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Abstract. SU(N) Yang–Mills integrals form a new class of matrix models which, in their
maximally supersymmetric version, are relevant to recent non-perturbative definitions of 10-
dimensional IIB superstring theory and 11-dimensional M-theory. We demonstrate how Monte
Carlo methods may be used to establish important properties of these models. In particular, we
consider the partition functions as well as the matrix eigenvalue distributions. For the latter we
derive a number of new exact results forSU(2). We also report preliminary computations of Wilson
loops.

PACS numbers: 1115, 1125, 1260J

1. Motivation

Recently there has been considerable interest in dimensionally reduced Yang–Mills theories
as a means to obtain non-perturbative information on superstring theory and M-theory. The
possible relevance of these systems to quantum gravity appeared in [1] through the lightcone
quantization of the 11-dimensional supermembrane. It was argued in [1] that 10-dimensional
SU(N) super-Yang–Mills theory reduced to one dimension, i.e. matrix quantum mechanics,
correctly quantizes the supermembrane in the large-N limit. The very same system, first studied
(without reference to applications to quantum gravity) in [2], has recently been interpreted as
a non-perturbative attempt at M-theory [3]. Unfortunately, on the technical side, very little is
known about this model. It is suspected [1, 3] that a novel, intricate large-N limit is required,
but only a few concrete results are available. This motivates the study of a simpler system: the
complete reduction of Yang–Mills theory to 0+0 dimensions. In addition, the reduction of the
ten-dimensional susy gauge theory path integral to a matrix integral has been at the heart of an
alternative proposal to directly define non-perturbative IIB string theory [4]. More generally
we may study the complete reduction ofD-dimensionalSU(N) Yang–Mills theory. Then the
path integral of the field theory simplifies to an integral over the group’s Lie algebra, with a flat
measure: aYang–Mills integral. Denoting the gauge potential byXAµ and their superpartners
by9A

α we obtain

ZND,N :=
∫ N2−1∏

A=1

( D∏
µ=1

dXAµ√
2π

)( N∏
α=1

d9A
α

)
exp[−S(X,9)], (1)

with the Euclidean ‘action’

S(X,9) = − 1
2 Tr[Xµ,Xν ][Xµ,Xν ] − Tr9α[0µαβXµ,9β ]. (2)
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The a priori allowed dimensions for the reduced supersymmetric gauge theory areD =
3, 4, 6, 10 corresponding toN = 2, 4, 8, 16 real supersymmetries. For the bosonic, i.e. the
non-supersymmetric caseN = 0, we omit the Grassmann variables9A

α , and may study all
dimensionsD > 2.

There are numerous further reasons for being interested in the integrals (1).

• The susy integrals are crucial for the computation of the Witten index of the above-
mentioned quantum mechanical gauge theories, as they contribute to the so-called bulk
part of the index [5] (cf also [6] for an earlier calculation).

• In the maximally supersymmetric case, to leading order the system describes the statistical
distribution of a system ofN D-instantons (or ‘−1-branes’).

• TheN = 16 integral appears in very recent work developing a multi-instanton calculus
for theN = 4,D = 4SU(∞) conformal gauge theory [7], and again in the large-N limit
of Sp(N) andSO(N) N = 4 susy gauge theory [8].

• Finally, we can regard the integrals (1) as a version of the Eguchi–Kawai reduced gauge
theory. The original work [9] focused on a lattice formulation and employed unitary
matrices, while the above integrals use the Hermitian gauge connectionsXAµ . This is
similar to [10]; however, we apply neither gauge fixing nor quenching prescriptions to
the above integrals. The interesting question is whether the models (1) encode universal
information on the full gauge field theory asN →∞.

The integrals of equation (1) appear to be singular due to the ‘valleys’ of the action, i.e.
the directions in the configuration space of theXAµ where allD matrices commute. Recent
work has, however, proven this intuition to be wrong: Yang–Mills integralsdo exist in many
interesting cases.

2. Partition functions: convergence properties and some exact results

Indeed, the rigorous results of [5] (see also [6]) show that for the gauge groupSU(2) the susy
integrals converge in dimensionsD = 4, 6, 10. The calculations are easily repeated for the
bosonic case [11], and the convergence conditionD > 5 is found. Unfortunately, no rigorous
methods exist to date for higher-rank gauge groupsN > 3.

In [11–13] we developed methods to numerically test convergence of singular
multidimensional integrals. The idea is to perform a metropolis random walk weighted by the
integrand, and to merely measure the autocorrelation function of subsequent configurations.
In this approach, a unit autocorrelation function signals the presence of a non-integrable
singularity.

As an illustration, in figure 1 we plot the autocorrelation function of theSU(2) bosonic
integrals.

We are clearly able to reproduce the convergence conditionD > 5. ForD = 5 the
configurations decorrelate well and the whole integration space is properly sampled. (One
observes increasingly improved decorrelation forD = 6, 7, . . . , not shown in figure 1.) In
contrast, forD = 3 the system quickly becomes trapped in a singular configuration: the
Markov chain gets lost in a valley, and the integral is divergent.D = 4 shows marginal
divergence, which agrees with the exact analytical results.

Applying the same method to higher-rank bosonic models, and to the supersymmetric
models, we are able to map out the convergence conditions for the Yang–Mills integrals.
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Figure 1. Autocorrelation functions versus Monte Carlo time for theSU(2) bosonic integral with,
from the left,D = 3, 4, 5.

They read

D = 4, 6, 10 and N > 2
}

for N > 0

D = 3 and N > 4

D = 4 and N > 3

D > 5 and N > 2

 for N = 0. (3)

In particular, theD = 3 susy integral is divergent (see [11–13] for a more detailed discussion
of this point).

It would be nice to have a rigorous mathematical proof of the conditions (3). Some
understanding may be gained by considering one-loop perturbative estimates of the integrals
equation (1). For the supersymmetric case one has [14]

ZND,N ∼
∫ N,D∏

i,µ

dxiµ

[∏
µ

δ

(∑
i

xiµ

)] ∑
G: maximal tree

∏
(ij): link of G

1

(xi − xj )3(D−2)
+ · · · (4)

wherexiµ are the diagonal components of the matricesXAµ , while it is found in [15] that the
bosonic integrals are approximated by

ZN=0
D,N ∼

∫ N,D∏
i,µ

dxiµ

[∏
µ

δ
(∑

i

xiµ
)]∏

i<j

1

(xi − xj )2(D−2)
. (5)

Power-counting for large separations(xi − xj )2 yields precisely equation (3). However, it
should be stressed that this does not prove the convergence conditions, since one has to worry
about configurations where some separations are small, so that the one-loop approximation
becomes invalid.

In the supersymmetric case the value for the integrals is believed to be known:

ZND,N =
2

1
2 (N(N+1))π

1
2 (N−1)

2
√
N
∏N−1
i=1 i!


1/N2 D = 4, N = 4

1/N2 D = 6, N = 8∑
m|N(1/m

2) D = 10, N = 16.

(6)

The N = 16 expression was conjectured by Green and Gutperle [16], based on a
calculation of theD-instanton effective action of the superstring. A derivation of the terms to
the right of the curly bracket in equation (6), based on cohomological deformation techniques,
was given in [17]. This calculation still has an important loophole (see comments in [13]).
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However, the formula (6) was checked numerically by Monte Carlo techniques in [11, 12] up
toN ∼ 5.

For the bosonic case no exact value of the partition function is known except forSU(2)
[11], where the result reads

ZD,2 = 2−
3
4D−10(

1
4D)0(

1
4(D − 2))0( 1

4(D − 4))

0( 1
2D)0(

1
2(D − 1))0( 1

2(D − 2))
for D > 5. (7)

It would be exciting to find the generalization of this result to higher-rank gauge groups—
this is after all the ‘zero-mode’ contribution to the Yang–Mills partition function on aD-
dimensional torus.

3. Eigenvalue densities: asymptotics and the exactSU (2) densities

Let us shift attention from the partition functions to the correlation functions of the models.
The simplest correlators areSU(N)-invariant one-matrix correlators: the moments〈TrXkD〉
of one matrix, say theDth: XD. These are directly related to the distribution of eigenvalues
of the matrix: if the eigenvalues ofXD areλ1, . . . , λN , the eigenvalue density is defined for
all N as

ρ(λ) =
〈

1

N

N∑
i=1

δ(λ− λi)
〉
. (8)

The non-zero moments ofρ(λ) are then given by〈
1

N
TrX2k

D

〉
=
∫ ∞
−∞

dλ ρ(λ) λ2k. (9)

In an ordinary Wigner-type matrix model all moments exist. Yang–Mills integrals are more
intricate. Analytical calculations have only been performed forSU(2), and we found the
following surprising results. In theD = 4 susy integral all moments are infinite, even though
the integral itself exists, as argued above. In theD = 6 susy integral the first two moments
are finite and one finds

〈TrX2
D〉D=6 = 1

2

√
2

π
〈TrX4

D〉D=6 = 25
64 (10)

while all higher moments diverge. For theD = 10 susy integral we have exactly 12 finite
moments which are

〈TrX2
D〉D=10 = 8

25

√
2

π
〈TrX4

D〉D=10 = 9

80

〈TrX6
D〉D=10 = 3

32

√
2

π
〈TrX8

D〉D=10 = 297

4096

〈TrX10
D 〉D=10 = 1089

8192

√
2

π
〈TrX12

D 〉D=10 = 184 041

655 360
.

(11)

It would be interesting to find a geometrical or combinatorial interpretation for these numbers.
Which densities give rise to this convergence behaviour? ForSU(2) we can go further and



Yang–Mills integrals 1175

find the exact densities:

ρSUSY
D=4 (λ) =

3× 25/4

√
π

λ2U( 5
4,

1
2, 8λ

4)

ρSUSY
D=6 (λ) =

105

23/4
√
π
λ2
[
U( 9

4,
1
2, 8λ

4)− 33
16U(

13
4 ,

1
2, 8λ

4)
]

ρSUSY
D=10(λ) =

1287

64× 23/4
√
π
λ2

[
546U( 17

4 ,
1
2, 8λ

4)− 147
17× 19

8
U( 21

4 ,
1
2, 8λ

4)

+45
17× 19× 21× 23

256
U( 25

4 ,
1
2, 8λ

4)

−17× 19× 21× 23× 25× 27

2048
U( 29

4 ,
1
2, 8λ

4)

]
(12)

whereU is the KummerU function defined as

U(a, b, z) = 1

0(a)

∫ ∞
0

dt ta−1 (1 + t)b−a−1 e−zt . (13)

Now we see that the above finiteness properties of the moments result from a rather curious
power-like behaviour of the densities at large values ofλ. We have forλ→∞

ρSUSY
D (λ) ∼


λ−3 D = 4

λ−7 D = 6

λ−15 D = 10.

(14)

This power-like behaviour is very different from Wigner-type systems where the fall-off at
infinity is at least exponential. For theD-dimensional bosonic models the density can be
worked out as well, albeit less explicitly than in equations (12), and one finds the asymptotic
behaviourρD(λ) ∼ λ3−D.

Moving on to higher values ofN , we are unable to calculate analytically the eigenvalue
densities with presently known techniques. We can, however, find numerically exact densities
using Monte Carlo methods. In figure 2 we illustrate this by plotting theN = 2, 3, 4,D = 4
susy half-densities (we only plot theλ > 0 part since the densities are symmetric functions).
In theSU(2) case the exact expression of equation (12) and the Monte Carlo data cannot be
separated on the scale of the figure.

Now we would like to know how theSU(2) result (14) generalizes to other values of
N . It is impossible to extract the asymptotics from histograms such as figure 2, since the
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Figure 2. Eigenvalue (half-)densities for susyD = 4, from the left,N = 2, 3, 4
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tails comprise only a small number of samples. Instead, we can go back to the Markov-chain
technique of the last section and measure the finiteness of the moments equation (9) for various
values ofN . We find that for the susy integrals the qualitative behaviour of theSU(2) case
persists. In theD = 4, 6, 10 integrals only the first, respectively, zero, two, 12 moments are
finite. We thus conclude, in view of equation (9), that the asymptotic behaviourequation (14)
is valid for allN . This is very different from Wigner-type random matrix models, where asN

increases, the density condenses onto a compact interval. At the sharply defined (atN = ∞)
edge of the interval Wigner distributions show universal behaviour. We have argued that in
susy Yang–Mills matrix models no such edge exists, indicating thatthe large-N physics of
these models is indeed very different.

Furthermore, let us compare supersymmetric and non-supersymmetric Yang–Mills
integrals. How does the asymptotic behaviour of the density equation (14) change in the
absence of susy? We have already mentioned above that forSU(2) this behaviour is power-like
as well. Actually, we can guess a general formula by looking once again at the effective one-
loop estimate of equation (5). For one-matrix correlators the most dangerous configuration
stems from pulling away one coordinatexiD from a bulk configuration of all otherD − 1
coordinates. Power-counting leads to the guess

ρD(λ) ∼ λ−2N(D−2)+3D−5 where N >
D

D − 2
. (15)

The same procedure applied to the susy estimate equation (4) reproduces equation (14). We
then verified the validity of equation (15) by the same Monte Carlo random walk procedure
as above, measuring the finiteness of moments. We thus notice a marked difference with the
susy situation: in the bosonic caseall moments existasN →∞ for all D > 3. In particular,
we expect the eigenvalue distribution to condense onto a compact support, much the same as
for Wigner-type models.

4. Wilson loops: preliminary results

A further natural set of correlation functions of Yang–Mills matrix integrals are Wilson loops.
Due to the Eguchi–Kawai mechanism [9, 10], onenaively expects them to correspond at
N = ∞ to Wilson loops in the unreduced gauge field theory. In the proposal of [4] for a
non-perturbative definition of the IIB superstring, they have been interpreted as string creation
operators [18].

Despite the dimensional reduction of the field theory to zero dimensions we are still able
to define an infinite set of independent Wilson loops dependent on an arbitrary contourC in
D-dimensional Euclidean space:

W(C) =
〈

1

N
P Tr ei

∮
C dyµ Xµ

〉
. (16)

Due to the non-commutative nature of the connectionsXµ and the path-orderingP, this is a
non-trivial functional of the contourC, despite the fact that theXµ are spatially constant. In the
special case of a rectangular contour with lengthsL andT in the(y1, yD)-plane this simplifies
to

W(L, T ) =
〈

1

N
Tr eiLX1eiTXDe−iLX1e−iTXD

〉
. (17)

We would like to understand how the loopsW behave as a function ofN and as a functional
of the shape of the contours, in particular, whether planar loops satisfy an area law. We would
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Figure 3. D = 4 susy Wilson loops: (a) square of side lengthL with N = 2, 4, 8 (top to bottom);
(b) square, regular 16-gon and 64-gon enclosed in circle of radiusR with N = 4.

also like to see whether there are any telltale differences between the supersymmetric and the
bosonic loops.

In the previous sections we have shown how a number of exact results may be derived
for the simplest gauge groupSU(2). We have not been able to calculate analytically a Wilson
loop for an Yang–Mills integral even forSU(2). On the other hand, it is possible to obtain
high-precision numerical results for low values ofN . In figure 3(a) we plot the Wilson loop
for a square (L = T ) in the case of susyD = 4 as a function ofL for various values ofN .

The behaviour for small area is easy to understand. Indeed, for an arbitrary planar loop
enclosing a small area of sizeA, it is straightforward to show, using Stokes’ theorem, that
W(C) = 1 + 1

2NA
2〈Tr[X1, X2]2〉 +O(X6). This immediately gives

W(C) =


1− 1

4N

N2 − 1

D − 1
A2 + · · · N = 0

1− 1

2N

N2 − 1

D
A2 + · · · N > 0

(18)

which agrees to high precision with the numerical data. A very curious feature of figure 3(a)
is that the loops tend to a constant for large area. The existence of this constant can be
demonstrated analytically. It should be considered a finite-N artefact for the following reasons.
(a) The constant decreases withN , as seen in figure 3(a). (b) The constant depends in various
ways on the shape of the contour. We checked that by distorting the rectangle to a slightly
irregular quadrangle the constant drops to zero for allN as the size increases. In figure 3(b) we
show various regular polygons approximating a circle of radiusR: as we increase the number
of edges the constant goes to zero for largeR.

It is clear from the mentioned features of the Wilson loops that there isn’t an area law for
very small or very large areas. An intermediate region in which an area law holds might still
be present. We checked, by going to rather largerN , that this is not the case for the bosonic
models. There has been an interesting suggestion [19] that such an intermediate region may
exist for theD = 4 supersymmetric model.

5. Conclusions and outlook

We have shown how numerical Markov chain methods can be used to verifynon-perturbative
convergence conditions for Yang–Mills integrals with and without supersymmetry. The same
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methods may be applied to establish the convergence properties of correlation functions.
Applying the technique to invariant correlators of a single matrix, we are able to accurately
predict the asymptotic behaviour of the eigenvalue density of Yang–Mills matrix models.
The results demonstrate an unusual power-law behaviour which, in the supersymmetric cases,
persists for largeN . This indicates that the large-N limit of these ‘new’ matrix models
might indeed be very different from that of the ‘old’ Wigner-type models. We have also
demonstrated that Monte Carlo methods are capable of computing rather accurately various
quantities relevant to these models such as partition functions, correlation functions, spectral
distributions and Wilson loops. As opposed to Yang–Mills quantum mechanics [1–3] we are
confronted with a system which allows some non-perturbative analysis, at least for finiteN .

Yang–Mills integrals are thus an ideal laboratory for exploring new large-N techniques.
Powerful analytical methods will have to be developed if we are to verify or, maybe more
importantly, if we are to bring to good use the ideas presented in [1, 3, 4].
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