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Abstract

We study the quantum mechanical model obtained as a dimensional reduction of NNs1 super
Yang–Mills theory to a periodic light cone ‘‘time’’. After mapping the theory to a cohomological

Ž .field theory, the partition function with periodic boundary conditions regularized by a massive
term appears to be equal to the partition function of the twisted matrix oscillator. We show that
this partition function perturbed by the operator of the holonomy around the time circle is a tau
function of Toda hierarchy. We solve the model in the large N limit and study the universal
properties of the solution in the scaling limit of vanishing perturbation. We find in this limit a
phase transition of Gross–Witten type. q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Ž .The supersymmetric Yang–Mills SYM theories have rich physical content and their
quantitative analysis is in general as difficult as in the usual, nonsupersymmetric, gauge
theories. However they often contain, unlike the purely bosonic YM theories, specific
sectors, which can be analysed exactly and where the supersymmetry leads to a nilpotent
Ž . w xtopological symmetry 1 . The dimensionally reduced versions of the SYM theory even
allow various massive deformations conserving this symmetry.
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w x Ž .In Refs. 2,3 this symmetry in the zero-dimensional reductions of SYM was applied
Ž .for the calculation of the bulk part of the Witten index for ensembles of N 0-branes in

4, 6 and 10 dimensions, justifying the conjectures related to the existence of bound
w x w xstates of zero-branes 4 . In Ref. 5 the method was applied to study certain correlators

of BPS states or, in other words, of perturbations of the original reduced SYM theories,
which preserve part of the supersymmetry. In the case of the zero-dimensional reduction
of NNs1 SYM theory, the large N limit was studied exactly using the method of Refs.
w x Ž .6–8 or by the corresponding integrability properties allowing to write an explicit KP
differential equation for the partition function. One of the unexpected results was that, in
the large N limit, the physical quantities exhibit an essential singularity at ls0, where
l is the coupling of the massive perturbation. The large N limit of the dimensionally
reduced SYM theories is also interesting because it may reveal part of the structure of
the nonreduced theories, due to the Eguchi–Kawai mechanism.

Ž .In this paper we study the one-dimensional reduction of the NNs1 SU N pure
Yang–Mills theory. Unlike the well-known and widely used 1D reduction to the usual

w x w xphysical time 6–9 , or 10 , we will retain the ‘‘time’’ along the light cone direction
compactified on a circle of radius b. Only this reduction allows the direct use of

w x3Witten’s localization principle 1 . In order to get rid of the zero modes of the bosonic
Ž .fields we will deform the theory by a massive perturbation corresponding to the O 2

twisting of the boundary conditions on the time circle with respect to a subgroup of the
Ž .Euclidean symmetry O 4 . The SYM theory reduced in this way appears to be identical

Ž .to the compactified hermitian matrix oscillator with SU N -twisted boundary condi-
Ž .tions. The twisting angles are related to a global mode of the time-like gauge field.

Ž .This model can be further reduced to that of a unitary already time-independent twist
matrix. We find that the model is integrable in the sense that its partition function is a
tau-function of Toda hierarchy, i.e. it obeys a chain of nonlinear Toda equations.

The model can be solved exactly and rather explicitly in the large N limit. The
solution of the corresponding saddle point equation and its physical consequences in the
limit of vanishing perturbation represent the main result of this paper. The solution is
parametrized in terms of elliptic functions. The analysis of the solution as a function of
the two parameters be and l, where b is the compactification length, e is the strength
of the massive perturbation, and l is the twist coupling reveals the following phenom-
ena:

Ž1. In the double limit e™0, l™0 the free energy is universal under certain
.deformations function of the ratio erl.

Ž .2. In the limit of vanishing massive perturbation e™0 , the observables exhibit
Ž .an essential singularity ;exp yconstre .

3 w xOur argument follows essentially the construction proposed in Refs. 11,12 , which allows to lift by one
the dimension of the spacetime without loosing the supersymmetry. Technically speaking, our procedure of
dimensional reduction replaces the Euclidean spacetime by a point and at the same time introduces the ‘‘time’’
dimension t . The latter might be interpreted as a lightlike dimension of the original spacetime, but we do not
know to what extent this interpretation is justified.



( )J. Hoppe et al.rNuclear Physics B 571 2000 479–509 481

Ž3. The analytical continuation of the model at the point ebs ip inverted oscilla-
.tor shows the scaling of the cs1 compactified noncritical string theory. This

value of the compactification length eb corresponds to the Kosterlitz–Thouless
Ž .critical point see Appendix C .

The paper is organized as follows. In Section 2 we describe the reduction of the
partition function of the one-dimensionally reduced NNs1 SYM theory to that of the4

reduced twisted matrix oscillator, by the use of the supersymmetry and the localization
theorem. We then reduce the configuration space of the model to the set of the
eigenvalues of the unitary twist matrix. In Section 3 we find that the partition function of
our model is a t function of the Toda integrable hierarchy and write the differential
equations satisfied by the partition grand canonical function. In Section 4 we give an
exact solution of the saddle point equation for the large N limit of the model in terms of
elliptic parametrization; the calculations are presented in Appendix A. In Section 5 we
study the limit of small massive perturbation. We find a universal expression for the free
energy in presence of a source for the Wilson loops, in the scaling limit e™0 and
l™0. We analyse the properties of the solution, especially in the small compactifica-
tion radius limit and near the curve of the Gross–Witten type transitions. Section 6 is
devoted to conclusions. In Appendix C we give the solution of the analytic continuation
of our model to imaginary time ebs ip , which is the Kosterlitz–Thouless point for the
corresponding cs1 noncritical string.

2. Definition of the model and its reduction to one-dimensional matrix quantum
mechanics

In this section we will show that the dimensionally reduced NNs1 super Yang–Mills
Ž .theory with gauge group SU N can be mapped to one-dimensional matrix quantum

mechanics. The dimensional reduction consists in replacing the 4-dimensional
Ž .Euclidean spacetime by a single lightlike ‘‘time’’.

w xLet us first give the generalization of the argument of Ref. 5 to the case of one
Ž .dimension. We start with the the NNs1 SU N SYM containing 4 bosonic matrix4

Ž . Ž .fields A ms0,1,2,3 , and 4 real fermionic fields C as1, . . . ,4 . After performingm a

a Wick rotation x syix , the action of the Euclidean theory can be written as0 4

1 14 2 TSSs d xTr y F q C = qgP= C , 2.1Ž . Ž .Ž .H mn 44 2

where = s iE qA is the covariant derivative and the gamma-matrices are representedm m m

Ž . Ž .as direct products of Pauli matrices: g ss =s is1,2,3 . The gauge group SU Ni i i

acts to all fields in the adjoint representation. Let us assume that all fields depend only
on the time-like coordinate

tsx y ix , 2.2Ž .3 4

which parametrizes a circle with radius b. The resulting model is a matrix quantum
mechanics containing four bosonic and four fermionic matrix variables.
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We will evaluate the functional integral for this one-dimensional matrix model by
mapping it to a cohomological field theory, which will allow to apply Witten’s

w xlocalization argument 13 . Let us redefine the fields as

XA 1 c1 1

XA 2 c2 2s , Cs . 2.3Ž .
fA q iA h3 4 � 0� 0 � 0

xA y iA f3 4

Ž .Then the action 2.1 can be written as a BRST exact form. The BRST transformation Q
� 4 Ž w xacts on the complex of fields Fs X ,f,f, H;c ,h,x where Hs i X , X is consid-a a 1 2

.ered as an auxiliary field as

w xQX sc , Qc s iE qf , X as1,2 ,Ž .a a a t a

Qfsh , Qhs iE qf ,f , Q xsH ,t

w xQHs iE qf ,x , Qfs0. 2.4Ž .t

Namely, the action

b 21 12w x w xSSs dt Tr iH X , X q H q X ,iE qf X ,f q iE qf ,fH 1 2 a t a t2 2ž
0

1 1ab w x w x w x w xq xe X c q X ,h c y f , X iE qf , X q x iE qf ,xa b a a a t a t2 2

q c ,f c ,a a /
can be written as

b

SsQ dt Tr VV F ,Ž .H
0

2
1 w xVV F s h iE qf ,f qx Hy i X , X q c X ,f . 2.5Ž . Ž .Ž . Ýt 1 2 a a2

as1

The square Q2 of this transformation represents the ‘‘time’’ gauge transformation
w xgenerated by f, = s iE qf, . Hence Q is nilpotent on the gauge-invariant quantities.t t

The ghost number of the fields is y2 for f, y1 for h and x , 0 for X and H, q1 fora

c , and q2 for f.a

The functional integral with respect to the BRST complex of fields F

DDF
yŽ1 r g . SS wF xZZ b , g s e 2.6Ž . Ž .HN Vol GGŽ .

Ž .where the integration measure is normalized by the volume of the gauge group GG can
w xbe therefore evaluated using the Witten’s localization argument 13 . Namely, the

integral is saturated by the BRST critical points QFs0. More strictly, we have to
integrate over a continuous critical manifold, because of the zero modes of f,x ,f. The

w xzero modes are eliminated by adding, following Ref. 13 , a Q-exact term to the action
Ž .2.5 by changing the action to SSqd SS , with

b

d SSs tQ dt Tr xf . 2.7Ž .H
0
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1 w xWe can also discard from the very beginning, the term h iE qf,f . As before, H cant2

w x Ž .be integrated out by setting Hs tfq X , X in 2.5 . The advantage of introducing1 2
Ž .the perturbation 2.7 is that for t/0, the fields f,x , and h can be integrated out.

However, the perturbed integral does not coincide in general with the original one
because of the new fixed points ‘‘flowing in from the infinity’’ when one perturbes to

w xt/0 13 . The correct statement is that there exists a class of BRST-invariant operators
Ž .whose nonnormalized expectation values coincide in the original and the perturbed

theory. The first such operator is

b b abw xvs dt Tr y iE qf , X X qc c sQ dte Tr c X . 2.8Ž . Ž .Ž .H Ht 1 2 1 2 a b
0 0

Ž . Ž .The second is any SU N -invariant function f V of the holonomy factor around the
circle

bˆVsTexp i dtf t . 2.9Ž . Ž .Hž /0

The functional integral for the expectation value

DDF
v yŽ1r g .Ž SSqd SS .qv² :e f V s e f V 2.10Ž . Ž . Ž .H

Vol GGŽ .

does not depend on the coupling t. Indeed, taking the derivative in t and integrating by
parts, we find zero, since the integrand vanishes at infinity due to the factor ev.

Ž .Therefore we can take the limit t™`, after which the integral 2.10 gets localized near
Žthe zeros of H,f,x ,h. In particular, the partition function does not depend on the

. Ž .gauge coupling g. Now we can calculate the partition function 2.6 understood as the
average of the identity operator. Since v has ghost number q2, due to the ghost
number conservation

² : ² v:ZZ b , g ' 1 s e . 2.11Ž . Ž .N

w xThe above argument has been applied recently by F. Sugino 14 in order to calculate the
partition function of the four-dimensional NNs1 SYM reduced to a two-dimensional
torus, with periodic boundary conditions for all fields. Our case is slightly more subtle,
because of the zero modes of the fields X . These zero modes will be eliminated, as ina

w x w xRef. 3 and later in Ref. 5 , namely by deforming the BRST operator in the definition
Ž .of the action 2.5 . Let us first notice that after the redefinition of the fields the theory is

Ž .still invariant under the O 2 rotations in the directions orthogonal to the light cone:

X q iX ™eie X q iX , c q ic ™eie c q ic .Ž . Ž .1 2 1 2 1 2 1 2

This allows to construct another BRST operator, which squares to a linear combination
Ž .of a gauge transformation and an O 2 rotation. The twisted BRST charge Q acts ase

w x abQ X sc , Q c s iE qf , X q ie´ X ,e a a e a t a b

Q fsh , Q hs iE qf ,f ,e e t

w xQ xsH , Q Hs iE qf ,x , Q fs0. 2.12Ž .e e t e
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Ž .The modification of the supercharge is equivalent to changing the action 2.5 and the
Ž .operator 2.8 as

e b 2 2w xSS™SSq2 ie dt Tr f X , X , v™vy dt Tr X qX .Ž .Ž .H H1 2 1 22 0

2.13Ž .

In the limit t™` the integral gets localized near the zeros of H,f,x ,h, leaving the
place to the action

1 2 2w xSs dt Tr yi iE qf , X X y e X qX qc c , 2.14Ž .Ž .Ž .H t 1 2 1 2 1 22

and the c ’s can then be integrated out. Finally, the integration over X gives the2
Ž .partition function of the matrix oscillator with the coordinate X 'X in presence of1

Ž .the one-dimensional gauge field f t

DDf t DDX t 1Ž . Ž . b 21 2w xZZ b , g ,e s exp y Tr dt iE qf , X qe X ,Ž . H HN t2 ž /ž /Vol GG e0

2.15Ž .

Ž . Ž . Ž . Ž .with periodic boundary conditions X b sX 0 , f b sf 0 . It is clear that the
integral depends on b and e only through the product eb. We will absorb e in b ,

eb™b , 2.16Ž .
remembering that the perturbation is lifted in the limit b™0.

The functional integral over the field f can be written, after fixing a gauge E fs0,t
4 Ž .as an integral over the unitary matrix representing holonomy factor defined by 2.9 ,

i bf Ž .namely Vse normalized by the volume of U N . The holonomy factor enters the
functional integral over X as the twisted boundary condition:

X b sVqX 0 V . 2.17Ž . Ž . Ž .
The integral over X can be performed exactly, and the integral over the unitary matrix

iu 1 iu N ŽV reduces to an integral over its eigenvalues e , . . . ,e which are defined up to a
.permutation, hence a combinatorial factor 1rN! . The partition function is therefore

given by the N-fold integral5

1sin u yuŽ .Ł i j2N1 du i/jk
ZZ b s , 2.18Ž . Ž .ŁEN 1N ! 2p sin u yu q ibŽ .ks1 Ł i j2

i , j

where u sbf .i i

4 It is assumed that the integration contour for the eigenvalues of f is chosen along the real axis. In this
w xcase f should be taken anti-hermitian, see the discussion in Ref. 13 .

5 This happens to be exactly the partition function of the one-dimensional gas studied by Michel Gaudin in
w x w x Ž .1966 15 ; it was extensively used in Refs. 16,17 to study the compactified 1q1 -dimensional string theory

via matrix quantum mechanics; in relation to the actual SYM theory this formula was communicated to us by
N. Nekrasov.
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The expectation value we are calculating is a deformation of the Witten index
F yb H i be JZZ b sTr y e e , 2.19Ž . Ž . Ž .N

Ž .Fwhere the y -factor is included in order to impose the periodic boundary conditions
Ž . i be J Ž .on the fermionic fields, and the trace is twisted by an O 2 rotation e in the 12

plane. The twisting of the BRST charge Q™Q does not change locally the functionale

integral, but it does change the boundary conditions for the fields.
Now we are at the most subtle point of the reduction procedure, which deserves to be

discussed in more detail. Considering the fields f and f as two independent fields
imply that the integration over them is understood as contour integration. The twisting
separates the poles and zeroes of the integrand and allows to evaluate the integral by the

w xresidue theorem, in complete similarity with the calculation of Ref. 3 for the zero-di-
mensional model. Since the integrand does not depend on the variable

u q . . . qu1 N
us ,

N

the contour integral with respect to this variable would give zero. In fact, the integration
with respect to this variable should be excluded because this is one of the normalizable
zero modes of the original fields and the measure DDF should contain a product of delta
functions of the bosonic and fermionic zero modes. In particular, the normalized zero
mode of f is

1 bŽ0. 'f s dt Tr f t s Nb u .Ž .H'Nb 0

w x Ž .For a more detailed discussion see Ref. 18 . Therefore the measure in 2.18 contains a
Ž Ž0.. Ž .delta function d f ;d u q . . . qu , which suppresses the contour integration1 N

with respect to u . The integral over u ’s is normalized by the volume of the residual
global gauge group. The introduction of the delta function should respect this normaliza-
tion. Thus we have to insert

2pd u s2p Nd u q . . . qu .Ž . Ž .1 N

Now we can integrate, after representing the integrand as a determinant using the
Cauchy identity, by using the residues theorem. The integral is equal to the sum of the

Ž .identical contributions of the Ny1 ! cyclic permutations in the expansion of the
determinant

Ny1 ! du duŽ . 1 NNy1
ZZ b s y PPP 2p Nd u q . . . uŽ . Ž . Ž .EN 1 NN ! 2p 2p

=
N 1
Ł 1sin u yu q ibŽ .ks1 i iy12

du r2p du r2p d N u qu r2Ž . Ž . Ž .Ž .1 N 1 N
sH 1 1 w xsinh u yu y i Ny1 b sinh u yu q ibŽ .1 N 1 N2 2

1
s . 2.20Ž .

2 Nsinh N br2Ž .
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In the limit b™` our partition vanishes, which is not unexpected, since the Witten
index of the Ds4 theory is zero. In the limit b™0 we recover the result for the

2 w xcompletely reduced theory ;1rN , in agreement with Ref. 3 . A more careful analysis
allows to reproduce also the numerical coefficient, in accordance with the conjecture

w xmade in Refs. 19,20 . In the limit b™0, the V-integral is saturated by the integration
Ž .in the vicinity of the N central elements of SU N which are parametrized by the

Ž . w xelement of the su N Lie algebra 21 . After performing carefully the limit, one finds
Ž w x.see e.g. Ref. 18

1
2Ž .N y1

2grb gŽ .
Ž0.ZZ b ™ ZZ ,Ž .N N ž /bFF bN

Ž0.Ž .where ZZ g is the partition function of the completely reduced theory, and oneN
w xreproduces the result of Ref. 3 :

1 12Ž .Ž0. y N y1ZZ g sFF g . 2.21Ž . Ž .2N N 2N

ŽThe numerical factor FF depends on the way the integration measure is normalized. InN
w xthe normalization used in Ref. 3 this factor is equal to one, but this is not the most

.natural choice from the point of view of applications to the D-brane physics. In the
Ž .particular case of the SU 2 theory the result was obtained by the direct calculation of

w xthe integrals 22 .
Let us note that our partition function only formally coincides with that of the twisted

matrix oscillator and, at least for finite N, there is an ambiguity related to the
prescription for the contour integration. Witten’s localization procedure leads to an
integral over the Lie algebra and logically the integration with respect to u ’s should be

Ž .taken along the whole real axis. With this definition, only Ny1 ! terms in the
expansion of the determinant will contribute to it. On the other hand, had we integrate in

w xinterval 0,2p , this would correspond to contour integration with respect to the
� iu k4Neigenvalues of the Lie group element t se , where the contours circle the origin.k ks1

In this case we would get contributions from all N! terms in the expansion of the
Ž . ŽCauchy determinant. The result would be given, instead of 2.20 , by see, for example,

w x.Refs. 16,17

eyN 2 br2

Z̃Z b s . 2.22Ž . Ž .N yb y2 b yNb1ye 1ye PPP 1yeŽ . Ž . Ž .
Ž . w xUnlike 2.20 , the b™0 limit of this formula does not match the result of Ref. 3 .

Ž . Ž .Which of the two formulas 2.20 or 2.22 is correct? Clearly the difference between
them is due to a different treatment of the boundary conditions for the field f in the

Ž . Ž .formula 2.15 result considered then at hermitian oscillators . A happy resolution of
this paradox would be that from the point of view of the application of Witten’s
localisation principle both formulas seem to be possible but the result depends on the

Ž .boundary conditions and the contours of integration for the field f t in the original
Ž .action 2.5 . However we feel that the question is rather subtle and more study is needed

to clarify it. For example we cannot be sure that the supersymmetry of the original
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model isn’t violated in one of two cases. On the other hand, the local BRST symmetry
used for the calculations is certainly intact.

Now let us consider a slightly more ambitious problem, namely to calculate the
generating functional of a set of BRST invariant operators made out of the gauge field
f. As mentioned before, such operators can be constructed as traces of the holonomy V

Ž .kin different representations, or, equivalently, as polynomials of the moments Tr V .
We will add to the action the simplest possible source term

lTr VqqV . 2.23Ž . Ž .
Ž .Repeating the arguments, which led to 2.18 , we find for the generating functional the

following integral representation

1N1 du sin u yuŽ .k i j2Nlcosu kZZ b ,l s e , 2.24Ž . Ž .Ł ŁEN 1N ! 2p sin u yu q ibŽ .ks1 i/j i j2

w xwhere u sbf . If one follows the recipe of Ref. 3 , the integration should bei i

considered as a contour integration along the real axis, where the N integration variables
are subjected to the constraint u q . . . qu s0. Then the result should be analytic as a1 N

function of b , which can therefore be given complex values. It is plausible that in the
large N limit, which we are interested in, if the perturbation is sufficiently strong, the
choice of the contours should be not important. The equivalence between the reduces
SYM theory and the twisted matrix oscillator should takes place only in this limit.

It would be very interesting to understand what is the meaning, in terms of the
Ž .original supersymmetric theory 2.1 , of the deformation that leads to the partition

Ž .function 2.23 .
The reduction from 4 to 1 dimension of the original theory turns three of the

Ž .components of the gauge field into Higgs fields X , X and f . This makes the direct1 2
Žcalculation of the partition function which is related to the bulk part of the Witten

.index more delicate, because of the absence of mass gap. By introducing the deforma-
Ž . Ž . Ž .tions 2.7 , 2.8 and 2.13 we add an additional Higgs potential, thus breaking part of

the supersymmetry. The effect of the source term, which we added to obtain the
Ž .partition function 2.23 , depends substantially on the way we have perturbed the theory.

Indeed, it has positive ghost charge, and its effect would be zero, if the perturbation
Ž .2.13 of ghost charge y2 were not there to compensate it. This is also true in the

w xcompletely reduced theory, discussed in Ref. 5 .

3. The partition function as a tau-function of the Toda hierarchy

Ž q .Here we will show that our partition function with a source term lTr V qV is a
tau-function of discrete Toda chain. Let us rewrite the partition function of the model

Ž .equation 2.24 in the following form:

N 21 dz D zŽ .j UŽ z .jZZ b ,t s e , 3.1Ž . Ž .ŁEN b r2 yb r2N ! 2p e z ye zŽ .Łjs1 m k
k ,m
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iu k Ž . n Ž .where z se , U z sÝ t z , and D z is the Van-der-Monde determinant of z’s.k n/ 0 n

In our case t s t sNl and t s0 for n/"1, but most of the following conclusions1 y1 n
Ž .are true for a general U z .

Let us now introduce the grand canonical partition function with the ‘‘charge’’ l:
`

mN yl Nbw xt t ,m s e e ZZ b ,t . 3.2Ž . Ž .˜ Ýl N
Ns1

Due to the Cauchy identity the last equation can be rewritten in terms of a functional
Fredholm determinant:

` yl Nb Ne dz 1jm N UŽ z .jw xt t ,m s e e det˜ Ý ŁEl k ,m b r2 yb r2N ! 2p e z ye zjs1 m kNs1

myb l ˆsDet 1qe K , 3.3Ž .Ž .
ˆwhere the operator K is defined as

1
Xw Ž . Ž .xU z qU z

2dz e
XK̂f z s f z .Ž . Ž .Ž . E Xb r2 yb r22p e zye z

It is convenient to modify slightly the definition of the tau-function:

w x w xt T ,m st t ,m exp y nt t , 3.4Ž .˜ Ýl l n ynž /
n)0

where we introduced new couplings T by:n

U z s z nT eyn b r2 yenb r2 3.5Ž . Ž . Ž .Ý n
n/0

so that the old couplings are expressed through the new ones as:

t sT eyn b r2 yenb r2 . 3.6Ž . Ž .n n

We also note that

w x w x w xt T ,m st T ,myb l 't T ,myb l . 3.7Ž .l 0

w xUsing, for example, the general construction of the paper 23 for our particular
tau-function we conclude that it is a particular case of the tau-function of Toda
hierarchy. It satisfies the Toda chain equations. Namely let us introduce a new function

t t T ,myb ly1Ž .ly1F le s s 3.8Ž .w xt t T ,myb ll

and the notations

y1b r2 yb r2'ix s 2 T s" e ye t .Ž ." "1 "1

The first equation of the Toda hierarchy can be written as

E E
1 F yF F yFl lq1 ly1 lF q e ye s0. 3.9Ž . Ž .l 2E x E xq y
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Due to the symmetry u™yu of the measure our tau-function depends only on the
variable xs x x . The corresponding reduced equation is:( q y

1
XX X 1 F yF F yFl lq1 ly1 lF q F q e ye s0, 3.10Ž . Ž .l l 2x

where the derivatives are taken with respect to x.
Ž 2 .For the function c sF yF s log t t rt the Toda equation reads:l l lq1 ly1 lq1 l

1
XX X 1 c c cl ly1 lq1c q c q 2 e ye ye s0. 3.11Ž . Ž .l l 2x

Ž . Ž .The tau-function, as well as F 0 and c 0 , can be determined for xs0 using thel l
w x Žmethods of Refs. 16,17 for xs0 the tau-function is the grand canonical partition

Ž .function of the matrix oscillator in the singlet representation of the U N group, which
.is the same as the partition function of N fermionic oscillators and it can serve as a

Ž .boundary condition for the Toda chain equation. For example, one finds from 2.22

1qeyb Ž myly3r2.
c Ž0.le s . 3.12Ž .yb Ž myly1r2.1qe

Ž . 2Let us also note that c x is analytic in x at the origin, which gives the second initiall
<condition E c s0.xs0x l

Using these equations and the boundary conditions we expand the partition function
Ž . 22.24 in powers of l . In the first order:

1 E 2 1yeyNb

log ZZs . 3.13Ž .2 2 yb2 N El 1ye

² q :This is the simplest correlation function tr V tr V of the holonomy Wilson loop in
our original model.

Ž . Ž .The large N limit of the initial partition function 2.24 or 3.1 can be studied in
Žterms of a special scaling limit of these Toda equations since m;N in the Legendre

.transform from canonical to microcanonical partition function , similar to the KP-
w xhierarchy approach of a simpler zero-dimensional model of paper 5 . We leave this

study to a future publication.

4. Saddle point equations in the large N limit

In this section we will investigate the large N limit, which is the most interesting
from the point of view of applications. Since the potential lcosu is symmetric, we
assume that the saddle-point spectral density

N1
r u s d uyuŽ . Ž .Ý iN is1
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w x Ž .is supported by the symmetric interval ya,a with 0-aFp . The function r u is
determined by the saddle point equation

a
X X X

uyu uyu q ib uyu y ib
X X2lsinus du r u 2cot ycot ycot ,Ž .e ž /2 2 2ya

4.1Ž .

where we temporarily rescaled be™b. This equation is equivalent to a functional
equation for the resolvent

a
X

uyu
X X1W u s du r u cot , 4.2Ž . Ž . Ž .H2 2ya

namely

lsinusW uq i0 qW uy i0 yW uq ib yW uy ib , 4.3Ž . Ž . Ž . Ž . Ž .
where ya-u-a, supplied with the normalization condition for the density

dz
W z s1, 4.4Ž . Ž .E

2p iCC

w xwhere the contour of integration CC circles interval ya,a .
It is easier to solve this equation for the function

1
sinh b W zq ibr2 yW zy ibr2Ž . Ž .2

z z sy2cos zq4Ž .
l i

1
24sinh b a dur uŽ .2sy2cos zy , 4.5Ž .H bl ya cos zyu ycoshŽ .

2

which satisfies the simpler equation

b b
w xz uq i sz uy i ug ya,a . 4.6Ž .Ž .ž / ž /2 2

ŽThe solution can be formulated in terms of standard elliptic functions see Appendix
.A for the derivation . We give it in the form which is convenient for the limit of small b

Ž . Ž .or, equivalently, finite b and e™0 . The function z z will be given in a parametric
form

zsz Õ , zsz Õ ,Ž . Ž .
1 1 1where the parameter Õ belongs to the rectangle y p-Re Õ- p , y pt- Im Õ2 2 2

1 2- pt . The elliptic modulus q and the nome k2

42 ny1` 1yqXyp K r K iptqse se , ks , 4.7Ž .Ł 2 ny1ž /1qqns1

are given below as functions of b and l.
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Ž .The solution in parametric form is:

z f 2 Õ yz f 2 ÕŽ . Ž .4 3 `
z Õ s , 4.8Ž . Ž .2 2f Õ y f ÕŽ . Ž .`

Ž .where f Õ is a standard elliptic function
X X ` n2 K 2 K q

Xf Õ s dn Õ ,k s1q4 cos 2nÕ , 4.9Ž . Ž . Ž .Ý 2 nž /p p 1qqns1

and

b q ÕqÕŽ .1 `
z Õ s i Õq i lnŽ .

p q ÕyÕŽ .1 `

` 2 nb sin ÕqÕ q sin2nÕ sin2nÕŽ .` `
s i Õq i ln q4 i . 4.10Ž .Ý 2 np sin ÕyÕ n1yqŽ .` ns1

The modulus t is proportional to the ratio of Õ and b`

Õ̀
yŽ4p r b .Õ`ts4 i , qse , 4.11Ž .

b

and is determined by

2p g z z qz z4 5 1 3
sinh br2 s E k y K k . 4.12Ž . Ž . Ž . Ž .

l 2 2g

The parameters z , . . . ,z of the solution are expressed as functions of l and Õ as1 5 `

follows:

f X
Õ u 2ÕŽ . Ž .` 1 `Ž b rp .Õ`z yz sy2 e ,X4 3 f Õ u 0Ž . Ž .` 1

eŽ b rp .Õ` f XX
Õ f X

Õ bŽ . Ž .` ` X
z qz sy y q2u 2Õ q u 2Õ , 4.13Ž . Ž . Ž .X X4 3 1 ` 1 `ž /u 0 f Õ f Õ pŽ . Ž . Ž .1 ` `

z a 2 yz k 2 z yz a 2
3 4 4 3

z s , z s , 4.14Ž .1 52 2 2a yk 1ya

f Õ z yz aŽ . Ž .` 4 3
as , gs . 4.15Ž .`

2 2 22 (n 1ya a ykŽ . Ž .1q2 qÝ
ns1

Ž .Finally, it is useful to know the value z of the function z z at the branch point2
Ž .zs i br2 qa

` nz yz b b q4 2
s q sin2nÕ . 4.16Ž .Ý `2 ng 2p Õ 1yq` ns1
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5. Scaling limit

5.1. The resolÕent in the scaling limit

Let us recall that the parameter b is the product of the physical time and the twisting
parameter e . Therefore the twisting is removed in the limit b™0. If b™0 with l

w xfixed, we reproduce the zero-dimensional case considered in Ref. 5 . In this section we
will consider a nontrivial limit where both l and b go to zero so that the ratio lrb

remains finite. In this limit, all observables depend only on the ratio lrb , and this is
why we call it ‘‘the scaling limit’’. Note that in the thermodynamical limit N™`, the
two limits l™0 and e™0 will not commute.

X X 1 X 2Ž .In the scaling limit we have Im t41, Kf ln4rk , K s p 1qk r4 and,2

neglecting the exponentially small terms, we get

z qz z 1 b sin ÕqÕŽ .4 3 43 `
zs y , zs i Õq iln .

2 16q sin ÕqÕ sin ÕyÕ p sin ÕyÕŽ . Ž . Ž .` ` `

5.1Ž .

Ž .where z 'z yzi k i k

z qz b4 3Ž b rp .Õ 2 Ž b rp .Õ` `z s16qe sin 2Õ , sye 2cos2Õ q sin2Õ .43 ` ` `ž /2 p

5.2Ž .

When the regularization is removed, i.e. in the limit b™0, a sensible limit is
obtained when l tends to zero linearly with b. The scaling coupling constant brl is

Ž . Ž .obtained from 4.12 after substituting Es1, Ks 2prb Õ :`

b
2p s2sin2Õ y4Õ cos2Õ . 5.3Ž .` ` `

l

5.2. The free energy in the scaling limit

The derivative of the free energy

1
F l,b s lim ln ZZ l,b ,Ž . Ž .N2N

is proportional to the first moment of the spectral density

a
XF l,b s du r u cosu , 5.4Ž . Ž . Ž .Hl

ya

Ž .which can be evaluated by looking at expansion of z zspq iy , at y™`,

`

y Žk . yŽ2 kq1. yz z se q z e .Ž . Ý
ks1
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We have

l
X Ž1.F l,b s z y1 . 5.5Ž . Ž .l 1

28sinh b
2

The coefficient z Ž1. is evaluated in the scaling limit b™0 in Appendix A. This allows
us to write an explicit expression for the free energy in the limit b™0:

l b
XF lrb s 4Õ ysin4Õ , p ssin2Õ y2Õ cos2Õ . 5.6Ž . Ž . Ž .l ` ` ` ` `4pb l

This expression for the free energy is universal in a certain sense: if one deforms the
Ž .potential 2.23 to a more general one:

`

nlTr t V , 5.7Ž .Ý n
nsy`

Ž .then the scaling limit of the free energy will have the same form 5.6 , where l will be
˜Ž .substituted by some function of the couplings l g , g , . . . . The universal form of the1 2

free energy can only change if we tune the couplings g to some multicritical point.n
Ž .The corrections to the Eq. 5.6 are of two kinds: power-like corrections and

exponentially small terms of the type

qsey4p Õ` r b .

Ž 4 2 .1r3In the limit l™` we have qsexpy 24p rlb . These terms are of course
invisible compared with the power-like corrections but they imply the existence of
essential singularity in the b™0.

Ž .If we return to the original notations in terms of b ,e and l we conclude from 5.6
Ž . Ž Ž .. 2that F l,b ,e sel f lr be . Hence the principal ;N correction to the free energy

Žtends to zero in the limit e™0 when we recover the original unperturbed reduced
. Ž .SYM theory . On the other hand, as we will see below from 5.6 , there is no regular

expansion in powers of e in the weak coupling phase which signifies that there is an
essential singularity at the origin of this coupling and, correspondingly, in the moduli
space of our theory.

5.3. The Gross–Witten phase transition and the strong coupling phase

The matrix integral we are considering has qualitatively the same phase structure as
Ž .the U ` gauge theory on a two-dimensional sphere. The weak coupling phase consid-

ered above, describes the range of couplings l)l wherec

1yeyb

l s 5.8Ž .c
e

is determined by from the condition asp , i.e. that the two endpoints of the cut meet
Ž Ž . Ž .on the unit circle. Eq. 5.8 follows from 5.3 with Õ spr2; the length of the cut as a`

.function of l is given in Appendix A. The singularity near this critical point is as usual
of third order.
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The strong coupling solution is obtained by expanding the spectral density and the
kernel in a Fourier series

`1
r u s c cos ku ,Ž . Ž .Ý k2p ns0

`uq i0 uy i0 uq ib uy ib
yk bw xcot qcot ycot ycot s4 1ye sin ku ,Ž .Ý

2 2 2 2 ks1

X `p uyu
X Xdu r u cot s c sin ku .Ž . Ž .Ýe k2yp ks1

It is therefore clear that only the c term of the expansion of the spectral density has0

to be retained. One finds

1 l
ybr u s 1q cosu , for 0-l-l s1ye . 5.9Ž . Ž .cybž /2p 1ye

For the free energy we find then:

p l
X 1F s du r u cosus , for 0-l-l . 5.10Ž . Ž .Hl c2 yb1yeyp

X 1In the scaling limit e™0 we obtain: F s lrb for l-b. At the critical point l sbl c2
X 1 XX< < Ž .we have F s and F s1r2b. A simple calculation using Eq. 5.6 gives inlsb lsbl l2

the weak coupling phase l)l the same values of first two derivatives of the freec

energy at the critical point. This means that we have, as usually, the 3rd order
Gross–Witten phase transition. Note that in the limit b™` our model reduces indeed

w xto the one-plaquette model originally studied by Gross and Witten 24 .

5.4. Reduction to the zero-dimensional theory: b<l

In this limit the theory appears to be the zero-dimensional reduction of NNs1 SYM
w x Ž . Ž .studied in Ref. 5 . The integral 2.24 reduces after the rescaling u™bu to a simpler

integral:

N N 12p N b du u yu2 2k i jNl y Nlb u kZZ b ,l s e e . 5.11Ž . Ž .2Ł ŁHN ž /N ! 2p 2p u yu q iks1 i/j i j

w x w xThis model was studied in Refs. 6–8 and later in Ref. 5 .
Ž .We find from 5.6 the following expansions in half-length of the cut as2Õ :`

a2 a4
X 6F s1y q qOO a , 5.12Ž . Ž .l 10 4200

b a3 a2
7s 1y qOO a . 5.13Ž . Ž .ž /l 3p 10
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This gives the following asymptotics for the free energy:
2r3 4r3 23pb 3pb b

3 27F b ,l sl 1y y qO . 5.14Ž . Ž .10 1400 2ž / ž / ž /l l l

w xThe first term of this expansion matches the asymptotics of big l obtained in Ref. 5
Ž .for the integral 5.11 in the large N limit. The next terms are not supposed to match

w xwith Ref. 5 since we already used the scaling limit expression of the free energy with
the finite compactification radius b.

6. Conclusions

Let us outline the main results of the paper:

1. We consider a topological sector of the one-dimensionally reduced NNs1
SYM theory on the light-cone time circle with a a special massive perturbation.4

w xUsing Witten’s nonabelian localisation principle 13 , we represented the parti-
tion function with periodic b.c. in terms of a solvable matrix quantum mechanics
Ž .twisted matrix oscillator .

2. We find the integrability properties of this model relating it to the Toda
hierarchy. The generating functional as a function of its parameters satisfies the
Toda chain equation.

3. In the large N limit we find the exact solution of the model: the generating
functional is parametrized in terms of elliptic functions. We find the Gross–Wit-
ten type phase transition and identify its location. The strong coupling solution
is also found.

Ž4. An interesting model corresponds to the analytical continuation b™ ib in-
.verted matrix oscillator being known to have the properties of the cs1

non-critical strings.
Ž5. In the scaling limit of vanishing perturbation we find a simple universal with

.respect to certain deformations of parameters of the generating functional
expression for the free energy and Wilson loop correlators along the light-cone
circle. Its strong compactificat ion limit restores similar results for the com-

w xpletely reduced NNs1 SYM considered in Ref. 5 .4

Some remaining problems:

1. We need further understanding of the spacetime symmetries of the model and of
the correlators corresponding to our generating functional.

Ž .2. The representations similar to the Eq. 2.24 for the SYM can be found also for4

the SYM and SYM reduced to the light-cone time circle: we just have to take6 10
w xthe corresponding eigenvalue integrals for the partition functions in the paper 5

and substitute there the rational functions by trigonometric ones. Unfortunately,
we cannot apply the powerful methods used here to those models: we don’t
know any relation of them to the integrable hierarchies and we cannot solve
exactly the large N saddle point equation. On the other hand, it seems to be
possible to investigate this saddle point equation in the scaling limit similar to
that used in the present paper.
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Another interesting question is whether two prescriptions for the contour integration
with respect to the eigenvalues of f coincide for the infinite N in some part of the
phase space of parameters eb and l. It is clear that they give different answers in the

Ž . Ž .strong coupling phase l-l b since they are already different for ls0 . As in thec

present paper.

Another interesting question is whether two prescriptions for the contour integration
with respect to the eigenvalues of f coincide for the infinite N in some part of the
phase space of parameters eb and l. It is clear that they give different answers in the

Ž . Ž .strong coupling phase l-l b since they are already different for ls0 . As for thec
Ž . Žweak coupling phase l)l b of our large N solution which is not even analytical atc

.ls0 , it is possible that the saddle point approximation does not distinguish between
Ž . Žtwo different prescriptions of integration over f t contour integration over the Cartan

w xsubalgebra, on the one hand, and integration over u ’s in the finite interval 0,2p , on the
.other hand . This hypothesis is to be verified. A weaker version of it could be the

Ž Ž ..coincidence of two prescriptions in the scaling limit Eq. 5.6 .
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Appendix A. Solution of the saddle point equations

( )A.1. The function zsz z as an elliptic integral

Ž .It follows from the integral representation of z z that it is real when zgR,iR,iR"

p , satisfies

z z sz zq2p sz yz sz z A.1Ž . Ž . Ž . Ž . Ž .
1 1Ž . w xand by 4.6 is also real along the interval ibya, ibqa . Therefore this function2 2

1 1w xdefines a map of the half strip 0-Re z-p ,Im z)0 with a cut ib , ibqa , to the2 2

Ž . Ž .upper half plane Im z)0 Fig. 1 . The inverse map zsz z is given by the
Ž w x.Schwarz–Christoffel formula see, e.g. Ref. 25 :

dt tyzŽ .z 2
zs i , A.2Ž .H

Y tŽ .z4

where

Y t s tyz tyz tyz tyz . A.3(Ž . Ž . Ž . Ž . Ž . Ž .1 3 4 5

Ž .By construction, the map A.2 acts on the special points z -z -z -z -z and `1 2 3 4 5

as is shown in the two first columns of Table 1.
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Fig. 1. The domains of the variables z,z ,u,Õ.

The values of z at the special points of the map are determined as functions of b and
Ž . Ž .l by the asymptotics of z z at infinity. The expansion of the function 4.5 at z™`

contains only odd powers of ei z. If we approach infinity as zspq iy, y™`, the
Ž .asymptotics of z z is

`

y Ž2 nq1. yŽ2 nq1. yz y 'z pq iy se q z e , A.4Ž . Ž . Ž .Ýq
ns0

where
2 a8sinh br2Ž .

Ž1.z s 1q du r u cosu , A.5Ž . Ž .Hž /l ya

etc.

Table1
The values of z,z ,u and Õ at the special points of the map.

z z u Õ

y` q i` u q i0 Õ q0` `
X1 1

z ib K q iK p1 2 2
1

z ib q a u Õ2 2 22
X1 1 Ž .z ib iK p 1qt3 2 2

1
z 0 0 pt4 2

z p K 05

q` p q i` u q i0 Õ y0` `
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A.2. Elliptic parametrization of the solution

Ž . Ž .The map A.2 and the condition 4.4 can be expressed explicitly in terms of
Ž w x Ž ..standard elliptic integrals see Ref. 26 , 256.02 with parameters

z z z z54 31 43 51X 2'ks , k s 1yk s , A.6Ž .( (z z z z53 41 53 41

z z54 412gs z z , a s , nsarcsin , A.7Ž .( 53 41 (z z53 51

where the notation z sz yz is used. Namelyi j i j

2z z 1 zyz43 32 42z z s P w ,a ,k q F w ,k , wsarcsin ,Ž . Ž .Ž . (ž /g z a zyz43 3

A.8Ž .

and

2p g z z qz z4 5 1 3
sinh br2 s E k y K k . A.9Ž . Ž . Ž . Ž .

l 2 2g

It is convenient to introduce as a parameter the elliptic amplitude u related to the angle
w as sn ussinw,

z z dt 1 zyz( z53 41 4
us i sF w ,k , sn ussinws . A.10Ž . Ž .H (2 Y t a zyzŽ .z 34

Then the function

z yz a 2 sn 2 u4 3
z u s A.11Ž . Ž .2 21ya sn u

maps the upper z-half-plane is mapped to the rectangle 0FRe uFK , 0F Im uFK X

with K and K X being the complete elliptic integrals associated with the moduli k and
kX. The special points zsz , . . . ,z and ` correspond to the points u , . . . ,u and u1 5 1 5 `

along the boundary of the rectangle as is shown in Table 1. Note that

1
ssn u .Ž .`

a

Ž . Ž . Ž .The function z u defined by the integral A.2 reads, in the parametrization A.10 ,

u2z du z43 32
z u s q u . A.12Ž . Ž .H 2 2ž /z1ya sn uz z( 0 4353 41

Ž .We will express the integral in A.12 in terms of Jacobian elliptic functions. Since the
.point u is between u and u , it has the form` 5 1

u sKq ij , 0-j-K X . A.13Ž .`
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Ž . w xWe find, using Eq. 433.01 of Ref. 26 ,

H uq ij u 2zŽ .1 42
z u s iln q KypL n ,k , A.14Ž . Ž . Ž .0H uy ij KŽ . z z(1 53 41

Ž .where H u is a standard Jacobian elliptic function and1

2
X X

L n ,k s EyK F n ,k qKE n ,kŽ . Ž . Ž . Ž .0
p

X 2 2'H ij z a ykŽ .1 41
s i , nsarcsin sarcsin X(H ij z kž /Ž .1 51

Ž X. Ž X.is known as the Heuman’s Lambda function. The condition z iK sz Kq iK is
satisfied only if the coefficient in front of the linear term in u is zero, hence the
condition

2z42
KspL n ,k . A.15Ž . Ž .0

z z( 53 41

Ž X. y Ž X.From H uq iK se ip urKH uy iK , we find1 1

p
Xz iK s i j ,Ž .

K

which allows to determine j :

K
js b . A.16Ž .

2p

Ž .The final expression for z u is therefore

H uq i Kr2p bŽ .Ž .1
z u s iln . A.17Ž . Ž .

H uy i Kr2p bŽ .Ž .1

A.3. The dual modulus

We are going to write our solution in a form, which will allow to perform painlessly
Ž . Ž .the scaling limit b™0. In this limit a fyib dzrdz ™0 and, according to A.6 ,43

kX f4eyK
™0. Therefore it is more convenient to expand the solution in the dual

modular parameter

qseyp K r K X

seipt A.18Ž .

and use the variable Õ

p pr2
Õs ty i uX2 K
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as a parameter. The elliptic nome is expressed as a function of q as

42 ny1` 1yq
ks . A.19Ž .Ł 2 ny1ž /1qqns1

The parameters corresponding to the special points of the map are given by the last
Ž . Ž .column of Table 1. The parameter of infinity is equal, by A.13 and A.16 , to

K it
1

Õ s bsy b 0-Õ - p . A.20Ž .Ž .X` ` 24K 4

The domains of the four variables z,z ,u and Õ are depicted in Fig. 1.
Ž .We will write the solution as a function of the parameters Õ sÕ l and b. It will` `

be written as a series in the expansion parameter q

Õ̀
yŽ4p r b .Õ ipt`qse se , ts4 i . A.21Ž .

b

Ž . Ž .The expansion of the function z u is obtained by plugging in Eq. A.11 the
representation of sn in terms of the dual modulus

1 2 K X
p

Xsdn Õ ,k s f q , A.22Ž . Ž .Xž /sn u p 2 K

n` q
f q s 1q4 cos 2nÕ . A.23Ž . Ž . Ž .Ý 2 n1qqns1

Ž .The function z Õ reads, in terms of the standard elliptic functions associated with the
dual modulus,

4 q ÕqÕŽ .1 `
z Õ sy Õ Õq ilnŽ . `

pt q ÕyÕŽ .1 `

` 2 nb sin ÕqÕ q sin2nÕ sin2nÕŽ .` `
s i Õq i ln q4 i . A.24Ž .Ý 2 np sin ÕyÕ n1yqŽ .` ns1

Ž .Finally, A.15 expands as
X ` n4Õ z 2 q Õ 2 qŽ .` 42 4 `

s Õ q s Õ q4 sin2nÕ . A.25Ž .Ý` ` `2 nb p q Õ p 1yqŽ .z z( 4 `53 41 ns1

In order to fix completely the solution, let us consider the vicinity of the point Õ and`

Ž . Ž .compare the explicit dependence zsz z with the asymptotics A.4 at z™pq i`.
The half-line

zspq iy y)0Ž .
is parametrized by the interval 0-Õ-Õ . In the left vicinity of the point Õ` `

ÕsÕ ye e)0 ,Ž .`
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the functions zspq iy and z have the form

A P
ye s qBqCe , zs qQqRe ,

e e

with

f Õ z f X
Õ f X

Õ f XX
ÕŽ . Ž . Ž . Ž .` 4 ` ` `1 1Psyz , QsyP 2 y y ,X X43 2 2ž /2 f Õ z f Õ f Õ f ÕŽ . Ž . Ž . Ž .` 43 ` ` `

u 2Õ b u
X 2ÕŽ . Ž .1 ` 1 `Ž b rp .Õ`Ase , BsyA q .X ž /u 0 p u 2ÕŽ . Ž .1 1 `

Ž . Ž .The leading asymptotics A.4 of z z is achieved if AsP and BsQ, which yields
Ž .4.13 .

Ž .From A.25 we get

b sin2 Õ̀
z s z z 1q2p q . A.26Ž .(42 53 41 ž /2p Õ̀

Ž .Note that the relation 2z sz qz qz qz is satisfied.2 1 3 4 5

( )A.4. The limit of large t small b

In this limit, which corresponds to the scaling limit discussed in Section 4, the
Õ-rectangle can be replaced by an infinite half-strip and elliptic functions degenerate to

Ž .trigonometric functions. After substituting Es1, Ks 2prb Õ in the normalization`

Ž .condition A.9 , we get in this limit

4p b b
yŽ b rp .Õ`sinh e s2sin2Õ y4Õ cos2Õ y sin2Õ . A.27Ž .` ` ` `

l 2 2p

The parameters of the solution are obtained from

z 143 2 2Ps , Qsz qPcot2Õ , RsP qcot 2Õ ,Ž .4 ` `316q sin2 Õ̀

b
Ž b rp .Õ`Ase sin2Õ , BsyA cot2Õ q ,` `ž /p

b b 2
1CsA y q cot2Õ q .`3 2ž /p 2p

From AsP we get

z s16qeŽ b rp .Õ`sin2 2Õ A.28Ž .43 `

and BsQ implies

z qz b X3 4 Ž b rp .Õ brp ÕŽ .` `sye 2cos2Õ q sin2Õ sy e sin2Õ . A.29Ž .Ž . Õ` ` ` `ž /2 p



( )J. Hoppe et al.rNuclear Physics B 571 2000 479–509502

It is useful to note that
z qz z qz b z53 54 42 32 432 2scot Õ , s cotÕ , s16qcos Õ .` ` `
z qz z qz 2p z qz41 z 1 41 31 41 31

Finally, the coefficient z Ž1. is obtained as

z Ž1.sA RyCŽ .
4Õ ysin4Õ 4Õ2 ysin2 2Õ y2Õ sin4Õ` ` ` ` ` `2s1q2b q qOO b .Ž .2ž /4pbe 8p

A.30Ž .

A.5. The length of the cut

Ž . Ž . Ž .The branch point of the Riemann surface of z z is at z sz Õ , where z Õ sz .2 2 2 2
Ž .Taking the limit of A.26 ,

b
Ž b rp .Õ`z s sin2Õ e , A.31Ž .42 `

p

Ž .we rewrite the solution 5.1 in the form

b cotÕqcotÕ z yz cotÕ q 2prb zŽ . Ž .` 4 ` 422zs i Õq iln , cot Õs .
p cotÕycotÕ z yz tanÕ y 2prb zŽ . Ž .` 4 ` 42

A.32Ž .
Ž .Putting ÕsÕ in A.32 , we get2

b tanhd y icotÕ 1y br2p cotÕŽ .2 ` `2asy d q i ln , tanh d s2 2
p tanhd q icotÕ 1q br2p tanÕŽ .2 ` `

and finally
b b

cos aq d scos2Õ y sin2Õ fcos2Õ ,2 ` ` `ž /p 2p

which allows us to evaluate a

b 4p
af2Õ y d , d f ln sin2Õ . A.33Ž .` 2 2 `ž /p b

Appendix B. Direct scaling analysis of the equations on parameters of the large N
solution

Ž .Six conditions on the length of the cut, a, and the 5 parameters of the map z¨z z
Ž .which we denote here by a , . . . ,a instead of z , . . . ,z are1 n 1 n

a tya3 2
1 as dt ,Ž . H

< <Y tŽ .a2

a atya tya3 52 2
2 0s dt resp. ps dt ,Ž . H Hž /< < < <Y t Y tŽ . Ž .a a1 4
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a tya4 213 bs dt ,Ž . H2 < <Y tŽ .a3

4 a qa qa qa s2 a ,Ž . 1 3 4 5 2

` tya 12
5 lna s dt y a )0 ,Ž . Ž .H5 5ž /Y t tŽ .a5

a4p z zyaŽ .5 2
6 sinh br2 s dz , B.1Ž . Ž . Ž .H

< <l Y zŽ .a4

Ž . Ž . Ž .with Y t as in A.3 where the a were denoted by z . While the first three conditionsi i
Ž . Ž .are implied by the geometry of the map z , conditions 4 and 5 follow when

Ž Ž .. Žcomparing the from 4.5 known asymptotics of z , e.g. for zspq iy y™`; cp.
Ž .. Ž .A.4 , to the one implied by the integral representation A.2 which says that

` tya 1 12 1ys lnz q dt y y lna y a qa qa qa yaŽ .Ž .Hq 5 1 3 4 5 22ž /ž /Y t t zŽ .a q5

` bn
y , B.2Ž .Ý nzqns2

1 2 2 2 2Ž .with b s a q a q a q a y Ł a a already determining2 1 3 4 5 2 / i / j / 2 i j16
qa Ž . Ž .H du r u cos u .ya

With

a aa ( 54 3141
a sa ya , gs a a , nsarcsin ks ,(i j i j 53 41 ( a g51

a a( 43 51X 2'k s 1yk s , B.3Ž .
g

Ž . Ž . Ž . Ž .the conditions 2 , 3 , 5 and 6 read

a a a a a a pg43 31 51 31 42 54
2 K k s P ,k s P y ,k sy P ,k q ,Ž . Ž . ž / ž / ž /a a a a a a 2 a42 41 52 53 32 53 32

B.4Ž .

2 a a 2 a 2 a a31 43 21 54 43X X X13 bs P ,k y K k sy P ,kŽ . Ž .2 ž / ž /g a g g a41 53

2 a52 Xq K k , B.5Ž . Ž .
g

2 a a 2 a a qa54 43 52 53 41X X5 P n , ,k y F n ,k s ln , B.6Ž . Ž . Ž .ž /ž /g a g 453

2p g a a qa a4 5 1 3
6 sinh br2 s E k y K k . B.7Ž . Ž . Ž . Ž . Ž .

l 2 2g
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Ž .The scaling limit can be obtained by direct analysis of Eqs. B.1 in the limit b™0,
a™a )0. Letting0

a su , a sÕ , a sw ,43 32 53

u Õ w
us , Õs , ws ,˜ ˜ ˜

a a a31 31 31

one has

Õqus˜ ˜1
3 bs2 dsŽ . H

0 (s 1ys wyus 1qusŽ . Ž . Ž .˜ ˜ ˜

u
1q s2Õ 1 Õs ds , B.8Ž .H

wa u u031
s 1ys 1y s 1q sŽ .( ž / ž /w a31

1ys1
1 asÕ dsŽ . ˜H

u0 ˜
s sq wqÕs 1yÕsŽ . Ž .˜ ˜ ˜( ž /Õ̃

Õ 1ys1
s ds , B.9Ž .H

wa u Õ Õ031
s sq 1q s 1y s( ž / ž / ž /Õ w a31

Õ 1q wrÕ sŽ .1
2 ps dsŽ . H

wa (( s 1ys syurw 1qswurw Ž . Ž . Ž .˜31

2Õ ds˜ 1'f K r q w , B.10Ž . Ž .H'w ( 1ys 1qsw0 Ž . Ž .˜ ˜

2 Ž .y1Ž . ŽŽ . .where r s 1qu 1yurw f1yu wq1 rw .˜ ˜ ˜ ˜
In order to have b™0 and a finite, we must have u,Õ™0,

2 Õ̃
e' ™0. B.11Ž .˜ 'w̃

Ž .If one wants to keep, according to B.9 , a finite in this limit, urÕ must go to zero such
that

u
ye ln s2 a B.12Ž .˜ 0

Õ

' Ž Ž .finite, i.e. u™0 exponentially faster than Õr w and the f sign in B.10 and˜ ˜
.thereafter, means that such terms are dropped .
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Ž . Ž .One also finds that urw™0 even if w™0 as if not, the r.h.s. of B.10 would go
to zero. So b™0, a™a )0 implies0

u u
u ,Õ™0, ™0, ™0, B.13Ž .

Õ w
Ž . Ž .together with B.11 , B.12 , and

bfep . B.14Ž .˜
Ž .In order to extract more quantitative information from B.10 consider the equivalent

Ž .condition B.4 ,

1
uqÕ K k suP ,k , B.15Ž . Ž . Ž .˜ ˜ ˜ ž /1q ũ

where

u 1 1
2k s 1y - . B.16Ž .ž / ž /w 1qu 1qu˜ ˜

As u™0, kX 2 s1yk 2 furwyu™0 and we can use some standard expansions for˜ ˜
Ž . ŽŽ . w x.the third elliptic integral appearing in B.15 , e.g. 412.01 of Ref. 26

1 p 1 1yL u ,kŽ .0
P ,k sK k q , B.17Ž . Ž .ž / '1qu 2˜ 1qu ur 1qu 1r 1qu urw(˜ Ž . Ž .˜ ˜ ˜ ˜ ˜

where

ur 1qu wŽ .˜ ˜ ˜
sinus f B.18Ž .((urwqur 1qu wq1Ž .˜ ˜ ˜

Ž . ŽŽ .and the first terms in the expansion of Heumann’s Lambda function L u ,k 904.000
w x.of Ref. 26 are

2
X 21

L u ,k s Euy 2 KyE k uysinucosu q . . .Ž . Ž . Ž .Ž .0 4
p

2 w̃
f arcsin . B.19Ž .(

p wq1˜
Ž . Ž .Inserting B.18 into B.15 and using

1 X 2 XK k fy lnk q ln4, for k™0,Ž . 2

one finds:

u u p 2 w˜ ˜
1 'Õ y ln q q ln4 f w 1y arcsin ,˜ ˜ (2 ž /ž / ž /w 1qu 2 p 1qw˜ ˜
Ž .and, using B.14

2u u 2p 2 w˜ ˜
q f16exp y 1y arcsin , B.20Ž .(½ 5ž /w 1qu b p wq1˜ ˜

216w 2p 2 w˜ ˜
uf exp y 1y arcsin . B.21Ž .˜ (½ 5ž /1qw b p wq1˜ ˜
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Apart from converting lnu terms into w,b dependencies, all other u-dependencies˜ ˜ ˜
Ž . Ž .Ž .are dropped, due to this exponential decay B.21 . Eq. B.1 5 can then be stated

explicitly as an expression for a in terms of b and w as follows:˜31

` 1 1
lna f ds yH5 ž /sqa qwsqa qw s0 (Ž . 331

`Õ ds
q H

w (s sy1 bq1rw1 Ž . Ž .˜

L a52(s lim ln 2 s qsa q2 sqa q lnž /51 51ž /0 LL™`

Õ 1yw p˜'q w arcsin q˜ ž /ž /w 1qw 2˜

a b 1yw p˜5
s ln4q ln q arcsin q . B.22Ž .ž /ž /a 2p 1qw 2˜51

Hence

4 b 2 1y w̃
a f exp 1q arcsin . B.23Ž .31 ½ 5ž /1qw 4 p 1qw˜ ˜

Ž .The last equation needed to calculate the a as functions of b™0 and l is B.7 , resp.i

4p sinh br2 2ÕaŽ . 3
s w a qu E k q K k B.24( Ž . Ž . Ž . Ž .31

l wa( 31

2 Ž . Ž Ž .Ž ..as g sw a qu and due to B.1 431

a a qa a sy2Õa . B.25Ž .4 5 1 3 3

Ž .B.24 can be simplified substantially even without neglecting u-terms, by noting that˜
Ž . Ž .B.15 , B.17 imply

1 2Õ 'K k s 1qu 1yL u ,k . B.26Ž . Ž . Ž .˜ 0
p wa( 31

With

a a b3 31 's 1y2Õywyu , Õs w , B.27Ž . Ž .˜ ˜ ˜ ˜ ˜
2 4 2p

one therefore gets

2sinh br2 a 2Ž . 31 ' 's 1qu w Eq 1y2Õywyu 1yLŽ . Ž .˜ ˜ ˜ ˜ ˜ 0ž /l 4 p

a 2 b 2 w̃31 ' 'f w q 1y w yw 1y arcsin ,˜ ˜ ˜ (ž / ž /ž /4 p p p wq1˜
B.28Ž .
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Ž . Ž .which is an implicit equation for w as a function of b and l, when inserting B.23 .˜
For w™0 it reads˜

yb1ye b 'f1y w y2w. B.29Ž .˜ ˜
l p

Ž Ž .Ž . Ž ..The length of the cut is given by cp. B.1 1 , B.9

2 w̃
a™a sp 1y arcsin . B.30Ž .(0 ž /p wq1˜

Ž . Ž . Ž .The second of the final scaling Eqs. 5.6 follows from B.28 and B.30 if we
neglect all terms proportional to b or exponentially small terms and use as2Õ .`

1Ž . Ž . Ž Ž ..Finally note that the second line of B.10 , via K r f ln 16wru wq1 implies˜ ˜ ˜2

Ž . Ž Ž . Ž ..B.21 shortcutting the argument B.15 – B.21 , when using

ds p 1y w̃1'w s yarcsin˜ H
2 1q w̃( 1ys 1qsw0 Ž . Ž .˜

and

1 1yw 2 1 2 w˜ ˜
1 q arcsin s arcsin s1y arcsin .(2 'p 1qw p p wq1˜ ˜1q w̃

Appendix C. Inverted oscillator: the point bs ip

An interesting analytical continuation of our model corresponds to the imaginary
Ž .values of the generator of O 2 symmetry of the original supersymmetric model. If wee

Ž .renormalise e to one it is equivalent to the change b™ ib in 2.24 . The corresponding
saddle point equation reads:

a
X X Xuyu uyu qb uyu yb

X X2lsinus dur u 2cot ycot cot . C.1Ž . Ž .e ž /2 2 2ya

w xAccording to the arguments and results of the papers 16,17 the inverted twisted
matrix oscillator describes the compactified cs1 string, or, in other words, the
compactified bosonic field coupled to the 2D quantum gravity. So at least the critical
regime of cs1 string with the typical inverse logarithmic dependence of the physical
quantities on the cosmological coupling should show up at some point. Let us demon-

Ž .strate it in the case which we can solve explicitly, namely for bs ip . The Eq. C.1 in
this case looks as:

a
X

l r uŽ .
Xsinus du . C.2Ž .e X2 sin uyuŽ .ya
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The spectral density is

l
2 2'r u s sin aysin u .Ž .

2p

The normalization condition gives

a al l
2 2 2'1s du r u s du sin aysin u s E sina ycos a K sina ,Ž . Ž . Ž .H H

2p pya ya

or
p

X 2E k yk K k s , kssina. C.3Ž . Ž . Ž .
l

w xConsider the limit when the eigenvalues occupy almost the whole interval yp ,p
allowed by the periodicity: a;p , k 2 ,1. In terms of kX we have the following
asymptotics:

1 X 2 XE,1q k log 4rk , C.4Ž . Ž .2

K, log 4rkX . C.5Ž . Ž .
Ž . Ž . Ž .By the use of C.4 and C.5 we obtain from C.3 :

2 lylŽ .cX 2k , , C.6Ž .
< <p log lylŽ .c

for l™l sp .c

For the simplest physical quantity, the derivative of the free energy, we obtain

a 2lk
XF s du r u cosus , C.7Ž . Ž .Hl 2ya

from where we obtain the scaling asymptotics typical for the cs1 noncritical string
w xdiscovered in Ref. 27 :

22p 1 lylŽ .c
F l , y . C.8Ž . Ž .

< <4 4 log lylŽ .c

The considered case bs ip of the cs1 matrix model corresponds to the
Kosterlitz–Thouless phase transition point. It would be interesting to study the vicinity
of this point by generalizing our solution to all imaginary b.
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