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The phase diagram of 2d Lorentzian quantum gravity (LQG) coupled to conformal matter is studied. A phase 
transition is observed at c = c c r i t  (1/2 < Ccrit < 4) which can be thought of as the analogue of the c = 1 barrier 
of Euclidean quantum gravity (EQG). The non-trivial properties of the quantum geometry axe discussed. 

1. I N T R O D U C T I O N  

Recently a new model of 2d quantum grav- 
ity has been proposed [1]. It is defined using 
dynamical triangulations from a subclass of di- 
agrams which can be given a causal structure. 
Such diagrams are generated by gluing together 
one dimensional time-slices or "universes" (in our 
case a set of vertices connected by space-like links 
forming a diagram with the topology of a circle) 
with time-like links such that they form a tri- 
angulated surface. Vertices connected by time- 
like links are causally related and a unique time 
can be assigned to the vertices of each time-slice. 
Such graphs can be given a Lorentzian metric 
by defining time-like links to have equal negative 
length squared and space-like to have positive. 
All triangles have equal area and the volume of 
spacetime is proportional to the number of trian- 
gles NT. The system has been found to have a 
non-trivial continuum limit only at an imaginary 
value of the cosmological constant A. The ge- 
ometry of space is maximally fluctuating but the 
system is much smoother than Liouville gravity: 
By defining the two point function to be 

a ( A , t )  = e , • (1 )  

T E T  

where the summation is over triangulations T of 
cylindrical topology with t time-slices, one finds 
that the Hansdorff dimension dH of the system 
is 2. This is entirely due to the imposition of 
the causal structure: If one allows the creation 
of baby universes the system becomes the ordi- 
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nary EQG model. If conformal matter of central 
charge c is coupled to the system, it has been 
found in the case of one Ising model [2] that the 
coupling is weak for c < 1/2 and the bulk prop- 
erties of geometry do not change (e.g. dH = 2). 
The critical matter system belongs to the Onsager 
universality class. When 8 Ising spins are cou- 
pled to gravity, a qualitatively different behaviour 
emerges. The system undergoes a phase transi- 
tion for some 1/2 < Ccrit ( 4 [3] to a phase where 
we observe anomalous scaling between the typical 
length scale L and typical time scale T. It is found 
that dim[L] -- 2 dim[T] and that dit = 3. The lat- 
ter is a "cosmological" Hausdorff dimension. The 
former is a relation which has been found to hold 
for the non-singular part of the quantum geom- 
etry of EQG for any value of c < 1. The short 
distance behaviour of space-time is given by a 
different fractal dimension dh = 2. The quan- 
tum geometry is different at different scales and 
has a more complex structure. The matter crit- 
ical exponents are Onsager. We conclude that 
the matter coupling to geometry in our model is 
much weaker than in the case of EQG so that 
the large c phase has non-degenerate, interest- 
ing continuum limit for the quantum geometry. 
Nothing dramatic happens from the point of view 
of matter but the geometry undergoes a qualita- 
tive change and even shares some features with 
the non-singular part of EQG in the c < 1 phase. 
This is the first time where one has a model which 
demonstrates explicitly that the strong coupling 
of matter and geometry in Liouville gravity is 
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Figure 1. The SV(I) distributions for the c = 1/2, 
r = 1 system, y = I /N  1/~h 

Figure 2. The SV(l) distributions for the c = 4, 
T = 3 system, y = I /N  1/~h 

entirely due to the (a priori) presence of baby-  
universes. 

2. N U M E R I C A L  R E S U L T S  

We simulate triangulated surfaces with the 
topology of the torus with NT triangles and N = 
NT/2  vertices [2,3]. The temporal  length (num- 
ber of time slices) is t and we choose N = t2/r  
for T = 1, 2, 3 and 4. The geometry is updated 
with the move described in [2] and the Ising spins 
with the Swendsen-Wang algorithm. The parti- 
tion function for n Ising models is 

G(A, t, fl) = Z e -Xgrz~( f l )  " (2) 
T E T  

ZT(~) is the parti t ion function of an Ising model 
with spins placed at the vertices of the graph T at 
inverse tempera ture  j3. n = 1, 8 corresponding to 
c = 1/2, 4. We obtain the fixed volume partition 
function by adding a gaussian volume-fixing term 
and measuring only on configurations of given 
volume NT. The critical values of (A, fl) are deter- 
mined. For c -- 0 they are ~c = In 2, for c = 1/2 
they are (~c,/3c) -- (0.T42(5),0.2521(1)) and for 
c --- 4 they are (~c,tic) = (1.081(5),0.2480(4)) 
(~ --~ In 2 when fl --4 c~). Those values are insen- 
sitive to r .  Finite size scaling (FSS) is applied at 

(Ac,~c) in order to measure the system's scaling 
properties. 

The first quantity that  we measure is the dis- 
tribution SV(I) of spatial volumes I. We expect 
a scaling behaviour 

(3) 

for some function Fs. ~h is related to the frac- 
J ~ ~ r l / d H  

t a l  d i m e n s i o n  ~ ~v T by d H  "~ ~ h / ( ~ h  - -  1). 

Here, t is the dynamically generated time extend 
of the scaling part  of space-time. For the c = 1/2 
model we find ~h = dH ---- 2 as shown in Fig. 1. 
For c = 4 the scaling behaviour of SV(I) is qual- 
itatively different. As can be seen in Fig. 3, the 
configurations show a tendency to form a long 
and thin neck with spatial volume of the order 
of the cutoff and an extended region that  scales 
according to (2). The volume of the extended 
part  is asymptotically proportional to NT. The 
effect is seen for large enough volumes and finite 
size effects are minimised by taking T > 3. For 
r = 3 we find ~h = 1.54(3) (see Fig. 2) and for 
T = 4 ~h = 1.50(3). Let us assume for clarity 
that  (fh = 3/2. Then dH = 3 and l ~ t 2 where l 
is the typical length scale of universes in the ex- 
tended region and t the typical time scale of their 
existence. 
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Figure 3. A typical configuration of the c = 1/2, 
T = 3 system. NT = 73926. 

Figure 4. Short distance scaling of nN (r) for c = 
4, T----3. 

The above results are supported by measur- 
ing the volumes nN(r)  of geodesic spherical 
shells at distance r. We expect tha t  nN(r)  = 

N~-I /dHFI(x) ,  x = r /N~/dn which is known to 
hold in EQG for all c. dH is the cosmologi- 
cal Hausdorff dimension describing how volume 
and time have to scale in order to obtain a non 
trivial continuum limit of the two loop function. 
On the other hand the short distance behaviour 
is given by dh, where rig(r) ~ r dh-1 at scales 
r << N 1/dn . For c -- 0 we find analytically that  
dH =- dh ---- 2 and for c = 1/2 numerically that  
dH = dh = 2.00(5). For c = 4, rig(r) has differ- 
ent scaling behaviour at different length scales. 
For r << N 1/3 we find that  dh ---- 2.1(2) as can 
be seen of Fig. 4. For r >> N 1/3 the value of the 
tail of nN(r)  is almost independent of NT and 

Table 1 
The critical exponents for the c = 1/2, T = 1 and 
the c = 4, r = 3 systems. 

c = 1/2 c - 4 

vd~H 0.89(1) 0.85(1) 

1 0.526(5) 0.520(5) Dlnlm[ vdH 

1 0.525(5) 0.512(5) Din m2 vdH 

r showing dominance of ld  configurations. For 
r ~ N 1/3 the scaling of the peaks of nN(r)  gives 
dH = 3.07(9). 

The mat ter  scaling exponents are computed 
from the scaling behaviour of the magnetic sus- 

ceptibility X ~ N ~ / v d n  and Dln lm I ---- ~ "~ 

dl"~n2 ~ N 1/~4H The N 1/vd" and Dlnm2 ~ dE 
c : 1/2 system clearly belongs to the Ising uni- 
versality class. For c = 4 special care has to be 
taken in order to isolate the critical behaviour of 
the spin system in the extended region of space-  
time [3]. The critical exponents are consistent 
with Onsager values. Our results are summarized 
in Table 1. 
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