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Abstract. We formulate and analyse the Hamiltonian dynamics of a pair of massive spinless
point particles in(2+1)-dimensional Einstein gravity by anchoring the system to a conical infinity,
isometric to the infinity generated by a single massive but possibly spinning particle. The reduced
phase space0red has dimension four and topologyR3 × S1. 0red is analogous to the phase space
of a Newtonian two-body system in the centre-of-mass frame, and we find on0red a canonical
chart that makes this analogue explicit and reduces to the Newtonian chart in the appropriate limit.
Prospects for quantization are commented on.
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1. Introduction

Einstein gravity in 2 + 1 spacetime dimensions provides an arena in which many of the
conceptual features of(3 + 1)-dimensional Einstein gravity appear in a technically simplified
setting [1]. One of these simplifications is that in 2+1 dimensions the theory can be consistently
coupled to point particles. The spacetimes containing point particles can be described in terms
of IO(2, 1) holonomies around nontrivial loops [2,3], and there exists considerable work on the
global structure of these spacetimes [4–13], much of it motivated by the observation that the
spacetimes may contain closed causal curves. Several variational formulations of the dynamics
have been introduced, both for examining the classical solution space in its own right and also
as a starting point for quantization [14–24].

In a spatially open universe, a variational formulation of Einstein gravity must specify
boundary conditions at the infinity. In 3 + 1 dimensions, the spacelike infinity of an isolated
system can be taken to be asymptotically Minkowski, and one can introduce in the Hamiltonian
formulation a fall-off that anchors the system to an asymptotic Minkowski spacetime [25–27].
The 4-momentum and angular momentum of the system, defined as surface integrals at the
infinity, can be interpreted respectively as a constant timelike vector and a constant spacelike
vector in the asymptotic Minkowski spacetime, and the asymptotic Poincaré isometry group
can be used to choose an asymptotic centre-of-mass Lorentz frame [25].
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By contrast, in 2 + 1 dimensions, the spacelike infinity of an isolated system is not
asymptotically Minkowski but conical [28,29]. The neighbourhood of the infinity has only two
independent globally-defined Killing vectors, a timelike one generating time translations and
a spacelike one generating rotations, but none that could be understood as generating boosts
or spatial translations. It follows that the neighbourhood of the spacelike infinity contains
information that defines an analogue of a centre-of-mass frame also in 2+1 dimensions: in the
special case of a spacetime containing a single massive and possibly spinning point particle, the
metric near the infinity uniquely determines the locus of the particle world line [2]. However,
as the IO(2, 1) holonomy around the infinity is nontrivial, with a nontrivial O(2, 1) part,
the ‘momentum’ and ‘angular momentum’ cannot be understood as constant vectors in an
asymptotic(2 + 1)-dimensional Minkowski spacetime, and the analogue of the centre-of-mass
frame cannot be realised as a Lorentz frame in an asymptotic Minkowski spacetime.

With point particle sources in a spatially open(2+1)-dimensional spacetime, there is thus
a certain tension between two different viewpoints on the dynamics. On the one hand, one
expects the conditions at the conical infinity to be crucial for defining what evolution means,
for finding a Hamiltonian that generates this evolution, and for discussing symmetries and
conservation laws. On the other hand, the relative motion of the particles takes a simple form
when expressed in small patches of Minkowski geometry valid ‘between’ the particle world
lines, but not valid globally, and in particular not valid in a neighbourhood of the infinity:
this suggests formulating the dynamics first in terms of fields and variables that are defined
locally, in small patches valid between the particles, and only later glueing the patches into a
more globally-defined formulation that incorporates the conditions at the infinity. Each of the
variational formulations of [14–24] strikes a different balance between these two viewpoints.
An example near one extreme is [23], which specifies the trajectory of a single particle in terms
of a reference point in the spacetime and a reference frame at this point. The purpose of the
present paper is to approach the opposite extreme: we anchor the particle trajectories to the
conical infinity at the very outset.

We concentrate on the case of two massive spinless particles, which can be regarded as
the Kepler problem in(2 + 1)-dimensional Einstein gravity. Briefly put, we shall formulate
and solve the Hamiltonian dynamics of the(2 + 1)-dimensional Einstein–Kepler problem in
(the(2 + 1)-dimensional analogue of) the centre-of-mass frame.

To state the technical input more precisely, we assume the two-particle spacetime to have
a spacelike infinity whose neighbourhood is isometric to a neighbourhood of the infinity in the
spacetime of a single, massive, but possibly spinning, point particle [2], with a defect angle
less than 2π . This is equivalent to assuming that the relative velocity of the two particles is
less than the critical velocity found in [5–7], and it implies that the spacetime has no closed
causal curves. The neighbourhood of the infinity admits a coordinate system that is adapted
to the isometries, and these conical coordinates foliate the neighbourhood of the infinity by
spacelike surfaces. We adopt these conical coordinates as the asymptotic structure to which
the Hamiltonian dynamics will be anchored.

We take advantage of the well-known description of two-particle spacetimes in terms of a
piece of Minkowski geometry between the particle world lines [5–10]. We first translate this
description into one that relates the world lines of the particles to the conical infinity. We then
use this explicit form of the classical solutions to reduce the first-order gravitational action,
and we find on the reduced phase space a canonical chart analogous to that in a nongravitating
two-particle system in the centre-of-mass frame. As expected from the nongravitating case,
the reduced phase space has dimension four. The reduced Hamiltonian is bounded both above
and below, in agreement with the general arguments of [28, 29], it has the correct relativistic
test particle limit when the mass of one particle is small, and it has the correct nonrelativistic
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limit when the masses and velocities of both particles are small. The functional form of
the Hamiltonian is nevertheless complicated, given only implicitly through the solution to a
certain transcendental equation. Quantizing this reduced Hamiltonian theory would thus seem
to present a substantial challenge.

The plan of the paper is as follows. In section 2 we review the spacetime of a single spinning
point particle and introduce the conical coordinates. Section 3 describes the two-particle
spacetimes as anchored to the conical infinity. Section 4 recalls the first-order action [23] of
(2 + 1)-dimensional Einstein gravity coupled to massive point particles. The action is reduced
in section 5, and the reduced phase space is analysed in section 6. Section 7 contains brief
concluding remarks.

We use units in whichc = 4πG = 1 (Planck’s constant will not appear). The Hamiltonian
of a conical spacetime in these units is equal to half of the defect angle [23], and the mass of
a point particle is then by definition half the defect angle at the particle world line. Oc(2, 1)
and IOc(2, 1) stand respectively for the connected components of O(2, 1) and IO(2, 1).

2. Spacetime of a single spinning point particle

In this section we briefly review the spacetime of a single spinning point particle [2]. The main
purpose is to establish the notation, in particular the conical coordinates (2.4).

Let M be the(2 + 1)-dimensional spacetime obtained by removing a timelike geodesic
from (2 + 1)Minkowski space, and let̃M be the universal covering space ofM. We introduce
on M̃ the global coordinates(T , R, θ) in which the metric reads

ds2 = −dT 2 + dR2 +R2dθ2 , (2.1)

such thatR > 0, −∞ < T < ∞, and−∞ < θ < ∞. The only linearly-independent
globally-defined Killing vectors onM̃ are∂T and∂θ .

Consider onM̃ the isometryJ := exp(2πS∂T + 2πα∂θ ),

J : (T , R, θ) 7→ (T + 2πS,R, θ + 2πα) , (2.2)

whereα > 0 andS ∈ R. We interpretM̃/J as the spacetime generated by a spinning point
particle atR = 0 [2]. The mass of the particle in our units isπ(1− α), and we refer toS as
the spin. We take the mass to be positive, and we thus have 0< α < 1.

M̃/J can be described in terms of a fundamental domain and an identification across its
boundaries. Asα < 1, this fundamental domain can be embedded inM, and the identification
is then a(2 + 1)-dimensional Poincaré transformation, consisting of a 2πα rotation about the
removed timelike geodesic and a 2πS translation in the direction of this geodesic. One choice
for the fundamental domain is the wedge 0< θ < 2πα.

We refer to 2πα as the opening angle and toδ := 2π(1− α) as the defect angle. When
S = 0, M̃/J is the product spacetime of the time dimension and a two-dimensional cone, and
this terminology conforms to the standard terminology for two-dimensional conical geometry.

We introduce onM̃ the coordinates(t, R, ϕ) by

T = t + Sϕ , (2.3a)

θ = αϕ , (2.3b)

so thatR > 0,−∞ < T <∞, and−∞ < θ <∞, and the metric reads

ds2 = −(dt + Sdϕ)2 + dR2 + α2R2dϕ2 . (2.4)

In these coordinatesJ = exp(2π∂ϕ), so that

J : (t, R, ϕ) 7→ (t, R, ϕ + 2π) . (2.5)
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With the usual abuse of terminology, we refer to(t, R, ϕ) with the identification(t, R, ϕ) ∼
(t, R, ϕ + 2π) as theconical coordinateson M̃/J . The only linearly-independent Killing
vectors onM̃/J are∂t = ∂T and∂ϕ = α∂θ + S∂T .

The conical coordinates oñM/J are uniquely defined up to the isometries generated by
∂t and∂ϕ . ∂t is timelike, while∂ϕ is spacelike forR > |S|/α, null forR = |S|/α, and timelike
forR < |S|/α. One can think of∂t as the generator of time translations and∂ϕ as the generator
of rotations. M̃/J has closed causal curves, but none of them are contained in the region
R > |S|/α.

3. Two-particle spacetimes with a conical infinity

In this section we describe the(2 + 1)-dimensional Einstein spacetimes with a pair of massive
spinless point particles, assuming the spacelike infinity to be isometric to that of a single
spinning point particle spacetime. In subsection 3.1 we recall the well-known description
in terms of a patch of Minkowski geometry between the particle world lines [5–10]. In the
remaining three subsections we translate this description into one in which the particle world
lines are specified with respect to the conical infinity.

3.1. Local description

We label the particles by the indexi = 1, 2. If the spacetime contains a collision of the
particles, we consider either the part outside the causal past of the collision or the part that is
outside the causal future of the collision.

In a neighbourhood of the world line of each particle, the geometry is the spinless
special case of the conical geometry of section 2. The defect angles at the particles are
δi := 2π(1 − αi). We regard these defect angles as prescribed parameters, and we write
ci := cos(δi/2), si := sin(δi/2). We take the masses of the particles to be positive, which
implies 0 < δi < 2π , and the condition that the far-region geometry be conical implies
δ1 + δ2 < 2π [7]. It follows thatsi > 0 andc1 + c2 > 0.

The description of the spacetime in terms of a sufficiently small pieceD̃ of Minkowski
spacetime ‘between’ the particles is well known [5–10]. Each particle world line is a timelike
geodesic on the boundary of̃D. The boundary segments ofD̃ can in most cases be chosen
as timelike plane segments joining at the particle world lines; the only exception is when
the particle world lines are not in the same timelike plane inD̃ and one of the defect angles
is greater thanπ , in which case the boundary segments need to be chosen suitably twisted
(see subsection 3.4 below). The identification across the two boundary segments joining at
the world line of particlei is a rotation about this world line by the angleδi . The effect of
encircling in the spacetimebothparticle world lines appears in the Minkowski geometry ofD̃

as the composition of the two rotations, and this composition is a Poincaré transformation that
may in general have a translational component as well as a Lorentz-component. Assuming the
far-region geometry to be conical implies that the Lorentz-component is a rotation (and not a
null rotation or a boost); this condition is equivalent to [7]

−1< c1c2 − s1s2 coshβ , (3.1)

whereβ denotes the relative boost parameter of the particle trajectories inD̃.
Our task is to translate this description into one anchored to the conical infinity. We

proceed in the following steps:

• Cut D̃ into two along a suitably-chosen timelike surface connecting the particle world
lines.



(2+1)-dimensional Einstein–Kepler problem 1851

• Rotate the two halves of̃D about the world line of particle 1 so that the wedge originally
at particle 1 closes.
• In the resulting new fundamental domain, find a set of Minkowski coordinates(T ,X, Y )

and cylindrical Minkowski coordinates(T , R, θ) in which the identification of the infinity-
reaching boundary segments has the form (2.2).
• Introduce the conical coordinates(t, R, ϕ) (2.3) in a neighbourhood of the infinity, extend

this neighbourhood inward to the particle trajectories, and read off the particle trajectories
in the conical coordinates.

When the particle trajectories are in the same timelike plane in the Minkowski geometry
of D̃, the boundary segments ofD̃ and the timelike surface along which̃D is cut can each be
chosen to be in a timelike plane, and implementing the above steps is relatively straightforward.
However, when the particle trajectories in the Minkowski geometry ofD̃ are not in the same
timelike plane, the timelike surface along whichD̃ is cut cannot be chosen to be in a plane,
and when in addition one defect angle is larger thanπ , the boundary segments ofD̃ cannot be
chosen to be in timelike planes arbitrarily far into the future and the past (see subsection 3.4
below). The geometry in this latter case is thus quite subtle.

We divide the analysis into three qualitatively different cases, proceeding from the simplest
one to the most intricate one. First, when the particle trajectories in the Minkowski geometry
of D̃ are parallel, the spacetime is static and has in particular vanishing spin. Second, when
the particle trajectories in the Minkowski geometry ofD̃ are in the same timelike plane but
not parallel, the spacetime has a vanishing spin but is not static, and it contains a collision of
the particles. Third, when the trajectories in the Minkowski geometry ofD̃ are not in the same
timelike plane, the spacetime has a nonvanishing spin: this is the ‘generic’ case. We devote a
separate subsection to each case.

We record here the result, noted in [7] and to be verified below in all our three cases,
that the defect angleδ of the far-region conical geometry is the unique solution in the interval
0< δ < 2π to the equation

cos(δ/2) = c1c2 − s1s2 coshβ . (3.2)

Note that this impliesδ > δ1+δ2, equality holding iffβ = 0. The parameterα of the far-region
conical geometry is

α = 1− δ/(2π) . (3.3)

3.2. β = 0: static spacetimes

Whenβ = 0, the particle world lines on the boundary ofD̃ are parallel in the Minkowski
geometry ofD̃. We introduce inD̃ Minkowski coordinates(t̃ , x̃, ỹ) such that∂t̃ points to
the future, the world line of particle 1 is(t̃ , x̃, ỹ) = (λ, 0, 0), and the world line of particle
2 is (t̃ , x̃, ỹ) = (λ,−a, 0), wherea is a positive constant. Hereλ stands for a proper time
parameter individually on each world line.

We chooseD̃ so that its boundary segments are half-planes bounded by the particle world
lines and its intersection with the surfacet̃ = 0 is as shown in figure 1. The spacetime is
clearly static.

To obtain an equivalent fundamental domain that is better adapted to the infinity, we
proceed as outlined in subsection 3.1. We first work in the plane of figure 1 and then extend
into the time dimension by staticity.

We cut the planar fundamental domain of figure 1 into two along the straight line connecting
the particles, and we rotate the two halves with respect to each other about particle 1 so that
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Figure 1. A constantt̃ surface of the fundamental domain for a static spacetime. The parts not
belonging to the fundamental domain are shown as shaded. The particle world lines are orthogonal
to the plane of the paper, and the orthogonal spatial distance of the world lines isa. The boundary
segments marked by a single (double) stroke are identified by a rotation about particle 1 (2) by the
angleδ1 (δ2).

the wedge on the right closes. The new planar fundamental domain is shown in figure 2: the
corner labelled 1 is at the first particle, while the corners labelled 2 and 2′ are both at the
second particle. In this new planar we introduce fundamental domain polar coordinates(R, θ)

in which the boundary segments from 2 and 2′ to infinity are at constantθ : the origin of these
polar coordinates lies outside the domain and is labelled in figure 2 byO. We denote the value
of R at corner 1 byR1, and that at corners 2 and 2′ byR2. Elementary planar geometry yields

R1 = as2

sin(δ/2)
, (3.4a)

R2 = as1

sin(δ/2)
, (3.4b)

whereδ = δ1 + δ2. Choosing the corner 1 to be atθ = 0, the corners 2 and 2′ are respectively
at θ = ±(π − δ/2).

The new spacetime fundamental domainD is the product of the planar fundamental domain
of figure 2 and the time axis. In the cylindrical Minkowski coordinates(T , R, θ) (2.1) inD,
the two infinity-reaching boundary segments ofD are in the half-planesθ = ±(π − δ/2), and
their identification is a pure rotation about the (fictitious) axis atR = 0. A spacetime picture
of D is shown in figure 3. The spacetime near the infinity is thus conical with vanishing spin,
andδ is the defect angle. Note that this discussion verifies equation (3.2) in the special case
β = 0.

We now introduce near the infinity the conical coordinates(t, R, ϕ) as in (2.3), withS = 0
and withα given by (3.3), except in that we add toϕ a constant−ϕ0 that is defined modulo 2π .
The conical coordinates are valid in a neighbourhood of the infinity, and we can extend this
neighbourhood inwards (in aϕ-dependent way ifδ1 6= δ2) so that the boundary of the extended
neighbourhood contains the trajectories of both particles. The world line of particle 1 is then
at (t, R, ϕ) = (λ, R1, ϕ0), and that of particle 2 is at(t, R, ϕ) = (λ, R2, ϕ0 + π).

To summarize, we have introduced a neighbourhood of the infinity covered by the conical
coordinates(t, R, ϕ) and expressed the particle trajectories as lines on the boundary of this
neighbourhood. The values of the radial coordinateR at the particles are given by (3.4), and
the values of the angular coordinateϕ are respectivelyϕ0 andϕ0+π : in this sense, the particles
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Figure 2. A constantT surface of the fundamental domainD for the static spacetime of figure 1.
The corner labelled 1 is at the first particle, and the corners labelled 2 and 2′ are at the second
particle. The particle world lines are orthogonal to the surface. The single-stroked boundaries
are identified by a rotation about particle 1 by the angleδ1, and the double-stroked boundaries are
identified by a rotation about the (fictitious) originO by the angleδ = δ1 + δ2. Note thatO lies
outsideD. The (fictitious) distancesRi of the particles fromO are given by (3.4).
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Figure 3. The boundary of the fundamental domainD for the static spacetime in the Minkowski
coordinates(T ,X, Y ). D is behind the boundary, and the parameters areδ1 = 2π/5, δ2 = 4π/5,
anda = 1. The viewpoint is on the negativeX-axis. The grid on the two segments between
the particles is adapted to the identification of these segments, and similarly for the grid on the
two segments reaching the infinity. Note that the identifications do not affect the Minkowski time
coordinateT .

are diametrically opposite each other. The parameterϕ0 specifies the orientation of the two-
particle system relative to the conical coordinates, and spacetimes differing only in the value
of ϕ0 are clearly isometric.
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3.3. β 6= 0, S = 0: spacetimes with colliding particles

Whenβ 6= 0 but the particle trajectories in the Minkowski geometry ofD̃ are in the same
timelike plane, the spacetime contains a collision of the particles. We consider either the
part outside the causal past of the collision or the part that is outside the causal future of the
collision.

As in subsection 3.2, we introduce iñD Minkowski coordinates(t̃ , x̃, ỹ) in which the
world line of particle 1 is(t̃ , x̃, ỹ) = (λ, 0, 0). We now choose these coordinates so that
the world line of particle 2 is(t̃ , x̃, ỹ) = (λ coshβ,−λ sinhβ, 0) at x̃ < 0. The particles
collide at(t̃ , x̃, ỹ) = (0, 0, 0). For β > 0 (β < 0, respectively), the particles are receding
(approaching).

We chooseD̃ so that its intersection with the surfacet̃ = 0 is as shown in figure 4. The
boundary segments of̃D are continued tõt 6= 0 in the half-planes bounded by the respective
particle world lines.

~

D

δ
2
~


δ
1
t tanh β
~


β
 2 1

Figure 4. A constant̃t surface of the fundamental domainD̃ for a spacetime with colliding particles.
The world line of particle 1 is orthogonal to the plane of the paper, while the world line of particle
2 has the boost parameterβ 6= 0. Forβ > 0 (β < 0), particle 2 is moving to the left (right),
and the surface shown is att̃ > 0 (t̃ < 0). The spatial distance of the particles in the constantt̃

surface, along the dashed line, ist̃ tanhβ. The angleδ̃2 is determined byδ2 andβ as the unique

solution to cos(δ̃2/2) = c2
(
1 + s2

2 sinh2 β
)−1/2

in the interval 0< δ̃2 < 2π . The single-stroked
(double-stroked) boundaries are identified by a rotation about the world line of particle 1 (2) by the
angleδ1 (δ2). Note that equation (3.1) impliesδ1 + δ̃2 < 2π , even when one of the defect angles
is greater thanπ : this guarantees that the straight lines in the figure, at the boundaries of theD̃,
always reach the infinity without intersecting.

To find a fundamental domain better suited to the infinity, we proceed as outlined in
subsection 3.1. We cut̃D into two along the totally geodesic timelike surface between
the particle world lines, and we rotate the two halves with respect to each other about the
world line of particle 1 so that the wedge originally at particle 1 closes. In the resulting
new fundamental domainD, we introduce Minkowski coordinates(T ,X, Y ) and cylindrical
Minkowski coordinates(T , R, θ) in which the identification of the infinity-reaching boundary
segments has the form (2.2). We choose these coordinates so that particle 1 always hasθ = 0
and the collision of the particles is at(T ,X, Y ) = (0, 0, 0).

The algebra in finding(T , R, θ) is lengthy but straightforward. A constantT surface of
D is shown in figure 5, withT > 0 (T < 0) for β > 0 (β < 0). The first particle is at the
corner labelled 1, at(T , R, θ) = (T , T tanhβ1, 0), and the second particle is at the corners
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Figure 5. A constantT surface of the fundamental domainD for the spacetime with colliding
particles. The corner labelled 1 is at the first particle, and the corners labelled 2 and 2′ are at the
second particle. The world lines of the particles have the nonvanishing boost parametersβi (3.5)
with respect to the Minkowski coordinates(T ,X, Y ). Forβ > 0, βi andT are positive and the
velocities are in the directions shown; forβ < 0, βi andT are negative, and the directions are
the opposite. The single-stroked boundaries are identified by a rotation in the spacetime about the
world line of particle 1 by the angleδ1. The double-stroked boundaries are identified by (2.2).
The distances of the particles fromO in (the extension beyondD of) the constantT surface are
Ri := T tanhβi .

labelled 2 and 2′, respectively at(T , R, θ) = (T , T tanhβ2,±(π − δ/2)), whereδ is defined
by (3.2) andβi by

sinhβ1 = s2 sinhβ

sin(δ/2)
, (3.5a)

sinhβ2 = s1 sinhβ

sin(δ/2)
. (3.5b)

βi are thus the boost parameters of the particle world lines with respect to the coordinates
(T ,X, Y ). The boundary ofD between edges 1 and 2 is the timelike plane sector connecting
these edges, and similarly for the boundary between edges 1 and 2′. The infinity-reaching
boundaries are in the timelike planesθ = ±(π − δ/2), and their identification is by the map
(2.2) withS = 0. The spacetime near the infinity is thus conical withS = 0, and the defect
angle isδ. A spacetime picture ofD (with β > 0) is shown in figure 6.

Near the infinity, we introduce conical coordinates(t, R, ϕ) as in (2.3), except in that we
replacet by t − t0 andϕ by ϕ − ϕ0, wheret0 andϕ0 are constants, the latter one defined
modulo 2π . The resulting conical coordinates are valid in a neighbourhood of infinity, and
we extend this neighbourhood inwards so that the particle trajectories lie on its boundary.
The trajectory of particle 1 is(t, R, ϕ) = (t0 + λ coshβ1, λ sinhβ1, ϕ0), and that of particle
2 is (t, R, ϕ) = (t0 + λ coshβ2, λ sinhβ2, ϕ0 + π). The particles are thus again diametrically
opposite at eacht , and the constantϕ0 is the conical angle of particle 1, specifying the orientation
of the two-particle system with respect to the infinity. The constantt0 is the value of the conical
time at the collision of the particles.

3.4. S 6= 0: spinning spacetimes

When the particle trajectories in the Minkowski geometry ofD̃ are not in the same timelike
plane, we again introduce iñDMinkowski coordinates(t̃ , x̃, ỹ) such that∂t̃ points to the future
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Figure 6. The boundary of the fundamental domainD for the colliding-particle spacetime in the
Minkowski coordinates(T ,X, Y ). The collision is in the past,D is behind the boundary, and the
parameters areδ1 = 2π/5,δ2 = 4π/5, andβ = 0.2. The viewpoint is at(T ,X, Y ) = (0.7,−2, 0).
The grid is adapted to the identifications of the boundaries as in figure 3. Note that the identifications
do not affect the Minkowski time coordinateT .

and the world line of particle 1 is(t̃ , x̃, ỹ) = (λ, 0, 0). We now choose the coordinates so that
the world line of particle 2 is(t̃ , x̃, ỹ) = (λ coshβ,−a,−λ sinhβ), wherea > 0 andβ 6= 0.

We choose the intersection of̃D with the surfacẽt = 0 as shown in figure 7. If neither
defect angle is greater thanπ , one possible choice for the boundary segments ofD̃ would
be to continue them off thẽt = 0 surface as timelike half-planes bounded by the respective
particle world lines [5, 10]. If one defect angle is greater thanπ , such half-planes would
however eventually intersect the trajectory of the other particle, and the boundary segments
need to be chosen suitably twisted. It is fortunately not necessary to specify here precisely
how the boundary segments ofD̃ are chosen: we shall construct a new fundamental domainD

as outlined in subsection 3.1, and we shall specify the boundary segments ofD in a way that
is more easily described directly in terms ofD. In particular, we choose the infinity-reaching
boundary segments ofD not to be in timelike planes for any values of the defect angles.

We first choose inD̃ a timelike surface that connects the world lines of the two particles.
We take this surface to contain the spacelike geodesic that connects the particles att̃ = 0,
shown as the dashed line in figure 7; the choice of the surface fort̃ 6= 0 will be specified
shortly. We cutD̃ into two along this surface, and we rotate the two halves with respect to
each other about the world line of particle 1 so that the wedge originally at particle 1, in figure
7 on the right, closes. Thẽt = 0 surface of the resulting domainD is shown in figure 8. The
corner labelled 1 is at the first particle, and the corners labelled 2 and 2′ are both at the second
particle.
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Figure 7. The surfacẽt = 0 of the fundamental domaiñD for a spinning spacetime. The angle
˜̃
δ2 is determined byδ2 andβ as the unique solution to cos( ˜̃δ2/2) = c2

(
1− s2

2 tanh2 β
)−1/2

in the

interval 0< ˜̃δ2 < 2π . The extension of̃D beyond the surfacẽt = 0 is described in the text. In the
spacetime, single-stroked (double-stroked) boundary segments are identified by a rotation about
the world line of particle 1 (2) by the angleδ1 (δ2). The rotation about particle 1 takes thet̃ = 0
sections of the single-stroked boundary segments to each other, but the rotation about particle 2
does not take thẽt = 0 sections of the double-stroked boundary segments to each other.
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Figure 8. A surface of the fundamental domainD for a spinning spacetime. We have first cutD̃

into two along a timelike surface that connects the world lines of the particles, as explained in the
text. We have then rotated the two halves with respect to each other about the world line of particle
1 so that the wedge originally at particle 1, in figure 7 on the right, closes. The corner labelled 1 is
at the first particle, and the corners labelled 2 and 2′ are at the second particle. In the spacetime,
the single-stroked (double-stroked) boundary segments are identified as described in the text.

Finding inD Minkowski coordinates(T ,X, Y ) and cylindrical Minkowski coordinates
(T , R, θ) in which the identification of the infinity-reaching boundary segments has the
form (2.2) is again lengthy but straightforward. Letδ be defined by (3.2), letβi be defined
by (3.5), and let

ρ1 := as2 coshβ2

sin(δ/2)
, (3.6a)
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ρ2 := as1 coshβ1

sin(δ/2)
. (3.6b)

Let (T1, R1, θ1) stand for the cylindrical Minkowski coordinates of the edge labelled 1 in
figure 8, and let(T2, R2, θ2) and (T2′ , R2′ , θ2′) similarly stand for the respective cylindrical
Minkowski coordinates of the edges labelled 2 and 2′. We choose the point̃t = 0 at edge 1 to
be atT1 = 0= θ1. We then find

R1 = ρ1

cosσ
, (3.7a)

R2 = R2′ = ρ2

cosσ
, (3.7b)

T1 = a coshβ1 coshβ2

sinhβ
tanσ , (3.8a)

T2 = a
[

coshβ1 coshβ2

sinhβ
tanσ +

s1s2 sinhβ

sin(δ/2)

]
, (3.8b)

T2′ = a
[

coshβ1 coshβ2

sinhβ
tanσ − s1s2 sinhβ

sin(δ/2)

]
, (3.8c)

and

θ1 = σ , (3.9a)

θ2 = σ + απ , (3.9b)

θ2′ = σ − απ , (3.9c)

whereσ ∈ (− 1
2π,

1
2π) is a parameter along each of the three edges. Forβ > 0 (β < 0),

σ grows towards the future (past). The map that identifies the infinity-reaching boundary
segments ofD, taking in particular edge 2′ to edge 2, is (2.2) with

S := as1s2 sinhβ

π sin(δ/2)
. (3.10)

In the Minkowski coordinates(T ,X, Y ), the tangent vector of edge 1 is(coshβ1, sinhβ1, 0),
the tangent vector of edge 2 is(coshβ2,− sinhβ2 sin(δ/2),− sinhβ2 cos(δ/2)), and the
tangent vector of edge 2′ is (coshβ2, sinhβ2 sin(δ/2),− sinhβ2 cos(δ/2)). βi are thus the
boost parameters of the respective edges with respect to the coordinates(T ,X, Y ), as in the
colliding-particle spacetimes of subsection 3.3.

Having found the edges on the boundary ofD, we are ready to specify the rest of the
boundary. First, note that the identification of edges 2 and 2′ takes a point on edge 2′ with a
given value ofσ to a point on edge 2 with thesamevalue ofσ . We can therefore choose the
boundary segment between edges 1 and 2 to consist of geodesics joining edge 1 to edge 2 at
thesamevalue ofσ on the two edges, and similarly for the boundary segment between edges
1 and 2′: this specifies the way in which̃D was cut in two. All these geodesics are spacelike.
Finally, we take the boundary segment from edge 2 to infinity to consist of half-lines at constant
T andθ , and similarly for the boundary segment from edge 2′ to infinity.

Figure 9 shows theσ = 0 configuration ofD in the Minkowski coordinates(T ,X, Y ),
with theT -coordinate suppressed: the plane of the paper is atT = 0 and corner 1 is in this
plane, while corner 2 is above and corner 2′ below this plane forβ > 0, and conversely for
β < 0. Figure 10 shows the configuration at a larger value ofσ , with theT -coordinate similarly
suppressed: this configuration is later (earlier) forβ > 0 (β < 0). A spacetime picture of
D is shown in figure 11 (forβ > 0). Note how all the boundary segments ofD twist as the
particles evolve inT : none of these segments is in a timelike plane.
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Figure 9. A spatial section ofD for a spinning spacetime atσ = 0. The figure shows the projection
to the(X, Y )-plane and suppresses the coordinateT : if the plane of the paper is atT = 0, then the
corner labelled 1 is in this plane, while the corner labelled 2 is above and the corner labelled 2′ is
below this plane forβ > 0, and conversely forβ < 0. βi , given by (3.5), are the boost parameters
of the particle trajectories with respect to the coordinates(T ,X, Y ): for β > 0,βi are positive and
the velocities are in the directions shown, whereas forβ < 0,βi are negative and the directions are
the opposite.ρ1 andρ2 are as given in (3.6). The single-stroked boundaries (neither of which is
parallel to the plane of the paper) are identified by a rotation in the spacetime about the world line
of particle 1 by the angleδ1. The double-stroked boundaries (each of which is parallel to the plane
of the paper but not in this plane) are identified by (2.2). Note that the origin of the(X, Y ) plane,
labelledO, is outsideD.
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Figure 10. A spatial section ofD for a spinning spacetime atσ > 0. The coordinateT is suppressed
as in figure 9. The single-stroked (double-stroked) boundaries are identified as in figure 9.R1 and
R2 are given by (3.7).

Near the infinity, we introduce conical coordinates(t, R, ϕ) as in subsection 3.3, replacing
in the transformation (2.3)t by t − t0 andϕ by ϕ − ϕ0, and we extend the neighbourhood
of the infinity inwards to the particle world lines. In terms of the parameterσ , the particle
trajectories in the conical coordinates are then given by (3.7) with

ϕ1 = ϕ0 + σ/α , (3.11a)
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Figure 11. The boundary of the fundamental domainD for the spinning spacetime in the Minkowski
coordinates(T ,X, Y ). D is behind the boundary, and the parameters areδ1 = 2π/5, δ2 = 4π/5,
a = 1, andβ = 0.2. The viewpoint is on the negativeX-axis. The grid is adapted to the respective
identifications of the boundaries as in figures 3 and 6. Note how the identifications affect the
Minkowski time coordinateT .

ϕ2 = ϕ0 + σ/α + π , (3.11b)

t1 = t2 = t0 + a

[
coshβ1 coshβ2

sinhβ
tanσ − s1s2 sinhβ

πα sin(δ/2)
σ

]
. (3.12)

The particles at a givenσ are thus on thesameconstantt surface. Equation (3.12) can
be uniquely inverted forσ as a function oft ∈ (−∞,∞), and the resulting functionσ(t)
vanishes att = t0. Substituting thisσ(t) in (3.7) and (3.11) yields the particle trajectories in
the form(t, Ri(t), ϕi(t)).

Equations (3.11) show that the particle world lines intersect a constantt surface at values
of ϕ that differ byπ . In this sense, at eacht the particles are again diametrically opposite each
other. To understand geometrically the constantst0 andϕ0, we observe that the length of the
geodesic connecting the particles at a givent is

Rc := a

cosσ

√
1 +

s2
1s

2
2 sinh2 β sin2 σ

sin2(δ/2)
, (3.13)

which reaches its minimum atσ = 0, or in other words att = t0, at which momentϕ1 = ϕ0.
t0 is therefore the moment of conical time at which the particles are at their smallest spatial
separation, andϕ0 is the conical angle of particle 1 at this moment. The constantst0 andϕ0

thus encode the zero-point of time and the orientation of the two-particle system relative to the
conical coordinates.
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It follows from the general considerations of [5–7] that the spacetime does not have closed
causal curves. In particular, it can be verified thatρi are larger than the critical radius|S|/α at
which closed causal curves appear in the spacetime of a single spinning particle.

Finally, note that the static spacetimes of subsection 3.2 can be obtained from the spinning
spacetimes in the limitβ → 0. The correct limiting forms for formulas involving the parameter
σ (which becomes ill-defined in the limit) arise after first replacingσ by the new parameter
λ := aσ/β, which always increases towards the future. Similarly, the colliding-particle
spacetimes of subsection 3.3 can be obtained from the spinning spacetimes in the limita→ 0
with fixedβ 6= 0, provided one first restrictst − t0 to having only one sign, positive (negative)
values yielding a spacetime to the future (past) of the collision. If the sign oft − t0 is
unrestricted, the limita→ 0 with fixedβ 6= 0 is ambiguous: the reason is that forS 6= 0, the
particles scatter off each other so that each conical angle changes from the asymptotic past to
the asymptotic future by(π/α) sgn(β), and thea→ 0 limit of this quantity with fixedβ 6= 0
depends on the sign ofβ. Constructing a colliding-particle spacetime that contains both the
past and the future of the collision thus requires additional assumptions: an example is the
elastic collision discussed in [13].

4. Action in the connection formulation

In this section we recall a first-order formulation of 2 + 1 gravity [30–33] with massive point
particles [23]. We follow the notation of [32–34], with the exception that we use units in which
4πG = 1 [23].

4.1. Bulk action

The(2 + 1)-dimensional gravitational field in the connection formulation is a connection in an
IOc(2, 1) bundle over the three-dimensional spacetime manifold. With our spacetime topology
the relevant bundle is the trivial one†, and we can, without loss of generality, work in a global
trivialization. The gravitational field can then be written as the globally-defined Oc(2, 1)
connection 1-form,ĀIa, taking values in the Lie algebrao(2, 1) ' sl(2,R), and the globally-
defined co-triad̄eaI 1-form, taking values in the dual of this Lie algebra. The internal indices
I, J, . . . take values in{0, 1, 2}, and they are raised and lowered with the internal Minkowski
metric,ηIJ = diag(−1, 1, 1). The indicesa, b, . . . are abstract spacetime indices.

The bulk action reads

S = 1
4

∫
M

d3x η̃abc ēaI F̄
I
bc , (4.1)

whereη̃abc is the Levi-Civita density and̄F Ibc is the curvature of the connection,

F̄ Ibc = 2∂[bĀ
I
c] + εI JKĀ

J
b Ā

K
c . (4.2)

The structure constantsεI JK are obtained from the totally antisymmetric symbolεIJK by
raising the index with the Minkowski metric. Our convention isε012= 1. When the co-triad is
nondegenerate, the metricēaI ēIb has signature(−,+,+), and the field equations derived from
(4.1) imply flatness of the metric, which is equivalent to the metric satisfying the vacuum
Einstein equations.

† Our spacetime is topologically the product of a twice-punctured plane and the real line, and the tangent bundle of
this spacetime is trivial. A nondegenerate triad provides a linear isomorphism between the tangent bundle and the
bundle of local Lorentz frames.
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Changing the global trivialization of the IOc(2, 1) bundle gives rise to the gauge
transformation

ĀIaKI 7→
(
R−1

)I
J
ĀJaKI + R−1∂aR , (4.3a)

ēIa 7→
(
R−1

)I
J

(
ēJa + D̄awJ

)
, (4.3b)

where the matrixR takes values in the defining representation of Oc(2, 1), D̄a is the gauge-
covariant derivative determined bȳAIa,

D̄avK = ∂avK − εI JKĀJa vI , (4.4)

andKI are theo(2, 1) adjoint representation basis matrices with the components(KJ )
I
L =

εI JL,

K0 =
( 0 0 0

0 0 −1
0 1 0

)
, K1 =

( 0 0 −1
0 0 0
−1 0 0

)
, K2 =

( 0 1 0
1 0 0
0 0 0

)
. (4.5)

We recall for future use the identities

RKIR
−1 = RJ I KJ , (4.6a)

Tr(KIKJ ) = 2ηIJ . (4.6b)

If the transformation (4.3) is connected to the identity, it leaves the action (4.1) invariant. If
the transformation is not connected to the identity, the action (4.1) may acquire a topological
additive constant.

We now take the spacetime manifold to beR×6, where6 is the plane with two punctures.
The 2 + 1 decomposition of the bulk action reads [31–33]

Sbulk = 1
2

∫
dt
∫
6

d2x
[
Ẽ
j

I

(
∂tA

I
j

)
+ ĀIt Dj Ẽ

j

I + 1
2 ētI F

I
ij η̃

ij
]
. (4.7)

The abstract indicesi, j, . . . live on6, andt is the coordinate onR. The Oc(2, 1) connection
AIj is the pull-back ofĀIa to6, F Iij is its curvature, given by

F Iij = 2∂[iA
I
j ] + εI JKA

J
i A

K
j , (4.8)

andη̃ij is the Levi-Civita density on6. The vector densitỹEjI is given byẼjI = η̃j ieiI , where
eiI is the pull-back of̄eaI to6. Dj is the gauge-covariant derivative on6 determined byAIj ,

Dj vK = ∂jvK − εI JKAJj vI . (4.9)

The canonical pair is thus(AIj , Ẽ
j

I ), and the Poisson brackets read{
AIi (x), Ẽ

j

J (x
′)
}
= 2δji δ

I
J δ
(
x, x ′

)
, (4.10)

wherex andx ′ denote points on6. ētI and ĀIt act as Lagrange multipliers enforcing the
constraints

F Iij = 0 (4.11a)

Dj ẼjI = 0 . (4.11b)



(2+1)-dimensional Einstein–Kepler problem 1863

4.2. Boundary conditions and boundary terms

We now turn to the boundary conditions. From now on we assume that the co-triadēaI is
nondegenerate everywhere on6. We write ĀI := ĀIadx

a, ēI := ēIadx
a, AI := AIjdx

j ,
eI := eIjdxj .

Near the infinity, we introduce on6 polar coordinates(r, ϕ), identified as(r, ϕ) ∼
(r, ϕ + 2π), such that the infinity is atr → ∞. We assume that in some neighbourhood
of the infinity the variables take the form

ē0 = dt + Sdϕ , (4.12a)

ē1 = dr , (4.12b)

ē2 = αrdϕ , (4.12c)

Ā0 = αdϕ , (4.12d)

Ā1 = Ā2 = 0 , (4.12e)

whereα andS may depend ont , and they satisfyα > 0,−∞ < S <∞. The integral defining
Sbulk is then convergent at the infinity (since the integrand in (4.7) vanishes when (4.12) holds),
and the variation ofSbulk acquires from the infinity the boundary term−π ∫ dt δα. This
boundary term is cancelled provided we add toSbulk the infinity boundary action

S∞ := π
∫

dt (α − 1) . (4.13)

The constant term in the integrand in (4.13) has been chosen for later convenience.
The field equations for the ansatz (4.12) are equivalent to thet-independence ofα andS.

Whenα andS are t-independent, the metric obtained from (4.12) is the conical metric of
section 2, and(t, r, ϕ) are a set of conical coordinates. The infinity behaviour (4.12) and the
boundary action (4.13) therefore reproduce the desired classical solutions near the infinity.

Consider then the particles, which we label by the indexi = 1, 2 as in section 3. We
denote the masses bymi , we regard these masses as prescribed parameters, and we assume
0< mi < π , 0< m1 +m2 < π . Near each particle, we introduce on6 local polar coordinates
(r, ϕ), identified as(r, ϕ) ∼ (r, ϕ+2π), such that the particle is at the puncture of6 atr → 0+.
(We suppress on these coordinates the index pertaining to the particle.) The boundary actions
at the particles read [23], in our notation,

Si := 1
2

∫
dt
∫
r=0

dϕ ĀIt eIϕ −
∫

dt ζi
[

1
2Tr(ui )− cos(mi)

]
, (4.14)

whereζi is a Lagrange multiplier andui is the SL(2,R)-holonomy ofAIj around the particle,

ui := P exp

[
1
2

∫ ϕ=2π

ϕ=0
dϕ

(
AIϕ
)
r=0

γI

]
, (4.15)

whereP exp is the path-ordered exponential and the 2×2 matrices,γI , are a basis forsl(2,R),

γ0 =
(

0 1
−1 0

)
, γ1 =

(
0 1
1 0

)
, γ2 =

(
1 0
0 −1

)
. (4.16)

ui depends on the choice of the coordinates(r, ϕ), via SL(2,R) conjugation, corresponding
to changing the direction ofϕ = 0, but as Tr(ui ) is invariant under conjugation,Si , (4.14)
is independent of this choice. With the variation ofĀIt unrestricted, the variation of the total
action with respect toĀIt then yields atr = 0 the constrainteIϕ = 0: this means that the
co-triad becomes degenerate in the limitr → 0+ in such a way that the proper circumference
aboutr = 0 vanishes. The variation with respect toζi yields the constraint

1
2Tr(ui )− cos(mi) = 0 . (4.17)
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As discussed in [23], this implies that the extremal geometry is nearr = 0 a spinless conical
geometry whose defect angleδi satisfies cos(δi/2) = cos(mi). We require the defect angles to
satisfy 06 δi < 2π : this can be achieved by adopting nearr = 0 suitable fall-off conditions
whose detailed form is not important here. With these conditions, the boundary actions (4.14)
therefore reproduce the desired classical solutions near the particles.

To summarize, the desired classical solutions are recovered by varying the action

Stotal := Sbulk + S∞ + S1 + S2 (4.18)

under our boundary conditions. The constraint algebra and the gauge transformations ofStotal

are discussed in [23].

5. Hamiltonian reduction

In this section we reduce the action by imposing on the canonical pair(AIj , Ẽ
j

I ) the constraints
and fixing the gauge. We take advantage of the explicit knowledge of the classical solutions in
the form given in section 3: restricting in this section our attention to the spinning spacetimes,
we parametrize the initial data(AIj , Ẽ

j

I ) in terms of the quadruple(β, a, ϕ0, σ ), which specifies
a spinning spacetime and a spacelike surface in it near the infinity, and we then show that
(β, a, ϕ0, σ ) provides a (noncanonical) chart on the reduced phase space and evaluate the
symplectic structure. Those readers not interested in the technicalities of the gauge-fixing
conditions and the evaluation of the reduced action may wish to proceed directly to equations
(5.20)–(5.22), which give the reduced action in terms of the quadruple(β, a, ϕ0, σ ).

5.1. Embedding of6 in a fictitious two-particle spacetime

The constraints inStotal imply that the fields(AIj , Ẽ
j

I ) on 6 are induced by embedding6
in some (for the moment fictitious) two-particle Einstein spacetime of the form discussed in
section 3. We assume from now on that this embedding spacetime has nonvanishing spin: the
embedding spacetime is then specified up to isometries by the pair(α, S) with 0< α < 1 and
S 6= 0, or equivalently by the pair(β, a) with β 6= 0 anda > 0.

We introduce on6 the simply-connected fundamental region� coordinatized by the pair
(λ, ω) as shown in figure 12:� := {(λ, ω) | λ > 0,−π < ω < π}. The boundaries of� at
ω = ±π are identified as(λ, ω) ∼ (λ, ω + 2π). Particle 1 is on the boundary of� at the line
λ = 0, while the second particle is on the boundary of� at the two points labelled 2 and 2′,
respectively at(λ, ω) = (1,±π).

In the neighbourhood of the infinity, the embedding of6 is by construction in a spacelike
surface of constant conical time. We specify this surface by the quadruple(β, a, ϕ0, σ ). We
wish to specify the embedding so that near the infinity(λ, ω) are the spatial conical coordinates
of the embedding spacetime, while near the particles(λ, ω) are suitably adapted to the motion
of the particles.

To achieve this, we introduce the three numbersλ0, λ1, andλ2, satisfyingλ0 < λ1 < λ2,
such thatλ0 is greater than the conical radii (3.7) of the particles in the embedding spacetime
at this conical time. For technical convenience, we may assumeλ0 > 1. We now specify the
embedding separately in the regions 0< λ 6 λ0, λ0 6 λ 6 λ1, λ1 6 λ 6 λ2, andλ > λ2 (see
figure 12).

Throughout the regionλ > λ0, we take the embedding to be in the surface of constant
conical time, and in this region we relate(λ, ω) to the spatial conical coordinates(R, ϕ) by

R = λ , (5.1a)

ϕ = ω + (ϕ0 + σ/α)h(λ) , (5.1b)
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Figure 12. The fundamental half-strip� := {(λ, ω) | λ > 0,−π < ω < π} on the surface6.
On the boundary of�, particle 1 is at the dashed lineλ = 0, while the points labelled 2 and 2′,
respectively at(λ, ω) = (1,±π), are both at the second particle. The boundary segments indicated
by a single (respectively double) stroke are identified. The dashed linesλ = λi , i ∈ {0, 1, 2},
divide� into regions in which the gauge choice is as explained in the text.

whereh(λ) is a smooth monotonic function satisfying

h(λ) =
{

1 , λ 6 λ1 ,

0 , λ > λ2 .
(5.2)

Forλ > λ2, the coordinates(λ, ω) are then the spatial conical coordinates of the embedding
spacetime, as desired. Forλ0 6 λ 6 λ1, λ is still the conical radius, butω has been made to
co-rotate with the particles so thatω vanishes at the conical angle of particle 1,ϕ = ϕ0 +σ/α.
The interpolation between the conical coordinates and the co-rotating coordinates takes place
in the intermediate region,λ1 6 λ 6 λ2.

The remaining and most technical part is to specify the embedding for 0< λ 6 λ0. Recall
from subsection 3.4 the embedding of the fictitious two-particle spacetime into the Minkowski
fundamental regionD. In terms of this embedding, the boundaries of� at λ0 6 λ 6 λ1 lie
at the boundaries ofD, and they further lie on the spacelike section ofD shown in figure 10,
on the boundaries indicated there by double strokes. We now use this embedding to specify
the boundaries of� everywhere atλ < λ1 (and thus in particular atλ < λ0): the stroked
and double-stroked boundaries of� in figure 12 are taken to be at the corresponding stroked
and double-stroked boundaries of the spacelike section ofD shown in figure 10. On the
double-stroked boundaries of�, we set

∂λ = f (λ) [cos(σ ± απ)∂X + sin(σ ± απ)∂Y ] , (5.3a)

∂ω = S∂T + α [− sin(σ ± απ)∂X + cos(σ ± απ)∂Y ] , (5.3b)

where the upper (lower) sign pertains to the boundary component from 2 (2′) towards
increasingλ. Heref (λ) is a positive function that is equal to 1 forλ0 6 λ 6 λ1 and
whose detailed form for 16 λ 6 λ0 is not important: it is introduced to account for the fact
that the points 2 and 2′ are atλ = 1 butR = R2 (3.7b). On the single-stroked boundaries,�,
we set

∂λ = ±πS∂T + [R2 cos(σ ± απ)− R1 cosσ ] ∂X + [R2 sin(σ ± απ)− R1 sinσ ] ∂Y , (5.4a)

∂ω = − sinψ± ∂X + cosψ± [sinhβ1 ∂T + coshβ1 ∂Y ] , (5.4b)

where the upper (lower) signs pertain to the boundary component between 1 and 2 (2′), and
the anglesψ± are defined by

cosψ± = −c1∓ s1 coshβ1 tanσ√
1 + cosh2 β1 tan2 σ

, (5.5a)
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sinψ± = ±s1− c1 coshβ1 tanσ√
1 + cosh2 β1 tan2 σ

. (5.5b)

Equations (3.6)–(3.10) show that∂λ (5.4a) is the tangent vector to the affinely parametrized
spacelike geodesic from 1 to 2 (2′). ∂ω (5.4b) has been determined from the conditions that
it is orthogonal to∂λ and to the vectorv1 := coshβ1 ∂T + sinhβ1 ∂Y (which is the velocity of
particle 1 inD), and pointing outward (inward) on the boundary from 1 to 2 (2′). We note for
future use the decomposition

∂λ = (ac1 sinhβ1 tanσ) v1 + a
(
1 + cosh2 β1 tan2 σ

)1/2
u± , (5.6)

where the spacelike unit vectoru± is given by

u± := cosψ± ∂X + sinψ± [sinhβ1 ∂T + coshβ1 ∂Y ] . (5.7)

The three vectors(v1, u±, ∂ω) thus form a Lorentz-orthonormal triad adapted to the velocity
of particle 1 and to the relative positions of the points 1 and 2 (respectively 2′): u± is obtained
by rotating∂X aboutv1 by the angleψ±, and∂ω is obtained by rotating∂X aboutv1 by the
angleψ± + π/2. Note that (5.5) impliesψ+ = ψ− − δ1 mod 2π , which must be the case by
the construction ofD.

It now follows from the identifications of the boundaries ofD that our embedding of
6 in the fictitious two-particle spacetime isC1 across the identified boundaries of�, and in
particular the vectors∂λ and∂ω are continuous everywhere on6. The embedding is smooth
for λ > λ0, and it can clearly be chosen smooth everywhere by introducing suitable additional
conditions, and we now consider this to be done. Note that the embedding cannot be extended
smoothly to the boundary of� at λ = 0 and at the points 2 and 2′, where the particles are.
Note also that we have not specified the details of the embedding in the interior of�: as will
be seen in subsection 5.3, these details will not be needed.

5.2. Gauge choice

We now use the embedding of6 in the fictitious two-particle spacetime to choose a gauge for
the fields(AIj , Ẽ

j

I ).
Consider first the regionλ > λ0 of�. We denote this region by�0. Near the infinity, the

fields take the form (4.12): when the parameters in (4.12) are time-independent, these fields
solve the field equations forr larger than the conical radii of the particles, and the coordinates in
(4.12) are directly the conical coordinates. We therefore adopt in�0 a gauge by transforming
the spatial projection of (4.12) to the coordinates(λ, ω) by (5.1). The result is

e0 = S [dω + (ϕ0 + σ/α)h′dλ
]
, (5.8a)

e1 = dλ , (5.8b)

e2 = αλ [dω + (ϕ0 + σ/α)h′dλ
]
, (5.8c)

A0 = α [dω + (ϕ0 + σ/α)h′dλ
]
, (5.8d)

A1 = A2 = 0 , (5.8e)

whereh′ := dh(λ)/dλ.
Consider then the regionλ < λ1 of �. We denote this region by�1. (Note that�0 and

�1 overlap atλ0 < λ < λ1.) We introduce on the fundamental domainD of the fictitious
spacetime the fields

0ē
0 = dT , (5.9a)

0ē
1 = dX , (5.9b)
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0ē
2 = dY , (5.9c)

0Ā
I = 0 , (5.9d)

which satisfy the field equations and produce onD the Minkowski metric ds2 = −dT 2 +
dX2 + dY 2. Let (0AIj , 0Ẽ

j

I ) denote the fields obtained by the pull-back of (5.9) to�1. In order
to obtain on�1 fields that can be continued to6 and agree with (5.8) in the intersection of
�0 and�1, we perform on(0AIj , 0Ẽ

j

I ) a (local) gauge transformation of the form (4.3) with
wI = 0 and a judiciously-chosenR:

(i) For λ0 6 λ 6 λ1, we take

R = exp[(σ + αω)K0] . (5.10)

The resulting fields clearly agree with (5.8). We further take (5.10) to hold everywhere
near and on the double-stroked boundary components of�1 in figure 12.

(ii) Near and atλ = 0, we take

R = exp(−β1K1) exp(ψ−K0) exp{(ω + π)[1− δ1/(2π)]K0} , (5.11)

and we further take (5.11) to hold everywhere near and on the single-stroked boundary
components of�1. This implies that on the single-stroked boundary components
themselves we have

R = exp(−β1K1) exp(ψ±K0)

= exp(ψ±vI1KI) exp(−β1K1) , (5.12)

where the signs correspond to those in (5.4). The first equality in (5.12) follows using
ψ+ = ψ− − δ1 mod 2π , and the second one usingvI1 = (exp(−β1K1))

I
0 and (4.6a).

(iii) At the points 2 and 2′ on the boundary of�1, R cannot be defined consistently with both
(5.10) and (5.12). It will suffice to assume thatR smoothly interpolates between these
boundary values on (the interior of)�.

We claim that the resulting fields can be extended from� to6. For�0 this is obvious, and
we only need to consider�1.

ConsiderAIj in �1. Where (5.10) holds, the only nonvanishing component ofAIj is
A0
ω = α, which is smooth across the identification of the double-stroked boundaries. Where

(5.11) holds, the only nonvanishing component ofAIj isA0
ω = 1− δ1/(2π), which is smooth

across the identification of the single-stroked boundaries. ThusAIj extends smoothly from�1

to6.
Consider thenẼjI in �1. On the double-stroked boundaries, where (5.3) and (5.10) hold,

we have

e0 = Sdω , (5.13a)

e1 = f (λ)dλ , (5.13b)

e2 = αdω , (5.13c)

which shows thateIj is continuous on the identification of the double-stroked boundaries. An
analogous calculation shows thateIj is continuous on the identification of the single-stroked
boundaries: as seen from the last expression in (5.12),R is precisely the matrix that relates the
orthonormal Minkowski triad(∂T , ∂X, ∂Y ) to the orthonormal triad(v1, u±, ∂ω) adapted to the
double-stroked boundaries of�1, and the gauge transformation acting on the internal index
of 0ē

I
a (5.9) matches on these boundaries the projection of the spacetime indexa to the spatial

indexj ∈ {λ, ω}. ThuseIj andẼjI extend continuously from�1 to6. The extension can be
chosen smooth by making further assumptions about the embedding of6 in D, and we now
consider this to be done.
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To summarize, we have obtained on6 fields (AIj , Ẽ
j

I ) that satisfy the constraints. The
gauge has not been specified everywhere on6, but it has been specified on and near the
boundaries of the fundamental domain�, and the only parameters in this specification are
(β, a, ϕ0, σ ). We shall see that this is sufficient for evaluating the reduced action.

5.3. Reduced action

As all the constraints have been solved, the only terms remaining inStotal (4.18) areS∞ and
the Liouville term ofSbulk. We now evaluate these terms.

The parameters(β, a, ϕ0, σ ) in our gauge fixing refer to a fictitious two-particle Einstein
spacetime, and to a spacelike surface in this spacetime. We now interpret these parameters as
coordinates on the reduced phase space. When evaluating the reduced action, all the parameters
(β, a, ϕ0, σ ) are then regarded as functions oft .

EvaluatingS∞ is immediate: the expression is as is given in (4.13), withα understood to
be a function ofβ through (3.2) and (3.3).

In the Liouville term inSbulk, the integral over the regionλ > λ1 of � is straightforward
using (5.8), and yields to the Lagrangian the contributionπS

(
σ̇ + αϕ̇0 − α̇α−1σ

)
. In the

regionλ < λ1 (�1), a short calculation using (4.6) yields

1
2Ẽ

j

I

(
∂tA

I
j

) = 1
4∂j

[
ẼjI Tr

(
KIR

−1Ṙ
)]
, (5.14)

and the integral of (5.14) over�1 can thus be converted into an integral over the boundary
of �1. We now consider the parts of this boundary in turn.

On the boundary of�1 at λ = λ1, R is given by (5.10), and from (5.13) we have
Ẽλ0 = e0

ω = S. Hence the contribution to the Lagrangian is−πSσ̇ .
The double-stroked boundary components of�1 are atω = ±π , 0< λ < λ1. R is given

by (5.10), andR−1Ṙ is proportional toK0, but (5.13) impliesẼω0 = 0. The contributions to
the Lagrangian therefore vanish.

On the boundary component atλ = 0, the relevant components ofẼjI areẼλI = eIω, and
these vanish by our discussion of the particle actionSi (4.14) in subsection 4.2. AsR is regular,
the contribution to the Lagrangian vanishes. A similar argument applied to small half-circles
about the singular points 2 and 2′ shows that the Lagrangian gets no contribution from these
singular points.

What remains are the single-stroked boundary components of�1, atω = ±π , 0< λ < 1.
Their contribution to the Lagrangian is

1
4

[
ẼωITr

(
KIR

−1Ṙ
)]

+
− 1

4

[
ẼωITr

(
KIR

−1Ṙ
)]
−
, (5.15)

where the subscript± indicates the component atω = ±π . ẼωI in (5.15) can be written as(
ẼωI

)
±
= −

[(
R−1

)I
J 0e

J
λ

]
±

= −ac1 sinhβ1 tanσ

( 1
0
0

)I
− a

√
1 + cosh2 β1 tan2 σ

( 0
1
0

)I
, (5.16)

where the first equality follows from (4.3b), and the second one from (5.6), (5.9), and (5.12).
As the last expression in (5.16) is independent of the subscript±, ẼωI factors out in (5.15).
In the remaining factor in (5.15), we use the first expression in (5.12) to obtain

R−1
+ Ṙ+ − R−1

− Ṙ− = −β̇1
[
exp(−ψ+K0)K1 exp(ψ+K0)− exp(−ψ−K0)K1 exp(ψ−K0)

]
= −β̇1

[
exp(−ψ+K0)− exp(−ψ−K0)

]J
1KJ , (5.17)
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where the last equality follows from (4.6a). Using (4.6b) and (5.5), we thus find that (5.15) is
equal to

−as1β̇1 coshβ1 tanσ = α̇πa coshβ1 coshβ2

sinhβ
tanσ , (5.18)

where the last equality follows using (3.5a) and the identity

d

dα

[
sinhβ

sin(δ/2)

]
= −π coshβ1 coshβ2

s1s2 sinhβ
. (5.19)

Collecting, and defining

pα := πa
[

coshβ1 coshβ2

sinhβ
tanσ − s1s2 sinhβ

πα sin(δ/2)
σ

]
, (5.20a)

pϕ0 := παS , (5.20b)

we find the reduced action

Sred=
∫

dt
(
pαα̇ + pϕ0ϕ̇0 −M

)
, (5.21)

where

M := δ/2= π(1− α) . (5.22)

The quadruple(β, a, ϕ0, σ ), with β 6= 0 anda > 0, therefore provides a (noncanonical) chart
on the reduced phase space, as promised. This chart consists of two disjoint patches, one with
β > 0 and the other withβ < 0. We denote the reduced phase space covered by this chart
by 0+

red. A canonical chart on0+
red is provided by(α, ϕ0;pα, pϕ0): this chart consists of the

two disjoint patchespϕ0 > 0 andpϕ0 < 0, and in each patchpα takes all real values,ϕ0 takes
all real values modulo 2π , and 0< α < 1− (m1 + m2)/π . Note that the HamiltonianM,
given by (5.22), arose from the infinity boundary actionS∞ (4.13).

It is easily verified that the action (5.21) on0+
red correctly reproduces the classical solutions

with S 6= 0. What is missing, however, are the classical solutions withS = 0. We shall obtain
an action from which also the solutions withS = 0 can be recovered in section 6.

6. New phase space chart: ‘configuration’ and ‘momentum’ at a conical time

The canonical chart(α, ϕ0;pα, pϕ0) on 0+
red is adapted to the spacetime properties of the

spinning classical solutions. We now introduce on0+
red a canonical chart in which the variables

reflect more closely the geometrical ‘configuration’ of the two particles at a moment of conical
time.

Recall that the spatial geodesic distance of the particles at a moment of conical time is
Rc (3.13). Recall also that the conical angles of the particles differ byπ , so that the orientation
of the particles with respect to the infinity is completely specified by (say) the conical angle
of particle 1 (3.11a). We relabel this angle asϕc:

ϕc := ϕ0 + σ/α . (6.1)

Geometrically, the pair(Rc, ϕc) then characterizes a ‘configuration’ of the particles with respect
to the infinity at a moment of conical time. Further,Rc andϕc Poisson commute.

Define now on0+
red the functions

Pc := arcsinh

(
s1s2 sinhβ sinσ

sin(δ/2)

)
, (6.2a)

pϕc := pϕ0 . (6.2b)
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It is tedious but elementary to verify that the quadruple(Rc, ϕc;Pc, pϕc ) provides a new two-
patched chart on0+

red, such that the ranges of the coordinate functions arepϕc 6= 0,Rc > 0,
and

π |pϕc | cosh(Pc)

Rc
< c1 + c2 . (6.3)

The action in the new chart reads

Sred=
∫

dt
(
PcṘc + pϕc ϕ̇c −M

)
, (6.4)

and the chart is thus canonical. The HamiltonianM in the new chart is the unique solution in
the intervalm1 +m2 < M < π to[

c2
1 + c2

2 − 2c1c2 cos(M)
]

sin2(M)
=
[

1 +
p2
ϕc

(1−M/π)2R2
c

]
cosh2(Pc) . (6.5)

By definition,pϕc 6= 0 on0+
red. We now extend the chart(Rc, ϕc;Pc, pϕc ) to pϕc = 0 by

continuity, still maintaining the inequalitiesRc > 0 and (6.3). The action is given by (6.4),
whereM is now the unique solution to (6.5) in the intervalm1 +m2 6 M < π ; the lower limit
of this interval is achieved whenPc = 0 = pϕc . We denote the resulting extended reduced
phase space by0red. The action (6.4) on0red correctly reproduces all the classical solutions,
including those withS = 0: the spacetimes with colliding particles arise withPc 6= 0 = pϕc ,
and the static spacetimes arise withPc = 0= pϕc .

0red has dimension four. In comparison, this is the dimension of the phase space of the
two-dimensional Newtonian two-body problem in the potentialV (|Ex1 − Ex2|), after reduction
to the centre-of mass frame. It is further the dimension of a system of two (say) free massive
point particles in(2 + 1)-dimensional Minkowski spacetime, after reduction to the centre-of-
mass frame. As discussed in section 1, our anchoring the gravitating system to the infinity is
thus analogous to a reduction to the centre-of-mass frame in Newtonian or special-relativistic
physics.

The pair(Rc, ϕc) provides a gravitational analogue of the reduced position vector of the
Newtonian two-body problem, and the conjugates(Pc, pϕc ) provide a gravitational analogue
of the Newtonian reduced momentum. One aspect of this analogue is the recovery of the static
solutions forPc = 0 = pϕc and the solutions with colliding particles forPc 6= 0 = pϕc .
Another aspect is that in the spinning solutions, recovered withpϕc 6= 0, the particles are at
their smallest spatial separation when the ‘radial momentum’Pc vanishes, as seen from (3.13)
and (6.2a).

Because of the inequality (6.3),0red is a genuine open subset of topologyR3× S1 of the
cotangent bundle overR+ × S1 = {(Rc, ϕc)}. Qualitatively, (6.3) says that the momenta are
bounded from above, and when (6.3) approaches saturation,M approaches its upper boundπ .
Discussion on this upper bound for more general matter sources can be found in [29].

For further insight into the chart(Rc, ϕc;Pc, pϕc ), we consider three different limits.
First, consider the slow motion limit. ExpandingM to quadratic order inPc andpϕc yields

M = m1 +m2 +
1

2m

(
P 2
c +

p2
ϕc

[1− (m1 +m2)/π ]2R2
c

)
, (6.6a)

where

m := [cot(m1) + cot(m2)]
−1 . (6.6b)

Apart from the additive constantm1 +m2, (6.6) is the Hamiltonian of a nonrelativistic particle
with massm on a cone with defect angleδ1 + δ2 = 2(m1 + m2). m is thus an ‘effective
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mass’ that takes into account the quasistatic gravitational effects. Whenm1 andm2 are both
small,m becomes the usual reduced mass for a free Newtonian two-particle system with the
individual massesmi . We thus correctly recover in this limit the free Newtonian two-body
system in the centre-of-mass frame.

Second, consider the limit in which the mass of particle 1 is small but neither particle
is moving close to the speed of light. To incorporate this, we assume thatPc andpϕc are
proportional tom1 and expandM to linear order inm1, with the result

M = m2 +

√
m2

1 + P 2
c +

p2
ϕc

(1−m2/π)
2R2

c

. (6.7)

Apart from the additive constantm2, the expression (6.7) is the familiar square-root
Hamiltonian of a relativistic test particle with massm1 on the cone generated by particle 2 [35].
We thus correctly recover the relativistic test particle limit for smallm1. Further expanding
(6.7) to quadratic order inPc andpϕc , with fixedm1 andm2, yields the Hamiltonian of a
nonrelativistic particle of massm1 on a cone with defect angle 2m2, in agreement with the
limit of (6.6) at smallm1.

Third, consider the limit in which the masses of both particles are small but neither
particle is moving close to the speed of light. To incorporate this, we takem1,m2, Pc andpϕc
all proportional to a small expansion parameter and expandM to linear order in this parameter.
The result is

M =
√
m2

1 + P 2
c +

p2
ϕc

R2
c

+

√
m2

2 + P 2
c +

p2
ϕc

R2
c

, (6.8)

which is the Hamiltonian of a special-relativistic test particle pair in the centre-of-mass
frame [36]. Further expanding (6.8) to quadratic order inPc andpϕc , with fixedm1 andm2,
yields the Hamiltonian of the free Newtonian two-body system in the centre-of-mass frame,
in agreement with the limit of (6.6) at small masses.

7. Concluding remarks

In this paper we have anchored the Hamiltonian dynamics of a pair of massive spinless
point particles in(2 + 1)-dimensional Einstein gravity to a conical spacelike infinity. This
infinity is isometric to that generated by a single massive but possibly spinning particle, and
assuming such an infinity to exist guarantees that the spacetime is causally well behaved.
We first described the two-particle spacetimes by relating the particle trajectories to the
asymptotic structure at the infinity. We then performed a Hamiltonian reduction of the first-
order gravitational action under boundary conditions adapted to this asymptotic structure. We
found that the reduced phase space0red is four-dimensional, and anchoring the dynamics to the
conical infinity was seen to be analogous to working in the centre-of-mass frame in Newtonian
or flat spacetime physics. In particular, we found on0red a canonical chart in which the two
configuration variables are analogous to the reduced position vector of a Newtonian two-body
system in the centre-of-mass frame.

In the Hamiltonian reduction, we took advantage of the explicitly-known classical
solutions and worked in variables that are closely related to the constants of motion. We
assumed in the reduction that the spacetime has nonvanishing spin, and the resulting reduced
phase space0+

red thus only reproduced the spinning spacetimes. We then introduced on0+
red a

new canonical chart that is more closely related to the configuration of the particles at a single
moment of time, and only in this new chart did we extend the reduced Hamiltonian system by
continuity into the larger reduced phase space0red, in which the nonspinning spacetimes are
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also correctly reproduced. While it seems likely that our reduction method could be directly
extended to include the static spacetimes, the situation with the colliding-particle spacetimes is
less clear, as the dynamics becomes indeterminate at the collisions. However, as the evolution
of any point in our0red is well defined for some finite interval of time, it seems likely that the
reduction to all of0red could be justified directly by methods that are more tailored to initial
data and less reliant on the constants of motion. A reduction of this type with a second-order
gravitational action has been recently discussed in [24].

Although our Hamiltonian on0red was amenable to a classical analysis, its functional form
in the chart(Rc, ϕc;Pc, pϕc ) is determined only implicitly as the solution to the transcendental
equation (6.5). Quantizing the reduced Hamiltonian theory in these variables seems thus
to present a substantial challenge. A more promising approach to quantization might open
through reduction methods that are better adapted to initial data and proceed step-by-step with
partial gauge fixings, paying attention at each step to the gauge symmetries still present in the
action and maintaining a freedom to choose gauges and variables that yield simple charts on
the partially reduced phase spaces. Work in this direction is in progress [36].

Generalizing the present work to more than two particles would appear conceptually
simple, although one may anticipate the complexity of the reduced phase space to increase
considerably with the number of particles. Another generalization would be to consider
lightlike particles [37,38]. Yet another direction would be to include a cosmological constant
and change the boundary conditions accordingly [39–41], perhaps as motivated by the CFT–
AdS correspondence in string theory [42–44]; in lineal gravity, an analogous generalization to
a cosmological constant has been carried out in [45]. We leave these issues for future work.
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