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Abstract

We study the quantum mechanical model obtained as a dimensional reduction of .#"= 1 super
Yang—Mills theory to a periodic light cone *‘time’’. After mapping the theory to a cohomological
field theory, the partition function (with periodic boundary conditions) regularized by a massive
term appears to be equal to the partition function of the twisted matrix oscillator. We show that
this partition function perturbed by the operator of the holonomy around the time circle is a tau
function of Toda hierarchy. We solve the model in the large N limit and study the universal
properties of the solution in the scaling limit of vanishing perturbation. We find in this limit a
phase transition of Gross—Witten type. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The supersymmetric Y ang—Mills (SYM) theories have rich physical content and their
guantitative analysis is in general as difficult as in the usual, nonsupersymmetric, gauge
theories. However they often contain, unlike the purely bosonic YM theories, specific
sectors, which can be analysed exactly and where the supersymmetry leads to a nilpotent
(topological) symmetry [1]. The dimensionally reduced versions of the SYM theory even
allow various massive deformations conserving this symmetry.
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In Refs. [2,3] this symmetry (in the zero-dimensional reductions of SYM) was applied
for the calculation of the (bulk part of the) Witten index for ensembles of N O-branesin
4, 6 and 10 dimensions, justifying the conjectures related to the existence of bound
states of zero-branes [4]. In Ref. [5] the method was applied to study certain correlators
of BPS states or, in other words, of perturbations of the original reduced SYM theories,
which preserve part of the supersymmetry. In the case of the zero-dimensional reduction
of .#"=1 SYM theory, the large N limit was studied exactly using the method of Refs.
[6-8] or by the corresponding integrability properties allowing to write an explicit (KP)
differential equation for the partition function. One of the unexpected results was that, in
the large N limit, the physical quantities exhibit an essential singularity at A = 0, where
A is the coupling of the massive perturbation. The large N limit of the dimensionally
reduced SYM theories is aso interesting because it may reveal part of the structure of
the nonreduced theories, due to the Eguchi—Kawai mechanism.

In this paper we study the one-dimensiona reduction of the .#" =1 SU(N) pure
Y ang—Mills theory. Unlike the well-known and widely used 1D reduction to the usual
physical time [6-9], or [10], we will retain the ‘‘time"’ along the light cone direction
compactified on a circle of radius B. Only this reduction alows the direct use of
Witten's localization principle [1]°. In order to get rid of the zero modes of the bosonic
fields we will deform the theory by a massive perturbation corresponding to the O(2)
twisting of the boundary conditions on the time circle with respect to a subgroup of the
Euclidean symmetry O(4). The SYM theory reduced in this way appears to be identica
to the compactified hermitian matrix oscillator with SU(N)-twisted boundary condi-
tions. The twisting angles are related to a global mode of the (time-like) gauge field.
This model can be further reduced to that of a unitary (already time-independent) twist
matrix. We find that the model is integrable in the sense that its partition function is a
tau-function of Toda hierarchy, i.e. it obeys a chain of nonlinear Toda equations.

The model can be solved exactly and rather explicitly in the large N limit. The
solution of the corresponding saddle point equation and its physical consequences in the
limit of vanishing perturbation represent the main result of this paper. The solution is
parametrized in terms of elliptic functions. The analysis of the solution as a function of
the two parameters Be and A, where B is the compactification length, € is the strength
of the massive perturbation, and A is the twist coupling reveals the following phenom-
ena

1 In the double limit € > 0, A — O the free energy is universal (under certain
deformations) function of the ratio €/A.
2. In the limit of vanishing massive perturbation (e — 0), the observables exhibit

an essential singularity ~ exp(—const/¢).

®our argument follows essentially the construction proposed in Refs. [11,12], which alows to lift by one
the dimension of the spacetime without loosing the supersymmetry. Technically speaking, our procedure of
dimensional reduction replaces the Euclidean spacetime by a point and at the same time introduces the *‘ time'’
dimension 7. The latter might be interpreted as a lightlike dimension of the original spacetime, but we do not
know to what extent this interpretation is justified.
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3. The analytical continuation of the model at the point €8 = in (inverted oscilla-
tor) shows the scaling of the ¢ = 1 compactified noncritical string theory. This
value of the compactification length eB corresponds to the Kosterlitz—Thouless
critical point (see Appendix C).

The paper is organized as follows. In Section 2 we describe the reduction of the
partition function of the one-dimensionally reduced .#"= 1 SYM, theory to that of the
reduced twisted matrix oscillator, by the use of the supersymmetry and the localization
theorem. We then reduce the configuration space of the model to the set of the
eigenvalues of the unitary twist matrix. In Section 3 we find that the partition function of
our model is a 7 function of the Toda integrable hierarchy and write the differential
equations satisfied by the partition grand canonical function. In Section 4 we give an
exact solution of the saddle point equation for the large N limit of the model in terms of
eliptic parametrization; the calculations are presented in Appendix A. In Section 5 we
study the limit of small massive perturbation. We find a universal expression for the free
energy in presence of a source for the Wilson loops, in the scaling limit e — 0 and
A — 0. We analyse the properties of the solution, especialy in the small compactifica-
tion radius limit and near the curve of the Gross—Witten type transitions. Section 6 is
devoted to conclusions. In Appendix C we give the solution of the analytic continuation
of our model to imaginary time €8 = iw, which is the Kosterlitz—Thouless point for the
corresponding ¢ = 1 noncritical string.

2. Definition of the model and its reduction to one-dimensional matrix quantum
mechanics

In this section we will show that the dimensionally reduced .7 = 1 super Y ang—Mills
theory with gauge group SU(N) can be mapped to one-dimensional matrix quantum
mechanics. The dimensional reduction consists in replacing the 4-dimensional
(Euclidean) spacetime by a single lightlike ‘“time'’.

Let us first give the generalization of the argument of Ref. [5] to the case of one
dimension. We start with the the .#'=1 SU(N) SYM, containing 4 bosonic matrix
fields A, (u=0,12,3), and 4 red fermionic fields ¥, (a=1,...,4). After performing
a Wick rotation x,= —ix,, the action of the Euclidean theory can be written as

F= [dXTr (= 4R+ 3 VT (Vi +y- V) V), (2.1)

where V, =ig, + A, isthe covariant derivative and the gamma-matrices are represented
as direct products of Pauli matrices: vy, = oy X o; (i = 1,2,3). The gauge group SU(N)
acts to al fields in the adjoint representation. Let us assume that all fields depend only
on the time-like coordinate

T=Xz— Xy, (2.2)

which parametrizes a circle with radius 8. The resulting model is a matrix quantum
mechanics containing four bosonic and four fermionic matrix variables.
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We will evaluate the functional integral for this one-dimensional matrix model by
mapping it to a cohomological field theory, which will alow to apply Witten's
localization argument [13]. Let us redefine the fields as

Ay Xy iy

A, X5 b,
A+ing e YT n| (23)
A —iA, ¢ X

Then the action (2.1) can be written as a BRST exact form. The BRST transformation Q
acts on the complex of fields @ = {X_,¢,é,H;,,m, x} (where H =i[ X;, X,] is consid-
ered as an auxiliary field) as

Qxa:lpa! Qwa:[iaf—’_(b’xa] (a=1’2)’
Qaz”f), Q'Y)z[iaT-f'(f),Q_S], QX:Ha
QH=[i+dx].  Qb=0. (2.4)

Namely, the action

7= [P Te(iH[ X, X1 + 3H? + [ Xia + ¢1[ X, 8] + [ia + 6.8]°
0

+1xe®[ Xop] + [ Xan ]t — [ 6. X [0+ ¢, X, ]+ 3x[id+ &, x]

+ [0 0] ).

can be written as

S= QfOBdTTrW(@),

2
7(@) =%n[i87+ Q”,g] +X(H _i[xlvxz]) + ; %[Xa@]- (2-5)

The square Q? of this transformation represents the ‘‘time’’ gauge transformation
generated by ¢, V. =[id + ¢, ]. Hence Q is nilpotent on the gauge-invariant quantities.
The ghost number of the fieldsis —2 for ¢, —1 for n and x, O for X, and H, +1 for
Y, and +2 for ¢.

The functional integral with respect to the BRST complex of fields &

. 9P
(B9 =Yg
(where the integration measure is normalized by the volume of the gauge group £) can
be therefore evaluated using the Witten's localization argument [13]. Namely, the
integral is saturated by the BRST critical points Q& = 0. More dtrictly, we have to
integrate over a continuous critical manifold, because of the zero modes of ¢, x,¢. The
zero modes are eliminated by adding, following Ref. [13], a Q-exact term to the action
(2.5) by changing the action to .% + 8.7, with

e~ 1/ 9] (2.6)

6.7 =1Q [ dr Tr x. (2.7)
0
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We can aso discard from the very beginning, the term 2[id. + ¢,¢]. As before, H can
be integrated out by setting H =t + [ X;, X,] in (2.5). The advantage of introducing
the perturbation (2.7) is that for t+ 0, the fields ¢, y, and n can be integrated out.
However, the perturbed integral does not coincide in genera with the origina one
because of the new fixed points ‘‘flowing in from the infinity’” when one perturbes to
t # 0 [13]. The correct statement is that there exists a class of BRST-invariant operators
whose (nonnormalized) expectation values coincide in the original and the perturbed
theory. The first such operator is

o= [TdrTr(=[i4,+ 6.X]%, + ¥1t) = Q[ “dreTr (4, X,). (2.8)
0 0

The second is any SU(N)-invariant function f(£2) of the holonomy factor around the
circle

0- 'I:exp(ifﬁdfgb(f)). (2.9)
0
The functional integral for the expectation value
(e“f(N)) = f—g(p g~ W/ aTHeNTef( () (2.10)
Vol (2)

does not depend on the coupling t. Indeed, taking the derivative in t and integrating by
parts, we find zero, since the integrand vanishes at infinity due to the factor e®.
Therefore we can take the limit t — o, after which the integral (2.10) gets localized near
the zeros of H,¢,x,n. (In particular, the partition function does not depend on the
gauge coupling g.) Now we can calculate the partition function (2.6) understood as the
average of the identity operator. Since w has ghost number +2, due to the ghost
number conservation

Zn(B.9) =<1 =(e”). (2.11)

The above argument has been applied recently by F. Sugino [14] in order to calculate the
partition function of the four-dimensional .#"=1 SYM reduced to a two-dimensional
torus, with periodic boundary conditions for all fields. Our case is slightly more subtle,
because of the zero modes of the fields X,. These zero modes will be eliminated, as in
Ref. [3] and later in Ref. [5], namely by deforming the BRST operator in the definition
of the action (2.5). Let us first notice that after the redefinition of the fields the theory is
still invariant under the O(2) rotations in the directions orthogonal to the light cone:

X +iX, = €4 X, +iX,), by i, > (P +it,).

This allows to construct another BRST operator, which squares to a linear combination
of a gauge transformation and an O(2) rotation. The twisted BRST charge Q. acts as

QX =t Qi =[19+ X, ] +iesPXy,
Qé=n  Qn=[id+¢.8],
Qx=H, QH=[ig+dx], Qé=0. (2.12)
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The modification of the supercharge is equivalent to changing the action (2.5) and the
operator (2.8) as

F o P+ 2iedeTr($[xl,x2]), 0> w— g/BdTTI’(Xf +X2).
0
(2.13)

In the limit t — o the integral gets localized near the zeros of H, @, x,n, leaving the
place to the action

S= deTr(—i[iaTJr &, % 1%, — 2e( X2+ X2) + yyihy), (2.14)

and the ¢’s can then be integrated out. Finaly, the integration over X, gives the
partition function of the matrix oscillator (with the coordinate X; = X) in presence of

the one-dimensional gauge field ¢(r)
() TX(1) i B, (1. 2 2
—vas exp(—ETrf()dT(;[uaT+¢,x] +eX ) ,

(2.15)

Zn(B.9.€) :/

with periodic boundary conditions X( 8) = X(0), ¢(B) = ¢(0). It is clear that the
integral depends on B8 and e only through the product €B. We will absorb € in 3,

€B— B, (2.16)

remembering that the perturbation is lifted in the limit 8 — 0.

The functional integral over the field ¢ can be written, after fixing a gauge d.¢ = 0,
as an integral over the unitary matrix* representing holonomy factor defined by (2.9),
namely = e'#? normalized by the volume of U(N). The holonomy factor enters the
functional integral over X as the twisted boundary condition:

X(B)=0"X(0) Q. (2.17)
The integral over X can be performed exactly, and the integral over the unitary matrix
0 reduces to an integral over its eigenvalues €'’,...,e'% (which are defined up to a
permutation, hence a combinatorial factor 1/N!). The partition function is therefore
given by the N-fold integral®

[Tsin[3(6,— 6))]

“1 2w TTsn[3(6,-6,+i8)]"

1
Zu(B) = 7P (218)

where 6, = Bo,.

It is assumed that the integration contour for the eigenvalues of ¢ is chosen along the rea axis. In this
case ¢ should be taken anti-hermitian, see the discussion in Ref. [13].

® This happens to be exactly the partition function of the one-dimensional gas studied by Michel Gaudin in
1966 [15]; it was extensively used in Refs. [16,17] to study the compactified (1+ 1)-dimensional string theory
via matrix quantum mechanics; in relation to the actual SYM theory this formula was communicated to us by
N. Nekrasov.
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The expectation value we are calculating is a deformation of the Witten index
Zy(B) =Tr(—) e PHeiped, (2.19)

where the (—)F-factor is included in order to impose the periodic boundary conditions
on the fermionic fields, and the trace is twisted by an O(2) rotation e€'#<? in the (12)
plane. The twisting of the BRST charge Q — Q. does not change locally the functional
integral, but it does change the boundary conditions for the fields.

Now we are at the most subtle point of the reduction procedure, which deserves to be
discussed in more detail. Considering the fields ¢ and ¢ as two independent fields
imply that the integration over them is understood as contour integration. The twisting
separates the poles and zeroes of the integrand and allows to evaluate the integral by the
residue theorem, in complete similarity with the calculation of Ref. [3] for the zero-di-
mensional model. Since the integrand does not depend on the variable

o 0+ ... +0N'
N
the contour integral with respect to this variable would give zero. In fact, the integration
with respect to this variable should be excluded because this is one of the normalizable
zero modes of the original fields and the measure 2@ should contain a product of delta
functions of the bosonic and fermionic zero modes. In particular, the normalized zero
mode of ¢ is

1 _
0= 5 fOBdTTrqb(T) = /NB 0.

For a more detailed discussion see Ref. [18]. Therefore the measure in (2.18) contains a
delta function 8(¢©)~ 8(6, + ... +6,), which suppresses the contour integration
with respect to 6. The integral over 6's is normalized by the volume of the residual
global gauge group. The introduction of the delta function should respect this normaliza-
tion. Thus we have to insert

278(0) =2wNS (0, + ... +6y).

Now we can integrate, after representing the integrand as a determinant using the
Cauchy identity, by using the residues theorem. The integral is equal to the sum of the
identical contributions of the (N— 1)! cyclic permutations in the expansion of the
determinant

v (N=D)! de,  doy

Zn(B)=(-) T o ZZWNS(Gl - by)

N 1
e —o +ip]
(d6,/27) (d6y/2m) 5(N(0,+ 0y)/2)
:fsmh%[al—0N—i(N—1)B]sinh%[01—0N+iB]
1
~ 2NsnhN( B/2)

(2.20)
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In the limit 8 — o« our partition vanishes, which is not unexpected, since the Witten
index of the D = 4 theory is zero. In the limit 8 — 0 we recover the result for the
completely reduced theory ~ 1/N?, in agreement with Ref. [3]. A more careful analysis
allows to reproduce aso the numerical coefficient, in accordance with the conjecture
made in Refs. [19,20]. In the limit 8 — 0, the Q-integral is saturated by the integration
in the vicinity of the N central elements of SU(N) which are parametrized by the
element of the su(N) Lie algebra [21]. After performing carefully the limit, one finds
(see e.g. Ref. [18))

e
9/B g
AR = s '%O)(E)’

where Z?(g) is the partition function of the completely reduced theory, and one
reproduces the result of Ref. [3]:

1
2”&0)(9)=7N95(N2”$- (2.21)
(The numerical factor &, depends on the way the integration measure is normalized. In
the normalization used in Ref. [3] this factor is equal to one, but this is not the most
natural choice from the point of view of applications to the D-brane physics.) In the
particular case of the SU(2) theory the result was obtained by the direct calculation of
the integrals [22].

Let us note that our partition function only formally coincides with that of the twisted
matrix oscillator and, at least for finite N, there is an ambiguity related to the
prescription for the contour integration. Witten's localization procedure leads to an
integral over the Lie algebra and logically the integration with respect to 6’s should be
taken along the whole real axis. With this definition, only (N— 1)! terms in the
expansion of the determinant will contribute to it. On the other hand, had we integrate in
interval [0,27], this would correspond to contour integration with respect to the
eigenvalues of the Lie group element {t, = e'’}}_,, where the contours circle the origin.
In this case we would get contributions from al N! terms in the expansion of the
Cauchy determinant. The result would be given, instead of (2.20), by (see, for example,
Refs. [16,17])

e—Nzﬁ/Z
(1-eP)(1—e2P).-- (1—e M)’

Unlike (2.20), the 8 — 0 limit of this formula does not match the result of Ref. [3].
Which of the two formulas (2.20) or (2.22) is correct? Clearly the difference between
them is due to a different treatment of the boundary conditions for the field ¢ in the
formula (2.15) (result considered then at hermitian oscillators). A happy resolution of
this paradox would be that from the point of view of the application of Witten's
localisation principle both formulas seem to be possible but the result depends on the
boundary conditions and the contours of integration for the field ¢(t) in the origina
action (2.5). However we fedl that the question is rather subtle and more study is needed
to clarify it. For example we cannot be sure that the supersymmetry of the original

Fu(B) = (2.22)
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model isn’t violated in one of two cases. On the other hand, the local BRST symmetry
used for the calculations is certainly intact.

Now let us consider a dightly more ambitious problem, namely to calculate the
generating functional of a set of BRST invariant operators made out of the gauge field
¢. As mentioned before, such operators can be constructed as traces of the holonomy (2
in different representations, or, equivalently, as polynomials of the moments Tr(£2).
We will add to the action the simplest possible source term

AT (0 + 0). (2.23)

Repeating the arguments, which led to (2.18), we find for the generating functional the
following integral representation

1 N do, 1 6, — 0]_
zN( B,)\) — m¢kl:[lz NAcosG l_l [ ( )] (224)

ivj Sn[3(6,—0,+ip)|’

where 0, = B¢,. If one follows the recipe of Ref. [3], the integration should be
considered as a contour integration along the real axis, where the N integration variables
are subjected to the constraint 6, + ... + 6, = 0. Then the result should be analytic as a
function of B, which can therefore be given complex values. It is plausible that in the
large N limit, which we are interested in, if the perturbation is sufficiently strong, the
choice of the contours should be not important. The equivalence between the reduces
SYM theory and the twisted matrix oscillator should takes place only in this limit.

It would be very interesting to understand what is the meaning, in terms of the
original supersymmetric theory (2.1), of the deformation that leads to the partition
function (2.23).

The reduction from 4 to 1 dimension of the origina theory turns three of the
components of the gauge field into Higgs fields ( X;, X, and ¢). This makes the direct
calculation of the partition function (which is related to the bulk part of the Witten
index) more delicate, because of the absence of mass gap. By introducing the deforma-
tions (2.7), (2.8) and (2.13) we add an additional Higgs potential, thus breaking part of
the supersymmetry. The effect of the source term, which we added to obtain the
partition function (2.23), depends substantially on the way we have perturbed the theory.
Indeed, it has positive ghost charge, and its effect would be zero, if the perturbation
(2.13) of ghost charge —2 were not there to compensate it. This is aso true in the
completely reduced theory, discussed in Ref. [5].

3. The partition function as a tau-function of the Toda hierarchy

Here we will show that our partition function with a source term ATr(Q2*+ Q) isa
tau-function of discrete Toda chain. Let us rewrite the partition function of the model
equation (2.24) in the following form:

4%(2)
Zy(B.t elt® :
N(B ) N'¢J 12 (eﬁ/zzm_efﬁ/zzk)

k,m

(3.1)
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where z, = €'%, U(2) =X, ot, 2", and A(2) is the Van-der-Monde determinant of z's.
Inourcaset, =t_, =Niand t,=0for n# +1, but most of the following conclusions
are true for a general U(2).

Let us now introduce the grand canonical partition function with the ‘‘charge’” I:

[tun] = ij erNe NEx (1 B,1). (3.2)

Due to the Cauchy identity the last equation can be rewritten in terms of a functional
Fredholm determinant:

e !'NB N 1
7 [t, e#N —e“(z)det
fltu] = NZl NI Jl_[l - k,m ef/2z —e B2z
— Det(1+e* FIK), (3.3)

where the operator K is defined as

—[U(Z)+ u(z)]

(Kf)(2) = Sézwege/zﬁf(z)

It is convenient to modify dightly the definition of the tau-function:

AlTos] = Altales| - Xt ), (34
n>0
where we introduced new couplings T, by:
U(z)= ) z"T,(e "P/2—g"P/2) (3.5)
n+0

so that the old couplings are expressed through the new ones as:

t,=T,(e "P/2—ge"h/2), (3.6)
We dso note that
n[T.u]=7[T, =Bl =7[T,n—BlI]. (3.7)

Using, for example, the general construction of the paper [23] for our particular
tau-function we conclude that it is a particular case of the tau-function of Toda
hierarchy. It satisfies the Toda chain equations. Namely let us introduce a new function

o _ -1 7[T,n—B(1 - 1))
T 7 - 7[T.n—Bl] (39

and the notations
ix,=V2T,, = +(ef/2—eh/2) 't
The first equation of the Toda hierarchy can be written as

d d
X, IX_

— @+ 3(eP P ghim P =, (3.9)
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Due to the symmetry 6 — — 6 of the measure our tau-function depends only on the
variable x = /x, x_ . The corresponding reduced equation is:

1
D + ;(D,’Jr%(e‘p"d"ﬂ—e"'[)'fl’q") =0, (3.10)
where the derivatives are taken with respect to x.
For the function i, = &, — &, , = log(7,_,7,, ,/77?) the Toda equation reads:
" 1 ! 1
I+ ;IM + 5(2e" —eh-1—ehi1) = 0. (3.11)

The tau-function, as well as @,(0) and ,(0), can be determined for x = 0 using the
methods of Refs. [16,17] (for x =0 the tau-function is the grand canonical partition
function of the matrix oscillator in the singlet representation of the U(N) group, which
is the same as the partition function of N fermionic oscillators) and it can serve as a
boundary condition for the Toda chain equation. For example, one finds from (2.22)

1+ e Br-1-3/2

0 —
O = s (3.12)

Let us also note that ,(x) is analytic in x? at the origin, which gives the second initial
condition d, 4| x—o = 0.

Using these equations and the boundary conditions we expand the partition function
(2.24) in powers of A2. In the first order:

1 92 I 1—e NP 313
— —logZ = —. :
2NZ 29 1-e# (313)

Thisis the simplest correlation function {tr 2" tr 2 of the holonomy Wilson loop in
our original model.

The large N limit of the initial partition function (2.24) or (3.1) can be studied in
terms of a special scaling limit of these Toda equations (since u ~ N in the Legendre
transform from canonical to microcanonical partition function), similar to the KP-
hierarchy approach of a simpler zero-dimensional model of paper [5]. We leave this
study to a future publication.

4. Saddle point equationsin the large N limit

In this section we will investigate the large N limit, which is the most interesting
from the point of view of applications. Since the potential Acosf is symmetric, we
assume that the saddle-point spectral density

HMZ

3(6-6)

ZIH

p(0) =
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is supported by the symmetric interval [ —a,a] with 0 < a < #r. The function p(0) is
determined by the saddle point equation
60— 6' 06— 6" +ip 0—6' —iB

— cot — cot > ,

a
2Asin6 = ][ dop(6") (Zcot
—a
(4.1)

where we temporarily rescaled Be — B. This equation is equivalent to a functional
equation for the resolvent

a 0—¢6'
W(60) =3[ dop(0')cot , (4.2)
—a 2
namely
ASiNG=W(6+i0) +W(6—i0) —W(O+iB)—-W(o—iB), (4.3)
where —a < 6 < a, supplied with the normalization condition for the density
dz
¢ 5 —W(2) =1, (4.4)
z 2

where the contour of integration & circles interval [ —a,al.
It is easier to solve this equation for the function

1
sSnh= B W(z+iB/2) —-W(z—iB/2)

=-2 +4
{(2) COSZ 3 |

1

= —2c0Sz— (4.5)

“%cos(z—6) — coshg
which satisfies the simpler equation

§(0+i§)=§(0—i§) (be[—aal). (4.6)

The solution can be formulated in terms of standard elliptic functions (see Appendix
A for the derivation). We giveit in the form which is convenient for the limit of small g
(or, equivalently, finite 8 and € — 0). The function £(z) will be given in a parametric
form

{=¢(v), z=2(v),

where the parameter v belongs to the rectangle — ;7 <Rev < 37, — 277 <Imu
< 177. The dliptic modulus g and the nome k2

q:ef'n'K/K':eiﬂ'T, k = 1_[ (47)

are given below as functions of 8 and A.
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The solution (in parametric form) is:

L) 61w

) 4.8
g(b) fz(U)_fZ(Uw) ( )
where f(v) is a standard elliptic function
2K/ 2K! l oo qn
f(u)=7dn(70,k) =1+4n§1TQZnCOS(2nU), (49)
and
H(v+o,
z(v) =iEU+i|n¥
T H(v—uv,)
sin(v + o, * 2" gin2np, sin2nu
=iEu+iln¥+4iZ a 5 . (4.10)
T sin(v—u,) g 1—q°" n
The modulus 7 is proportional to the ratio of v, and 8
e (4.11)
B
and is determined by
2 Y {alst {145
—sinh 2) = —E(k) — ——K(k). 4,12
LSt B/2) = S E(K) = = 2 K(K) (4.12)

The parameters ¢,,...,{s of the solution are expressed as functions of A and v, as
follows:
f'(v.) 604(20.)

—ti= —eB/me ) ,
b=t f(0) 6,00

_ e(.B/ﬂ')(:ac f”(Uw) f,(Uw) 2 / 2 B 2 413
§4+§3_ - 01(0) f,(UOC) - f(Uoc) + 61( UOO)+;01( UOO) 1 ( " )
{ya? — ,K? {— La?
L= ﬁ, {s= ﬁ, (4.14)
f(v, 44— G)a
_(—”w), y= (42 31 — . (4.15)
142 q" (1 - a?)(a?-k?)
n=1

Findly, it is useful to know the value ¢, of the function {(2z) at the branch point
z=i(B/2) +a

54_4’2 _£
')’ 277 ocn:]_l_q

sin2n,. (4.16)
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5. Scaling limit
5.1. The resolvent in the scaling limit

Let usrecall that the parameter 8 is the product of the physical time and the twisting
parameter €. Therefore the twisting is removed in the limit 38— 0. If 83— 0 with A
fixed, we reproduce the zero-dimensional case considered in Ref. [5]. In this section we
will consider a nontrivia limit where both A and B go to zero so that the ratio A/
remains finite. In this limit, all observables depend only on the ratio A/B, and this is
why we call it **the scaling limit’’. Note that in the thermodynamical limit N — oo, the
two limits A — 0 and € — O will not commute.

In the scaling limit we have Im7> 1, K=In4/K, K'=17(1+k?/4) and,
neglecting the exponentially small terms, we get

_§4+§3_£ 1 Z—iE +i|nSin(U+U°°)
2 16q sin(v +v,)sin(v —uv,) T sn(v—uv,)
(5.1)

where (& = & — ¢

4+ 4 B .
= = —elB/me=| 200820, + —sin2u, |.

L = 16Qe' P/ =8in? 20,
2 T

(5.2)

When the regularization is removed, i.e. in the limit B8 — 0, a sensible limit is
obtained when A tends to zero linearly with 8. The scaling coupling constant 8/A is
obtained from (4.12) after substituting E=1, K=Qx/8)uv..:

2#? = 2sin2v, — 4v,,c020,, . (5.3

5.2. The free energy in the scaling limit
The derivative of the free energy
1
F(A,B) =Ilim W'”EN(/\aﬁ)'
is proportional to the first moment of the spectral density
a
Fi(AB) = [ dop(6)coso, (5.4)
—a
which can be evaluated by looking at expansion of ((z= 7+ iy), a y — o,

é’( Z) =Y+ Z é’(k)e_(Zk"' 1))’_
k=1
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We have

A
F(AB) = ——[¢®-1]. (55)
83|nh256

The coefficient ¢ is evaluated in the scaling limit 8 — 0 in Appendix A. This allows
us to write an explicit expression for the free energy in the limit 8 — O:

A
F(A/B) = 4—77_B(4um—sin4um), 71'? = sin2v, — 20,C082v,,. (5.6)

This expression for the free energy is universal in a certain sense: if one deforms the
potential (2.23) to a more general one:

ATE Y 1,00, (5.7)
n= —ow
then the scaling limit of the free energy will have the same form (5.6), where A will be
substituted by some function of the couplings A(g,,d,,.-.). The universal form of the
free energy can only change if we tune the couplings g,, to some multicritical point.
The corrections to the Eq. (5.6) are of two kinds: power-like corrections and
exponentially small terms of the type

q — e—477'11x/5.

In the limit A — o we have q=exp— (247*/AB?)Y3. These terms are of course
invisible compared with the power-like corrections but they imply the existence of
essential singularity in the 8 — 0.

If we return to the origina notations in terms of B8,e and A we conclude from (5.6)
that F(),B,e) = eAf(A/( Be)). Hence the principal ~ N2 correction to the free energy
tends to zero in the limit € » 0 (when we recover the origina unperturbed reduced
SYM theory). On the other hand, as we will see below from (5.6), there is no regular
expansion in powers of e in the weak coupling phase which signifies that there is an
essential singularity at the origin of this coupling and, correspondingly, in the moduli
space of our theory.

5.3. The Gross—Witten phase transition and the strong coupling phase

The matrix integral we are considering has qualitatively the same phase structure as
the U(x) gauge theory on a two-dimensional sphere. The weak coupling phase consid-
ered above, describes the range of couplings A > A, where

1—eB
A =

C

5.8
- (58)
is determined by from the condition a= 7, i.e. that the two endpoints of the cut meet
on the unit circle. (Eq. (5.8) follows from (5.3) with v,, = 7/2; the length of the cut as a
function of A isgivenin Appendix A.) The singularity near this critical point is as usual
of third order.
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The strong coupling solution is obtained by expanding the spectral density and the
kernel in a Fourier series

p(0) = 2—177 iockcos(ko),

0+i0 0—i0 0+i 0—i *
cot + cot — cot b — cot P =4 [L—e**]sin(ke),
2 2 2 2 =

6—96'
2

][w dop(6")cot = ) csn(ke).
- k=1

It is therefore clear that only the ¢, term of the expansion of the spectral density has
to be retained. One finds

A
1+ ——cosf |, forO<A<A,=1—€", (5.9)

1
6 [
p(0) 2 1—e#

For the free energy we find then:

mpery forO <A < A,. (5.10)

Fl = fiwdep(9)0089= 3 I
In the scaling limit e > 0 we obtain: F; = A/ for A < 8. At the critical point A, = 8
we have F/|,-z=3 and F/'|,-5=1/2B. A simple caculation using Eq. (5.6) givesin
the weak coupling phase A > A_ the same values of first two derivatives of the free
energy at the critical point. This means that we have, as usually, the 3rd order
Gross—Witten phase transition. Note that in the limit 8 — « our model reduces indeed
to the one-plaguette model originally studied by Gross and Witten [24].

5.4. Reduction to the zero-dimensional theory: B < A

In this limit the theory appears to be the zero-dimensiona reduction of .#'=1 SYM
studied in Ref. [5]. The integral (2.24) reduces (after the rescaling 6 — 6) to a simpler
integral:

2aN( B\ N dg, 1. ,, 6, — 6,
Z AN=——| eV — g™ VB — 511
n(BA) = (27) fkl:[lzw 2 Eei—ejJri (5:11)
This model was studied in Refs. [6-8] and later in Ref. [5].
We find from (5.6) the following expansions in half-length of the cut a=2u,:

a2 4
F=1-—+ +0(a%), 5.12
A 10 4200 (a) (5.12)
p_& 1 & o(a 5.13
—=—|1-—=|+#(a). .
A 37w 10 (a) (5.13)
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This gives the following asymptatics for the free energy:

a1z 3”_3)2/3_1(@)4/3 L
F(B,)\)—)\ll 10( i || +ol 5| (5.14)

The first term of this expansion matches the asymptotics of big A obtained in Ref. [5]
for the integral (5.11) in the large N limit. The next terms are not supposed to match

with Ref. [5] since we already used the scaling limit expression of the free energy with
the finite compactification radius .

6. Conclusions
Let us outline the main results of the paper:

1 We consider a topological sector of the one-dimensionally reduced .7 =1
SYM, theory on the light-cone time circle with a a special massive perturbation.
Using Witten’s nonabelian localisation principle [13], we represented the parti-
tion function with periodic b.c. in terms of a solvable matrix quantum mechanics
(twisted matrix oscillator).

2. We find the integrability properties of this model relating it to the Toda
hierarchy. The generating functional as a function of its parameters satisfies the
Toda chain equation.

3. In the large N limit we find the exact solution of the model: the generating
functional is parametrized in terms of elliptic functions. We find the Gross—-Wit-
ten type phase transition and identify its location. The strong coupling solution
is also found.

4, An interesting model corresponds to the analytical continuation g —ig8 (in-
verted matrix oscillator) being known to have the properties of the c=1
non-critical strings.

5. In the scaling limit of vanishing perturbation we find a simple universal (with
respect to certain deformations of parameters of the generating functional)
expression for the free energy and Wilson loop correlators along the light-cone
circle. Its strong compactificat ion limit restores similar results for the com-
pletely reduced .#"=1 SYM, considered in Ref. [5].

Some remaining problems:

1 We need further understanding of the spacetime symmetries of the model and of
the correlators corresponding to our generating functional.
2. The representations similar to the Eq. (2.24) for the SYM , can be found also for

the SYM4 and SYM ,, reduced to the light-cone time circle: we just have to take
the corresponding eigenvalue integrals for the partition functions in the paper [5]
and substitute there the rational functions by trigonometric ones. Unfortunately,
we cannot apply the powerful methods used here to those models: we don’t
know any relation of them to the integrable hierarchies and we cannot solve
exactly the large N saddle point equation. On the other hand, it seems to be
possible to investigate this saddle point equation in the scaling limit similar to
that used in the present paper.
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Another interesting question is whether two prescriptions for the contour integration
with respect to the eigenvalues of ¢ coincide for the infinite N in some part of the
phase space of parameters €3 and A. It is clear that they give different answers in the
strong coupling phase A < A( B) (since they are aready different for A = 0). Asin the
present paper.

Another interesting question is whether two prescriptions for the contour integration
with respect to the eigenvalues of ¢ coincide for the infinite N in some part of the
phase space of parameters €3 and A. It is clear that they give different answers in the
strong coupling phase A < A( B) (since they are already different for A = 0). As for the
weak coupling phase A > A( 8) of our large N solution (which is not even analytical at
A =0), it is possible that the saddle point approximation does not distinguish between
two different prescriptions of integration over ¢(t) (contour integration over the Cartan
subalgebra, on the one hand, and integration over 6'sin the finite interval [0,27 ], on the
other hand). This hypothesis is to be verified. A weaker version of it could be the
coincidence of two prescriptions in the scaling limit (Eq. (5.6)).

Acknowledgements

We are grateful to N. Nekrasov for much valuable advice and in particular for
explaining to us the construction of Refs. [11,12]. We aso thank A.S. Schwarz, S.
Shatashvili and A. Vainstein for useful discussions. One of us (J.H.) would like to thank
JL. Gervais for his kind invitation to LPT ENS in January 1999. This research is
supported in part by European TMR contract ERBFMRXCT960012.

Appendix A. Solution of the saddle point equations
A.1. The function z= z(¢) as an dliptic integral

It follows from the integral representation of (z) that it isreal when z€ R,iR,iR +
7, satisfies

{(2)={(z+2m) ={(-2)={(2) (A1)

and by (4.6) is also real aong the interval [%i 8 — a,3i B + a]. Therefore this function

defines a map of the half strip 0 < Re z< m,Im z> 0 with a cut [3i 3,3i 8 + a], to the

upper half plane Im¢>0 (Fig. 1). The inverse map z=12z({) is given by the
Schwarz—Christoffel formula (see, e.g. Ref. [25]):

. édt(t_ gz)
= ~wo "2
where
Y(t)=¢(t—§1)(t—ga)(t—g4)(t—§5) . (A-3)

By construction, the map (A.2) acts on the special points {; < {, < {3 < {, < {5 and
as is shown in the two first columns of Table 1.
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A
1
———2
3
4 5
4 3
, )
3 2 1
u o
4 5| 5 1
t
Vo

Fig. 1. The domains of the variables z,{,u,v.

The values of ¢ at the specia points of the map are determined as functions of 8 and
A by the asymptotics of £(z) at infinity. The expansion of the function (4.5) at z— o
contains only odd powers of e'Z If we approach infinity as z= 7+ iy, y— =, the
asymptotics of £(2) is

L(Y)=L(m+iy)=eV+ ), (@rthe @nihy (A.4)
n=0
where
8sinh?( B/2

(W= ( #f dep(e)cosa) (A 5)
etc.
Tablel
The values of z,{,u and v at the specia points of the map.
14 z u v
—© + i u,+i0 v, +0
4 lig K + iK' in
& 3iB+a U, Uz
{5 3B iK' 1r(l+7)
9 0 0 7T
&5 ™ K 0

+ o T+ i u,+i0 v, —0
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A.2. Elliptic parametrization of the solution

The map (A.2) and the condition (4.4) can be expressed explicitly in terms of
standard elliptic integrals (see Ref. [26], (256.02)) with parameters

e _ V1K - {43851
{ssla {salu

Y= \lsala1 » a2=§—z, v=arcsin1/% , (A7)

where the notation £j; = ¢ — ¢; is used. Namely

k=

(A.6)

543 2 {3 _ i (=4,
2(¢) = H(go,a ,k)—l—gF((p,k) , cp—arcsma —¢,
(A 8)
and
2
27 soh( B/2) = LE(k) — 25548 . (A.9)
A 2 2y

It is convenient to introduce as a parameter the elliptic amplitude u related to the angle
@ assnu=sne,

\/£53§41 . 1 g_gzl
f Y(t) =F(¢,k), snu=sing= - —¢, (A.10)
Then the function
{(u)= & §3a o (A.11)

25n2u

maps the upper g—half—plane is mapped to the rectangle 0 < Reu<K, 0<Imu<K'’
with K and K’ being the complete elliptic integrals associated with the moduli k and
k. The special points {= {;,...,{s and o correspond to the points u;,...,us and u,
along the boundary of the rectangle as is shown in Table 1. Note that

— == (u,).

The function z(u) defined by the integral (A.2) reads, in the parametrization (A.10),
2043 u du {3

z(u) = 22 ——u
Vs3da \70 1-a®sn‘u {as

We will express the integral in (A.12) in terms of Jacobian elliptic functions. Since the
point u,, is between u; and u,), it has the form

W=K+i& 0<é<K'. (A.13)

(A.12)
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We find, using Eqg. (433.01) of Ref. [26],

Hl(u+i§)+£ 204
Hl(u_if) K \/§53§41

where H,(u) is a standard Jacobian elliptic function and

z(u) =iln

K- WAO(V,k)l, (A.14)

Ag(v k) = %[( E—K)F(v.K) +KE(v,K)]

. Hi(ig) . o . a®—Kk?
= - ,| = arcsn — =acsn-———
Hy(i¢) \' {1 K

is known as the Heuman's Lambda function. The condition z(iK’') = z(K + iK’) is
satisfied only if the coefficient in front of the linear term in u is zero, hence the
condition

2
e K = mAy(v.K). (A.15)

/ 553 §4l

From H,(u+iK’) =e imu/KH,(u—iK’), we find

.K, . 7T
z(iK") =i K £,
which allows to determine &:
K
&= 2—,8. (A.16)
a
The final expression for z(u) is therefore

Hy(u+i(K/27) )
Hy(u—i(K/2m)B) "

z(u) =iln

(A.17)

A.3. The dual modulus

We are going to write our solution in a form, which will alow to perform painlessly
the scaling limit 8 — 0. In this limit a,; = —i B(d{/dz) — 0 and, according to (A.6),
K =4e X — 0. Therefore it is more convenient to expand the solution in the dual
modular parameter

q:e—‘n’K/K’:ei‘n’T (A18)
and use the variable v
T /2
v=—T—i—F—U

2 K’
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as a parameter. The eliptic nome is expressed as a function of q as

e (11— q2n14
=11 )

Trgt (A.19)

The parameters corresponding to the special points of the map are given by the last
column of Table 1. The parameter of infinity is equal, by (A.13) and (A.16), to

w=mﬁ_——ﬂ (0<U30<%7T). (AZO)

The domains of the four variables z,{,u and v are depicted in Fig. 1.
We will write the solution as a function of the parameters v,, = v,(A) and 8. It will
be written as a series in the expansion parameter q

q=e @m/Pr. — gim, 7=4i rE (A.21)

The expansion of the function ¢(u) is obtained by plugging in Eq. (A.11) the
representation of sn in terms of the dual modulus

1 2K’
f(q)=[1+4) 1 s—cos(2mv) | . (A.23)
n=1

The function z(v) reads, in terms of the standard elliptic functions associated with the
dual modulus,

4 v+,
z(v) = U v+ |In¥
H(v—u,)
sin(v+ o, * 2" gn2nu.sin2nu
—|EL+|In¥+4|Z a - : (A.24)
T sin(v — uv,) n11l—q n
Finaly, (A.15) expands as
4o, i 2 19( ) 2 > q"
—_— =y, —u,+4) sin2nu,,. (A.25)
B i3l T 4( ) w a1 1-9%

In order to fix completely the solution, let us consider the vicinity of the point v,, and
compare the explicit dependence ¢ = ¢(z) with the asymptotics (A.4) a z— 7+ ix.
The half-line

z=7+iy (y>0)
is parametrized by the interval 0 < v < u,,. In the l€eft vicinity of the point v,

v=uv,—€ (€>0),
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the functions z= 7+ iy and ¢ have the form

A P
e¥= — + B+ Ce, {=—+Q+Re,
€ €

with
() ) P ()
EERECFTIPNE Q‘_P(ZgTs (o) 2 1o) 2 7(w) )
A=e(ﬁ/ﬂ)uxw B=—A E+w
01(0) ' T 0,(2v,) '

The leading asymptotics (A.4) of {(z) isachieved if A=P and B = Q, which yields
(4.13).
From (A.25) we get

B
lp = y {s3lm 2_77

(Note that the relation 2, = {; + {3+ {, + {5 is satisfied.)

sin2u,,

1+ 2mq (A.26)

UW

A.4. The limit of large 7 (small B)

In this limit, which corresponds to the scaling limit discussed in Section 4, the
v-rectangle can be replaced by an infinite half-strip and elliptic functions degenerate to
trigonometric functions. After substituting E=1, K= (27 /8)v, in the normalization
condition (A.9), we get in this limit

A B . B .
—sginh—e (B/™v = 242y, — 4u,|cos2v,, — —sin2u,,|. (A.27)
A 2 2
The parameters of the solution are obtained from
pote 1 Q= ¢, + Pcot2v R=P(% + cot?2s,)
16q sin2u,’ 4 - 8 7

. B
A=elB/Mrgn2y | B= —A(cot2um+ —),
T

C=A

B 2
-3+ —cot2v. + — |.
T 2

From A= P we get
Ly = 16Qe' P/ ™=din? 20, (A.28)
and B=Q implies

{3t 4,

= —e(B/’T)"°<(20052uoc + EsinZUOO) = —(e(ﬁ/”)”xsjnZUm)'u : (A.29)
2 T >
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It is useful to note that
{3+ ¢ {pnt{ B 4
28 cot?u,, 2% cotu,, —>® _ _16qcos?u,.
Can+ 4 Ity 27 {ant+ s

Finally, the coefficient { is obtained as

(= AR-C)
4p, —sindv,  4u?—sSin?2u, — 2u.Sndo,

=1+2p° 47Be * 87?

+a(B)].
(A.30)

A.5. The length of the cut

The branch point of the Riemann surface of {(z) isat z, = z(v,), where {(v,) = {,.
Taking the limit of (A.26),

lip= Esin2ume(ﬁ/”)”x, (A.31)
aa
we rewrite the solution (5.1) in the form
) ~ cotv + cotu,, (& —¢)cotv, + (27/B) Loy
z=i—v+iln—, cot?y = .
T cotv — cotu,, (& — O)tano, — (27/B) Luy
(A.32)
Putting v = v, in (A.32), we get
tanhd, —icotu,, 1- 27)cotu,,
a=—E82+iIn2—_, tanh3s, = (B/2m)
T tanhd, + icoto, 1+ (B/2m)tany,

and finally
B B .
cos(a+ —62) = C0S2v,, — —SIN2v, = COS2v,,,
T 2
which alows us to evaluate a

B Am
a=2uv,— —3§,, &, =In[ —sin2v, |. (A.33)
T B

Appendix B. Direct scaling analysis of the equations on parameters of the large N
solution

Six conditions on the length of the cut, a, and the 5 parameters of the map z— ¢(2)
(which we denote here by a,,...,a, instead of ¢,,...,,) are

(1) a= fdtw(t)'

|Y(t)|

aa t—a,
(resp.qrzfa4 dt IY(t)I)'
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1 a, t—a,
(3) 3B= fd Ok

(4 a +taz+a,+a;=2a,,

= [t—a,
(5) Inas=fa3dt 0 _T) (ag> 0)
477'_ _ as g(g 2)
(6) TSﬂh(B/Z)—faA N (B.1)

with Y(t) asin (A.3) (where the a; were denoted by ¢;). While the first three conditions
are implied by the geometry of the map ¢, conditions (4) and (5) follow when
comparing the (from (4.5)) known asymptotics of ¢, e.g. for z= 7+ iy (y— «; cp.
(A.4)), to the one implied by the integral representation (A.2) which says that

» (t—a, 1 1 .
=InZ, + fant( YD) —T)—Ina5 —Z(E(a1+a3+a4+a5)—a2)
oo bn
-y —, (B.2)
n=2 5+

with b, = (a? + a + aj + a2 — [1,,,,,..aa;) aready determining

[13d6 p(6)cos(9).
With
a Vas, a
a;=a —4q, v= a5y , v =arcsing | — k= %4 %1 ,
1 Y
1 = e (B.3)

Y
the conditions (2), (3), (5) and (6) read

(2) K(k)=:ﬁﬂ(?,k) EH(—E,k)=—%n(@,k)+ iRy

42 41 a5, as3 as; as3 23y,
(B.4)
2a, a 2a 2 a
(3) ip= 31H(ﬁ,k')— ZK(K)=— a54n(ﬁ,k’)
Y 3y 04 04 as3
2
+ aﬁZK(k’), (B.5)
Y
2 a
(5) i”“n(y, 43,k’)— %2 E (v k) =1 (a53 “1), (B.6)
Y 3 4
27 Y 485 + 8,83
(6 s p/2) = 3 B - 2 22 k(K. (8.7)
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The scaling limit can be obtained by direct analysis of Egs. (B.1) in the limit g8 — 0,
a—a, > 0. Letting

a;=u, Az, =10, ag3 =W,
- u . v - w
u:—, U=_, W=—,
Aa; Az A
one has
v+ Us

(3) p=2fcs /S(1— s) (W — Ois) (1 + Os)

2 1+ —s
= WaU 1dS z ’ (88)
0 \/s(l—s)(l——s) 1+ —s)
31
1_
(1) a=7['ds - °
a
° \/s(s+ :)(\7\/+5$)(1—Es)
v
1_
= ’ /1dS > ’ (Bg)
Was; Jo u v v
\/s(s+ —)(1+ —s)(l— —s)
v w Az
v 1 1+ (w/v)s
2 [ —
@ = wag, fu/wds /s(1—s)(s—u/w)(1+ sik)
20 1 ds
where r2=(1+ ) (1 —u/w) = 1— (W + 1) /).
In order to have B8 — 0 and a finite, we must have u,v — 0,
. 2D
= 0. (B.11)

If one wants to keep, according to (B.9), a finite in this limit, u/v must go to zero such
that

u
—€éln— =23, (B.12)

v

finite, i.e. u— 0 exponentiadly faster than 7/VW (and the = sign in (B.10) and
thereafter, means that such terms are dropped).
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One also finds that u/w — 0 (even if w— 0) asif not, the r.h.s. of (B.10) would go
to zero. So B — 0, a— a, > 0 implies

u u
u,v = 0, — -0, — =0, (B.13)
v w

together with (B.11), (B.12), and

B=éem. (B.14)
In order to extract more quantitative information from (B.10) consider the equivalent
condition (B.4),

(+7)K(k) = GH(Flﬁ,k), (B.15)
where
kzz(l_%)(lia)<110' (B.16)

As i—0, K?=1-k?®=~u/w— {i— 0 and we can use some standard expansions for
the third elliptic integral appearing in (B.15), e.g. ((412.01) of Ref. [26])

B 1 el = Kok T 1 1-Ay(0.k) B.17
(1+a’ )_ W0+ 3 Aiva Jla/@+ o)1/ (L +)]a/w (B17)
where
sin0=\/ ven (8.19)
u/w+b/(1+0) w4+ 1

and the first terms in the expansion of Heumann's Lambda function A,(6,k) ((904.00)
of Ref. [26]) are

2
Ao(0,k) = ;(E()— (2K —E)k?(6—sinfcosh) + ...)

2 W
~ —arcsiny/ —— . (B.19)
T w+1
Inserting (B.18) into (B.15) and using
K(k) = — 2Ink?+1n4, fork' >0,

one finds:

u T 2 W
o[ —3In[ — + +1n4| = —VW|[1- —arcsin ,
b( 2w "1+ 7] = 1T+W
and, using (B.14)
u a 2m? 2 W
— + — = 16exp{ ———|1— —arcsiny/ = , (B.20)
w 1+ B T w+1
16w 2m? 2 W
U= —exp{ ———|1— —arcsiny/ = . (B.21)
1+w B T w+1
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Apart from converting Inli terms into W, 3 dependencies, all other {-dependencies

are dropped, due to this exponential decay (B.21). Eg. (B.1)(5) can then be stated
explicitly as an expression for a5, in terms of B8 and W as follows:

| fwd 1 1

nag = S -

% 0 J(s+ag +w)s stagt+w
v o ds

W'y s/(s—1)(B+1/W)
Jim (In(z,/sz+sa51 +2s+ aSl)‘OAHnE)

A
v 1-w T
+—\/W(arcsin + —
w 1+w 2
1-w T
=In4+|n$+£ arcsin — | + : (B.22)
a, 2 1+W) 2
Hence
4 B 1 2 o (1-W B.23
Ay = exp{ — |1+ —arcsin ) )
2= 17w\ 2 1+W (B.23)

47Tsmh( B/2)

The last equation needed to calculate the a; as functions of 8 — 0 and A is(B.7), resp
= yw(ag +u) E(K) +

B.24
V_ (B.24)

as y2=w(a,, + u) and (due to (B.1)(4))

a 85 + a5 = —2va;.

(B.25)
(B.24) can be simplified substantially even without neglecting {-terms, by noting that
(B.15), (B.17) imply

- W% K(K) = V140 [1— Ay(6.K)].
With

(B.26)
a
== 2 1-25-W-0), L (B.27)
2 4 T
one therefore gets

Mz%w—( WE+(1-20-W-T)(1- Ao))

~a31( \/_+(1——\/_ W)(l—%arcsin w

W+ 1
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which is an (implicit) equation for W as a function of 8 and A, when inserting (B.23).
For W — 0 it reads

1-e#
A

zl—E\/W—Zv”v. (B.29)
aa
The length of the cut is given by (cp. (B.1)(1), (B.9))

2 ) W
a—a;,=m|1l— —arcsin
a

(B.30)

W+ 1

The second of the final scaling Egs. (5.6) follows from (B.28) and (B.30) if we
neglect all terms proportional to B or exponentially small terms and use a = 2uv,..

Finally note that the second line of (B.10), via K(r) = 3In(16W/T(W + 1)) implies
(B.21) (shortcutting the argument (B.15)—(B.21)), when using

T 1-w

\/Wfl & — = — —arcsin——
0 (1—-s)(1+ sw) 2 1+w

and

.1 C1-w 2 i 1 2 i W
5+—arcsm1 — = —arcsin =1-— —arcsin
w

~ ~

+W o 1+W T W+1

Appendix C. Inverted oscillator: the point B=iw

An interesting analytical continuation of our model corresponds to the imaginary
values of the generator of O.(2) symmetry of the original supersymmetric model. If we
renormalise e to oneit is equivalent to the change 8 — i 8 in (2.24). The corresponding
saddle point equation reads:

u—u u—u+pg u-u-g
— cot > cot > . (C1)

) a
2Asinu = )[ du’p(u’)(ZCot
—a

According to the arguments and results of the papers [16,17] the inverted twisted
matrix oscillator describes the compactified c=1 string, or, in other words, the
compactified bosonic field coupled to the 2D quantum gravity. So at least the critical
regime of ¢ =1 string with the typical inverse logarithmic dependence of the physica
guantities on the cosmologica coupling should show up at some point. Let us demon-
strate it in the case which we can solve explicitly, namely for 8 =isx. The Eq. (C.1) in
this case looks as:

A a  p(U)
Esmu= fiadu m (CZ)
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The spectral density is
A .
p(u) = — Vsinfa—sin®u.
2T
The normalization condition gives

a A a A
1=f dup(u) = —f duvsin’a—sinfu = — [ E(sina) — cos’aK (sina)],
—a 27T —a aa
or
a
E(k)—k’zK(k)=X, k=sina. (C.3)

Consider the limit when the eigenvalues occupy almost the whole interval [— 7,7 ]
alowed by the periodicity: a~ 7, k*=1. In terms of k' we have the following
asymptotics:

E=1+ ik’log(4/K), (C.4)
K =log(4/K). (C.5)
By the use of (C.4) and (C.5) we obtain from (C.3):
2 E ()\ - )‘c)
o llog(A— A )l (C.6)

for A > A, = .
For the ssimplest physical quantity, the derivative of the free energy, we obtain

, a Ak?
K= f_adu p(u)cosu= - (C.7)

from where we obtain the scaling asymptotics typical for the ¢ = 1 noncritical string
discovered in Ref. [27]:

F =73 llog(A — A (€9

The considered case B=im of the c=1 matrix mode corresponds to the
Kosterlitz—Thouless phase transition point. It would be interesting to study the vicinity
of this point by generalizing our solution to all imaginary .
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