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Abstract

We present theories of Ns2 hypermultiplets in four space-time dimensions that are invariant
under rigid or local superconformal symmetries. The target spaces of theories with rigid

Ž .superconformal invariance are 4n -dimensional special hyper-Kahler manifolds. Such manifolds¨
Ž .can be described as cones over tri-Sasakian metrics which itself are Sp 1 fibrations over

quaternionic manifolds. The latter manifolds appear in the coupling of hypermultiplets to Ns2
Ž . Ž .supergravity. We employ local sections of an Sp n =Sp 1 bundle in the formulation of the

Lagrangian and transformation rules, thus allowing for arbitrary coordinatizations of the hyper-
Kahler and quaternionic manifolds. q 2000 Elsevier Science B.V. All rights reserved.¨

PACS: 04.65.qe; 11.30.Pb
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1. Introduction

It is well known that in theories with rigid Ns2 supersymmetry the hypermultiplet
action takes the form of a supersymmetric sigma model with scalars that parametrize a

w xhyper-Kahler manifold 1 . In the case of local supersymmetry the scalar fields¨
w xparametrize a quaternionic manifold of negative curvature 2 . In this paper we study

actions for hypermultiplets invariant under rigid or local Ns2 superconformal symme-
w xtries. This study is both motivated by recent interest in superconformal theories 3 and
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by efforts to find alternative and hopefully more convenient formulations of the
hypermultiplet actions. The Ns2 superconformal algebra in four dimensions contains

Ž . Ž . Ž .the bosonic subalgebra associated with SO 4,2 =SU 2 =U 1 , together with 8 real
supersymmetry and 8 real ‘special’ supersymmetry transformations, called Q- and
S-supersymmetry, respectively. Requiring that the action is invariant under rigid super-

w xconformal transformations leads to extra constraints on the target-space geometry 4 .
For instance, these manifolds admit a so-called hyper-Kahler potential whose derivative¨
defines a conformal homothetic Killing vector and the three complex structures rotate

Ž .under the action of the SU 2 group, which must be contained as a factor in the isometry
group of the manifold. Spaces that satisfy these constraints will be called special

1 w xhyper-Kahler manifolds . By using the superconformal multiplet calculus 5,6 one can¨
then obtain corresponding quaternionic sigma models coupled to Ns2 supergravity.

Ž .Because of the gauge degrees of freedom associated with the dilatations and the SU 2
Ž . Ž .transformations, a 4n -dimensional special hyper-Kahler manifold leads to a 4ny4 -¨

dimensional quaternionic manifold. At the time this construction was applied to only flat
hyper-Kahler spaces or hyper-Kahler quotients thereof. The coupling to supergravity¨ ¨
then leads to a quaternionic projective space and its quaternionic hyper-Kahler quotients¨
w x6 . But it has been known for some time that there exist quaternionic spaces that can
couple to supergravity which are not in this class but can be described in the context of

w xthe formalism of 2 . Some of them have also been obtained explicitly in the context of
w xharmonic superspace 7 . Therefore it is imperative to apply the superconformal ap-

proach to more general special hyper-Kahler sigma models. This application is the main¨
topic of our paper, where, in order to avoid introducing an infinite number of fields, we
will no longer insist on off-shell supersymmetry for the hypermultiplets.

w xAlready quite some time ago the very same option was discussed by Galicki 8 .
Rather than starting from the superconformally invariant hypermultiplets, he described

w xthe geometry of these more general hyper-Kahler spaces using a result of Swann 9 ,¨
who has proven that any quaternionic manifold has a corresponding special hyper-Kahler¨
manifold which admits a quaternionically extended homothety and which has three

Ž .complex structures that rotate under an isometric SU 2 action. And indeed, the
hyper-Kahler manifolds that he discusses have many properties in common with the¨

w xhypermultiplet actions discussed in 4 . Moreover it is known that a special hyper-Kahler¨
manifold is a cone over a so-called tri-Sasakian manifold, so that there exists a beautiful
relation between quaternionic manifolds, tri-Sasakian manifolds and special hyper-Kahler¨

Ž w x.manifolds for a recent review, see Ref. 10 . The tri-Sasakian manifolds have also
appeared recently in the context of supergravity compactifications and the ADSrCFT

w xcorrespondence 11 .
In this paper we follow the original superconformal approach and start with the

Ž . w x4n -dimensional special hyper-Kahler manifolds as they were formulated in 4 . We¨
Ž .establish that these spaces are indeed cones over 4ny1 -dimensional tri-Sasakian

Ž w x.spaces this feature was also discussed in 12 . The special hyper-Kahler manifolds have¨

1 Note that hyper-Kahler manifolds that are in the image of the c-map are sometimes called special, because¨
of the underlying special geometry features. We stress that the usage of the term special hyper-Kahler in this¨
paper has no relationship to special geometry.
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Ž .only a restricted holonomy group contained in Sp ny1 ; locally they are a product of a
Ž .flat four-dimensional space and a 4ny4 -dimensional quaternionic space. After gaug-

Ž .ing away the degrees of freedom associated with the dilatations and the SU 2
transformations, the quaternionic space remains when coupling to supergravity. We
present the full Lagrangian and transformation rules for the supersymmetric non-linear
sigma models based on special hyper-Kahler spaces, including the option of gauged¨

Ž . Ž .isometries. Furthermore we construct local Sp n =Sp 1 sections of the so-called
associated quaternionic bundle which is known to exist for any special hyper-Kahler¨

w xmanifold 9 . It turns out that the use of these sections greatly simplifies the formulation
of the transformation rules and the Lagrangian. In this way our general results remain

w xclosely in line with the results of Ref. 6 ; the formulae are identical up to modifications
by connections and covariant tensors. When the sections are trivial, so that the
connections can be put to zero and the tensors become constant, they can be identified

w xwith the hypermultiplet scalar fields and one directly recovers the results of Ref. 6 .
Guided by supersymmetry we thus make contact with the mathematical results quoted
above and we construct the general action and transformation rules in a new form.

The last topic is to couple these supersymmetric non-linear sigma models to
supergravity, using the conformal multiplet calculus. In addition to presenting the
corresponding field theory, we exhibit how the quaternionic manifold emerges in the

Ž . Ž .coupling. This manifold can now be encoded in terms of Sp n =Sp 1 sections that are
projective with respect to quaternionic multiplication.

Our results could facilitate the study of type-II string compactifications on Calabi–Yau
three-folds. These lead to four-dimensional models with both vector multiplets and
hypermultiplets. While the moduli space of the vector multiplet scalars is described in
terms of a special Kahler geometry and is well understood, much less is known about¨
the full quaternionic hypermultiplet moduli space. It is known that at string tree level the

w xquaternionic manifolds are obtained from a special Kahler manifold via the c-map 13 .¨
One would like to understand what the corrections are to the classical hypermultiplet
moduli space coming from both string perturbation theory and non-perturbative effects
w x14–17 . With rigid conformal symmetry, the results of this paper could also be helpful

w xin the description of cone branes 11 .
This paper is organized as follows. In Section 2 we briefly summarize some essential

features of hypermultiplet Lagrangians with gauged target-space isometries. For hyper-
multiplets there exists no unconstrained off-shell formulation in terms of a finite number
of degrees of freedom, hence the supersymmetry algebra will only be realized up to the
field equations of the hypermultiplet fermions. This is in contrast with the vector
multiplets, introduced to gauge the isometries, and the superconformal theory itself, for
which off-shell formulations exist. As a result of the latter, the algebra of gauged
isometries and of the superconformal transformations, including certain field-dependent
structure constants, is completely fixed and not affected by the presence of hypermulti-
plets. Section 3 deals with rigidly superconformal hypermultiplets, where we find the
constraints on the hyper-Kahler manifold imposed by superconformal invariance. Sub-¨
section 3.1 defines the superconformal transformation rules, the second one deals with

Ž . Ž .the hyper-Kahler potential and the construction of local Sp n =Sp 1 sections, and the¨
third one gives the Lagrangian and the transformation rules. The geometry of special
hyper-Kahler manifolds is explained in Section 4. We first discuss the cone structure of¨
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these hyper-Kahler manifolds which lead to a tri-Sasakian space. The latter is indeed an¨
Ž .Sp 1 fibration over a smaller space, which we prove to be quaternionic. This quater-

nionic space couples to supergravity, as we then show in Section 5. Here we present the
action for the hypermultiplets associated with a special hyper-Kahler target space¨
coupled to conformal supergravity and exhibit how the target-space metric becomes
quaternionic.

2. Preliminaries

In this section we summarize hypermultiplet Lagrangians in flat space-time. As is
well known, these constitute Ns2 supersymmetric non-linear sigma models with a

w x Ž .hyper-Kahler target space 2 . The holonomy group is contained in Sp n and it is this¨
group that is relevant for the hypermultiplet fermions. In Subsection 2.1 we discuss the
supersymmetry transformations, the Lagrangian and the target-space geometry. In
Subsection 2.2 we present possible extensions related to gauged target-space isometries,
which will involve couplings to vector multiplets associated with the gauge algebra.

2.1. Hypermultiplet non-linear sigma models

w xWe will base ourselves on the formulation of hypermultiplet Lagrangians of 18 .
w xWith respect to the results of 2 this formulation differs in that it incorporates both a

metric g for the hyper-Kahler target space and a metric G for the fermions. Here¨A B a b

we assume that the n hypermultiplets are described by 4n real scalars f A, 2n
a apositive-chirality spinors z and 2n negative-chirality spinors z . Hence target-space

indices A, B, . . . take values 1,2, . . . ,4n, and the indices a ,b , . . . and a ,b , . . . run from
Ž1 to 2n. The chiral and antichiral spinors are related by complex conjugation so that we

.have 2n Majorana spinors under which indices are converted according to ala ,
Ž .while SU 2 indices i, j, . . . s1,2 are raised and lowered. An explicit fermionic metric

G can be avoided as it can always be converted to a constant diagonal matrix by aab

similarity transformation. But retaining a fermionic metric is, for example, important in
obtaining transparent transformation rules under symplectic transformations induced by
the so-called c-map from the electric-magnetic duality transformations on a correspond-

Žing theory of vector multiplets. In formulations based on Ns1 superfields such as in
w x.19 one naturally has a fermionic metric but of a special form.

The Lagrangian and transformation rules are subject to a number of equivalence
transformations, two of which are associated with the target space. One set consists of

XŽ .the target-space diffeomorphisms f™f f . The other refers to reparametrizations of
a a Ž . bthe fermion ‘frame’ of the form z ™S f z , and corresponding redefinitions ofb

other quantities carrying indices a or a . For example, the fermionic metric transforms
y1 g y1 d aw x w xas G ™ S S G . There are connections, G , associated with theseab a b gd A b

fermionic redefinitions, which appear in the Lagrangian and supersymmetry transforma-
Ž . Ž .tion rules. Finally, there are chiral SU 2 (Sp 1 redefinitions of the supercharges,

which in the rigidly supersymmetric case must be constant and are therefore trivial. In
the locally supersymmetric case this will be different and in the latter part of this paper

Ž .we will have to deal with local SU 2 .
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The supersymmetry transformations are parametrized in terms of certain f-dependent
quantities g A and V according toA

A A i a Ai ad f s2 g e z qg e z ,ž /Q i a a i

d z a sV a Euf Ae i yd f A G a z b ,Q A i Q A b

a i a A A a bd z sV Euf e yd f G z . 2.1Ž .Q A i Q A b

A Ž . Ž .In principle g and V each denote 4n = 4n complex quantities, but as we shall seeA

below, these quantities are related and satisfy a pseudoreality condition. As it turns out
Ž .they will play the role of the quaternionic inverse vielbeine of the target space.

Ž .Observe that the supersymmetry variations are consistent with a U 1 chiral invariance
under which the scalars remain invariant, while the fermion fields and the supersymme-
try transformation parameters transform nontrivially. This group will be denoted by
Ž .U 1 to indicate that it is a subgroup of the automorphism group of the supersymmetryR

Ž .algebra. In Section 3 we will see that this U 1 will correspond to one of the conformal
A Ž . Ž .gauge transformations. However, for generic g and V , the SU 2 (Sp 1 part of theA R

automorphism group cannot be realized consistently on the fields. This would require
Ž .the presence of an SU 2 isometry in the target space. In the above, we merely used that

a az and z are related by complex conjugation.
The Lagrangian takes the following form:

1 1
A m B a b b a a b g m dLLsy g E f E f yG z Duz qz Duz y W z g z z g z ,ž /A B m a b a bgd m2 4

2.2Ž .

where we employed the covariant derivatives

a a A a b a a A a bD z sE z qE f G z , D z sE z qE f G z . 2.3Ž .m m m A b m m m A b

Besides the Riemann curvature R we will be dealing with another curvatureA BC D
a a Ž .R associated with the connections G , which takes its values in sp n (A B b A b

Ž .usp 2n;C . The tensor W is defined by

1
e A i B A i B C jDW sR g g G s R g g g g , 2.4Ž .abgd A B g i a b ed A BC D ia b jg d2

and will be discussed shortly in more detail.
The target-space metric g , the tensors g A, V and the fermionic hermitian metricA B A

)Ž Ž . .G i.e. satisfying G sG are all covariantly constant with respect to theab a b ba

Christoffel connection and the connections G a . Furthermore we note the followingA b

relations:

A ja A j a j Ag V qg V sd d ,i a B a B i i B

B b i a A i ag g sG V , V g sd d . 2.5Ž .A B ia a b A i A j b j b

From them one derives a number of useful relations, such as

j a ja j a jg V sg V syg V qd g . 2.6Ž .A a B i B ia A Ba i A i A B



[ ] ( )B. de Wit et al.rNuclear Physics B 568 PM 2000 475–502480

The following three bilinears define antisymmetric covariantly constant target-space
tensors:

i j kŽ i j.aJ sg ´ V , 2.7Ž .A B A k a B

that span the complex structures of the hyper-Kahler target space. They satisfy¨

1
)i j k l i jC k l iŽk l . j Ž iŽk l . j.J ' J s´ ´ J , J J s ´ ´ g q´ J .Ž . Ž .i j A B ik jl A B A C B A B A BA B 2

2.8Ž .

In addition we note the following useful identities:

1
ja k j j i j B Ž i j. lg V s´ J q g d , J g syd ´ g . 2.9Ž .Ai a B ik A B A B i A B a k k Ala2

We also note the existence of covariantly constant antisymmetric tensors,

1 1
i j A B a b A B ia j bV s ´ g g g , V s ´ g V V , 2.10Ž .ab A B ia j b i j A B2 2

gb bsatisfying V V syd . Their complex conjugates satisfyag a

)

gdV ' V sG V G . 2.11Ž .Ž .ab a b ga db

The tensor V can be used to define a reality condition on V and g ,

j b B b´ V V sg g sG V . 2.12Ž .i j a b A A B ia a b A i

This equation leads to

A B a b a b A Bg V V s´ V , g g g s´ V . 2.13Ž .Ai B j i j A B ia j b i j a b

Another convenient identity is given by

1
i a j b i j i jV V V s ´ g yJ . 2.14Ž .A a b B A B A B2

The existence of the covariantly constant tensors implies a variety of integrability
conditions which have a number of consequences for the various curvature tensors

Aw x2,18 . First of all the covariant constancy of g implies

C i D j i j gR g g sy´ V R . 2.15Ž .A BC D a b ag A B b

w xObserve that the right-hand side is manifestly antisymmetric in ij and symmetric in
Ž .ab . This implies that the Riemann tensor can be written with tangent-space indices
according to

1
Ai B j Ck D l i j k lR g g g g s ´ ´ W , 2.16Ž .A BC D a b g d a bgd2
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where, as a result of the cyclicity property of the Riemann tensor, W is symmetric inabgd

Ž .all four indices. This tensor is linearly related to the tensor 2.4 upon multiplication
with the tensors G and V . In terms of W the curvatures readabgd

1
i j k l a b g dR s ´ ´ V V V V W ,A BC D Ai B j Ck D l a bgd2

1
e i j g dV R sy ´ V V W . 2.17Ž .ae A B b Ai B j a bgd2

The above results are all derived from the requirement of supersymmetry. To
i acharacterize the geometry of the target space, one could start from the non-singular VA

and a non-singular skew-symmetric tensor V that is covariantly constant with respectab
a j bto a symplectic connection G . Subsequently one notes that ´ V V and theA b i j a b A

Binverse of V , denoted by g , are linearly related by a symmetric matrix g .A i a A B

Requiring that this matrix is real we can identify it with the target-space metric while the
ensuing reality constraint on the V enables their identification as the correspondingA

quaternionic vielbeine. This information is sufficient for deriving all the algebraic
identities listed above. The vielbeine and the symplectic connection then allow the
definition of an affine target-space connection, with respect to which the vielbeine are
covariantly constant thus leading to a generalized vielbein postulate. All of above results
then follow upon assuming that the target space has no torsion so that the affine
connection and the Christoffel connection coincide.

2.2. Gauged target-space isometries

The equivalence transformations of the fermions and the target-space diffeomor-
phisms do not constitute invariances of the theory. This is only the case when the metric

Ž . Ž . a Ž .g and the Sp n =Sp 1 one-form V and thus the related geometric quantities areA B i
Ž .left invariant under a subset of them. Therefore these are related to isometries of the

Žhyper-Kahler space. We can then elevate such invariances to a group of local i.e.¨
.space-time-dependent transformations, by introducing the required gauge fields in the

form of vector multiplets. Such gauged isometries have been studied earlier in the
w xliterature 7,19–22 and the purpose of our discussion here is to incorporate them into

the formulation used in this paper.
Ž .We consider scalar fields transforming under a certain isometry sub group G

AŽ . Icharacterized by a number of Killing vectors k f , with parameters u . Hence underI

infinitesimal transformations,

d f A sg u Ik A f , 2.18Ž . Ž .G I

AŽ .where g is the coupling constant and the k f satisfy the Killing equation,I

D k qD k s0 . 2.19Ž .A IB B I A

The isometries constitute an algebra with structure constants f K ,I J

k BE k A yk BE k A syf K k A . 2.20Ž .I B J J B I I J K
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Our definitions are such that the gauge fields that are needed once the u I become
space-time dependent, transform according to d W I sE u I ygf I W J u K. The KillingG m m JK m

equation generally implies the following property:

D D k sR k E . 2.21Ž .A B IC BC A E I

Ž . aQuantities that carry Sp n indices, such as V , are only required to be invariantAi
Ž B aunder isometries up to fermionic equivalence transformations. Thus yg k E V qI B Ai

B a .E k V must be cancelled by a suitable infinitesimal rotation on the index a . Here weA I B i

assume that the effect of the diffeomorphism is entirely compensated by a rotation that
Ž .affects the indices a . In principle, one can also allow for a compensating Sp 1

transformation acting on the indices i, j, . . . . However, the latter transformations must be
constant, so they will generically not appear here. This is equivalent to requiring that the
isometry group will commute with supersymmetry.

Ž .Let us parametrize the compensating transformation acting on the Sp n indices by
a w A xa b Ž . Ž .d z sg t yk G z , where the f-dependent matrices t f remain to beG I I A b I

determined,
aB a B a B byk E V yE k V q t yk G V s0 . 2.22Ž .Ž . bI B A i A I B i I I B A i

Obviously similar equations apply to the other geometric quantities, but as those are not
independent we do not need to consider them. Using the covariant constancy of V , weA

Ž .derive from 2.22 ,
a b B at V sD k V , 2.23Ž . Ž .bI A i A I B i

so that

1a a B i At s V g D k . 2.24Ž . Ž .bI Ai b B I2

Target-space scalars will satisfy algebraic identities, such as
g g g

t G q t G s t V s0 . 2.25Ž . Ž . Ž .Ž . a b w aI gb I ag I b xg

Ž . Ž .This establishes that the field-dependent matrices t take values in sp n . From 2.19I
Ž .and 2.21 , it easily follows that

D t a sk B R a , 2.26Ž .A I b I A B b

for any infinitesimal isometry. From the group property of the isometries it follows that
the matrices t satisfy the commutation relationI

a aK A B aw xt , t s f t qk k R , 2.27Ž . Ž .b bI J I J K I J A B b

Ž .which takes values in sp n . The apparent lack of closure represented by the presence of
the curvature term is related to the fact that the coordinates f A on which the matrices
depend, transform under the action of the group. One can show that this result is
consistent with the Jacobi identity.

Ž . i jFurthermore we derive from 2.22 that the complex structures J are invariantA B

under the isometries,

kCE J i j y2E kC J i j s0 . 2.28Ž .I C A B w A I B xC
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Ž .This means that the isometries are tri-holomorphic. From 2.28 one shows that
Ž i j C . Ž i j C .E J k yE J k s0, so that, locally, one can associate three Killing potentialsA BC I B AC I

Ž . i jor moment maps P to every Killing vector, according toI

E P i j sJ i j k B . 2.29Ž .A I A B I

Observe that this condition determines the moment maps up to a constant. Up to
constants one can also derive the equivariance condition,

J i j k Ak B syf K P i j , 2.30Ž .A B I J I J K

which implies that the moment maps transform covariantly under the isometries,

d P i j su J k A E P i j syf K P i j u J . 2.31Ž .G I J A I JI K

Summarizing, the invariance group of the isometries acts as follows:
aI A a I b A a bd fsg u k , d z sg u t z yd f G z . 2.32Ž .Ž . bG I G I G A b

When the parameters of these isometries become space-time dependent we introduce
corresponding gauge fields and fully covariant derivatives,

DD f A sE f A ygW I k A , DD z a sE z a qE f A G a z b ygW a z b ,m m m I m m m A b m b

2.33Ž .
a I Ž .a a Ž .where W sW t . The covariance of DD z depends crucially on 2.26 andm b m I b m

Ž .2.27 ; after some calculation one finds
a

a I b A a bd DD z sg u t DD z yd f G DD z . 2.34Ž .Ž . bG m I m G A b m

The gauge fields W I are accompanied by complex scalars X I, spinors V I and auxiliarym i

fields Y I , constituting off-shell Ns2 vector multiplets. For our notation of vectori j
w xmultiplets, the reader may consult 18 .

The minimal coupling to the gauge fields requires extra terms in the supersymmetry
transformation rules for the hypermultiplet spinors as well as in the Lagrangian, in order
to regain Ns2 supersymmetry. The extra terms in the transformation rules are

X Xa I A a i j a I A a i jd z s2 gX k V ´ e , d z s2 gX k V ´ e . 2.35Ž .Q I Ai j Q I A i j

These terms can be conveniently derived by imposing the commutator of two supersym-
metry transformations on the scalars, as this commutator should yield the correct
field-dependent gauge transformation.

We distinguish three additional couplings to the Lagrangian. The first one is
quadratic in the hypermultiplet spinors and reads

Ž1. I Ai B j a b I g a bLL sgX g ´ g D k z z qh.c.s2 gX t V z z qh.c. 2.36Ž .g a i j b B A I I a bg

The second one is proportional to the vector multiplet spinor V I and takes the form

Ž2. A a b I i A i a I jLL sy2 gk V V z V qh.c.s2 gk g ´ z V qh.c. 2.37Ž .g I Ai a b I A a i j

Finally there is a potential given by

scalar 2 A B I J i j ILL sy2 g k k g X X qg P Y , 2.38Ž .g I J A B I i j
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where P i j is the triplet of moment maps on the hyper-Kahler space. These terms were¨I

determined both from imposing the supersymmetry algebra and from the invariance of
Ž . Ž .the action. To prove 2.38 , one has to make use of the equivariance condition 2.30 .

Actually, gauge invariance, which is prerequisite to supersymmetry, already depends on
Ž .2.31 .

3. Rigidly superconformal hypermultiplets

In this section we determine the restrictions on the hyper-Kahler geometry that follow¨
from imposing invariance under rigid superconformal transformations. As we already
mentioned in Section 1, the corresponding spaces, called special hyper-Kahler mani-¨
folds, have an intriguing geometrical structure. In Section 5 we will obtain the coupling
of hypermultiplets to conformal supergravity. A crucial element in the construction of
this coupling is that the full superconformal theory is known in an off-shell form, so that
the superconformal algebra remains unaffected in the presence of matter fields. Our goal
is more modest in this section where we only consider rigid superconformal transforma-
tions. This aspect does not play a role for the derivation of the superconformal
transformations on the hypermultiplets and the results of this section describe the
situation that would arise when freezing all the fields of conformal supergravity to zero
in a flat space-time metric. In that case the superconformal transformations acquire an
explicit but fixed dependence on the space-time coordinates parametrized by a finite

Ž w x.number of space-time-independent parameters this is explained, for instance, in 23 .
In Subsection 3.1 we impose the superconformal algebra on the fields and find the

transformation rules as well as a number of important results for the complex structures
and the moment maps associated with possible isometries. In Subsection 3.2 we derive
the existence of a hyper-Kahler potential and reformulate the theory in terms of local¨

Ž . Ž .sections of an Sp n =Sp 1 bundle. Then, in Subsection 3.3 we present the Lagrangian
and the transformation rules in terms of these local sections.

3.1. Superconformal transformations

w xWe start by implementing the Ns2 superconformal algebra 5 on the hypermulti-
plet fields. We assume that the scalars are invariant under special conformal and special
supersymmetry transformations, but they transform under Q-supersymmetry and under

w Ž .the additional bosonic symmetries of the superconformal algebra, namely chiral SU 2
Ž .x=U 1 and dilatations denoted by D. At this point we do not assume that theseR

transformations are symmetries of the action and we simply parametrize them as
follows:

iA A A jk Adf su k f qu k f q u ´ k f , 3.1Ž . Ž . Ž . Ž .Ž . kD D UŽ1. UŽ1. SUŽ2 . i j

A AŽ .where the k are left arbitrary. Note that k f is assigned to the same symmetrici j
Ž .pseudoreal representation of SU 2 as the complex structures, while u is antihermi-SUŽ2 .

tian and traceless.
An important difference with the situation described in Section 2, is that in the

conformal superalgebra the dilatations and chiral transformations do not appear in the
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commutator of two Q-supersymmetries, but in the commutator of a Q- and an
S-supersymmetry. To evaluate the S-supersymmetry variation of the fermions, we
assume that d f A sd z a s0 and covariantize the derivative in the fermionic transfor-S K

mations with respect to dilatations. Subsequently we impose the commutator,
w Ž . Ž .x Ž .d L ,d e syd Lu e on the spinors. This expresses the S-supersymmetryK K Q S K

variations in terms of k A,D

a a A i a i a Ad h z sV k h , d h z sV k h . 3.2Ž . Ž . Ž .S i A D S A D i

With this result we first evaluate the commutator of an S- and a Q-supersymmetry
transformation on the scalars. This yields

A i i A A k j i i Bd h ,d e f s e h qe h k q2 J ´ e h ye h k . 3.3Ž . Ž . Ž .Ž . ž /S Q i i D i k B j j D

This result can be confronted with the corresponding expression from the Ns2
superconformal algebra, which reads

i ab i id h ,d e sd 2h s e qh.c. qd h e qh.c. qd ih e qh.c.Ž . Ž . Ž . Ž . Ž .S Q M i D i UŽ1. i

iqd y2h e yh.c.; traceless . 3.4Ž .Ž .SUŽ2 . j

A Ž .Comparison thus shows that k vanishes and that the SU 2 vectors satisfyUŽ1.

k A sJ A k B . 3.5Ž .i j i j B D

Now we proceed to impose the same commutator on the fermions, where on the
Ž .right-hand side we find a Lorentz transformation, a U 1 transformation and a dilatation,

if and only if we assume the following condition on k A:D

D k B sd B . 3.6Ž .A D A

The geometric significance of these results will be discussed in later subsections. Here
Ž .we note that 3.6 suffices to show that the kinetic term of the scalar fields is invariant

under dilatations, provided one includes a space-time metric or, in flat space-time,
includes corresponding scale transformations of the space-time coordinates. Neverthe-
less, observe that k A is not a Killing vector of the hyper-Kahler space, although it still¨D

Ž .satisfies 2.21 , but an example of a conformal homothetic Killing vector. Another
Ž . A Ž .consequence is that the SU 2 vectors k , as expressed by 3.5 , are themselves Killingi j

vectors, because their derivative is proportional to the corresponding antisymmetric
complex structure

D k i j syJ i j . 3.7Ž .A B A B

From this it follows that the Kahler two-forms are exact, provided that the Killing¨
Ž .vectors are globally defined. The product rule of the SU 2 Killing vectors can now be

worked out and one finds

k B i j E k A k l yk B k l E k A i j s2 k A Ž iŽk ´ l . j. , 3.8Ž .B B

Ž .which is indeed in accord with the SU 2 structure constants.
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w xFrom the d ,d commutator we also establish the fermionic transformation rulesS Q

under the chiral transformations and the dilatations,

d z a qd f A G a z b s0 ,SUŽ2 . SUŽ2 . A b

1
a A a b ad z qd f G z sy i u z ,UŽ1. UŽ1. A b UŽ1.2

3
a A a b ad z qd f G z s u z . 3.9Ž .D D A b D2

Ž . ANote that the U 1 transformation further simplifies because d f s0.UŽ1.
To establish that the model as a whole is now invariant under the superconformal

transformations it remains to be shown that the tensor V a is invariant under theAi

diffeomorphisms generated by k A, k A and k A up to compensating transformationsi j UŽ1. D
Ž . Ž . athat act on the Sp n =Sp 1 indices in accordance with the transformations of the z

given above and the symmetry assignments of the supersymmetry parameters e i. To
emphasize the systematics we ignore the fact that k A actually vanishes and we writeUŽ1.

B a B a B a b j ayk E V yE k V yk G V q yd ´ V s0 ,k l B Ai A k l B i k l B b Ai Žk l . i A j

1 1
B a B a a B a b j ayk E V yE k V q y i d yk G V q i d V s0 ,UŽ1. B Ai A UŽ1. B i b UŽ1. B b Ai i A j2 2

3 1
B a B a a B a b j ayk E V yE k V q d yk G V q y d V s0 . 3.10Ž .D B Ai A D B i b D B b Ai i A j2 2

In these equations the first two terms on the left-hand side represent the effect of the
Ž .isometry or dilatation, the third term represents a uniform scale and chiral U 1

Ž .transformation on the indices associated with the Sp n tangent space, and the last terms
Ž . Ž .represent an SU 2 , a U 1 and a scale transformation, respectively, on the indices
Ž . Ž . Ž .associated with Sp 1 . Eq. 3.10 should be regarded as a direct extension of 2.22 .

Ž .We close with a few comments. First of all, the SU 2 isometries induce a rotation on
the complex structures,

kC E J i j y2E kC J i j sy2 J J i jC s2d Ž i ´ J j.m , 3.11Ž .k l C A B w A k l B xC k lC w A B x Žk l .m A B

as should be expected. Under dilatations, the Kahler two-forms J scale with weight¨ A B

two, whereas the complex structures J A are invariant.B

Secondly, one can verify that the isometries introduced in Subsection 2.2 commute
with scale transformations, provided that

k A sk B D k A . 3.12Ž .I D B I

This leads to another identity,

g k A k B s0 . 3.13Ž .A B I D

Ž .In particular these results hold for the SU 2 Killing vectors and imply, in addition, that
the latter commute with the tri-holomorphic isometries. To see this, one writes k B D ki j B I A

B Ž . Ž .as k D E P using 3.5 , 2.29 and the fact that the complex structures areD A B Ii j
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covariantly constant. Interchanging the order of the derivatives and extracting the
complex structure then gives

k B D k A sJ A k B , 3.14Ž .i j B I i jB I

Ž .which implies that the tri-holomorphic Killing vectors commute with SU 2 . From the
above equations one can derive the following result for the variation of the moment
maps under a dilatation:

k A E P i j sJ i j k A k B syk i jk A s2 P i j , 3.15Ž .D A I A B D I A I I

i.e. they scale with conformal weight 2. Here we have adjusted an integration constant in
P i j in the last equation. Combining the above equation with previous results, oneI

Ž .establishes that the moment maps transform under SU 2 according to

k A E P i j s2d Ž i´ P j.m . 3.16Ž .k l A I Žk l .m I

Ž .The latter expresses the fact that the moment maps form a triplet under SU 2 . It is then
Ž . Ž .easy to check that the action is invariant under dilatations, U 1 and SU 2 .

( ) ( )3.2. Hyper-Kahler potential and Sp n =Sp 1 sections¨

Ž .The existence of the homothetic Killing vector satisfying 3.6 has important conse-
Ž . A Ž .quences for the geometry. First of all 3.6 implies that k can locally be expressed inD

terms of a potential x , according to k sE x . Up to a suitable additive integrationD A A
w xconstant, one can then show that 12

1
A Bx f s g k k . 3.17Ž . Ž .A B D D2

Ž .Observe that x is positive for a space of positive signature. A second covariant
derivative acting on x yields the metric, and therefore a third derivative vanishes,

D D xsg , D D D xs0. 3.18Ž .A B A B A B C

Ž .The first condition expresses the fact that the metric is the second covariant derivative
of some function, somewhat analogous to the Kahler potential in Kahler metrics, but¨ ¨
now written in real coordinates. A Kahler potential is guaranteed to exist for any¨
hyper-Kahler space, but the potential x does not always exist. In the literature x is¨

Ž w x.sometimes called the hyper-Kahler potential see, e.g., Refs. 8,9 . This means that x¨
serves as a Kahler potential for each of the three complex structures, as follows from¨

1
C L C D L D Ld qJ d yJ D D xsJ , 3.19Ž .Ž . Ž .A A B B C D A B2

L Ž L. i jwhere J s s s J and Ls1,2,3 is kept fixed.2 i j

The hyper-Kahler potential x is invariant under isometries, as follows directly from¨
Ž . Ž .3.13 . In particular it is invariant under the SU 2 isometry; explicitly,

i ijk B jk B Adxs u ´ k E xs u ´ J k k s0 , 3.20Ž .Ž . Ž .k kSUŽ2 . i j B SUŽ2 . i j A B D D

Ž .where we made use of 3.5 . However, it is not invariant under dilatations,

dxsk B E xs2 x . 3.21Ž .D B
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Another interesting consequence of the homothety is that it enables a reformulation in
Ž . Ž .terms of local sections of an Sp n =Sp 1 bundle. The existence of such a so-called

w xassociated quaternionic bundle is known from general arguments 9 . These sections are
Ž Ž ..defined from the S-supersymmetry variation of the hypermultiplet spinors c.f. 3.2 ,

A a f 'k B f V a f . 3.22Ž . Ž . Ž . Ž .i D B i

They satisfy a quaternionic pseudo-reality condition

)i a a i j a b gA ' A s´ V G A , 3.23Ž .Ž .i bg j

Ž . Ž . aas follows from 2.12 . Using 3.6 one proves that the covariant derivative of Ai

reproduces the quaternionic vielbeine,

a a j b CD A sV , ´ V D A sg g . 3.24Ž .B i B i i j a b B BC ia

One easily verifies that the hyper-Kahler potential x can be written as¨
1 1 1

A B a i b i j a bxs g k k s G A A s ´ V A A , 3.25Ž .A B D D ba i a b i j2 2 2

or
a bV A A s´ x . 3.26Ž .ab i j i j

We also note the following identity:

J i j C D A a syd Ž i´ j. l D A a . 3.27Ž .B C k k B l

Furthermore we have

a b a gR A sR V A s0, 3.28Ž .A B b i A B b ag i

which is a consequence of D D A a s0 and the symplectic nature of the curvatureA B i
a Ž .R . This implies that the generic holonomy group is now reduced from Sp n toA B b

Ž . Ž . Ž . Ž .Sp ny1 . Also, using 3.5 , 3.26 and 3.27 , one finds

k B D A a sA a , k i j B D A a sd Ž i´ j. l A a , 3.29Ž .D B i i B k k l

so that

1
a bV A D A s ´ k qk . 3.30Ž .ab i B j i j D B i j B2

Applying a second derivative D to the above relation givesA

1
a bV D A D A s ´ g yJ . 3.31Ž .ab A i B j i j A B i j A B2

Ž .Note that the quantities in 3.31 have weight 2 under the homothety. For future use we
also recall some earlier results, but now expressed in terms of the local sections,

g A B D A a D A b s´ V ab ,A i B j i j

A B a j b j a bg D A D A sd G ,A i B i

g a b i jR V D A D A ´ sR . 3.32Ž .A B a gb C i D j A BC D
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3.3. The hypermultiplet action and transformation rules

In this subsection, we write the hypermultiplet action and transformation rules in
a Ž . Ž .terms of the sections A f introduced in 3.22 . The complete Lagrangian, includingi

the terms associated with gauged isometries, can be written as

1
b m i a a b b aLLsy G DD A DD A yG z DDuz qz DDuzž /ab m i a b2

1
a b g m dy W z g z z g zabgd m4

g a b a i b gq 2 g X V z z q2 g z V V A q h.c.a bg a b g i

1
2 i a b g d a i j b gq2 g G A X X A q g A V Y A , 3.33Ž .ab g d i i a b g j2

where the covariant derivatives are defined by

DD A a sE A a qE f A G a A b yg W a A b ,m i m i m A b i m b i

DD z a sE z a qE f A G a z b yg W a z b , 3.34Ž .m m m A b m b

and we have used Lie-algebra valued vector multiplet fields associated with gauged
a a i ja i a Ž .isometries, W , X , Y and V for the precise definition, see below , Inm b b b b

addition to the equation in Subsection 3.2 we made use of the identities,

k A V a sk A D A a s t a A b ,I Ai I A i I b i

1 1
bA a gP sy k k sy V A t A . 3.35Ž . Ž .gI i j A i j I a b i I j2 2

Ž . Ž .The first relation follows from 2.23 and 3.12 , and for the second equation we made
Ž .use of the last equality in 3.15 .

w x ŽThe action may be compared to the one in 6 more precisely, to the part that
. apertains to the rigidly supersymmetric Lagrangian . However, in that reference, the Ai

are identical to the coordinate fields, whereas in the present more general case they are
local sections as explained in Subsection 3.2. Because the target-space manifold is not

Ž . Ž .flat, we encounter a non-trivial metric in 3.33 as well as non-trivial Sp n connections
Ž . Ž .in the covariant derivatives 3.34 . Furthermore, the generators t f associated with theI

isometries are not constant, but depend on the scalar fields as we indicated before. This
means that the Lie-algebra valued vector multiplet fields associated with the gauged
isometries depend also on the hypermultiplet scalars. Their definitions are

aa IW sW t f ,Ž . bm b m I

a aa I a IX sX t f , X sX t f ,Ž . Ž .b bb I b I

ai ja I i jY sY t f ,Ž . bb I

a ai a I i a IV sV t f , V sV t f . 3.36Ž . Ž . Ž .b bb I i b i I
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w xNevertheless, the correspondence with the formulation in 6 will be helpful later on
when evaluating the coupling to conformal supergravity.

Ž . Ž .In order to obtain the transformation rules of the Sp n =Sp 1 sections under
Ž .dilations, SU 2 and isometry transformations, we use the general relation

d A a sdf B E A a sdf B V a ydf BG a A b . 3.37Ž .i B i B i B b i

Ž . Ž . Ž .Using 2.9 , 2.23 and 3.12 , we then find for a combined dilatation, chiral transforma-
tion and target-space isometry, that

d A a su A a q u j A a qgu I t a A b ydf AG a A b . 3.38Ž .Ž .i D i SUŽ2 . j I b i A b ii

This result should be combined with that for the fermions, derived in Section 2,

3 1
a a a I a b A a bdz s u z y iu z qgu t z ydf G z . 3.39Ž .D UŽ1. I b A b2 2

Similarly we determine the transformations under Q- and S-supersymmetry,

a a a b j g B a bd A s2 e z q2 ´ G V e z yd f G A ,i i i j bg Q B b i

dz a sDDu A ae i yd f BG a z b q2 g X a A b ´ i je qA a h i ,i Q B b b i j i

a i a B a b a i b j i adz sDDu A e yd f G z q2 g X A ´ e qA h . 3.40Ž .i Q B b b i j i

Ž . ŽAgain, we stress that, apart from the Sp n connection and a slight change in
.notation , these transformation rules are identical to the ones specified for a flat target

w xspace 6 , where the local sections can be identified directly with the target-space
coordinates.

Finally, we recall that it is straightforward to write down actions for the vector
multiplets that are invariant under rigid Ns2 superconformal transformations. Those

w xare based on a holomorphic function that is homogeneous of degree two 24 .

4. Cone structure and quaternionic geometry

In this section we discuss the properties of the special hyper-Kahler space. We will¨
show how this space can be described as a cone over a tri-Sasakian manifold. The latter

Ž . Ž .spaces which are of dimension 4ny1 are characterized by the existence of three 1,1
tensors and three Killing vectors that are subject to certain conditions. A manifold is
tri-Sasakian if and only if its cone is hyper-Kahler. Tri-Sasakian spaces are Einstein and¨

Ž .take the form of an Sp 1 fibration over a quaternionic space. This quaternionic space is
Žthe one that appears in the coupling of hypermultiplets to supergravity for more details,

w xsee Ref. 10 , where the relation between special hyper-Kahler, tri-Sasakian and quater-¨
.nionic spaces is reviewed from a more mathematical viewpoint .

We start by noting that the Riemann tensor vanishes upon contraction with any one of
Ž A A.the four vectors k ,k , i.e.D i j

R k E s0 , R k E s0. 4.1Ž .A BC E D A BC E i j

Ž . Ž .The first equation 4.1 is derived by antisymmetrizing the second equation 3.18 in the
w x Ž . Ž . Ž .indices AB . The second 4.1 follows from inserting 3.7 into 2.21 . Incidentally,
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Ž .4.1 implies that the Ricci tensor has at least four null vectors. However, in the case at
hand this poses no extra restrictions as hyper-Kahler spaces are Ricci-flat. The above¨

Ž .results can also derived from the fact that the Sp n holonomy group is reduced to
Ž . Ž . Ž .Sp ny1 , c.f. 3.28 . This follows from applying 3.30 .

Ž Ž . Ž ..We recall that these four vectors are orthogonal cf. 3.5 , 3.17 ,

k A k s2 x , k A k k l sd k d l x , k A k i j s0 . 4.2Ž .D D A i j A Ž i j. D A

This implies that the hyper-Kahler manifold is locally a product R4 =Q4 ny4, where R4¨
denotes a flat four-dimensional space. By decomposing R4 as Rq=S3, we can write the
hyper-Kahler manifold as a cone over a so-called tri-Sasakian manifold; the latter is then¨

Ž . 4 ny4 2 q w Ž .a fibration of Sp 1 over Q . Hence the manifold can be written as R = Sp 1 =

Q4 ny4. Spaces with a homothety can always be described as a cone. This becomes
manifest when decomposing the coordinates f A into coordinates tangential and orthog-

Ž .onal to the 4ny1 -dimensional hypersurface defined by setting x to a constant. The
w xline element can then be written in the form 12 ,

dx 2
2 a bds s q2 x h x dx dx , 4.3Ž . Ž .ab2 x

where the x a are the coordinates associated with the hypersurface3. In the present case
this hypersurface must be a tri-Sasakian space and the hyper-Kahler space is therefore a¨
cone over the tri-Sasakian space.

The purpose of the remainder of this section is to establish that Q4 ny4 is a
quaternionic manifold. In Section 5 we show how Q4 ny4 arises in the coupling of
hypermultiplets to supergravity. The tangent space of the hyper-Kahler space can be¨

Ž A A. Ž .decomposed into the four directions along k ,k , and a 4ny4 -dimensional spaceD i j

Q4 ny4 that is locally orthogonal to that. Tensors that vanish upon contraction with
Ž A A.k ,k will be called horizontal.D i j

Ž .Let us introduce a vector field VV which will serve as a connection for Sp 1 in aA i j

way that will become clear shortly,

ki j A BVV s sJ E ln x . 4.4Ž .A i j i j A B
x

This vector field is invariant under target-space dilatations and gauge isometries, i.e.

d VV sk B E VV qE k B VV s0 ,D A i j D B A i j A D B i j

d VV sk B E VV qE k B VV s0, 4.5Ž .G A i j I B A i j A I B i j

Ž .and rotates under target-space SU 2 , as follows from

d VV i j sk Bk l E VV i j qE k Bk l VV i j s2´ Ž iŽk VV l . j. . 4.6Ž .A B A A B A

2 Ž . Ž .Strictly speaking it is Sp 1 rZ where Sp 1 is the group that acts on the quaternionic vielbeine and on2

the sections introduced in the previous chapter.
3 In terms of a radial variable r 2 s2 x , this yields the usual form of a cone metric

ds2 s dr 2 q r 2 h x dx adx b .Ž .ab
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Ž .With VV we associate an Sp 1 curvature tensor,A i j

R 'E VV yE VV y´ k l VV VV qVV VVŽ .A B i j A B i j B A i j A i k B jl A jk B i l

y1 a b a bsx D D A D A qD A D A , 4.7Ž .ab A i B j A j B i

where we have used the definition

1
k l g dD sV y ´ V A V A . 4.8Ž .ž / ž /ab a b ag k bd l

x

Observe that D is a projection operator, i.e. it satisfies D V bgD syD , and itab a b gd ad

Ž . aprojects onto the 2ny2 -dimensional subspace orthogonal to the A ,i

D A b s0. 4.9Ž .ab i

Note that we have k B D D sk B D D s0, so that D is invariant under dilata-D B a b i j B a b a b

Ž . btions and SU 2 transformations. One can also show that D D A is horizontal, i.e.ab B i

k B D D A b sk B D D A b s0 . 4.10Ž .D a b B i i j a b B i

Ž .The identity 4.7 can be generalized to

1 1
y1 a bx D D A D A s ´ G q R , 4.11Ž .ab A i B j i j A B A B i j2 2

where

G sxy1´ i j D D A a D A b . 4.12Ž .A B a b A i B j

Observe that both G and R are of zero weight under the homothety and areA B A B i j
Ž A A.horizontal, i.e. they vanish upon contraction with any of the four vectors k ,k , andD i j

Ž .are thus orthogonal to the corresponding local four-dimensional subspace.
The tensor G will provide a metric for Q4 ny4. The relation between G and theA B A B

hyper-Kahler metric g is given by¨ A B

1 1
i jg s k k q k k qx GA B D A D B A i j B A B2 x x

1
i js k k qx VV VV qG , 4.13Ž .D A D B A i j B A B2 x

Ž . Ž .where we have used 3.30 and 3.31 . Observe that this relation reflects both the cone
Ž .structure of the hyper-Kahler space and the Sp 1 fibration of the tri-Sasakian space. It is¨

not possible to give an explicit expression for the inverse metric, at least not in general,
but this is not really needed in view of the horizontality of G . When acting onA B

horizontal tensors, x g A B acts as the inverse metric in view of the identity

G g C D G sxy1 G . 4.14Ž .AC D B A B

We already showed that D D A b was horizontal, and conversely, the horizontalab B i
BC a Ž .projection G g D A is in the 2ny2 -dimensional eigenspace projected onto byA B C i

D . Therefore D D A b is a candidate for the quaternionic vielbein associated withab a b B i
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Q4 ny4 and D projects onto the tangent space of Q4 ny4. More precisely, we introduceab

the following related sets of 4ny4 vectors:

1 1
a a b g a b gV̂ 'y V D V sy V D D A ,Ai bg Ai bg A i' 'x x

1
B j bˆg ' G g s´ D V , 4.15Ž .ˆAi a A B ia i j a b A'x

which satisfy algebraic relations that are completely analogous to those satisfied by the
ˆquaternionic vielbeine of the hyper-Kahler space. In particular we note that V and g¨ ˆA A

Ž .are each other’s inverse in the reduced 4ny4 -dimensional space,

A B i b i bg i j a bˆ ˆ ˆx g g V sd D V , ´ D V V sG , 4.16Ž .ˆ A a B j j ag a b Ai B j A B

bg Ž .where D V is the identity matrix projected onto the 2ny2 -dimensional subspace.ag

The significance of these results will become clear in due course.
Ž .Subsequently we note that there exists an identity similar to 4.13 which relates the

complex structures to the field strength R ,A B i j

1 1
k lJ sy k k q´ k k y x R . 4.17Ž .w wx xi j A B D A i jB k i A l jB A B i j

x 2

This motivates us to introduce the following tensors:

JJ i j sJ i j CG . 4.18Ž .A B A C B

Ž .A straightforward calculation using 4.17 shows that they satisfy

1
JJ sy R , 4.19Ž .A B i j A B i j2

so that the JJ are antisymmetric, horizontal and scale invariant. Furthermore theseA B i j

tensors satisfy the product rule

1
i j C D k l iŽk l . j Ž iŽk l . j.x JJ g JJ s ´ ´ G q´ JJ , 4.20Ž .AC D B A B A B2

Ž .which is similar to 2.8 . The tensors JJ are candidate almost-complex structures inA B i j
4 ny4 Ž .the horizontal subspace Q . Under SU 2 target-space transformations they rotate

into each other according to

kC E JJ qE kC JJ qE kC JJ s2 ´ JJ . 4.21Ž .k l C A B i j A k l C B i j B k l AC i j Ž iŽk A B l . j.

Ž .Given a horizontal tensor H that is invariant under the homothety and the SU 2A B . . .

target-space transformations, then the covariant derivative of such a tensor is no longer
ˆhorizontal. This can be cured by making use of a modified covariant derivative D ,A

defined so that the following properties hold:

A ˆ C ˆk D H sk D H s0,D C A B . . . D C A B . . .

A ˆ C ˆk D H sk D H s0. 4.22Ž .i j C A B . . . i j C A B . . .

The modified derivative is obtained by using a modified target-space connection,

ˆ C C C i j CG sG yd E ln xq2VV J . 4.23Ž .A B A B Ž A B . Ž A i j B .
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Ž .Because the modification is symmetric in A, B , the connection remains torsion free.
ˆ BC ˆ B ˆ BŽ .Observe that D x g , D k and D k should be zero when contracted with aA A D A i j

horizontal tensor. This is obviously the case as can be seen from the formulae

ˆ BC ŽB C . i jŽB C .D x g syd k q2 J k ,Ž .A A D A i j

1
B y1 B i j BD̂ k sx y k k qk k ,A D D A D i j Až /2

1 1 BB y1 B B k lD̂ k sx y k k q k k yk ´ k . 4.24Ž .ŽA i j D A i j i j A D A k i j l.ž /2 2

Ž .The above construction can be generalized to tensors H that carry also SU 2 indices,
Ž .indicating that they transform covariantly under target-space SU 2 transformations, e.g.

as in k A E H i sd i ´ H j in the simplest case. Then one can show that the derivativesk l A Žk l . j
ˆof these tensors are still horizontal, provided one covariantizes D and includes anA

Ž . A k l k lSU 2 connection VV . The crucial identity for showing this is k VV sd d .A i j i j A Ž i j.
With respect to the new connection, G is covariantly constant,A B

D̂ G s0, 4.25Ž .C A B

so that the new connection must be just the Christoffel connection associated with G .A B

Likewise the tensors JJ are covariantly constant modulo a rotation that involves theA B i j
Ž .Sp 1 connection,

ˆ k lD JJ s2 VV JJ ´ . 4.26Ž .C A B i j CkŽ i A B j. l

Note that the terms on the right-hand side covariantize the derivative on the left-hand
Ž .side with respect to SU 2 . Hence the tensors JJ define three almost-complexA B i j
4 ny4 Ž .structures in the space Q which are covariantly constant up to an Sp 1 rotation

Ž . 4 ny4proportional to the Sp 1 connections. This implies that Q is a quaternionic space
Ž w x.see, e.g., Refs. 25–27 .

To verify this result, let us compute the Riemann tensor associated with the new
Ž .connection 4.23 .

ˆ D D D i jD i jDR sR yG d qR J yR J . 4.27Ž .A BC A BC C w A B x A B i j C C w Ai j B x

ŽObserve that the right-hand side is not horizontal, but by construction via the Ricci
.identity is horizontal when acting on a horizontal tensor with lower index D. Hence,

when lowering the index by contraction with the metric G one must obtain aD E

horizontal tensor. This is confirmed by explicit construction,

ˆ ˆ E y1 i j i jR 'R G sx R qG G qR JJ yR JJ .A BC D A BC ED A BC D Dw A B xC A B i j C D C w Ai j B x D

4.28Ž .

ˆŽ .By virtue of 4.19 R has all the symmetry properties of a Riemann tensor.A BC D

Observe that the explicit factor of xy1 arises because the original curvature of the
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hyper-Kahler manifold is defined by lowering the upper index by means of the metric¨
ˆ ˆg . Furthermore it satisfies the Bianchi identity D R s0.D E w A BC x D E

Ž .Let us now calculate the Ricci tensor, which is symmetric by virtue of 4.25 ,

ˆ ˆ C DR sx R g sy2 nq1 G . 4.29Ž . Ž .A B AC BD A B

Observe that we used that the original hyper-Kahler manifold was Ricci flat and that¨
A B Ž . Ž .G g xs4 ny1 . We may also verify the expressions for the Sp 1 holonomyA B

ˆ C E D F 2 i j i jR g g x JJ sy4 ny1 JJ , 4.30Ž . Ž .A BC D EF A B

Ž .where we used that the original hyper-Kahler manifold has zero Sp 1 holonomy. These¨
w x Ž .are the expected results 28,29 for a 4ny4 -dimensional quaternionic manifold with

Ž . Ž .Sp 1 curvature given by 4.19 .
This completes the discussion of target-space properties. We now return to aspects

Ž .related to the Sp n bundle over the special hyper-Kahler space. First of all we consider¨
a modification of the connection G a such that the modified derivative of a tensorA b

that is orthogonal to A a remains orthogonal. This requires that this derivative acting oni

A a must be proportional to A a itself. When combining this with a few other obviousi i

requirements4,

2
Ž .a a i j a g a g i jĜ sG y ´ A D A qA A VV V . 4.31Ž .A b A b i A j i j A gb

x

With this modification, the tensors V and G remain covariantly constant. Theab a b

presence of the term proportional to VV i j is required to preserve covariance with respectA
Ž .to target-space SU 2 transformations. This term also ensures that the modification is

horizontal. With the modified connection we establish the required result,

1
a a a k lD̂ A s E ln x A qVV A ´ , 4.32Ž .A i A i Aik l2

Ž .where the last term can be interpreted as an SU 2 covariantization of the derivative on
Ž .the left-hand side. The result 4.32 suffices to show that the modified derivative of a

tensor that is orthogonal to A a, will remain orthogonal. It is now obvious that thei

projection operator D is covariantly constant under the modified derivativeab

D̂ D s0. 4.33Ž .A a b

ˆ C ˆ a Ž .Including the modified connections G and G as well as the SU 2 connec-A B A b
1i j a aˆtion VV , one can explicitly verify that D V is equal to E ln x V , up to terms thatA A B i A B i2

4 In determining the precise modifications of the various connections, we were also guided to some extent
by supersymmetry. However, this aspect is postponed to Section 5, where we outline the significance of the
results of this section in the context of the coupling of hypermultiplets to supergravity.
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a Ž .are proportional to A . This implies that the quaternionic vielbeine introduced in 4.15k

are covariantly constant with respect to the new connections, so that we have

a aˆ ˆ ˆ ˆ'D A r x sD V sD g s0 . 4.34Ž .ˆŽ .A i A B i A B ia

This result leads to two integrability relations

ˆ a b a k jR A yR A ´ s0 ,A B b i A B ik j

D i b i i k lˆ ˆR g qR g qR g ´ s0 . 4.35Ž .ˆ ˆ ˆA BC D a A B a Cb A B Ca k l

ˆ a Ž .Here R is the curvature associated with the new connection 4.31 . We canA B b

explicitly evaluate this tensor,

2 1
a a ag i j Žd e . i j a gR̂ sR q V D ´ D A D A D y R A A V ,A B b A B b gd A i B j eb A B i j gb

x x

4.36Ž .
which indeed satisfies the first integrability relation. Note that all expressions appearing

Ž .in 4.36 are horizontal.
Now we recall that for a special hyper-Kahler manifold the tensor W defined in¨ abgd

Ž .2.16 satisfies the constraint

W A d s0 . 4.37Ž .abgd i

With this in mind we write the new curvature tensors as follows:

1
i j k l a b g dˆ ˆ ˆ ˆ ˆ ˆR s ´ ´ V V V V W qG GA BC D Ai B j Ck D l a bgd Dw A B xC2

y2 JJ i j JJ q2 JJ i j JJ ,A B C D i j C w A B x D i j

1
e i j g dˆ ˆ ˆ ˆV R sy´ V V W q2 D DŽ .ae A B b Ai B j a bgd a g d b2

y1 i j g dqx R A A V V , 4.38Ž .A B i j ga db

where

Ŵ 'x W . 4.39Ž .abgd a bgd

One can now verify that these curvatures satisfy also the second integrability condition
Ž .4.35 . We will return to this and related issues in Section 5.

We close this section with a brief discussion of the isometries. For every tri-holomor-
phic Killing vector of the special hyper-Kahler manifold we construct a corresponding¨
vector in the horizontal manifold Q4 ny4 by the projection

ˆ Bk sG k . 4.40Ž .I A A B I

ˆ ˆ ˆ ˆBy explicit calculation one can then show that D k qD k s0, so that we have aA IB B I A

corresponding Killing vector in the horizontal space and thus an isometry. Observe that
Ž .the SU 2 isometries of the special hyper-Kahler manifold do not generalize in this way,¨

ˆbecause the corresponding k would simply vanish. This is not so surprising, as theI A
Ž . Ž .SU 2 acts on the corresponding tri-Sasakian space through its Sp 1 fibre.
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To study whether these isometries are tri-holomorphic in the horizontal subspace, we
first raise the index according to

ˆ A A B C A ˆ i j Ak sx g G k sk q2 P k . 4.41Ž .I BC I I I i j

ˆ y1where P sx P . The transformation of the almost complex structures in theI i j I i j

horizontal subspace is then governed by the expression,

ˆC ˆC C Ck E JJ y2E k JJ sk E JJ y2E k JJI C A B i j w A I B xC i j I C A B i j w A I B xC i j

ˆ k l C Cq2 P k E JJ y2E k JJ . 4.42Ž .Ž .I k l C A B i j w A k l B xC i j

Ž .The first line on the right-hand side is zero, as follows from 4.17 and the fact that the
Ž .isometries are tri-holomorphic and commute with dilatations and SU 2 in the special

ˆ k l Ž .hyper-Kahler space. The second line is equal to 4 JJ ´ P by virtue of 4.21 . We¨ A BkŽ i j. l I
Ž .can now elevate the derivatives on the left-hand side to SU 2 covariant derivatives. In

this way we find

ˆ ˆC ˆ ˆC ˆ k lD JJ k yD JJ k sy2 R ´ P , 4.43Ž .ž / ž /A BC i j I B AC i j I A BkŽ i j. l I

ˆC Žwhere we used the horizontality of k and the Bianchi identity for or the covariantI
.constancy of R AJJ . The solution is given byA B i j A B i j

ˆ B ˆ ˆJJ k sD P , 4.44Ž .A B i j I A I i j

which can also be verified by explicit calculation. By substituting previous results one
verifies directly the modified equivariance condition,

ˆ A ˆ B K ˆ k l ˆ ˆJJ k k syf P q4 ´ P P . 4.45Ž .A B i j I J I J K i j IkŽ i J j. l

The above results are in complete agreement with the moment map construction for
ˆ Aw xquaternionic manifolds 21,30 . The fact that the isometries generated by k actI

consistently on horizontal tensors is ensured by the following identities which follow
from explicit calculation:

B ˆ ˆ A B ˆ ˆ Ak D k sk D k s0 . 4.46Ž .D B I i j B I

Finally the algebra of the isometries is governed by

ˆ B ˆ A ˆ B ˆ A K ˆ A ˆ BˆC Ai jk E k yk E k syf k q2 JJ k k k . 4.47Ž .I B J J B I I J K BC i j I J

Ž .Hence the algebra of isometries is satisfied up to SU 2 .

5. Locally superconformal hypermultiplets

In this last section we consider the coupling of the hypermultiplets to superconformal
gravity. To that order we introduce the Weyl multiplet, which contains the gauge fields

w xassociated with the superconformal symmetries as well as some extra matter fields 5 .
The bosonic gauge fields are the vielbeine ea, the spin-connection v ab, the dilatationalm m

gauge field b , the gauge field associated with special conformal boosts f a and them m



[ ] ( )B. de Wit et al.rNuclear Physics B 568 PM 2000 475–502498

Ž . Ž . i Ž .gauge fields associated with SU 2 =U 1 , denoted by V antihermitian and A . Them j m

fermionic gauge fields are the gravitino fields c i and the fields f i associated withm m

ŽS-supersymmetry. Finally, the matter fields are T antisymmetric and self-dual inab i j
Ž . . iLorentz indices and antisymmetric in SU 2 indices , a spinor x and a real scalar D.

The fields v ab, f a and f i are not independent and can be expressed in terms of them m m

w xother fields. We refer to 5,6 for more details on the notation and conventions.
The transformation rules have been given in previous sections, but will change in the

context of local supersymmetry. The most obvious change concerns the replacement of
the derivatives by derivatives that are covariant with respect to the additional gauge
symmetries. The derivatives covariant with respect to the bosonic gauge symmetries for
the scalar fields, the sections and the fermion fields, read

1
A A A i jk A I ADD f sE f yb k q V ´ k yg W k ,m m m D m k i j m I2

1
a a a j a a b A a bDD A sE A yb A q V A yg W A qE f G A ,m i m i m i m i j m b i m A b i2

1 3 1
a a ab a a aDD z sE z y v g z y b z q iA zm m m ab m m4 2 2

yg W a z b qE f A G a z b , 5.1Ž .m b m A b

where we have also included the terms related to possible gauged isometries. All
covariantizations follow straightforwardly from the formulae presented in Subsection 3.3

w x Aand from the gauge field conventions given in 5,6 . Observe that the derivative in E fm

multiplying the connection G a does not require an additional covariantization.A b

The transformation rules under Q- and S-supersymmetry are now as follows:

A A i a Ai adf s2 g e z qg e z ,ž /i a a i

a a a b j g B a bd A s2 e z q2 ´ G V e z yd f G A ,i i i j bg Q B b i

dz a sDuA ae i yd f BG a z b q2 g X a A b ´ i je qA a h i ,i Q B b b i j i

a i a B a b a i b j i adz sDuA e yd f G z q2 g X A ´ e qA h , 5.2Ž .i Q B b b i j i

Žwhere we have made use of the supercovariant derivatives we also give the supercovari-
a .ant derivative of z which is not needed above ,

A A A i a Ai aD f sDD f yg c z yg c z ,m m i a m a m i

a a a a b j gD A sDD A yc z y´ G V c z ,m i m i m i i j bg m

1 1
a a a i a iD z sDD z y DuA c y A f . 5.3Ž .m m i m i m2 2

We have verified that no further modifications of the fermionic transformation rules
beyond those given above are possible, assuming that the bosonic transformation rules
remain the same. One of the underlying reasons for the absence of additional terms may
be that the above rules are already consistent with rigid supersymmetry and with the

w xcase of a flat hyper-Kahler manifold which was taken as a starting point in 6 . All¨
additional modifications would thus have to vanish in the corresponding limits, while at
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the same time one must preserve covariance under target-space diffeomorphisms and
fermionic frame reparametrizations. Therefore the possible modifications should be
proportional to the target-space curvature times the superconformal fields and, as it turns
out, it is difficult if not impossible to see how such terms could emerge. Given the fact
that the transformation rules take the same form, we expect the same situation for the
Lagrangian, where, again, it is difficult to construct suitable modifications that would
vanish in the appropriate limits.

Motivated by these considerations, we write down the Lagrangian by converting and
Ž . w xcovariantizing the relevant equation 3.28 in Ref. 6 . Here we suppress the hypermulti-

plet auxiliary fields, as we no longer insist on off-shell supersymmetry for the hypermul-
tiplets. The result reads as follows, where the derivatives are all fully covariantized:

1 3
y1 i j a a be LLs ´ V A D D q D Aab i a jž /2 2

1
2 i j a b g d a i j b gqV 2 g ´ A X X A q g A Y Aab i g d j i g j2

1
a i m a by z y c g A G Duzm i baž / ž2

3 1
jk b jk ab bqV ´ x A y ´ T g zab j k ab jkž /2 4

bi g b gyg V V A q2 X z q h.c.ž /ab g i g /
1

a i b gq g V A V z q h.c. . 5.4Ž .ab i g2

After substituting the expressions for the dependent gauge fields f i and f a in terms ofm m

the other fields and dropping a total derivative, we write the Lagrangian as follows:

1 1 1
y1 b m i a b i a b i ae LLsy G DD A DD A q R G A A q D G A Aab m i a b i a b i2 12 4

1
a b b a a b g m dyG z DDuz qz DDuz y W z g z z g zž /ab a bgd m4

1 1
b i a y1 mnrs j b i a m jq G y A A e ´ c g DD c q A A c g xab i m j n r s i j mž 12 8

1 1
b k a i j mn i a b ag b ab i j ly A A c c T yA z x q V G z g T ´ zk m n i j i gl ab i j48 16

2 1
b m i a i a b mn i a b ab m jqz g DDu A c y A z g DD c q A z g T g cm i m n i ab i j m3 24

1
y1 mnrs i b jay e ´ c g c A DD Am n r j i s4

1
b m n i a i j a r ly z g g c c z q´ V G c z qh.c. . 5.5Ž .m i n rl n jž / /2
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Here we did not include the terms related to gauged isometries. To incorporate those one
includes the relevant terms into the covariant derivatives and adds the following
g-dependent terms to the Lagrangian:

1
y1 2 i a b g d a i j b ge LL s2 g G A X X A q g A V Y Ag a b g d i i a b g j2

g a b a i b d i m b a gqg 2 X z z V q2 V z V A y2 c g z X V Aa bg a b d i m b ag i

1 1
i m k a g b i mn k b g ay c g V V A A y c g c A V A X qh.c. .m b ag i k m n k ag i b2 2

5.6Ž .
As mentioned above, these results are in agreement with the action presented in

w xSubsection 2.2 as well as with the results of 6 in the appropriate limits. In addition we
Ž . Ž .performed a number of independent checks on 5.5 and 5.6 . For instance, because the

a asuperalgebra closes only modulo the field equations for the fermion fields z and z ,
we have calculated these field equations from the supersymmetry transformation rules
Ž .5.2 . As it turns out the result is in agreement with the field equations derived from the
action.

The above action is invariant under all superconformal symmetries. In particular the
Ž .scalar fields are subject to dilatations and to SU 2 transformations. Ignoring the

contributions from the vector multiplets, which are essential for obtaining the complete
and consistent action for Poincare supergravity coupled to vector multiplets and hyper-´
multiplets, but which do not affect the target-space geometry of the hypermultiplets, we
express the bosonic terms in scale-invariant quantities, by introducing a normalized
section

ˆ a y1r2 aA sx A , 5.7Ž .i i

ˆ a ˆ bwhich satisfies V A A s´ . Similarly we redefine the various other fields, suchab i j i j

as the vierbeine, spin connection, etc., by a x-dependent scale transformation. The result
for the bosonic terms then takes the form

1 1
i j a m bˆ ˆLLsy e V ´ DD A DD A y RyD , 5.8Ž .ab m i j2 3

where R is the Ricci scalar of the space-time. Suppressing possible gauged isometries
for convenience, this results in

1 1 1
i j A a k a m B b m l bˆ ˆ ˆ ˆLLsy e V ´ E f D A q V A E f D A q V Aab m A i m i k B j j lž / ž /2 2 2

1 1
q e Rq e D . 5.9Ž .

6 2
Ž . jThe field equations for the SU 2 gauge fields V yield,m i

V j sy2 E f A VV ´ k j . 5.10Ž .m i m A ik

This result can be substituted back into the Lagrangian, which then reads
1 1 1

A m BLLsy e G E f E f q e Rq e D , 5.11Ž .A B m2 6 2
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so that the target-space metric G corresponds indeed to the quaternionic space whichA B

we constructed in Section 4. The terms with the Ricci scalar and the auxiliary field D
combine with similar terms from the Lagrangian of the vector multiplets to give the
Einstein–Hilbert action.

The material derived in Section 4 now fits in nicely with what is known about the
w xgeneral coupling of hypermultiplets to supergravity 2 . First of all, the quantity Dab

projects out precisely the S-invariant hypermultiplet spinors which thus describe 2ny2
physical spinors after modding out the S-supersymmetry. Hence, the non-linear sigma
model comprises precisely the expected 4ny4 scalars and 2ny2 spinors. The relevant

Ž .quaternionic vielbeine have already been defined in 4.15 , but can equally well be
obtained from working out the above Lagrangian after removing the appropriate gauge
degrees of freedom We will list a number of relevant identities, which all follow from
Section 4,

1 1
a bˆ ˆD V V s ´ G q R ,ab Ai B j i j A B A B i j2 2

Ai B j i jG g g s´ D ,ˆ ˆA B a b a b

A k Bl Žk l .R g g s2 d d D . 5.12Ž .ˆ ˆA B i j a b i j a b

Ž .The second integrability condition 4.35 can be rewritten as

C i D j i j g i jˆ ˆR g g sy´ D R yD R , 5.13Ž .ˆ ˆA BC D a b ag A B b a b A B

Ž . Ž .which gives the decomposition of the Riemann tensor into an Sp ny1 and an Sp 1
Ž .curvature. Of course, this relation is already incorporated into the expression 4.38 and

ˆ a Ž Ž ..its correctness can also be verified directly. The curvature R satisfies c.f. 4.36 ,A B b

g g i j g d i jˆ ˆV R sV R y2´ g g qV V A A R . 5.14Ž .ˆ ˆag A B b ag A B b i j AŽa Bb . ag bd i j A B

Upon projection with D, the last term vanishes and one finds an identity that is well
known from the literature.

Hence we see that all aspects of quaternionic geometry that arise in the coupling of
hypermultiplets to supergravity are correctly reproduced. Our results provide an elegant

w xextension of the work reported in 6 and give a unified prescription for all hypermulti-
plet couplings to supergravity. Although this is in principle straightforward, it remains to
work out the details of the Lagrangian and transformation rules after removing the gauge
degrees of freedom associated with S-supersymmetry.
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