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1. Introduction

The general theory of duality invariance of abelian gauge theory was developed

in [1, 2] and further elaborated in a series of publications (see [3]–[10] and refer-

ences therein). In this paper we generalize the duality equation of Gaillard and

Zumino [6, 7], also obtained independently in [4], to N = 1, 2 supersymmetric the-
ories. This duality equation is the condition for a theory with lagrangian L(Fab) to

be invariant under U(1) duality transformations

δF = λG , δG = −λF , (1.1)

where

G̃ab =
1

2
εabcdG

cd = 2
∂L

∂F ab
. (1.2)

The equation reads

Gab G̃ab + F
ab F̃ab = 0 (1.3)

and presents a nontrivial constraint on the lagrangian.

The Born-Infeld (BI) theory [11] is a particular solution of eq. (1.3). The BI

action naturally appears in string theory [12, 13] (see [14] for a recent review). Its

N = 1 supersymmetric generalization [16] (see also [15]) turns out to be the action for
a Goldstone multiplet associated with partial breaking of N = 2 to N = 1 supersym-
metry [17, 18]. It has been conjectured [19] that a N = 2 supersymmetric generaliza-
tion of the BI action should provide a model for partial breakdown N = 4→ N = 2,
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with the N = 2 vector multiplet being the corresponding Goldstone field, but the ex-
isting mechanisms of partial supersymmetry breaking are very difficult to implement

in the N = 4 case. A candidate for N = 2 BI action has been suggested in [20]. It
correctly reduces to the Cecotti-Ferrara action [16] once the (0, 1/2) part of theN = 2
vector multiplet is switched off. However, there exist infinitely manyN = 2 superfield
actions with that property. Therefore, requiring the correct N = 1 reduction does
not suffice to fix a proper N = 2 generalization of the BI action. One has to impose
additional physical requirements. Since no mechanism for partial N = 4 → N = 2
breaking is currently available, it is natural to look for the N = 2 BI action as a
solution of the supersymmetric generalization of the Gaillard-Zumino equation (1.3).

In this paper we find N = 1, 2 supersymmetric generalizations of the duality
equation (1.3). They are presented in eqs. (2.8) and (3.10), respectively. It is not

surprising that the Cecotti-Ferrara action [16] is a solution of the N = 1 duality
equation. In contrast, the action proposed in [20] does not satisfy the N = 2 duality
equation. However, the key to the construction of duality invariant N = 2 BI action
was given in [21] where a nonlinear N = 2 superfield constraint was introduced as a
minimal extension of that generating the N = 1 BI action [17, 18]. It was asserted
that the constrained superfield introduced does generate the N = 2 action given
in [20]. While this claim is incorrect, the constrained superfield nevertheless does

generate the duality invariant N = 2 action that reduces to the N = 1 BI action
after the (0, 1/2) part of the N = 2 vector multiplet is switched off.
One application of the N = 2 duality equation may be to compute the duality

invariant low-energy effective actions of supersymmetric gauge theories. The N = 4
super Yang-Mills theory is expected to be self-dual [22, 23]. It was proposed in [24] to

look for its low-energy action on the Coulomb branch as a solution of the self-duality

equation via the N = 2 superfield Legendre transformation, and a few subleading
corrections to the low-energy action were determined. For non-supersymmetric the-

ories it was shown in [7] that the Gaillard-Zumino equation (1.3) implies self-duality

via Legendre transformation. The Gaillard-Zumino equation is much simpler to solve

and this advantage becomes essential in supersymmetric theories, where the proce-

dure of inverting the Legendre transformation appears to be more involved at higher

orders of perturbation theory [24].

We have already remarked that (1.3) implies self-duality via Legendre transfor-

mation, but it is in fact a stronger condition. With reference to recent interest in the

(supersymmetric) BI action within the context of D-branes, this stronger condition

is in fact what one would like to impose. As was noted in [25, 26, 27], the D3-brane

world-volume action, which contains, in addition to the gauge field also the axion

and the dilaton fields, possesses a non-trivial SL(2,R) symmetry. The BI action we

are considering corresponds to the CP-even part of this action for the special choice

of vanishing axion and dilaton. This background is invariant precisely under the

U(1) ⊂ SL(2,R) duality group we are considering.
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Our paper is organized as follows. In section 2 we derive theN = 1 generalization
of the Gaillard-Zumino equation and give a family of duality invariant nonlinear

N = 1 models. The N = 1 BI action [16] is a special member of this family. We
also introduce a superconformally invariant generalization of the N = 1 BI action
by coupling the vector multiplet to a scalar multiplet. In section 3 we present the

N = 2 duality equation and derive its nonperturbative solution that reduces to the
N = 1 BI action when the (0, 1/2) part of N = 2 vector multiplet is switched off.
We also develop a consistent perturbative scheme of computing duality invariant

N = 2 superconformal actions. In appendix A we discuss the general structure of
the duality equation in the non-supersymmetric case and we show that any solution

of (1.3) admits a supersymmetric extension. In appendix B we give an explicit proof

that the N = 2 BI action is self-dual with respect to Legendre transformation.

2. N = 1 duality rotations
Let S[W, W̄ ] be the action describing the dynamics of a singleN = 1 vector multiplet.
The (anti) chiral superfield strengths W̄α̇ and Wα,

1

Wα = −1
4
D̄2Dα V , W̄α̇ = −1

4
D2D̄α̇ V , (2.1)

are defined in terms of a real unconstrained prepotential V . As a consequence, the

strengths are constrained superfields, that is they satisfy the Bianchi identity

DαWα = D̄α̇ W̄
α̇ . (2.2)

Suppose that S[W, W̄ ] can be unambiguously defined2 as a functional of uncon-

strained (anti) chiral superfields W̄α̇ and Wα. Then, one can define (anti) chiral

superfields M̄α̇ and Mα as

iMα ≡ 2 δ

δW α
S[W, W̄ ] , −i M̄ α̇ ≡ 2 δ

δW̄α̇
S[W, W̄ ] . (2.3)

The equation of motion following from the action S[W, W̄ ] reads

DαMα = D̄α̇ M̄
α̇ . (2.4)

Since the Bianchi identity (2.2) and the equation of motion (2.4) have the same

functional form, one may consider infinitesimal U(1) duality transformations

δWα = λMα , δMα = −λWα . (2.5)

1Our N = 1 conventions correspond to [28].
2This is always possible if S[W, W̄ ] does not involve the combination DαWα as an independent

variable.
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To preserve the definition (2.3) of Mα and its conjugate, the action should transform

as

δS = − i
4
λ

∫
d6z {W αWα −MαMα}+ i

4
λ

∫
d6z̄
{
W̄α̇W̄

α̇ − M̄α̇M̄ α̇
}
, (2.6)

in complete analogy with the analysis of [7] for the non-supersymmetric case.3 On

the other hand, S is a functional of Wα and W̄α̇ only, and therefore its variation

under (2.5) is

δS =
i

2
λ

∫
d6zMαMα − i

2
λ

∫
d6z̄ M̄α̇M̄

α̇ . (2.7)

Since these two variations must coincide, we arrive at the following reality condition∫
d6z
(
W αWα +M

αMα

)
=

∫
d6z̄
(
W̄α̇W̄

α̇ + M̄α̇M̄
α̇
)
. (2.8)

In eq. (2.8), the superfields Mα and M̄α̇ are defined as in (2.3), and Wα and

W̄α̇ should be considered as unconstrained chiral and antichiral superfields, respec-

tively. Eq. (2.8) is the condition for the N = 1 supersymmetric theory to be duality
invariant. We call it the N = 1 duality equation.
A nontrivial solution of eq. (2.8) is the N = 1 supersymmetric Born-Infeld

action [16, 17, 18] (see also [15])

SBI =
1

4

∫
d6z W 2 +

1

4

∫
d6z̄ W̄ 2 +

1

g4

∫
d8z

W 2 W̄ 2

1 + 1
2
A +

√
1 + A+ 1

4
B2
,

A =
1

2g4

(
D2W 2 + D̄2 W̄ 2

)
, B =

1

2g4

(
D2W 2 − D̄2 W̄ 2

)
, (2.9)

where g is a coupling constant. This is a model for a Goldstone multiplet associated

with partial breaking of N = 2 to N = 1 supersymmetry [17, 18] (see also [14]),
with Wα being the Goldstone multiplet.

New examples of N = 1 duality invariant models can be obtained by considering
a general action of the form (see also appendix A)

S =
1

4

∫
d6z W 2 +

1

4

∫
d6z̄ W̄ 2 +

1

2

∫
d8z W 2 W̄ 2 L(D2W 2, D̄2 W̄ 2) , (2.10)

where L(u, ū) is a real analytic function of the complex variable u ≡ D2W 2 and its
conjugate. One finds

iMα = Wα

{
1− 1
2
D̄2
[
W̄ 2
(
L+D2

(
W 2
∂L

∂u

))]}
. (2.11)

3Note that the action S itself is not duality invariant, but rather the combination S −
i
4

∫
d6zWM + i

4

∫
d6z̄ W̄ M̄ . The invariance of this functional under a finite U(1) duality ro-

tation by π/2, is equivalent to the self-duality of S under Legendre transformation, S[W, W̄ ] −
i
2

∫
d6zWWD +

i
2

∫
d6z̄ W̄ W̄D = S[WD, W̄D] , with WD being the dual chiral field strength.
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Then, eq. (2.8) leads to

4

∫
d8z W 2 W̄ 2

(
Γ− Γ̄) = ∫ d8z W 2 W̄ 2 (Γ2 D̄2 W̄ 2 − Γ̄2D2W 2) , (2.12)

where

Γ ≡ L+ ∂L
∂u
D2W 2 =

∂(uL)

∂u
. (2.13)

Since the latter functional relation must be satisfied for arbitrary (anti) chiral super-

fields W̄α̇ and Wα, we arrive at the following differential equation for L(u, ū):

4

(
∂(uL)

∂u
− ∂(ū L)
∂ū

)
= ū

(
∂(uL)

∂u

)2
− u
(
∂(ū L)

∂ū

)2
. (2.14)

Similar to the non-supersymmetric case [4, 7], the general solution of this equation

involves an arbitrary real analytic function of a single real argument, f(ū u).4 It is

an easy exercise to check that the N = 1 BI action (2.9) satisfies eq. (2.14).
We conclude this section by giving an extension of the model (2.9), in which

the vector multiplet is coupled to an external chiral superfield Φ in such a way

that the system is not only duality invariant but also invariant under the N = 1
superconformal group. The action is

S =
1

4

∫
d6z W 2 +

1

4

∫
d6z̄ W̄ 2 +

∫
d8z

W 2 W̄ 2 (Φ Φ̄)−2

1 + 1
2
A +

√
1 +A+ 1

4
B2
, (2.15)

A =
1

2

(
D2

Φ̄2

(W 2
Φ2

)
+
D̄2

Φ2

(W̄ 2
Φ̄2

))
, B =

1

2

(
D2

Φ̄2

(W 2
Φ2

)
− D̄

2

Φ2

(W̄ 2
Φ̄2

))
.

Superconformal invariance follows from the superconformal transformation proper-

ties as given in [30]. The theory is invariant under the duality rotations (2.5) with Φ

being inert. By its very construction, the action is also invariant under global phase

transformations of Φ. In a sense, this model is analogous to the BI theory coupled

to dilaton and axion fields [5, 8].

Similar to the analysis of [17, 18], it is possible to show that the action (2.15)

can be represented in the form

S =
1

4

∫
d6zX+

1

4

∫
d6z̄ X̄ , (2.16)

where the chiral superfield X is a functional of Wα and W̄α̇ such that it satisfies the

nonlinear constraint

X+X
D̄2

4Φ2

(
X̄

Φ̄2

)
= W 2 . (2.17)

The N = 1 BI theory is obtained from this model by freezing Φ.
4Among non-supersymmetric duality invariant models, only the Maxwell action and the BI

action satisfy the requirement of shock-free wave propagation [29].
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More generally, for any duality invariant system defined by eqs. (2.10) and (2.14),

the replacement

W 2 W̄ 2 −→ W
2 W̄ 2

Φ2 Φ̄2
, D2 −→ 1

Φ̄2
D2
1

Φ2
(2.18)

in (2.10) preserves the duality invariance but turns the action into a N = 1 super-
conformal functional.

3. N = 2 duality rotations
We now generalize the results of the previous section to the case of N = 2 su-
persymmetry. We will work in N = 2 global superspace R4|8 parametrized by
ZA = (xa, θαi , θ̄iα̇), where i = 1, 2. The flat covariant derivatives DA = (∂a,Diα, D̄α̇i )
satisfy the standard algebra

{Diα,Djβ } = { D̄α̇i, D̄β̇j } = 0 , {Diα, D̄α̇j } = −2 i δij (σa)αα̇ ∂a . (3.1)

Throughout this section, we will use the notation:

Dij ≡ Dα(iDj)α = DαiDjα , D̄ij ≡ D̄(iα̇ D̄j) α̇ = D̄iα̇D̄j α̇
D4 ≡ 1

16
(D1)2 (D2)2 , D̄4 ≡ 1

16
(D̄1)2 (D̄2)2 . (3.2)

An integral over the full superspace can be reduce to one over the chiral subspace or

over the antichiral subspace as follows:∫
d12Z L(Z) =

∫
d8Z D4L(Z) =

∫
d8Z̄ D̄4L(Z) . (3.3)

3.1 N = 2 duality equation
The discussion in this subsection is completely analogous to the one presented in the

first part of section 2. We will thus be brief. If S[W, W̄ ] is the action describing the
dynamics of a single N = 2 vector multiplet, the (anti) chiral superfield strengths
W̄ and W are [31]

W = D̄4Dij Vij , W̄ = D4D̄ij Vij (3.4)

in terms of a real unconstrained prepotential V(ij). The strengths then satisfy the

Bianchi identity [32]

DijW = D̄ij W̄ . (3.5)

Suppose that S[W, W̄ ] can be unambiguously defined as a functional of un-
constrained (anti) chiral superfields W̄ and W. Then, one can define (anti) chiral
superfields M̄ andM as

iM≡ 4 δ
δW S[W, W̄ ] , −iM̄ ≡ 4 δ

δW̄ S[W, W̄ ] (3.6)
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in terms of which the equations of motion read

DijM = D̄ij M̄ . (3.7)

Again, since the Bianchi identity (3.5) and the equation of motion (3.7) have the

same functional form, one can consider infinitesimal U(1) duality transformations

δW = λM , δM = −λW . (3.8)

Repeating the analysis of Gaillard and Zumino [7] (see also section 2), we now have

to impose

δS = − i
8
λ

∫
d8Z
(
W2 −M2

)
+
i

8
λ

∫
d8Z̄
(
W̄2 − M̄2

)
=
i

4
λ

∫
d8ZM2 − i

4
λ

∫
d8Z̄ M̄2 . (3.9)

The theory is thus duality invariant provided the following reality condition is satis-

fied: ∫
d8Z
(
W2 +M2

)
=

∫
d8Z̄
(
W̄2 + M̄2

)
. (3.10)

Here M and M̄ are defined as in (3.6), and W and W̄ should be considered
as unconstrained chiral and antichiral superfields, respectively. Eq. (3.10) serves as

our master functional equation to determine duality invariant models of the N = 2
vector multiplet. We remark that, as in the N = 1 case, the action itself is not
duality invariant, but

δ

(
S − i

8

∫
d8ZMW + i

8

∫
d8Z̄ M̄W̄

)
= 0 . (3.11)

The invariance of the latter functional under a finite U(1) duality rotation by π/2,

is equivalent to the self-duality of S under Legendre transformation,

S[W, W̄ ]− i
4

∫
d8ZWWD + i

4

∫
d8Z̄ W̄W̄D = S[WD, W̄D] , (3.12)

where the dual chiral field strength WD is given by eq. (B.2).

3.2 N = 2 BI action
Recently, Ketov [20] suggested the following action

SBI = 1
8

∫
d8ZW2 + 1

8

∫
d8Z̄ W̄2 + 1

4

∫
d12Z W2 W̄2

1− 1
2
A +

√
1−A+ 1

4
B2
,

A = D4W2 + D̄2 W̄2 , B = D4W2 − D̄4 W̄2 (3.13)

7
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as the N = 2 supersymmetric generalization of the BI action. We will first demon-
strate that it indeed reduces to the N = 1 BI action. We then show that this
condition is not strong enough to uniquely fix the N = 2 BI action but this is
possible if, in addition, one imposes eq. (3.10).

Given a N = 2 superfield U , its N = 1 projection is defined to be U | =
U(Z)|θ2=θ̄2=0. The N = 2 vector multiplet contains two independent chiral N = 1
components

W| = √2Φ , D2αW| = 2iWα , (D2)2W| = √2 D̄2Φ̄ . (3.14)

Using in addition that

∫
d8Z = −1

4

∫
d6z (D2)2 ,

∫
d12Z = 1

16

∫
d8z (D2)2 (D̄2)2 , (3.15)

the freeN = 2 vector multiplet action straightforwardly reduces to N = 1 superfields

Sfree = 1
8

∫
d8ZW2+1

8

∫
d8Z̄ W̄2 =

∫
d8z Φ̄Φ+

1

4

∫
d6z W 2+

1

4

∫
d6z̄ W̄ 2 . (3.16)

If one switches off Φ,

Φ = 0 =⇒ (D2)2W| = 0 , (3.17)

the action (3.13) reduces to the N = 1 BI theory (2.9) (with g = 1). However,
as we will now demonstrate, there exist infinitely many N = 2 actions with that
property.5 To demonstrate why this is possible, consider the following obviously

different functionals∫
d12ZW2W̄2 { (D4W2)2D̄4W̄2 + (D̄4W̄2)2D4W2 } ,∫
d12ZW2W̄2

{
(D4W2) D̄4

[
W̄2D4W2

]
+ (D̄4W̄2)D4

[
W2D̄4W̄2

]}
.

They coincide under (3.17). Therefore, the requirement of correct N = 1 reduction
is too weak to fix a proper N = 2 generalization of the BI action.6
We suggest to search for a N = 2 generalization of the BI action as a solution

of the N = 2 duality equation (3.10) compatible with the requirement to give the
correct N = 1 reduction. We have checked to some order in perturbation theory
5The property WαWβWγ = 0 of the N = 1 vector multiplet, which is crucial in the discussion

of the N = 1 BI action, has no direct analog for its N = 2 counterpart.
6It was claimed in [20, 21] that the action (3.13) is self-dual with respect to the N = 2 Legendre

transformation. This is, however, not correct.
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that these two requirements uniquely fix the solution:

SBI = 1
8

∫
d8ZW2 + 1

8

∫
d8Z̄W̄2 + Sint ,

Sint = 1
8

∫
d12ZW2W̄2

{
1 +
1

2

(
D4W2 + D̄4W̄2

)
+
1

4

(
(D4W2)2 + (D̄4W̄2)2

)
+

+
3

4
(D4W2)(D̄4W̄2) + 1

8

(
(D4W2)3 + (D̄4W̄2)3

)
+

+
1

2

(
(D4W2)2(D̄4W̄2) + (D4W2)(D̄4W̄2)2

)
+

+
1

4

(
(D4W2)D̄4

[
W̄2D4W2

]
+ (D̄4W̄2)D4

[
W2D̄4W̄2

])}
+

+O(W12) . (3.18)

The expression in the last two lines of (3.18) constitutes the leading perturbative

corrections where our solution of the duality equation (3.10) differs from the ac-

tion (3.13).

We now present the nonperturbative solution of (3.10) which reduces to the

N = 1 BI action (2.9) under the condition (3.17). The action reads

SBI = 1
4

∫
d8Z X + 1

4

∫
d8Z̄ X̄ , (3.19)

where the chiral superfield X is a functional of W and W̄ defined via the con-
straint7

X = X D̄4X̄ + 1
2
W2 . (3.20)

Solving it iteratively for X one may verify the equivalence of (3.19) and (3.18) up
to the indicated order. The constraint (3.20) was introduced in [21] as a N = 2
generalization of that generating the N = 1 BI action (2.9) [17, 18] (see eq. (2.17)).
It was also claimed in [21] that the action (3.13) can be equivalently described by

eqs. (3.19) and (3.20). This is clearly incorrect, since they lead to the action (3.18)

rather than to (3.13). But the constraint (3.20) has a deep origin: the SL(2,R)

invariant system introduced in [8] admits a minimal N = 2 extension on the base of
the constraint (3.20) such that the original SL(2,R) invariance remains intact.

Let us prove that the system described by eqs. (3.19) and (3.20) provides a

solution of the duality equation (3.10). Under an infinitesimal variation of W only,
we have

δWX = δWX D̄4X̄ + X D̄4δWX̄ +W δW ,
δWX̄ = δWX̄ D4X + X̄ D4δWX . (3.21)

7The property X2 = 0 of the N = 1 constraint (2.17) has no direct analog for X .
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From these relations one gets

δWX = 1

1−Q
[ W δW
1− D̄4X̄

]
, δWX̄ = X̄

1−D4X D
4δWX , (3.22)

where
Q = P P̄ , Q̄ = P̄ P ,
P = X

1−D̄4X̄ D̄4 , P̄ = X̄
1−D4X D4 . (3.23)

With these results, it is easy to computeM:

iM = W
1− D̄4X̄

{
1 + D̄4 P̄ 1

1−Q
X

1− D̄4X̄ + D̄
4 1

1− Q̄
X̄

1−D4X
}
. (3.24)

Now, a short calculation gives

Im

∫
d8Z
{
M2 + 2

1

1−Q
X

1− D̄4X̄
}
= 0 . (3.25)

On the other hand, the constraint (3.20) implies∫
d8Z X −

∫
d8Z̄ X̄ = 1

2

∫
d8ZW2 − 1

2

∫
d8Z̄ W̄2 , (3.26)

and hence
δ

δW
{∫
d8Z X −

∫
d8Z̄ X̄

}
=W . (3.27)

The latter relation can be shown to be equivalent to

1

1−Q
X

1− D̄4X̄ = P
1

1− Q̄
X̄

1−D4X + X . (3.28)

Using this result in eq. (3.25), we arrive at the relation∫
d8ZM2 −

∫
d8Z̄ M̄2 = −2

∫
d8Z X + 2

∫
d8Z̄ X̄ , (3.29)

which is equivalent, due to (3.26), to (3.10).

In appendix B we prove the self-duality of the N = 2 BI action under Legendre
transformation explicitly, although this property already follows from the general

analysis of [7] or our discussion in section 3.1.

3.3 Duality invariant N = 2 superconformal actions
The N = 4 super Yang-Mills theory is believed to be self-dual [22, 23]. It was
therefore suggested in [24] to look for its low-energy effective action on the Coulomb

branch as a solution to the self-duality equation via the N = 2 Legendre transfor-
mation such that the leading (second- and fourth- order) terms in the momentum
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expansion of the action look like

Slead = 1
8

∫
d8ZW2 + 1

8

∫
d8Z̄ W̄2 + 1

4
c

∫
d12Z lnW ln W̄ + · · · , (3.30)

where the third term represents the leading quantum correction computed in [33, 24].

In our opinion, the perturbative scheme of solving the self-duality equation via

the N = 2 Legendre transformation is difficult [24] as one has to invert the Legendre
transformation. We suggest to look for the low-energy action of N = 4 SYM as a
solution of the N = 2 duality equation (3.10). This equation is easy to deal with
and it implies self-duality via Legendre transformation.

The low-energy effective action we are looking for should be in addition invariant

under the N = 2 superconformal group. This means that, along with the structures
given in (3.30), the action may involve the following manifestly superconformal func-

tionals [30]

S1 =
∫
d12Z lnW Λ(∇ lnW) + c.c. , (3.31)

S2 =
∫
d12Z Υ(∇ lnW , ∇̄ ln W̄) , (3.32)

where

∇ ≡ 1

W̄2 D
4 , ∇̄ ≡ 1

W2 D̄
4 , (3.33)

and Λ and Υ are arbitrary holomorphic and real analytic functions, respectively. The

superfields ∇ lnW and ∇̄ ln W̄ prove to be superconformal scalars [30]. The main
property of the operators (3.33) is that, for any superconformal scalar Ψ, ∇Ψ and
∇̄Ψ are also superconformal scalars.
In components, the functionals (3.30), (3.31) and (3.32) contain all possible

structures which involve the physical scalar fields ϕ =W|θ=0 and the electromagnetic
field strength Fab (where Fαβ ∝ DαiDβ iW|θ=0) without derivatives, along with terms
containing derivatives and auxiliary fields. Simple power counting determines the

necessary number of covariant derivatives in the action in order to produce a given

power of F . Since F ∝ D2W, there should be 4n D’s in the superfield lagrangian
to get F 4+2n (additional 8 derivatives come from the superspace measure,

∫
d12Z =∫

d4xD4D̄4).
We are looking for a perturbative solution of (3.10) in the framework of the

momentum expansion or, equivalently, as a series in powers of ∇ and ∇̄. But with
the Ansatz S = Slead + S1 + S2 it is easy to see that no solution of (3.10) exists. To
obtain a consistent perturbation theory, we should allow for higher derivatives. More

precisely, we should add new terms such that any number of operators ∇ and ∇̄ are
inserted in the Taylor expansion of Υ (3.32). In other words, S2 should be extended

11
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to a more general functional Ŝ2 which can be symbolically written as8

Ŝ2 =
∫
d12Z Υ̂(∇ lnW , ∇̄ ln W̄ , ∇ , ∇̄) . (3.34)

For the action

S[W, W̄ ] = Slead + S1 + Ŝ2 (3.35)

the equation of motion can be represented in terms of

iM≡ 4 δ
δW S[W, W̄ ] =W

{
1 + ∇̄Γ

}
, (3.36)

for some functional Γ(lnW, ln W̄,∇, ∇̄) such that Γ = c ln W̄ + O(∇). Then, the
duality equation (3.10) is equivalent to

Im

∫
d12Z {2 Γ + Γ ∇̄Γ} = 0 . (3.37)

In the framework of perturbation theory, the procedure of solving of eq. (3.37)

amounts to simple algebraic operations. To low order in the perturbation theory, the

solution reads

S = 1
8

∫
d8ZW2 + 1

8

∫
d8Z̄ W̄2 + 1

4

∫
d8Z̄ L ,

L = c lnW ln W̄ + 1
4
c2
(
lnW∇ lnW + c.c.

)
+

+
1

4
c3 d (∇ lnW) ∇̄ ln W̄ − 1

8
c3
(
lnW (∇ lnW)2 + c.c.

)
+

+
1

16
c4
(
(1− 4d) (∇ lnW)2 ∇̄ ln W̄ + (2d− 1) (∇ lnW) ∇̄∇ lnW +

+
5

3
lnW (∇ lnW)3 + c.c.

)
+O(∇4) . (3.38)

Here d is the first parameter in the derivative expansion of S which is not fixed by
the N = 2 duality equation (3.10). Note that if we had only imposed the condition
of self-duality under Legendre transformation, as was done in [24], we could not have

fixed the coefficent −1
8
c3 of the fourth term in L. In general, for any self-conjugate

monomial in the expansion of S, like (∇ lnW) ∇̄ ln W̄ , the corresponding coefficient
is not determined by eq. (3.10) in terms of those appearing in the structures in S
with less derivatives. However, such coefficients can be fixed if one imposes some

additional conditions on the solution of eq. (3.10). For example, one can require the

solution to reduce to a given N = 1 action under the condition W| = const.
8There exist more general superconformal invariants of the N = 2 vector multiplet [30], as

compared to the action (3.34), and some of them were determined in [24] from the requirement of

scale and U(1)R invariance. It suffices for our purposes that (3.34) provides a consistent Ansatz to

solve the N = 2 duality equation (3.10).

12



J
H
E
P
0
3
(
2
0
0
0
)
0
3
4

It should be pointed out that the c3-corrections in (3.38) have been determined

in [24] by solving the self-duality equation via the N = 2 Legendre transformation.
To compute the O(c4) term via the duality equation (3.10) involves only elementary
algebraic manipulations.

As is seen from (3.38), solutions of the duality equation (3.10) contain higher

derivative structures ∇̄∇ lnW, ∇∇̄∇ lnW, etc. What is the fate of such terms?
The striking result of [24] is the fact that, to the order c3, there exists a nonlinear

N = 1 superfield redefinition which eliminates all higher derivative (accelerating)
component structures (contained already in the first term of L (3.38)). The price
for such a redefinition is that the original linear N = 2 supersymmetry turns into
a nonlinear one being typical for D3-brane actions [34]. The nonlinear redefinition

of [24] eliminates the higher derivative terms to some order of perturbation theory,

but it in turn generates new such terms at higher orders in the momentum expansion.

Therefore, in order for such a nonlinear redefinition to be consistently defined, the

superfield action should involve higher derivatives of arbitrary order. The duality

equation (3.10) might guarantee the existence of a consistent redefinition to eliminate

acceleration terms.
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A. N = 0 duality invariant models
In this appendix we give several equivalent forms of the Gallard-Zumino equa-

tion (1.3) by representing the lagrangian L(Fab) as a real function of one complex

variable,

L(Fab) = L(U , Ū) , U = F + iG ,
F = 1

4
F abFab , G = 1

4
F abF̃ab . (A.1)

The theory is parity invariant iff L(U , Ū) = L(Ū ,U).
One calculates G̃ (1.2) to be

G̃ab =
(
Fab + i F̃ab

)∂L
∂U +

(
Fab − i F̃ab

) ∂L
∂Ū , (A.2)
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and the Gallard-Zumino equation (1.3) takes the form

Im

{
U − 4U

(
∂L

∂U
)2}

= 0 , (A.3)

which is equivalent to the equations obtained in [4, 7] but turns out to be more con-

venient for supersymmetric generalizations. If one splits L into the sum of Maxwell’s

part and an interaction,

L = −1
2

(
U + Ū

)
+ Lin , Lin = O(|U|2) , (A.4)

the above equation turns into

Im

{
U ∂Lin
∂U − U

(
∂Lin

∂U
)2}

= 0 . (A.5)

We restrict Lin to be a real analytic function of U and Ū . Then, every solution of
eq. (A.5) is of the form

Lin(U , Ū) = U Ū Ω(U , Ū) , Ω = O(1) , (A.6)

where Ω satisfies

Im

{
∂(U Ω)
∂U − Ū

(
∂(U Ω)
∂U

)2}
= 0 . (A.7)

Note that for any solution Lin(U , Ū) of (A.5), or any solution Ω(U , Ū) of (A.7), the
functions

L̂in(U , Ū) = 1
κ2
Lin(κ

2 U , κ2 Ū) , Ω̂(U , Ū) = κ2Ω(κ2 U , κ2 Ū) (A.8)

are also solutions of eqs. (A.5) and (A.7), respectively, for arbitrary real parameter

κ2.

Up to a trivial rescaling, eq. (A.7) coincides with the N = 1 duality equa-
tion (2.14). Therefore, any non-supersymmetric duality invariant model admits a

N = 1 supersymmetric extension given by eqs. (2.10) and (2.14). It is easy to read
off the bosonic sector of the action (2.10). For vanishing fermionic fields, Wα|θ=0 = 0,
one finds [28]

1

8
D2W 2|θ=0 = U − 2D2 , (A.9)

where D(x) is the auxiliary field of the N = 1 vector multiplet. If we take the
solution D = 0 of the equation of motion for D, then the action (2.10) reduces to a
generic N = 0 duality invariant model.
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B. N = 2 BI action and Legendre transformation
To prove that the system defined by eqs. (3.19) and (3.20) is self-dual under Legendre

transformation, we replace the action (3.19) by the following one

S = 1
4

∫
d8Z
{
X [W, W̄ ]− iWWD

}
+
1

4

∫
d8Z̄
{
X̄ [W, W̄ ] + i W̄W̄D

}
, (B.1)

where W is now considered to be an unconstrained chiral superfield, and its dual
chiral strength WD reads

WD = D̄4Dij Uij , (B.2)

with Uij an unconstrained real prepotential. The equation of motion for Uij implies

the Bianchi identity (3.5), and hence the action reduces to (3.19). On the other

hand, varying the action with respect to W leads to

WD =M , (B.3)

where M is given in eq. (3.24). The latter equation can be solved to express W
in terms of WD and its conjugate. Instead of doing this explicitly, we note that
eqs. (3.28) and (B.3) allow one to rewrite the action (B.1) as

S = 1
4

∫
d8Z XD + 1

4

∫
d8Z̄ X̄D , (B.4)

where

XD ≡ − 1

1−Q
X

1− D̄4X̄ − P
1

1− Q̄
X̄

1−D4X . (B.5)

Using eqs. (3.28) and (B.3) once more, one can prove that XD satisfies the constraint

XD = XD D̄4X̄D + 1
2
WD2 . (B.6)

This completes the proof.
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