done. Note that the embedding cannot be extended
smoothly to the boundary ¢ at A = 0 and at the points 2 and,2vhere the patrticles are.
Note also that we have not specified the details of the embedding in the integtorasf will
be seen in subsection 5.3, these details will not be needed.

5.2. Gauge choice

We now use the embedding Bfin the fictitious two-particle spacetime to choose a gauge for
the fields(A?, E7).

Consider first the regioh > ¢ of Q2. We denote this region b,. Near the infinity, the
fields take the form (4.12): when the parameters in (4.12) are time-independent, these fields
solve the field equations fedarger than the conical radii of the particles, and the coordinates in
(4.12) are directly the conical coordinates. We therefore aday ia gauge by transforming
the spatial projection of (4.12) to the coordinatesw) by (5.1). The resultis

e® = S [dw + (g0 + 0 /a)h'dA] (5.8
el =dx, (5.80)
e? = ak [dw + (g0 + o /a)h'dA] , (5.&)
A = a[do + (po + o /a)h'dr] , (5.8d)
Al=A%2=0, (5.8)

whereh’ ;= dh(1)/dA.
Consider then the region < A; of 2. We denote this region b§2;. (Note that, and
Q3 overlap athg < A < X3.) We introduce on the fundamental domdnof the fictitious
spacetime the fields
0’ =dT, (5.9)
ot =dx, (5.%)
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o€ =dy, (5.%)
Al =0, (5.od)
which satisfy the field equations and produce Prthe Minkowski metric d? = —d7T? +

dx?+dy?. Let (oA, oE7) denote the fields obtained by the pull-back of (5.9t In order
to obtain on<; fields that can be continued ® and agree with (5.8) in the intersection of
Qo and 24, we perform on(oAj, oE7) a (local) gauge transformation of the form (4.3) with
w! = 0 and a judiciously-choser:
(i) For Ag < A < Aq, We take
R = exp[(c + aw)Koq] . (5.10)
The resulting fields clearly agree with (5.8). We further take (5.10) to hold everywhere

near and on the double-stroked boundary componertis af figure 12.
(ii) Near and at. = 0, we take

R = exp(—p1K1) exp(y— Ko) exp{(w + 7)[1 — 81/(27)] Ko} , (5.11)

and we further take (5.11) to hold everywhere near and on the single-stroked boundary
components of2;. This implies that on the single-stroked boundary components
themselves we have

R = exp(—p1K1) exp(¥+ Ko)
= exp(y+v; K1) exp(—p1K1) , (5.12)
where the signs correspond to those in (5.4). The first equality in (5.12) follows using
+ = ¥_ — 81 mod 2r, and the second one usin§ = (exp(—B1K1))!; and (4.&).
(iii) At the points 2 and 2on the boundary of2;, R cannot be defined consistently with both

(5.10) and (5.12). It will suffice to assume tiratsmoothly interpolates between these
boundary values on (the interior o).

We claim that the resulting fields can be extended ftoro . For Qg this is obvious, and
we only need to conside;.

ConsiderA§ in ;. Where (5.10) holds, the only nonvanishing componem&lpfis
A% = «, which is smooth across the identification of the double-stroked boundaries. Where
(5.11) holds, the only nonvanishing componentA@fis A% =1 — 8;/(2r), which is smooth
across the identification of the single-stroked boundaries. mﬁus(tends smoothly frorte,
to 3.

Consider therﬂ“} in Q1. On the double-stroked boundaries, where (5.3) and (5.10) hold,
we have

e’ = Sdw, (5.1%)
el = f(da, (5.1%)
e? = adw, (5.1%)

which shows that§ is continuous on the identification of the double-stroked boundaries. An
analogous calculation shows thétis continuous on the identification of the single-stroked
boundaries: as seen from the last expression in (5Rli&)precisely the matrix that relates the
orthonormal Minkowski triaddy, dy, dy) to the orthonormal triadv,, 1+, 9,,) adapted to the
double-stroked boundaries ©f;, and the gauge transformation acting on the internal index
of ge! (5.9) matches on these boundaries the projection of the spacetimeiitaléxe spatial
indexj € {A, w}. Thu3e§ andE; extend continuously fror2; to . The extension can be
chosen smooth by making further assumptions about the embeddignod, and we now
consider this to be done.
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To summarize, we have obtained &nfields (Aj, E}) that satisfy the constraints. The
gauge has not been specified everywhereZgrbut it has been specified on and near the
boundaries of the fundamental domaiy and the only parameters in this specification are
(B, a, po, o). We shall see that this is sufficient for evaluating the reduced action.

5.3. Reduced action

As all the constraints have been solved, the only terms remainiSg:in(4.18) areS,, and
the Liouville term ofSpuk. We now evaluate these terms.

The parametergs, a, o, o) in our gauge fixing refer to a fictitious two-particle Einstein
spacetime, and to a spacelike surface in this spacetime. We now interpret these parameters as
coordinates on the reduced phase space. When evaluating the reduced action, all the parameters
(B, a, po, o) are then regarded as functionsrof

EvaluatingS,, is immediate: the expression is as is given in (4.13), witmderstood to
be a function ofg through (3.2) and (3.3).

In the Liouville term inSyy, the integral over the regioh > A, of Q is straightforward
using (5.8), and yields to the Lagrangian the contributigh(¢ +ago — @a~'c). In the
regioni < A1 (£21), a short calculation using (4.6) yields

SE] (0,47) = 30, [ B Tr(KRR)] | (5.14)

and the integral of (5.14) ove®; can thus be converted into an integral over the boundary
of Q1. We now consider the parts of this boundary in turn.

On the boundary of2; at A = A1, R is given by (5.10), and from (5.13) we have
E*® = ¢0 = 5. Hence the contribution to the Lagrangianis S¢.

The double-stroked boundary componentSefare atw = +7, 0 < A < A1. Ris given
by (5.10), andR—IR is proportional toko, but (5.13) impliestE®® = 0. The contributions to
the Lagrangian therefore vanish.

On the boundary componentiat= 0, the relevant components Bf’ areE*! = ¢! and
these vanish by our discussion of the particle ac$iogd.14) in subsection 4.2. Agis regular,
the contribution to the Lagrangian vanishes. A similar argument applied to small half-circles
about the singular points 2 andshows that the Lagrangian gets no contribution from these
singular points.

What remains are the single-stroked boundary componefig,@ftw = 7,0 < A < 1.
Their contribution to the Lagrangian is

BT (KRIR)| = 3£ T (KiRR)| (5.15)

where the subscript indicates the componentat= +x. E“! in (5.15) can be written as
pol\ Y J
(E )i - _[(R ) ]Oexili
1

1y 0
= —acy sinhB; tano <0> — a\/l + cosH g, tarf o (1) , (5.16)
0 0

where the first equality follows from (43, and the second one from (5.6), (5.9), and (5.12).
As the last expression in (5.16) is independent of the subserig®’ factors out in (5.15).
In the remaining factor in (5.15), we use the first expression in (5.12) to obtain

Ri'Re — RTTR- = —p1 [exp(—v+ Ko) K1 €xp(¥+ Ko) — exp(—— Ko) K1 exp(yr_Ko)]
= —Pu[exp(— . Ko) — exp(—y-Ko)] K, (5.17)
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where the last equality follows from (4p Using (4.®) and (5.5), we thus find that (5.15) is

equal to
. ¥ a CoshB, cosh
—asy 1 coshB; tanc = ana sinﬁiﬂ i tano , (5.18)

where the last equality follows using (&)sand the identity

d[ sinhg 7 coshpy coshp,
— =— . 5.19
da[sin(S/Z)] 5152 sinhB ( )
Collecting, and defining
h h inh
Do i=Ta w tano — wg , (5.2()
sinhp o siné/2)
Dy ‘= TmaS, (5.2)
we find the reduced action
Sted = /dt (Pa('x + Pwo¢0 - M) s (5-21)
where
M =682=n1l—a). (5.22)

The quadruplég, a, ¢o, o), with 8 £ 0 anda > 0, therefore provides a (honcanonical) chart
on the reduced phase space, as promised. This chart consists of two disjoint patches, one with
B > 0 and the other witt8 < 0. We denote the reduced phase space covered by this chart
by I'4. A canonical chart o', is provided by(«, ¢o; pa. py,): this chart consists of the
two disjoint patcheg,, > 0 andp,, < 0, and in each patch, takes all real valuegs, takes
all real values modulo2, and O< « < 1 — (m1 + my)/m. Note that the Hamiltonian/,
given by (5.22), arose from the infinity boundary actitg (4.13).

Itis easily verified that the action (5.21) &Y}, correctly reproduces the classical solutions
with S £ 0. What is missing, however, are the classical solutions $vith0. We shall obtain
an action from which also the solutions with= 0 can be recovered in section 6.

6. New phase space chart: ‘configuration’ and ‘momentum’ at a conical time

The canonical charto, ¢o; pa, py,) On Iy is adapted to the spacetime properties of the

spinning classical solutions. We now introducegy a canonical chart in which the variables
reflect more closely the geometrical ‘configuration’ of the two particles at a moment of conical
time.

Recall that the spatial geodesic distance of the particles at a moment of conical time is
R. (3.13). Recall also that the conical angles of the particles differ,lgp that the orientation
of the particles with respect to the infinity is completely specified by (say) the conical angle
of particle 1 (3.14). We relabel this angle as:

g =goto/a. (6.1)

Geometrically, the paitR., ¢.) then characterizes a ‘configuration’ of the particles with respect
to the infinity at a moment of conical time. Furth&;, andg,. Poisson commute.
Define now on™*_, the functions

red

P. ;= arcsinh M ,
sin(é/2)

Po. = Pyo - (6.20)

(6.20)
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It is tedious but elementary to verify that the quadrugte, ¢.; P, p,,) provides a new two-
patched chart offi;,,, such that the ranges of the coordinate functionspgre# 0, R. > 0,
and

7| py.| COSH(Pe)

R, <crtoer. (63)
The action in the new chart reads
Sred = / o (PR + pyire — M) | (6.4)

and the chart is thus canonical. The Hamiltondrnn the new chart is the unique solution in
the intervalm, + mo < M < 7 to

2.2 2
[Cl +c5 . 2c1c2 COS(M)] |1+ Py, COSl’%(PC) . (6.5)
SiP(M) (1— M/n)*R?

+

By definition, p,, # 0 onT,,. We now extend the cha(R., ¢.; P, p,,) t0 p,. = 0 by
continuity, still maintaining the inequalitieB. > 0 and (6.3). The action is given by (6.4),
whereM is now the unique solution to (6.5) in the intervad + m, < M < 7; the lower limit
of this interval is achieved wheR. = 0 = p,.. We denote the resulting extended reduced
phase space bly,q. The action (6.4) ofi",q correctly reproduces all the classical solutions,
including those withS = 0: the spacetimes with colliding particles arise wih+# 0 = p,,,
and the static spacetimes arise Wkh= 0 = p,, .

I'req has dimension four. In comparison, this is the dimension of the phase space of the
two-dimensional Newtonian two-body problem in the poteniiélx; — X,|), after reduction
to the centre-of mass frame. It is further the dimension of a system of two (say) free massive
point particles in(2 + 1)-dimensional Minkowski spacetime, after reduction to the centre-of-
mass frame. As discussed in section 1, our anchoring the gravitating system to the infinity is
thus analogous to a reduction to the centre-of-mass frame in Newtonian or special-relativistic
physics.

The pair(R,, ¢.) provides a gravitational analogue of the reduced position vector of the
Newtonian two-body problem, and the conjugatés p,, ) provide a gravitational analogue
of the Newtonian reduced momentum. One aspect of this analogue is the recovery of the static
solutions forP. = 0 = p,, and the solutions with colliding particles fat, # 0 = p,, .
Another aspect is that in the spinning solutions, recovered pyjth 0O, the particles are at
their smallest spatial separation when the ‘radial moment®manishes, as seen from (3.13)
and (6.2).

Because of the inequality (6.3),eq iS a genuine open subset of topoldgy x S* of the
cotangent bundle ovék, x S* = {(R., ¢.)}. Qualitatively, (6.3) says that the momenta are
bounded from above, and when (6.3) approaches saturafi@pproaches its upper bound
Discussion on this upper bound for more general matter sources can be found in [29].

For further insight into the cha(RR,, ¢.; P, p,, ), we consider three different limits.

First, consider the slow motion limit. Expandingto quadratic order i, andp,, yields

1 P,
M=mi+my+— [ P2+ 4 ) 6.6a
miytmy 2m ( c [1 _ (ml +m2)/7T]2R3) ( )
where
m = [cot(my) + cot(my)] L. (6.60)

Apart from the additive constant; +ms, (6.6) is the Hamiltonian of a nonrelativistic particle
with massm on a cone with defect angl® + 8, = 2(m1 + mp). m is thus an ‘effective
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mass’ that takes into account the quasistatic gravitational effects. Whandm, are both
small,m becomes the usual reduced mass for a free Newtonian two-particle system with the
individual masses:;. We thus correctly recover in this limit the free Newtonian two-body
system in the centre-of-mass frame.

Second, consider the limit in which the mass of particle 1 is small but neither particle
is moving close to the speed of light. To incorporate this, we assumePthand p,, are
proportional tan; and expandV to linear order imny, with the result

P2,
(1—ma/m)?R2
Apart from the additive constanii,, the expression (6.7) is the familiar square-root
Hamiltonian of a relativistic test particle with mass on the cone generated by particle 2 [35].
We thus correctly recover the relativistic test particle limit for snall Further expanding
(6.7) to quadratic order iP. and p,,, with fixed m; andm,, yields the Hamiltonian of a
nonrelativistic particle of masa; on a cone with defect anglen2, in agreement with the
limit of (6.6) at smallmn;.

Third, consider the limit in which the masses of both particles are small but neither
particle is moving close to the speed of light. To incorporate this, wertake:,, P. andp,,
all proportional to a small expansion parameter and expémnallinear order in this parameter.
The result is

M:m2+\/m§+P3+ (6.7)

M:\/m2+P2+p—‘2"“+\/m2+P2+p—$"‘ (6.8)
1 c RE 2 c RE ’ :

which is the Hamiltonian of a special-relativistic test particle pair in the centre-of-mass
frame [36]. Further expanding (6.8) to quadratic ordePirand p,, , with fixedm1 andms,,

yields the Hamiltonian of the free Newtonian two-body system in the centre-of-mass frame,
in agreement with the limit of (6.6) at small masses.

7. Concluding remarks

In this paper we have anchored the Hamiltonian dynamics of a pair of massive spinless
point particles in(2 + 1)-dimensional Einstein gravity to a conical spacelike infinity. This
infinity is isometric to that generated by a single massive but possibly spinning particle, and
assuming such an infinity to exist guarantees that the spacetime is causally well behaved.
We first described the two-particle spacetimes by relating the particle trajectories to the
asymptotic structure at the infinity. We then performed a Hamiltonian reduction of the first-
order gravitational action under boundary conditions adapted to this asymptotic structure. We
found that the reduced phase spBggis four-dimensional, and anchoring the dynamics to the
conical infinity was seen to be analogous to working in the centre-of-mass frame in Newtonian
or flat spacetime physics. In particular, we foundIggy a canonical chart in which the two
configuration variables are analogous to the reduced position vector of a Newtonian two-body
system in the centre-of-mass frame.

In the Hamiltonian reduction, we took advantage of the explicitly-known classical
solutions and worked in variables that are closely related to the constants of motion. We
assumed in the reduction that the spacetime has nonvanishing spin, and the resulting reduced
phase spack,, thus only reproduced the spinning spacetimes. We then introducEg] pm
new canonical chart that is more closely related to the configuration of the particles at a single
moment of time, and only in this new chart did we extend the reduced Hamiltonian system by
continuity into the larger reduced phase spBgg, in which the nonspinning spacetimes are
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also correctly reproduced. While it seems likely that our reduction method could be directly
extended to include the static spacetimes, the situation with the colliding-particle spacetimes is
less clear, as the dynamics becomes indeterminate at the collisions. However, as the evolution
of any point in ou¢q is well defined for some finite interval of time, it seems likely that the
reduction to all ofl",eq could be justified directly by methods that are more tailored to initial
data and less reliant on the constants of motion. A reduction of this type with a second-order
gravitational action has been recently discussed in [24].

Although our Hamiltonian of,.gwas amenable to a classical analysis, its functional form
inthe chart(R,, ¢.; P, p,,) is determined only implicitly as the solution to the transcendental
equation (6.5). Quantizing the reduced Hamiltonian theory in these variables seems thus
to present a substantial challenge. A more promising approach to quantization might open
through reduction methods that are better adapted to initial data and proceed step-by-step with
partial gauge fixings, paying attention at each step to the gauge symmetries still present in the
action and maintaining a freedom to choose gauges and variables that yield simple charts on
the partially reduced phase spaces. Work in this direction is in progress [36].

Generalizing the present work to more than two particles would appear conceptually
simple, although one may anticipate the complexity of the reduced phase space to increase
considerably with the number of particles. Another generalization would be to consider
lightlike particles [37,38]. Yet another direction would be to include a cosmological constant
and change the boundary conditions accordingly [39-41], perhaps as motivated by the CFT-
AdS correspondence in string theory [42—44]; in lineal gravity, an analogous generalization to
a cosmological constant has been carried out in [45]. We leave these issues for future work.
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