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Abstract

We present theories of N = 2 hypermultiplets in four space-time dimensions that are invariant
under rigid or local superconformal symmetries. The target spaces of theories with rigid
superconformal invariance are (4n)-dimensional special hyper-Kahler manifolds. Such manifolds
can be described as cones over tri-Sasakian metrics which itself are Sp(1) fibrations over
quaternionic manifolds. The latter manifolds appear in the coupling of hypermultiplets to N =2
supergravity. We employ local sections of an Sp(n) X Sp(1) bundle in the formulation of the
Lagrangian and transformation rules, thus allowing for arbitrary coordinatizations of the hyper-
Kahler and quaternionic manifolds. © 2000 Elsevier Science B.V. All rights reserved.

PACS. 04.65.+¢; 11.30.Pb
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1. Introduction

It is well known that in theories with rigid N = 2 supersymmetry the hypermultiplet
action takes the form of a supersymmetric sigma model with scalars that parametrize a
hyper-Kahler manifold [1]. In the case of local supersymmetry the scalar fields
parametrize a quaternionic manifold of negative curvature [2]. In this paper we study
actions for hypermultiplets invariant under rigid or local N = 2 superconformal symme-
tries. This study is both motivated by recent interest in superconformal theories [3] and
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by efforts to find alternative and hopefully more convenient formulations of the
hypermultiplet actions. The N = 2 superconformal algebra in four dimensions contains
the bosonic subalgebra associated with SO(4,2) X SU(2) X U(1), together with 8 real
supersymmetry and 8 real ‘special’ supersymmetry transformations, called Q- and
Ssupersymmetry, respectively. Requiring that the action is invariant under rigid super-
conformal transformations leads to extra constraints on the target-space geometry [4].
For instance, these manifolds admit a so-called hyper-Kahler potential whose derivative
defines a conformal homothetic Killing vector and the three complex structures rotate
under the action of the SU(2) group, which must be contained as a factor in the isometry
group of the manifold. Spaces that satisfy these constraints will be called special
hyper-Kahler manifolds'. By using the superconformal multiplet calculus [5,6] one can
then obtain corresponding quaternionic sigma models coupled to N = 2 supergravity.
Because of the gauge degrees of freedom associated with the dilatations and the SU(2)
transformations, a (4n)-dimensional special hyper-Kahler manifold leads to a (4n — 4)-
dimensional quaternionic manifold. At the time this construction was applied to only flat
hyper-Kahler spaces or hyper-Kéhler quotients thereof. The coupling to supergravity
then leads to a quaternionic projective space and its quaternionic hyper-Kahler quotients
[6]. But it has been known for some time that there exist quaternionic spaces that can
couple to supergravity which are not in this class but can be described in the context of
the formalism of [2]. Some of them have also been obtained explicitly in the context of
harmonic superspace [7]. Therefore it is imperative to apply the superconformal ap-
proach to more general special hyper-Kahler sigma models. This application is the main
topic of our paper, where, in order to avoid introducing an infinite number of fields, we
will no longer insist on off-shell supersymmetry for the hypermultiplets.

Already quite some time ago the very same option was discussed by Galicki [8].
Rather than starting from the superconformally invariant hypermultiplets, he described
the geometry of these more general hyper-Kahler spaces using a result of Swann [9],
who has proven that any quaternionic manifold has a corresponding special hyper-Kahler
manifold which admits a quaternionically extended homothety and which has three
complex structures that rotate under an isometric SU(2) action. And indeed, the
hyper-Kahler manifolds that he discusses have many properties in common with the
hypermultiplet actions discussed in [4]. Moreover it is known that a special hyper-Kahler
manifold is a cone over a so-called tri-Sasakian manifold, so that there exists a beautiful
relation between quaternionic manifolds, tri-Sasakian manifolds and specia hyper-Kahler
manifolds (for a recent review, see Ref. [10]). The tri-Sasakian manifolds have also
appeared recently in the context of supergravity compactifications and the ADS/CFT
correspondence [11].

In this paper we follow the original superconformal approach and start with the
(4n)-dimensional special hyper-Kahler manifolds as they were formulated in [4]. We
establish that these spaces are indeed cones over (4n— 1)-dimensional tri-Sasakian
spaces (this feature was also discussed in [12]). The special hyper-Kahler manifolds have

! Note that hyper-Kahler manifolds that are in the image of the c-map are sometimes called special, because
of the underlying special geometry features. We stress that the usage of the term special hyper-Kahler in this
paper has no relationship to special geometry.
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only arestricted holonomy group contained in Sp(n — 1); locally they are a product of a
flat four-dimensional space and a (4n — 4)-dimensional quaternionic space. After gaug-
ing away the degrees of freedom associated with the dilatations and the SU(2)
transformations, the quaternionic space remains when coupling to supergravity. We
present the full Lagrangian and transformation rules for the supersymmetric non-linear
sigma models based on specia hyper-Kéhler spaces, including the option of gauged
isometries. Furthermore we construct local Sp(n) X Sp(1) sections of the so-called
associated quaternionic bundle which is known to exist for any special hyper-Kahler
manifold [9]. It turns out that the use of these sections greatly simplifies the formulation
of the transformation rules and the Lagrangian. In this way our genera results remain
closely in line with the results of Ref. [6]; the formulae are identical up to modifications
by connections and covariant tensors. When the sections are trivial, so that the
connections can be put to zero and the tensors become constant, they can be identified
with the hypermultiplet scalar fields and one directly recovers the results of Ref. [6].
Guided by supersymmetry we thus make contact with the mathematical results quoted
above and we construct the general action and transformation rules in a new form.

The last topic is to couple these supersymmetric non-linear sigma models to
supergravity, using the conformal multiplet calculus. In addition to presenting the
corresponding field theory, we exhibit how the quaternionic manifold emerges in the
coupling. This manifold can now be encoded in terms of Sp(n) X Sp(1) sections that are
projective with respect to quaternionic multiplication.

Our results could facilitate the study of type-I1 string compactifications on Calabi—Y au
three-folds. These lead to four-dimensional models with both vector multiplets and
hypermultiplets. While the moduli space of the vector multiplet scalars is described in
terms of a special Kahler geometry and is well understood, much less is known about
the full quaternionic hypermultiplet moduli space. It is known that at string tree level the
quaternionic manifolds are obtained from a special Kahler manifold via the c-map [13].
One would like to understand what the corrections are to the classical hypermultiplet
moduli space coming from both string perturbation theory and non-perturbative effects
[14-17]. With rigid conformal symmetry, the results of this paper could aso be helpful
in the description of cone branes [11].

This paper is organized as follows. In Section 2 we briefly summarize some essential
features of hypermultiplet Lagrangians with gauged target-space isometries. For hyper-
multiplets there exists no unconstrained off-shell formulation in terms of a finite number
of degrees of freedom, hence the supersymmetry algebra will only be realized up to the
field equations of the hypermultiplet fermions. This is in contrast with the vector
multiplets, introduced to gauge the isometries, and the superconformal theory itself, for
which off-shell formulations exist. As a result of the latter, the algebra of gauged
isometries and of the superconformal transformations, including certain field-dependent
structure constants, is completely fixed and not affected by the presence of hypermuilti-
plets. Section 3 deals with rigidly superconformal hypermultiplets, where we find the
constraints on the hyper-Kahler manifold imposed by superconformal invariance. Sub-
section 3.1 defines the superconformal transformation rules, the second one deals with
the hyper-Kahler potential and the construction of local Sp(n) X Sp(1) sections, and the
third one gives the Lagrangian and the transformation rules. The geometry of special
hyper-Kéhler manifolds is explained in Section 4. We first discuss the cone structure of



478 B. de Wit et al. / Nuclear Physics B 568 [PM] (2000) 475-502

these hyper-Kahler manifolds which lead to a tri-Sasakian space. The latter is indeed an
Sp(1) fibration over a smaller space, which we prove to be quaternionic. This quater-
nionic space couples to supergravity, as we then show in Section 5. Here we present the
action for the hypermultiplets associated with a special hyper-Kahler target space
coupled to conformal supergravity and exhibit how the target-space metric becomes
guaternionic.

2. Preliminaries

In this section we summarize hypermultiplet Lagrangians in flat space-time. As is
well known, these constitute N = 2 supersymmetric non-linear sigma models with a
hyper-Kahler target space [2]. The holonomy group is contained in Sp(n) and it is this
group that is relevant for the hypermultiplet fermions. In Subsection 2.1 we discuss the
supersymmetry transformations, the Lagrangian and the target-space geometry. In
Subsection 2.2 we present possible extensions related to gauged target-space isometries,
which will involve couplings to vector multiplets associated with the gauge algebra.

2.1. Hypermultiplet non-linear sigma models

We will base ourselves on the formulation of hypermultiplet Lagrangians of [18].
With respect to the results of [2] this formulation differs in that it incorporates both a
metric g,p for the hyper-Kahler target space and a metric G, for the fermions. Here
we assume that the n hypermultiplets are described by 4n red scalars ¢*, 2n
positive-chirality spinors £® and 2n negative-chirality spinors ¢ ®. Hence target-space
indices A,B,... takevalues1,2,...,4n, and theindices a,8,... and @,, ... runfrom
1to 2n. The chiral and antichiral spinors are related by complex conjugation (so that we
have 2n Majorana spinors) under which indices are converted according to a < @,
while SU(2) indices i,j,... = 1,2 are raised and lowered. An explicit fermionic metric
G;p can be avoided as it can always be converted to a constant diagonal matrix by a
similarity transformation. But retaining a fermionic metric is, for example, important in
obtaining transparent transformation rules under symplectic transformations induced by
the so-called c-map from the electric-magnetic duality transformations on a correspond-
ing theory of vector multiplets. In formulations based on N = 1 superfields (such as in
[19]) one naturally has a fermionic metric but of a special form.

The Lagrangian and transformation rules are subject to a number of equivalence
transformations, two of which are associated with the target space. One set consists of
the target-space diffeomorphisms ¢ — ¢'($). The other refers to reparametrizations of
the fermion ‘frame’ of the form ¢ — S*,(¢) ¢*, and corresponding redefinitions of
other quantities carrying indices « or a. For example, the fermionic metric transforms
as Gy~ [S ' ;[S '’ ; Gy,. There are connections, I, “ ;, associated with these
fermionic redefinitions, which appear in the Lagrangian and supersymmetry transforma
tion rules. Finaly, there are chira SU(2) = Sp(1) redefinitions of the supercharges,
which in the rigidly supersymmetric case must be constant and are therefore trivia. In
the locally supersymmetric case this will be different and in the latter part of this paper
we will have to deal with local SU(2).
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The supersymmetry transformations are parametrized in terms of certain ¢-dependent
quantities y# and V, according to

b =2(yAErT+3M &),
8ol =V dple' — dqp T, * 5 (P,

8ol =Va" I e — b I, “5 (P (2)
In principle y # and V, each denote (4n) X (4n) complex quantities, but as we shall see
below, these quantities are related and satisfy a pseudoreality condition. As it turns out
they will play the role of the quaternionic (inverse) vielbeine of the target space.
Observe that the supersymmetry variations are consistent with a U(1) chiral invariance
under which the scalars remain invariant, while the fermion fields and the supersymme-
try transformation parameters transform nontrivially. This group will be denoted by
U(D), to indicate that it is a subgroup of the automorphism group of the supersymmetry
algebra. In Section 3 we will see that this U(1) will correspond to one of the conformal
gauge transformations. However, for generic y# and V,, the SU(2); = Sp(1) part of the
automorphism group cannot be realized consistently on the fields. This would require
the presence of an SU(2) isometry in the target space. In the above, we merely used that
% and £* are related by complex conjugation.

The Lagrangian takes the following form:

=Y

1
L= = = G b0 — G (LD + LD ) = Wy T, £ D1
(2.2)
where we employed the covariant derivatives
DM§“=8M§“+8M¢AFA“,3§’3, DM§a=8M§E+8M¢AI_“AEE§E. (2.3

Besides the Riemann curvature R,gcp we will be dealing with another curvature
Rag “ associated with the connections I, “z, which takes its values in sp(n) =
usp(2n;C). The tensor W is defined by

W,

Gy = RAB 7 Yia 75“3 G5 = 5 Rasco Vig 7/3“3 ’}’j% 73“3 ) (2-4)

2

and will be discussed shortly in more detail.

The target-space metric g,, the tensors y A, V, and the fermionic hermitian metric
Gy (e saisfying (G;5)" =Gg,) are al covariantly constant with respect to the
Christoffel connection and the connections I, “ ;. Furthermore we note the following
relations:

VT 3 Ve =) 82
Jas Yi%:Gaﬁ VABi ) \_/Aia Yj%z aji 5&{_3_ (25)
From them one derives a number of useful relations, such as

Vo Vi = Yoiz VAT= = Vo Vi + 8 Upg - (2.6)
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The following three hilinears define antisymmetric covariantly constant target-space
tensors:

JAJB = Yaka “f'k(i\7|3j)a ) (2.7)
that span the complex structures of the hyper-Kahler target space. They satisfy
(‘]iJ)AB = (‘JA]B) = k8 s I I%= Egl(kgl)J Oap + &Y.
(2.8)

In addition we note the following useful identities:

. o1 _ . o
Yaiz Va* = Sik‘]Kl]a + EgAB 8!, NS %—?k == 5|£|‘9 D Yalz - (2.9)
We also note the existence of covariantly constant antisymmetric tensors,

1 —_- 1 -
Qaﬁ=§8” gABYié?’j%v Qaﬁzzé‘ij R AVALRVIL (2.10)
satisfying (2, 27 = —§_ P. Their complex conjugates satisfy

Q5= (25) =G, 07G;,. (2.11)
The tensor (2 can be used to define a reality condition on V and vy,

&ij g \_/AJ;EZQAB 7i%=G‘B Ve (212)

(43

This equation leads to

OB/ VBBj = &jj 0F, Oag Yin 'YjBEz &ij a5 - (213)
Another convenient identity is given by

_ __ 1 y

T BJB=§3|J Jag — Jab- (2.14)

The existence of the covariantly constant tensors implies a variety of integrability
conditions which have a number of consequences for the various curvature tensors
[2,18]. First of all the covariant constancy of y # implies

Ragco s’aCi 5’3Dj =g ﬁa‘y Ras yB . (2.15)
Observe that the right-hand side is manifestly antisymmetric in [ij] and symmetric in

(aB). This implies that the Riemann tensor can be written with tangent-space indices
according to

. 1
Rasco %" E’BBJ %Ck P = 53” gk W, sys » (2.16)
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where, as aresult of the cyclicity property of the Riemann tensor, W, ;. 5 is symmetric in
all four indices. This tensor is linearly related to the tensor (2.4) upon multiplication
with the tensors G and (2. In terms of W, the curvatures read

1
Rasco = 58” g Vai VBBJ A\ Vgl \Naﬁva )

— 1
D, Ragp= _EEIJ A VB‘?J- W, 5y - (2.17)

The above results are al derived from the requirement of supersymmetry. To
characterize the geometry of the target space, one could start from the non-singular \_/Aia
and a non-singular skew-symmetric tensor (2.5 that is covariantly constant with respect
to a symplectic connection I, ag. Subsequently one notes that &;; (2;5 VJ# and the
inverse of V,, denoted by y2, are linearly related by a symmetric matrix gug.
Requiring that this matrix is real we can identify it with the target-space metric while the
ensuing reality constraint on the V, enables their identification as the corresponding
quaternionic vielbeine. This information is sufficient for deriving al the agebraic
identities listed above. The vielbeine and the symplectic connection then allow the
definition of an affine target-space connection, with respect to which the vielbeine are
covariantly constant thus leading to a generalized vielbein postulate. All of above results
then follow upon assuming that the target space has no torsion so that the affine
connection and the Christoffel connection coincide.

2.2. Gauged target-space isometries

The equivalence transformations of the fermions and the target-space diffeomor-
phisms do not constitute invariances of the theory. Thisis only the case when the metric
gag and the Sp(n) X Sp(1) one-form V;* (and thus the related geometric quantities) are
left invariant under (a subset of) them. Therefore these are related to isometries of the
hyper-Kahler space. We can then elevate such invariances to a group of loca (i.e.
space-time-dependent) transformations, by introducing the required gauge fields in the
form of vector multiplets. Such gauged isometries have been studied earlier in the
literature [7,19-22] and the purpose of our discussion here is to incorporate them into
the formulation used in this paper.

We consider scalar fields transforming under a certain isometry (sub)group G
characterized by a number of Killing vectors k/*(¢), with parameters 6'. Hence under
infinitesimal transformations,

Ss" =090k (¢), (2.18)
where g is the coupling constant and the k/*(¢) satisfy the Killing equation,
DuKg + Dgk ,=0. (2.19)

The isometries congtitute an algebra with structure constants f,, ¥,

kBgk 2 — kBagkA = —f,, K KA. (2.20)
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Our definitions are such that the gauge fields that are needed once the 6' become
space-time dependent, transform according to 6;W, = 9,0' — df ' W 6. TheKilling
equation generally implies the following property:

DaDg k|c = Racae kIE' (2-21)

Quantities that carry Sp(n) indices, such as V)i, are only required to be invariant
under isometries up to fermionic equivalence transformations. Thus —g(k? Ve +
auk? Vgi) must be cancelled by a suitable infinitesimal rotation on the index «. Here we
assume that the effect of the diffeomorphism is entirely compensated by a rotation that
affects the indices «. In principle, one can also alow for a compensating Sp(1)
transformation acting on the indices i, |, . ... However, the latter transformations must be
constant, so they will generically not appear here. Thisis equivalent to requiring that the
isometry group will commute with supersymmetry.

Let us parametrize the compensating transformation acting on the Sp(n) indices by
8c{“=glt, =k I,]* 5 £#, where the (¢-dependent) matrices t,(¢) remain to be
determined,

—kP Vi — ok Vi + (4, — kP Iy) g VE =0. (2.22)

Obviously similar equations apply to the other geometric quantities, but as those are not
independent we do not need to consider them. Using the covariant constancy of V,, we
derive from (2.22),

(tl)aBVAﬁi = DAkIB O (2-23)
so that
@ 1 a — Bi A
(tl) B~ EVAi Vs Dgk™. (2-24)

Target-space scalars will satisfy algebraic identities, such as

(1) G+ ()75 Gy = (1) (2 25, = 0. (2.25)
This establishes that the field-dependent matrices t, take values in sp(n). From (2.19)
and (2.21), it easily follows that

Daty “5 = k& Rag “5 » (2.26)

for any infinitesimal isometry. From the group property of the isometries it follows that
the matrices t, satisfy the commutation relation

[t|’tJ]aB:f|JK(tK)aB+k|A k? RABaB’ (2-27)

which takes valuesin sp(n). The apparent lack of closure represented by the presence of
the curvature term is related to the fact that the coordinates ¢” on which the matrices
depend, transform under the action of the group. One can show that this result is
consistent with the Jacobi identity.

Furthermore we derive from (2.22) that the complex structures J\5 are invariant
under the isometries,

K0 Ak — 20, pkF gl = 0. (2.28)
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This means that the isometries are tri-holomorphic. From (2.28) one shows that
I(Jgk k) — d( AL k) = 0, so that, locally, one can associate three Killing potentials
(or moment maps) P! to every Killing vector, according to

WP =Jab kP (2.29)

Observe that this condition determines the moment maps up to a constant. Up to
constants one can also derive the equivariance condition,

ik kPKkS = —f,, K PY, (2.30)
which implies that the moment maps transform covariantly under the isometries,
P =07k} Pl =—f, KXPJ . (2.31)
Summarizing, the invariance group of the isometries acts as follows:
Ssp=96'k", Segazg(eltl)aﬁgﬁ_sc;‘ﬁAFAaﬁgﬁ- (2.32)

When the parameters of these isometries become space-time dependent we introduce
corresponding gauge fields and fully covariant derivatives,

Z,0%=9,¢%—gW, kf, D=9+ 9" T g {P —gW, “ P,
(2.33)
where W, “ , =W/ (t,)*,. The covariance of &, depends crucially on (2.26) and
(2.27); after some calculation one finds
82,0°=09(0',) s 2, 0P — 860 p “ 5 D, (" (2.34)
The gauge fields W, are accompanied by complex scalars X', spinors (2 and auxiliary
fields Y;!, constituting off-shell N =2 vector multiplets. For our notation of vector

ijs
multi plet]s, the reader may consult [18].

The minimal coupling to the gauge fields requires extra terms in the supersymmetry
transformation rules for the hypermultiplet spinors as well as in the Lagrangian, in order
to regain N = 2 supersymmetry. The extra terms in the transformation rules are

Sol =20X'k Ve elle, 8,07 =20X'k VT &€ (2.35)
These terms can be conveniently derived by imposing the commutator of two supersym-
metry transformations on the scalars, as this commutator should yield the correct
field-dependent gauge transformation.

We distinguish three additional couplings to the Lagrangian. The first one is
quadratic in the hypermultiplet spinors and reads

ZO =gX 'y &% Dgkay {P +he.=29X'tY, Oy, [CP+he.  (2.36)
The second one is proportional to the vector multiplet spinor 2' and takes the form

ZP = 20k Ve, (P2 +he. =20k a8 (2 + hee. (2.37)
Finally there is a potential given by

FEAE = —29%kAKE gag X' X+ P Y, (2.38)
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where P/l is the triplet of moment maps on the hyper-Kahler space. These terms were
determined both from imposing the supersymmetry algebra and from the invariance of
the action. To prove (2.38), one has to make use of the equivariance condition (2.30).
Actually, gauge invariance, which is prerequisite to supersymmetry, aready depends on
(2.3D).

3. Rigidly superconformal hyper multiplets

In this section we determine the restrictions on the hyper-Kahler geometry that follow
from imposing invariance under rigid superconformal transformations. As we aready
mentioned in Section 1, the corresponding spaces, called special hyper-Kahler mani-
folds, have an intriguing geometrical structure. In Section 5 we will obtain the coupling
of hypermultiplets to conformal supergravity. A crucial element in the construction of
this coupling is that the full superconformal theory is known in an off-shell form, so that
the superconformal algebra remains unaffected in the presence of matter fields. Our goal
is more modest in this section where we only consider rigid superconformal transforma-
tions. This aspect does not play a role for the derivation of the superconformal
transformations on the hypermultiplets and the results of this section describe the
situation that would arise when freezing all the fields of conformal supergravity to zero
in a flat space-time metric. In that case the superconformal transformations acquire an
explicit but fixed dependence on the space-time coordinates parametrized by a finite
number of space-time-independent parameters (this is explained, for instance, in [23)).

In Subsection 3.1 we impose the superconformal algebra on the fields and find the
transformation rules as well as a number of important results for the complex structures
and the moment maps associated with possible isometries. In Subsection 3.2 we derive
the existence of a hyper-Kahler potential and reformulate the theory in terms of local
sections of an Sp(n) X Sp(1) bundle. Then, in Subsection 3.3 we present the Lagrangian
and the transformation rules in terms of these local sections.

3.1. Superconformal transformations

We start by implementing the N = 2 superconformal algebra [5] on the hypermulti-
plet fields. We assume that the scalars are invariant under special conformal and special
supersymmetry transformations, but they transform under Q-supersymmetry and under
the additional bosonic symmetries of the superconformal algebra, namely chiral [SU(2)
X U(D]; and dilatations denoted by D. At this point we do not assume that these
transformations are symmetries of the action and we simply parametrize them as
follows:

8" =05 k() + Ou) kS(l)(d)) + (OSU(Z))i k 3jkki?(¢) ' (3.1)

where the k* are left arbitrary. Note that k/}(¢) is assigned to the same symmetric
pseudoreal representation of SU(2) as the complex structures, while 6, ,, is antihermi-
tian and traceless.

An important difference with the situation described in Section 2, is that in the
conformal superalgebra the dilatations and chiral transformations do not appear in the
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commutator of two Q-supersymmetries, but in the commutator of a Q- and an
Ssupersymmetry. To evaluate the S-supersymmetry variation of the fermions, we
assume that §g¢* = 8, ¢ = 0 and covariantize the derivative in the fermionic transfor-
mations with respect to dilatations. Subsequently we impose the commutator,
[6x(Ay),85(e)] = — 84 €) on the spinors. This expresses the S-supersymmetry
variations in terms of kg,

55(”’7) {*=V ké”fli- 8s(m) éva=\_/Aiak|§”7i- (3-2)

With this result we first evaluate the commutator of an S and a Q-supersymmetry
transformation on the scalars. This yields

[63(7])!8Q(€)] "= (Ei”fli + Ei”’li) ko +23, g &t (Eim - Ej”fli) ko - (3:3)

This result can be confronted with the corresponding expression from the N =2
superconformal algebra, which reads

[85(),80(€)] = 81 (27 2% + h.c.) + 8p(Te' + h.c.) + dyq(iTe' +h.c.)
+ 33u<2>( — 21, —hc,; traceless) . (3.4)
Comparison thus shows that k{j,, vanishes and that the SU(2) vectors satisfy
kij=3; *skp. (3.5

Now we proceed to impose the same commutator on the fermions, where on the
right-hand side we find a Lorentz transformation, a U(1) transformation and a dilatation,
if and only if we assume the following condition on k2"

DAkE =58 (3.6)

The geometric significance of these results will be discussed in later subsections. Here
we note that (3.6) suffices to show that the kinetic term of the scalar fields is invariant
under dilatations, provided one includes a space-time metric or, in flat space-time,
includes corresponding scale transformations of the space-time coordinates. Neverthe-
less, observe that k7 is not a Killing vector of the hyper-Kahler space, although it still
satisfies (2.21), but an example of a conforma homothetic Killing vector. Another
consequence is that the SU(2) vectors k/}, as expressed by (3.5), are themselves Killing
vectors, because their derivative is proportional to the corresponding antisymmetric
complex structure

Dk = —JiL . (3.7)

From this it follows that the Kahler two-forms are exact, provided that the Killing
vectors are globally defined. The product rule of the SU(2) Killing vectors can now be
worked out and one finds

KBIT gy kAK — KB g kATl = 2 KAk gD (3.8)

which is indeed in accord with the SU(2) structure constants.
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From the [8g,8,] commutator we also establish the fermionic transformation rules
under the chiral transformations and the dilatations,

5SU(2) ga"' 8SU(2)<7»'>AFA aﬁ §B=0,
o A a B l a
Sy ¥+ 8y " In “p ("= — E' Oy {*

3
Bol+Bpd Ty L= 05" (3.9)

Note that the U(1) transformation further simplifies because 6,6 " = 0.

To establish that the model as a whole is now invariant under the superconformal
transformations it remains to be shown that the tensor V, is invariant under the
diffeomorphisms generated by k/j, k{,, and k2 up to compensating transformations
that act on the Sp(n) X Sp(1) indices in accordance with the transformations of the /
given above and the symmetry assignments of the supersymmetry parameters e'. To
emphasize the systematics we ignore the fact that k) ,, actually vanishes and we write

—ka JgVar — ke Vs — kg T aBVABi + [_a(jkgl)i] Vai =0,

1
— k51 06Val — kS Vi + | — ? 85 — kS Is © s | VA +

1

3
K 9aVis — KBV + | S5 KB Iy | VA +

2

1
- ail} Vg =0. (3.10)

In these equations the first two terms on the left-hand side represent the effect of the
isometry or dilatation, the third term represents a uniform scale and chiral U(1)
transformation on the indices associated with the Sp(n) tangent space, and the last terms
represent an SU(2), a U(1) and a scale transformation, respectively, on the indices
associated with Sp(1). Eq. (3.10) should be regarded as a direct extension of (2.22).

We close with a few comments. First of all, the SU(2) isometries induce a rotation on
the complex structures,

kEl de ‘]AijB - Za[AkI((:I Jéjic == 2JkIC[A Jliaj]c = 25((11 €hm JA)Bm ) (3-11)

as should be expected. Under dilatations, the Kahler two-forms J,; scale with weight
two, whereas the complex structures J*; are invariant.

Secondly, one can verify that the isometries introduced in Subsection 2.2 commute
with scale transformations, provided that

k*=kg Dgk. (3.12)
This leads to another identity,
gas KA KE=0. (3.13)

In particular these results hold for the SU(2) Killing vectors and imply, in addition, that
the latter commute with the tri-holomorphic isometries. To see this, one writes kf Dgk, ,

as kg DpdgPy;; using (35), (229) and the fact that the complex structures are
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covariantly constant. Interchanging the order of the derivatives and extracting the
complex structure then gives

kiEj’ Dgk* = JijAB kg, (3.14)
which implies that the tri-holomorphic Killing vectors commute with SU(2). From the

above equations one can derive the following result for the variation of the moment
maps under a dilatation:

ko P! =3 kS kP = —kJkPr=2PT, (3.15)
i.e. they scale with conformal weight 2. Here we have adjusted an integration constant in

P/} in the last equation. Combining the above equation with previous results, one
establishes that the moment maps transform under SU(2) according to

kg daP/1 = 28((k‘g|)m phm, (3.16)

The latter expresses the fact that the moment maps form a triplet under SU(2). It is then
easy to check that the action is invariant under dilatations, U(1) and SU(2).

3.2. Hyper-Kahler potential and Sp(n) x Sp(1) sections

The existence of the homothetic Killing vector satisfying (3.6) has important conse-
quences for the geometry. First of al (3.6) implies that k/ can (locally) be expressed in
terms of a potential y, according to ky , = d, x. Up to a suitable additive integration
constant, one can then show that [12]

1

x(¢) = EgAB ké kg- (3.17)
Observe that y is positive for a space of positive signature. A second (covariant)
derivative acting on y yields the metric, and therefore a third derivative vanishes,

DaDg X = 9as: DaDgDc x = 0. (3.18)
The first condition expresses the fact that the metric is the second (covariant) derivative
of some function, somewhat analogous to the Kahler potential in Kahler metrics, but
now written in real coordinates. A Kéhler potential is guaranteed to exist for any
hyper-Kahler space, but the potential y does not always exist. In the literature y is

sometimes called the hyper-Kahler potential (see, e.g., Refs. [8,9]). This means that x
serves as a Kéhler potential for each of the three complex structures, as follows from

1
E(SAC+JAAC)(SBD—JABD) DcDpx=Ji%, (3.19)

where J* = (0,0 ");; IV and A =1,23 is kept fixed.
The hyper-Kéhler potential y is invariant under isometries, as follows directly from
(3.13). In particular it is invariant under the SU(2) isometry; explicitly,

ox = (GSU(Z))I ké‘jk kﬁ g X = (GSU(Z))I ké‘jk Jij AB kgké =0, (3-20)
where we made use of (3.5). However, it is not invariant under dilatations,
Sx=kEdgx=2x. (3.21)
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Another interesting consequence of the homothety is that it enables areformulation in
terms of local sections of an Sp(n) X Sp(1) bundle. The existence of such a so-called
associated quaternionic bundle is known from general arguments [9]. These sections are
defined from the S-supersymmetry variation of the hypermultiplet spinors (c.f. (3.2)),

A () =kp(¢) Vsi( ). (322)
They satisfy a quaternionic pseudo-reality condition
AiaE(Aia)*zgijﬁal?GEy A7, (3.23)

as follows from (2.12). Using (3.6) one proves that the covariant derivative of A,
reproduces the quaternionic vielbeine,

Dg A = Vg, &ij {;5 Dg Ajgzgsc Y% - (3.24)

One easily verifies that the hyper-Kéhler potential y can be written as
1 1 1

X:EgAB kg‘kS:EGEa Ai“A'f*:Es'JQaB A AP, (3.25)
or

D AAP=5 x. (3.26)
We aso note the following identity:

JILC DAY= —8{eD Dg A “. (3.27)
Furthermore we have

Rag “s A P=Ru“5 02, A7=0, (3.28)

which is a consequence of D,Dg A, =0 and the symplectic nature of the curvature
Rag “ - This implies that the generic holonomy group is now reduced from Sp(n) to
Sp(n — 1). Also, using (3.5), (3.26) and (3.27), one finds

kKEDgA“=A*  kUBDgA “=8{cD A, (3.29)
s0 that

— u p 1

0,5 A “DgA =§8ukos+kijs- (3.30)

Applying a second derivative D, to the above relation gives
— 1
0.5 DAAiaDBAjB=E‘9ij 9ag — JijaB- (3.31)

Note that the quantities in (3.31) have weight 2 under the homothety. For future use we
also recall some earlier results, but now expressed in terms of the local sections,

9" DA “DgA P =g, Q°F,
g"B DA ¢ Dy AR =5 G,
Rag”o 2,5 Do A “Dp A P el =Rygep - (3.32)
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3.3. The hypermultiplet action and transformation rules

In this subsection, we write the hypermultiplet action and transformation rules in
terms of the sections A, “(¢) introduced in (3.22). The complete Lagrangian, including
the terms associated with gauged isometries, can be written as

1 o —_ — _
F= = =Gy T AP DT — Gy I7GP + P
1

- ZV\Laﬁw 557”5357,},,{6

+[20%7, 3, £4P +297°0,, 0%, A7+ o)

+29% G, AT XP X, Ai5+%gAi“§aﬁ YA, (3.33)
where the covariant derivatives are defined by
QMAi“=8”Ai”‘+6M¢AFA"B AiB—gV\{L“B AR,
D,L=9.0%+ 90" T g (P —gW, “ 4¢P, (3.34)
and we have used Lie-algebra valued vector multiplet fields associated with gauged

isometries, W, * 5, X*,, Y%, and ', (for the precise definition, see below), In
addition to the equation in Subsection 3.2 we made use of the identities,

k|AVADf = k|A DAAia:tlaB A £,

1 A 12 a B y
Plijz_EkAijkl :_Eﬂaﬁ A (t|) vAj : (3-35)
The first relation follows from (2.23) and (3.12), and for the second equation we made
use of the last equality in (3.15).

The action may be compared to the one in [6] (more precisely, to the part that
pertains to the rigidly supersymmetric Lagrangian). However, in that reference, the A, ©
are identical to the coordinate fields, whereas in the present more genera case they are
local sections as explained in Subsection 3.2. Because the target-space manifold is not
flat, we encounter a non-trivial metric in (3.33) as well as non-trivial Sp(n) connections
in the covariant derivatives (3.34). Furthermore, the generators t,(¢) associated with the
isometries are not constant, but depend on the scalar fields as we indicated before. This
means that the Lie-algebra valued vector multiplet fields associated with the gauged
isometries depend aso on the hypermultiplet scalars. Their definitions are

W, aﬁsz [tl(d’)]aﬁi
X e=X'"[t ()]s, Xp=X"[t,($)] 5,
Yt =Yt (6)] .

D=0 ()], 0= 0 [(8)] (3.36)
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Nevertheless, the correspondence with the formulation in [6] will be helpful later on
when evaluating the coupling to conformal supergravity.

In order to obtain the transformation rules of the Sp(n) X Sp(1) sections under
dilations, SU(2) and isometry transformations, we use the general relation

BA = 8B g A" = 8¢5 Vg — SBEIy “ AP (337)

Using (2.9), (2.23) and (3.12), we then find for a combined dilatation, chiral transforma-
tion and target-space isometry, that

SA =00 A+ (Osuz) | A 00" AP =8 T, “y AP (3:38)
This result should be combined with that for the fermions, derived in Section 2,
3 1
8" =2 0p " = Sy (790"t " g 0P = 8T,y L (339)

Similarly we determine the transformations under Q- and S-supersymmetry,
SAC=25("+2&,G Py €117 — 5,0y “ 5 AP,
SLU =GN € — 8,0 * 5 (P +2gX, A Pellg+A 7',

SLT=FN % — 0q¢ Ty "5 (P +29X7; AP g el + ATy, (3.40)

Again, we stress that, apart from the Sp(n) connection (and a slight change in
notation), these transformation rules are identical to the ones specified for a flat target
space [6], where the local sections can be identified directly with the target-space
coordinates.

Finally, we recal that it is straightforward to write down actions for the vector
multiplets that are invariant under rigid N = 2 superconformal transformations. Those
are based on a holomorphic function that is homogeneous of degree two [24].

4. Cone structure and quater nionic geometry

In this section we discuss the properties of the special hyper-Kahler space. We will
show how this space can be described as a cone over a tri-Sasakian manifold. The latter
spaces (which are of dimension 4n — 1) are characterized by the existence of three (1,1)
tensors and three Killing vectors that are subject to certain conditions. A manifold is
tri-Sasakian if and only if its cone is hyper-Kahler. Tri-Sasakian spaces are Einstein and
take the form of an Sp(1) fibration over a quaternionic space. This quaternionic space is
the one that appears in the coupling of hypermultiplets to supergravity (for more details,
see Ref. [10], where the relation between special hyper-Kahler, tri-Sasakian and quater-
nionic spaces is reviewed from a more mathematical viewpoint).

We start by noting that the Riemann tensor vanishes upon contraction with any one of

the four vectors (kj,k/}), i.e.

Rasce kg =0, Rasce kiEj =0. (4-1)

The first equation (4.1) is derived by antisymmetrizing the second equation (3.18) in the
indices [ AB]. The second (4.1) follows from inserting (3.7) into (2.21). Incidentally,
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(4.1) implies that the Ricci tensor has at least four null vectors. However, in the case at
hand this poses no extra restrictions as hyper-Kahler spaces are Ricci-flat. The above
results can also derived from the fact that the Sp(n) holonomy group is reduced to
Sp(n — 1), c.f. (3.28). This follows from applying (3.30).

We recall that these four vectors are orthogonal (cf. (3.5), (3.17)),

ki kpa=2x, ki KK =645/, x kS ki =0. (4.2)

This implies that the hyper-Kahler manifold is locally a product R* X Q*"~*, where R*
denotes a flat four-dimensional space. By decomposing R* as R* x S, we can write the
hyper-Kahler manifold as a cone over a so-called tri-Sasakian manifold; the latter is then
afibration of Sp(1) over Q*"~*. Hence the manifold can be written as> R* X [Sp(1) X
Q*"~ 4, Spaces with a homothety can always be described as a cone. This becomes
manifest when decomposing the coordinates ¢ * into coordinates tangential and orthog-
onal to the (4n — 1)-dimensiona hypersurface defined by setting y to a constant. The
line element can then be written in the form [12],
dy?
ds? = e + 2x h,p( X) dx? dx®, (4.3)

where the x® are the coordinates associated with the hypersurface®. In the present case
this hypersurface must be a tri-Sasakian space and the hyper-Kahler space is therefore a
cone over the tri-Sasakian space.

The purpose of the remainder of this section is to establish that Q%" * is a
quaternionic manifold. In Section 5 we show how Q*"~* arises in the coupling of
hypermultiplets to supergravity. The tangent space of the hyper-Kéahler space can be
decomposed into the four directions along (kj,k/}), and a (4n — 4)-dimensional space
Q*"~* that is locally orthogonal to that. Tensors that vanish upon contraction with
(k5.k{}) will be called horizontal.

Let us introduce a vector field 7, ;; which will serve as a connection for Sp(1) in a
way that will become clear shortly,

Kij a B
X
This vector field is invariant under target-space dilatations and gauge isometries, i.e.
dpZpij = kg O Z7pit NS 7811 =0,
867nij =K 071 + hkP 75, =0, (4.5)
and rotates under target-space SU(2), as follows from

8731 =kBK 9,730 + 9, kBY 731 = 21k 70D, (4.6)

2 strictly speaking it is Sp(1)/Z, where Sp(1) is the group that acts on the quaternionic vielbeine and on
the sections introduced in the previous chapter.
% In terms of a radial variable r2 = 2 x, this yields the usual form of a cone metric

ds? = dr2+ r2hg,(x) dxdx®.
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With 7,;; we associate an Sp(1) curvature tensor,
RABij = aAWBij - aB%ij - Skl(%ik Wle + 7Ajk WBH)
=X 5[ DaA “DgA P+ DA “ DgA 7], (4.7)
where we have used the definition

Aaﬁzﬁaﬁ—%gk'(a AT (D5 A% (4.8)

Observe that 4, is a projection operator, i.e. it satisfies 4,5 2PA ;= —A4,;, and it
projects onto the (2n — 2)-dimensional subspace orthogonal to the A ¢,

Ay AP=0. (4.9)

ay

Note that we have kj DgA,;=k{ Dg4,,=0, so that A, is invariant under dilata-
tions and SU(2) transformations. One can also show that A, Dg A, # is horizontal, i.e.

kS A,z Dg A P=kEA,; DgAP=0. (4.10)
The identity (4.7) can be generalized to
. . 1 1
X A,5DaA DBA]-B=E,9”GAB+ERAB”, (4.11)
where
Gag=x "¢ A,;D\A “DgA#. (4.12)

Observe that both G,z and R,g;; are of zero weight under the homothety and are
horizontal, i.e. they vanish upon contraction with any of the four vectors (k5,k/}), and
are thus orthogonal to the corresponding (local) four-dimensional subspace.

The tensor G, will provide a metric for Q*"~“. The relation between G, and the
hyper-Kahler metric g,g is given by

1 1 y
Jag = >y KpaKpg+ — kAij kg + x Gag
X X
1 .
=2_XkDAkDB+X[7Aij WBJ+GAB]7 (4.13)

where we have used (3.30) and (3.31). Observe that this relation reflects both the cone
structure of the hyper-Kahler space and the Sp(1) fibration of the tri-Sasakian space. It is
not possible to give an explicit expression for the inverse metric, at least not in general,
but this is not really needed in view of the horizontality of G,z. When acting on
horizontal tensors, y g”® acts as the inverse metric in view of the identity

Gac QCD GDB=X_lGAB' (4-14)

We already showed that A, Dg A # was horizontal, and conversely, the horizontal
projection G, 98¢ D A, * isin the (2n — 2)-dimensional eigenspace projected onto by
A,z Therefore A, ; Dg A # is a candidate for the quaternionic vielbein associated with
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Q*""*and A,, projects onto the tangent space of Q*"~*. More precisely, we introduce
the following related sets of 4n — 4 vectors:

n 1 1
A= A VE= = 07 A DAY
1 — =
VAiEEWGABVi%=8ij aEVi\ ) (4.15)

which satisfy algebraic relations that are completely analogous to those satisfied by the
quaternionic vielbeine of the hyper-Kahler space. In particular we note that V, and ¥,
are each other’'s inverse in the reduced (4n — 4)-dimensional space,

X9"8Fh VE =814, 0F,  £A V2V =Gy, (4.16)

where 4, (2 Y is the identity matrix projected onto the (2n — 2)-dimensional subspace.
The significance of these results will become clear in due course.

Subsequently we note that there exists an identity similar to (4.13) which relates the
complex structures to the field strength Ry,

1 1
‘]ijAB == ; [kD[AkijB] + gk kki[AkIjB]] - EX RABij : (4-17)
This motivates us to introduce the following tensors:
/-\i{B = J/i\j CGCB' (4-18)
A straightforward calculation using (4.17) shows that they satisfy
1
Hagij = — 5 Ragij» (4.19)

so that the 7,g;; are antisymmetric, horizontal and scale invariant. Furthermore these
tensors satisfy the product rule

y r _ :
X Fat 9°° Sop = 58" Gug + 2 M AW, (4.20)

which is similar to (2.8). The tensors _7,;; are candidate almost-complex structures in
the horizontal subspace Q*"~“. Under SU(2) target-space transformations they rotate
into each other according to

Kid dc Fasij + ki Feaij T s Ke Facii = 2 Eik Sashj) - (4.21)

Given a horizontal tensor H,p  that is invariant under the homothety and the SU(2)
target-space transformations, then the covariant derivative of such a tensor is no longer
horizontal. This can be cured by making use of a modified covariant derivative D,,
defined so that the following properties hold:

kDA |5c Hag... = kg 60 Has... =0,

ki/? |5c Hag... = kﬁ I5c Hag... =0. (4.22)
The modified derivative is obtained by using a modified target-space connection,

Ihg ©=Tg =86 dg)Inx + 27 ;5 JHC. (4.23)
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Because the modification is symmetric in (A, B), the connection remains torsion free.
Observe that D,( xg®°), Daks and D,k{ should be zero when contracted with a
horizontal tensor. This is obviously the case as can be seen from the formulae

Ba( X9%C) = — 52 kS + 23U KD,

” 1 .
DAkng_l(_ EkDA kg + kijAk”B) )

~ g . 1 8 1
DAkij=X _ZkDAkI]+2

Kij a K5 — k¥ & kj)l) (4.24)
The above construction can be generalized to tensors H that carry also SU(2) indices,
indicating that they transform covariantly under target-space SU(2) transformations, e.g.
asin kjj G.H' = 8/ &),; H! in the simplest case. Then one can show that the derivatives
of these tensors are still horizontal, provided one covariantizes D and includes an
SU(2) connection 7,;;. The crucial identity for showing thisis k;} 7"' 85 5.

With respect to the new connection, G, is covariantly constant

De Gag =0, (4.25)

so that the new connection must be just the Christoffel connection associated with G,g.
Likewise the tensors _7,g;; are covariantly constant modulo a rotation that involves the
Sp(1) connection,

DcfABij =2 7 ek fABj)l g (4.26)

Note that the terms on the right-hand side covariantize the derivative on the left-hand
side with respect to SU(2). Hence the tensors _7,g;; define three almost-complex
structures in the space Q*"~* which are covariantly constant up to an Sp(1) rotation
proportional to the Sp(1) connections. This implies that Q*"~* is a quaternionic space
(see, e.g., Refs. [25-27)).

To verify this result, let us compute the Riemann tensor associated with the new
connection (4.23).

A

Ragc P = Rasc P G 88] + RABlJ ‘] RC Aij ‘]ij]D- (4.27)

Observe that the right-hand side is not horizontal, but by construction (via the Ricci
identity) is horizontal when acting on a horizontal tensor with lower index D. Hence,
when lowering the index by contraction with the metric Gy one must obtain a
horizontal tensor. This is confirmed by explicit construction,

Rasco = Rasc . Gep = x Ragcp T GD[AGB]C + RABij /%f) - RC[Aij /Bi]jD'
(4.28)

By virtue of (4.19) FEABCD has al the symmetry properties of a Riemann tensor.
Observe that the explicit factor of y ! arises because the origina curvature of the



B. de Wit et al. / Nuclear Physics B 568 [PM] (2000) 475-502 495

hyper-Kahler manifold is defined by lowering the upper index by means of the metric
Ope- Furthermore it satisfies the Bianchi identity D; s Rgcipe = 0.
Let us now calculate the Ricci tensor, which is symmetric by virtue of (4.25),

A

Rag =X IiACBD gl = —2(n+1)Gyp. (4.29)

Observe that we used that the original hyper-Kéhler manifold was Ricci flat and that
Gas 9B x=4(n—1). We may aso verify the expressions for the Sp(1) holonomy

RABCDg F9°\ AL = —4(n—-1) AL, (4.30)

where we used that the origina hyper-Kahler manifold has zero Sp(1) holonomy. These
are the expected results [28,29] for a (4n — 4)-dimensional quaternionic manifold with
Sp(1) curvature given by (4.19).

This completes the discussion of target-space properties. We now return to aspects
related to the Sp(n) bundle over the specia hyper-Kahler space. First of all we consider
a modification of the connection I, “; such that the modified derivative of a tensor
that is orthogonal to A, ® remains orthogonal. This reguires that this derivative acting on
A, “ must be proportional to A; ¢ itself. When combining this with a few other obvious
requirements®,

. 2. L
Iaog=T0 - ;[8" ACDAT +ACAY 7T 0, (4.31)

With this modification, the tensors !2 and G;, remain covariantly constant. The
presence of the term proportional to 7, i |s required to preserve covariance with respect
to target-space SU(2) transformatlons This term also ensures that the modification is
horizontal. With the modified connection we establish the required result,

. 1
DA = SNy A+ 7 A e (4.32)

where the last term can be interpreted as an SU(2) covariantization of the derivative on
the left-hand side. The result (4.32) suffices to show that the modified derivative of a
tensor that is orthogonal to A; ¢, will remain orthogonal. It is now obvious that the
projection operator 4, is covariantly constant under the modified derivative

Dad,; = 0. (4.33)

Including the modified connections F ¢ and I}, * 8 aswell as the SU(2) connec-
tion 7,/, one can explicitly verify that DAVB| is equal to 2d,Iny V&, up to terms that

* In determining the precise modifications of the various connections, we were also guided to some extent
by supersymmetry. However, this aspect is postponed to Section 5, where we outline the significance of the
results of this section in the context of the coupling of hypermultiplets to supergravity.
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are proportional to A, *. Thisimplies that the quaternionic vielbeine introduced in (4.15)
are covariantly constant with respect to the new connections, so that we have

( a/\/_) D VB| A')’B| =0. (4.34)
This result leads to two integrability relations

RABaB AiB_RABik Ajagki=0,

Rasco %Di +Rps’, §CIB + RiAkB §C|a &y =0. (4.35)
Here IQAB 4 is the curvature associated with the new connection (4.31). We can
explicitly evaluate this tensor,

. 2 y 1 _
Rag *p = Rao "+ 27, £ DyACDg A A, — - Rz A A7 0,

(4.36)

which indeed satisfies the first integrability relation. Note that all expressions appearing
in (4.36) are horizontal.

Now we recall that for a special hyper-Kahler manifold the tensor W, ;. ; defined in
(2.16) satisfies the constraint

W,z A 2=0. (4.37)

With this in mind we write the new curvature tensors as follows:
“ 1 N A A
Rageo = E gl gt Vai VBBj Ve VDIW pgys T GD[AGB]C

- ZfAigB jCDij + 2/??:i[jA fB]Dij )
— A oaoA |1 L
0, Ragp=—&"V3 V§j 3 W, 5,5+ 24,y 45)8
+x 'R AVA D, Oy, (4.38)
where

W.ys =X Wapys - (4.39)

One can now verify that these curvatures satisfy also the second integrability condition
(4.35). We will return to this and related issues in Section 5.

We close this section with a brief discussion of the isometries. For every tri-holomor-
phic Killing vector of the specia hyper-Kéhler manifold we construct a corresponding
vector in the horizontal manifold Q*"~* by the projection

Kja=Gag kB. (4.40)

By explicit calculation one can then show that IﬁAﬁlB + IﬁBR,A =0, so that we have a
corresponding Killing vector in the horizontal space and thus an isometry. Observe that
the SU(2) isometries of the special hyper-Kahler manifold do not generalize in this way,
because the corresponding k,, would simply vanish. This is not so surprising, as the
SU(2) acts on the corresponding tri-Sasakian space through its Sp(1) fibre.
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To study whether these isometries are tri-holomorphic in the horizontal subspace, we
first raise the index according to

k|A=XgABGBCk°=kA+2 Pl k. (4.41)

where If5Ii ;=X "Pyj- The transformation of the almost complex structures in the
horizontal subspace is then governed by the expression,

k|c acfABij - 2‘9[Ak|C jB]Cij = klc acfABij - 29[Ak|c fB]Cij
+ 2P|k'(k,‘f, O Fapij — 20 aKG fB]Cij). (4.42)

The first line on the right-hand side is zero, as follows from (4.17) and the fact that the
isometries are tri-holomorphic and commute with dilatations and SU(2) in the special
hyper-Kahler space. The second line is equal to 4_Z,gyi &) Pk' by virtue of (4.21). We
can now elevate the derivatives on the left-hand side to SU(2) covariant derivatives. In
this way we find

DA( //Zscuklc) - DB(jZACijkIC) = _ZRABk(i ) Plkl , (4.43)

where we used the horizontality of Rlc and the Bianchi identity for (or the covariant
constancy of) Rpg;; &€ Zag;j- The solution is given by

/ABij R|B = 6A|3Iij ) (444)

which can aso be verified by explicit calculation. By substituting previous results one
verifies directly the modified equivariance condition,

Zagij K AkB —fi5 “Pyij + 45" P|k(| PJ])I (4.45)

The above results are in complete agreement with the moment map construction for
quaternionic manifolds [21,30]. The fact that the isometries generated by kA act
consistently on horizontal tensors is ensured by the following identities which foIIow
from explicit calculation:

kS Dgk{ = kg Dgk{ =0. (4.46)
Finally the algebra of the isometries is governed by

kP agkf — Kk agkf = —f,, K k2 +2 Faei; kPKG KA. (4.47)
Hence the algebra of isometries is satisfied up to SU(2).

5. Locally superconformal hyper multiplets

In this last section we consider the coupling of the hypermultiplets to superconformal
gravity. To that order we introduce the Weyl multiplet, which contains the gauge fields
associated with the superconformal symmetries as well as some extra matter fields [5].
The bosonic gauge fields are the vielbeine e, the spin-connection w:‘b, the dilatational
gauge field b,, the gauge field associated with special conformal boosts f,* and the
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gauge fields associated with SU(2) X U(1), denoted by VI (antihermitian) and A, . The
fermionic gauge fields are the gravitino fields d; and the fields ¢>' assouar[ed with
Ssupersymmetry. Finally, the matter fields are T abij (antlsymmetrlc and self-dua in
Lorentz indices and antisymmetric in SU(2) indices), a spinor ' and area scaar D.
The fields w:b f? and q’)ll are not independent and can be expressed in terms of the
other fields. We refer to [5,6] for more details on the notation and conventions.

The transformation rules have been given in previous sections, but will change in the
context of local supersymmetry. The most obvious change concerns the replacement of
the derivatives by derivatives that are covariant with respect to the additional gauge
symmetries. The derivatives covariant with respect to the bosonic gauge symmetries for
the scalar fields, the sections and the fermion fields, read

1
D, "= 0," - buk§+§V;k8’kkiﬁ-‘—9V\L'kA,
D A=, A= A SV AT —gW, Y AP A, AT, AP

(42 1 [e% 3 a 1 1 a
A aﬂg _pr‘ ’}/ab{ _Eb”g +EIA“§

_g% Bé‘B.}_aMd,A[‘AaB{B’ (5.1)
where we have aso included the terms related to possible gauged isometries. All
covariantizations follow straightforwardly from the formulae presented in Subsection 3.3
and from the gauge field conventions given in [5,6]. Observe that the derivative in d, ¢ A
multiplying the connection I, “, does not require an additional covariantization.

The transformation rules under Q- and S-supersymmetry are now as follows:

5¢A=2( i €T+ RN Eiz“),
SAC=2&("+2¢; G P €07 — 5,0, “ 5 AP,
=DA% — 850 “p (P +29X, AP el +A Y,

9
3
I

8% =DA% — 8¢y “5{P+29X5 AP giel + Ay, (5.2)
where we have made use of the supercovariant derivatives (we also give the supercovari-
ant derivative of £* which is not needed above),

DM¢A=9M¢A_ 71’2 ‘/’llga_ _aAI (/jmga’
D A=, A“— i, (" — &, G PO i 7,

1 1 _
D,{*=,5" = DAY~ S A, (53)

We have verified that no further modifications of the fermionic transformation rules
beyond those given above are possible, assuming that the bosonic transformation rules
remain the same. One of the underlying reasons for the absence of additional terms may
be that the above rules are aready consistent with rigid supersymmetry and with the
case of a flat hyper-Kahler manifold which was taken as a starting point in [6]. All
additional modifications would thus have to vanish in the corresponding limits, while at
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the same time one must preserve covariance under target-space diffeomorphisms and
fermionic frame reparametrizations. Therefore the possible modifications should be
proportiona to the target-space curvature times the superconformal fields and, as it turns
out, it is difficult if not impossible to see how such terms could emerge. Given the fact
that the transformation rules take the same form, we expect the same situation for the
Lagrangian, where, again, it is difficult to construct suitable modifications that would
vanish in the appropriate limits.

Motivated by these considerations, we write down the Lagrangian by converting and
covariantizing the relevant equation (3.28) in Ref. [6]. Here we suppress the hypermulti-
plet auxiliary fields, as we no longer insist on off-shell supersymmetry for the hypermul-
tiplets. The result reads as follows, where the derivatives are al fully covariantized:

1 _ 3
ely=_¢10,, Ai“(DaDa+ —D) AP
2 « 2 )
0 2400 p a B Y 8 ! ayijp Y
_ l_i 5
- é'va_ El/jp,’yMAia GECV mg
0 3 i B L ik aby B
+“Qaﬁ ES ka Ak - Zé‘ Tabjky 4

_gﬁaﬁ(ﬂiﬁy AT+2XE é«y)

+ h.c.}

1, _
+50[ 2 ATDE, 74 e (5.4)

After substituting the expressions for the dependent gauge fields gb; and f? in terms of
the other fields and dropping a total derivative, we write the Lagrangian as follows:

1 L 1 1 L
e 1L = — =Gy, A PDAT + ——RG,, A PAT+ — DG, A A"
2 " 12 4
__ _ _ 1 _ _
= Gl £GP + PG ) = Wopys LD

+

1 _ — o1 o .

G&B(_ EAi BAlaeilf‘f'WpU%j%gplﬂaj + gAi PR %,y x

1 Baka T i T pv i@y B . Aay ZB.,ab ijsA
_EAk A ) T = AP + 1_60 G\ {7y Tapije'd

B, 1 i 2 i@ 7B A, uv 1 ia »B,,ab ]
+§’y gA wp,i_gA g Y gul/lvi—{_aA é”y Tabij'y lrblu,

1 —1_. pvpo p i B ja
- Ze & ‘“/IIJ,’YV lpp] Ai ‘90' A

1

) _Bv“v”wm(@ﬁ +e'10Q G\ J’VJ[A) + h-C-)}- (5.5)
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Here we did not include the terms related to gauged isometries. To incorporate those one
includes the relevant terms into the covariant derivatives and adds the following
g-dependent terms to the Lagrangian:

o 1 _
e 1%, =209°G; ATXP X5 A+ EgAi“ 0., YIE A
+9|2XY, {CP 0 420,50 0F 5 AP =24y P X 0, A7

1_. _ 1_. — —
B E l//ibl'yﬂﬂkaﬁ ‘Qay Aiy AkB - El/’p«l'yuvl/lvk AkB 'Qay AinaB +he. .

(5.6)

As mentioned above, these results are in agreement with the action presented in
Subsection 2.2 as well as with the results of [6] in the appropriate limits. In addition we
performed a number of independent checks on (5.5) and (5.6). For instance, because the
superalgebra closes only modulo the field equations for the fermion fields ¢« and 7,
we have calculated these field equations from the supersymmetry transformation rules
(5.2). Asit turns out the result is in agreement with the field equations derived from the
action.

The above action is invariant under all superconforma symmetries. In particular the
scalar fields are subject to dilatations and to SU(2) transformations. Ignoring the
contributions from the vector multiplets, which are essential for obtaining the complete
and consistent action for Poincaré supergravity coupled to vector multiplets and hyper-
multiplets, but which do not affect the target-space geometry of the hypermultiplets, we
express the bosonic terms in scale-invariant quantities, by introducing a normalized
section

A=y V2A“ (5.7)
which satisfies (2, AA\i “ AAJ- P = &,. Similarly we redefine the various other fields, such
as the vierbeine, spin connection, etc., by a y-dependent scale transformation. The result
for the bosonic terms then takes the form

i L1
Z= —Ee[naﬁ e G A TN P~ SR D], (58)

where R is the Ricci scalar of the space-time. Suppressing possible gauged isometries
for convenience, this results in

1 co, L ¢ Coy tyn g
F=—-el,e" (aﬂqﬁADAAi‘“r 5V ¢ Ak“) (8%5 Dy A P+ SV AP

1 1
+—-eR+ <eD. (5.9)
6 2
The field equations for the SU(2) gauge fields V,; I yield,
V,l=-29¢" 7., . (5.10)
This result can be substituted back into the Lagrangian, which then reads

1 1 1
— A B
F= —5eGps 4,07 0%° + —eR+ _eD, (5.11)
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S0 that the target-space metric G, corresponds indeed to the quaternionic space which
we constructed in Section 4. The terms with the Ricci scalar and the auxiliary field D
combine with similar terms from the Lagrangian of the vector multiplets to give the
Einstein—Hilbert action.

The material derived in Section 4 now fits in nicely with what is known about the
general coupling of hypermultiplets to supergravity [2]. First of al, the quantity A,
projects out precisaly the S-invariant hypermultiplet spinors which thus describe 2n — 2
physical spinors after modding out the S-supersymmetry. Hence, the non-linear sigma
model comprises precisely the expected 4n — 4 scalars and 2n — 2 spinors. The relevant
quaternionic vielbeine have already been defined in (4.15), but can equaly well be
obtained from working out the above Lagrangian after removing the appropriate gauge
degrees of freedom We will list a number of relevant identities, which all follow from
Section 4,

A A 1 1
AaB A Vi = 5€ij Gag T+ ERABij!

RABij ;aAk §BBI =2 5i(k8j|) AaB . (512)

The second integrability condition (4.35) can be rewritten as
liABCD §aCi %Dj = - Aafy IiAB yB - AaB RiAjB ) (5-13)

which gives the decomposition of the Riemann tensor into an Sp(n— 1) and an Sp(1)
curvature. Of course, this relation is already incorporated into the expression (4.38) and
its correctness can also be verified directly. The curvature R,g * ; satisfies (c.f. (4.36)),

ﬁav Ras y/; = ﬁa'y Ras yB - 23ij ;Ai(cv §Bjﬁ) + ﬁa'y ﬁBB A Aj ° RRB' (5-14)

Upon projection with A, the last term vanishes and one finds an identity that is well
known from the literature.

Hence we see that all aspects of quaternionic geometry that arise in the coupling of
hypermultiplets to supergravity are correctly reproduced. Our results provide an elegant
extension of the work reported in [6] and give a unified prescription for all hypermulti-
plet couplings to supergravity. Although thisisin principle straightforward, it remains to
work out the details of the Lagrangian and transformation rules after removing the gauge
degrees of freedom associated with S-supersymmetry.
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