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Abstract

Vacuum spherically symmetric Einstein gravity in N ≥ 4 dimensions can be cast
in a two-dimensional conformal nonlinear sigma model form by first integrating on the
(N − 2)-dimensional (hyper)sphere and then performing a canonical transformation.
The conformal sigma model is described by two fields which are related to the Arnowitt-
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1 Introduction

Classically, a neutral, non-rotating, spherically symmetric black hole in vacuum is completely
identified by the value of its (ADM) mass MADM (see e.g. [1]). Since gravity does not couple
to any matter field – and we impose ab initio spherical symmetry – MADM is constant and
the geometry possesses one extra Killing vector in addition to the Killing vectors which are
associated to the spherical symmetry (Birkhoff theorem). The general solution of Einstein
equations is the famous Schwarzschild metric. It describes an eternal black hole.

Naively, we would expect both properties – the Birkhoff theorem and MADM = constant
– to be broken at quantum level. The validity of the Birkhoff theorem in the quantum
canonical theory of spherically symmetric gravity has been investigated in Refs. [2, 3, 4]. It
has been shown that the Birkhoff theorem holds at quantum level, i.e. the quantum theory
of spherically symmetric gravity in vacuum is a quantum mechanical system with a finite
number of degrees of freedom (Quantum Birkhoff Theorem) [2]. Moreover, the Hilbert space
of the quantum theory is completely determined by the eigenstates of the (gauge invariant)
mass operator.

The aim of this paper is to explore whether the other classical property (MADM =
constant) holds in the quantum gravity regime as well. The result of our investigation is
that quantum gravity corrections to the Schwarzschild mass appear at the second order in
the curvature perturbative expansion. For instance, quantum fluctuations of the mass of a
four-dimensional black hole are, for distances much greater than the horizon radius,

∆MADM <∼mpl

(

lpl

R

)2

, (1)

where lpl and mpl are the Planck length and the Planck mass, respectively (Notations: Here
and throughout the paper we use natural units.)

A number of approximations are needed to obtain Eq. (1). We will discuss them in detail
in the following sections. Here let us just emphasize two important points concerning Eq.
(1). Firstly, the quantum theory breaks down on the horizon(s) where the coupling constants
of the perturbative expansion diverge. Therefore, Eq. (1) is strictly valid for distances much
greater than the Schwarzschild radius of the black hole. Secondly, quantum fluctuations
vanish for large radii, i.e. at large distances from the black hole. In the asymptotic regime
the black hole behaves classically and the mass is constant. Quantum fluctuations of the
Schwarzschild mass due to pure quantum gravity effects become manifest when the black
hole horizon is approached.

Equation (1) is obtained in the context of the nonlinear sigma model approach to
spherically symmetric gravity whose basic ingredients are described in Ref. [2]. Firstly,
N -dimensional spherically symmetric gravity is cast in a dilaton gravity form by integrating
over the (N − 2) spherical coordinates. Then, by a canonical field redefinition the action
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is transformed in a two-dimensional conformal nonlinear sigma model with a fixed target
metric. The new fields are the dilaton and a gauge invariant field M which is constant on
the classical solutions of the field equations and can be identified with the ADM mass of the
black hole.

The new action can be quantized perturbatively by expanding the metric of the target
space in normal Riemann coordinates [5]. Since the expansion parameter is proportional to
the curvature of the manifold, the theory is a free field theory far away from the black hole
horizon and for large ADM mass in Planck units. The perturbative theory turns out to be
infrared and ultraviolet divergent. Infrared divergences are eliminated by the introduction
of an infrared regulator m. The theory is regularized by usual dimensional regularization
techniques. The consistency of the procedure is verified a posteriori by calculating the one-
loop β-function. The theory becomes asymptotically free at large energy scales, where the
perturbative regime is valid and the infrared regulator can be neglected.

The amplitude of the quantum fluctuations of the ADM mass at a given order in the
perturbative expansion can be read straightforwardly from the two-point Green functions of
the theory. This is possible because the nonlinear sigma model fields are the ADM mass and
the dilaton. Since the fields have a direct geometrical meaning any problem related to their
interpretation in terms of physical quantities disappears.

The outline of the paper is as follows. In the next section we illustrate the classical theory
of N -dimensional (N ≥ 4) spherically symmetric gravity. We start with the dilaton gravity
description and then introduce the nonlinear sigma model picture. Although a part of this
section reviews previous work (see [2] and references therein), its content is useful to make
the paper self-contained. Sections 3 and 4 are devoted to the classical expansion in normal
Riemann coordinates and to the perturbative quantization of the theory, respectively. (The
evaluation of the relevant Feynman diagrams is briefly outlined in appendix.) Finally, in
Section 5 we state our conclusions.

2 Classical theory

It is well known [6, 7, 8, 9] that for spherically symmetric metrics the N -dimensional Einstein-
Hilbert action (the Ricci tensor is defined as in [10])

S(N) =
1

16πlN−2
pl

∫

dNy
√
−GR(N)(G) (2)

can be cast, upon integration on the N −2 spherical coordinates, in the dilaton gravity form

SDG =
∫

d2x
√−g

[

φR(2)(g) − d

dφ
ln[W (φ)](∇φ)2 + V (φ)

]

, (3)
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where the dilaton field is related to the radius of the (N − 2)-dimensional sphere and W (φ)
and V (φ) are given functions whose form depends on the N -dimensional metric ansatz.
(We neglect surface terms as they are irrelevant for the following discussion. For a detailed
discussion about the role of boundary terms see e.g. [2, 11, 12] and references therein.)

Theories of the form (3) admit the existence of the (gauge invariant) quantity [2, 13]

M = N(φ) −W (φ)(∇φ)2 , N(φ) =
∫ φ

dφ′[W (φ′)V (φ′)] (4)

which is locally conserved, i.e.
∇µM = 0 . (5)

Equation (5) can be easily proved by differentiating Eq. (4) and using the field equations

∇(µ∇ν)φ− gµν∇2φ+
1

2
gµνV (φ) +

d

dφ
ln[W (φ)][∇(µ∇ν)φ− 1

2
gµν(∇φ)2] = 0 , (6)

R(2)(g) + 2∇2 ln[W (φ)] +
dV (φ)

dφ
= 0 . (7)

A further property of M is conformal (Weyl) invariance [14]. Indeed, by rescaling the two-
dimensional metric [15]

gµν(x) → gµν(x)A(φ) , (8)

V (φ) and W (φ) transform as

V (φ) → V (φ) /A(φ) ,

W (φ) → W (φ)A(φ) .
(9)

Equation (4) is clearly invariant under (8)-(9). Using Eqs. (8)-(9), the action (3) can be
cast in a simpler form by a suitable choice of A(φ). Here and throughout the paper we
will set A(φ) = 1/W (φ) which corresponds to choosing the spherically symmetric ansatz
(α, β = 0, . . .N − 1, µ, ν = 0, 1) [9]

ds2
N = Gαβdy

αdyβ

= [φ(x)]−(N−3)/(N−2) gµν(x) dx
µdxν + [γφ(x)]2/(N−2) dΩ2

N−2 , φ > 0 .
(10)

With this choice W (φ) → 1 and the dilaton gravity action (3) becomes

SDG =
∫

d2x
√−g

[

φR(2)(g) + V (φ)
]

, (11)

where
V (φ) = (N − 2)(N − 3)(γ2φ)−1/(N−2) . (12)
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Here γ = 16π lN−2
pl /VN−2 and VN−2 = 2π(N−1)/2/Γ[(N − 1)/2] is the volume of the (N − 2)-

dimensional unit sphere dΩ2
N−2. On the gauge shell the quantity M coincides, apart from

some numerical factors, with the ADM [1] mass

MADM =
γ1/(N−2)

N − 2
M . (13)

This property will be essential in the following.

The dilaton gravity action (3) can be cast in a nonlinear conformal sigma model form.
Here our treatment follows closely [2]. In two-dimensions the Ricci scalar R(2)(g) can be
locally written as

R(2)(g) = 2∇µA
µ , Aµ =

∇µ∇νχ∇νχ−∇ν∇νχ∇µχ

∇ρχ∇ρχ
, (14)

where χ is an arbitrary, non-constant, function of the coordinates. Equation (14) can be
easily checked using conformal coordinates. Since Eq. (14) is a generally covariant expression,
and any two-dimensional metric can be locally cast in the conformal form by a coordinate
transformation [16], Eq. (14) is valid in any system of coordinates.

Differentiating Eq. (4), and using Eq. (14) with χ = φ, the action (3) can be written as
a functional of M and φ. The result is

S =
∫

Σ
d2x

√−g ∇µφ∇µM

N(φ) −M
+ S∂ , (15)

where S∂ is the surface term

S∂ = 2
∫

Σ
d2x

√−g∇µ [∇µφ+ φAµ] . (16)

Let us investigate the classical solutions of Eq. (15). Varying Eq. (15) with respect to M
and φ we find

∇µ∇µφ− V (φ) = 0 , (17)

∇µM∇µM + ∇νφ∇νφ∇µ∇µM = 0 . (18)

Equations (17) and (18) must be complemented by the constraints

∇(µφ∇ν)M − 1

2
gµν∇σφ∇σM = 0 (19)

which are obtained by varying Eq. (15) with respect to the metric gµν . The general solution
of Eqs. (17)-(19) can be easily obtained using conformal coordinates. Setting

gµν = ρ
(

0 1
1 0

)

→ ds2 = 2ρ(u, v) dudv , (20)
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Eqs. (17)-(18) and the constraints (19) read

∂u∂vφ− ρ

2
V (φ) ,

∂u∂vM +
∂uM∂vM

N −M
= 0 ,

∂uφ ∂uM = 0 , ∂vφ ∂vM = 0 .

(21)

¿From Eqs. (21) and (12) it follows that M is constant, M = M0. Using Eq. (21) and (4)
the general solution can be written

M = M0 , φ = φ(Ψ) ,
dφ

dΨ
= N [φ(Ψ)] −M0 , (22)

where Ψ = U(u) + V (v), U and V being arbitrary functions. (The arbitrariness in the
choice of Ψ reflects the residual coordinate reparametrization invariance in the conformal
gauge. Given U and V correspond to a particular choice of conformal coordinates.) The
two-dimensional metric is

ds2 = 4[N(φ) −M0]∂uΨ∂vΨdudv
= 4[N(φ) −M0]dUdV ,

(23)

or, using the coordinates [φ ≡ φ(U + V ), T ≡ U − V ],

ds2 = −[N(φ) −M0]dT
2 + [N(φ) −M0]

−1dφ2 . (24)

The general solution depends on the single variable φ. This result is usually known as the
Generalized Birkhoff Theorem (see e.g. [13, 17, 18, 19]). Finally, substituting (12) in Eq.
(24) and using (10) we have

ds2
N = −

[

1 − J/RN−3
]

dτ 2 +
[

1 − J/RN−3
]

−1
dR2 +R2dΩN−2 , (25)

where

τ = (N − 2)γ−1/(N−2)t ,

R = (γφ)1/(N−2) , (26)

J =
γ(N−1)/(N−2)

(N − 2)2
M0 =

γ

N − 2
MADM .

Let us conclude this section with a couple of remarks. We have seen that two-dimensional
dilaton gravity can be described by a two-dimensional nonlinear sigma model with a given
target space metric. In particular, for N -dimensional spherically symmetric gravity the fields
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appearing in the conformal sigma model are the dilaton and the ADM mass, i.e. quantities
which have a direct physical interpretation. The description of spherically symmetric gravity
in terms of geometrical variables is essential for the quantization of the model since the
quantum fields can be directly related to the original spacetime geometry and problems
related to their interpretation do not show up. The equivalence between the nonlinear sigma
model action (15) and the dilaton gravity action (11) can be proved at the canonical level
as well. This has been done in Ref. [2]. The general canonical transformation includes,
as particular cases, the canonical transformations discussed in Ref. [20] for the CGHS [21]
model and Ref. [12] for the four-dimensional black hole.

3 Sigma model curvature expansion

The nonlinear sigma model (15) can be quantized perturbatively by expanding the target
space metric in Riemann normal coordinates [5]. Let us define the adimensional mass M =
γ2/(N−2)M . The bulk term of the action (15) in the conformal gauge can be cast in the form
[σ ≡ (u, v)]

S =
∫

d2σ Gij(X)∂µX
i∂µXj , (27)

where X0 ≡ M, X1 ≡ φ and the metric of the target space is

Gij(X) =
1

N (X1) −X0

(

0 1/2
1/2 0

)

, N (X1) = γ2/(N−2)N(φ) . (28)

Now we expand the target metric (28) in Riemann normal coordinates around a point X(0)
(vacuum expectation value). At the second order in the Riemann expansion the metric is
[22]

Gij(X) = Gij [X(0)] − 1

3
Rijkl[X(0)]xkxl − 1

3!
Rijkl;m[X(0)]xkxlxm +O(x4) (29)

where X i = X i(0) + xi, xi ≡ δX i. Using Eq. (28) and substituting Eq. (29) in Eq. (27) the
action at the second order in the Riemann expansion is

S =
∫

d2σL , L =
1

2

[

∂µy
i∂µyi + gεijεkl∂µy

i∂µykyjyl(1 + ḡAqy
q +O(y2))

]

. (30)

Here εij is the two-dimensional completely antisymmetric Levi Civita tensor, yi = (x0 ±
x1)/

√
2, Aq = (1 + g̃, 1 − g̃), and g, ḡ, g̃ are the adimensional coupling constants

g = −1

3

V[X1(0)]

N [X1(0)] −X0(0)
= −1

3

V (φ0)

N(φ0) −M0

, (31)

ḡ =
1

2
√

2

1

N [X1(0)] −X1(0)
=

1

2
√

2

γ−2/(N−2)

N(φ0) −M0

, (32)
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g̃ =

[

V ′[X1(0)]

V[X1(0)]

[

N [X1(0)] −X0(0)
]

− V[X1(0)]

]

[

N [X1(0)] −X0(0)
]

=

[

V ′(φ0)

V (φ0)
[N(φ0) −M0] − V (φ0)

]

[N(φ0) −M0] γ
4/(N−2) , (33)

where V = dN /dX1. Using Eqs. (12), (13) and (26) g, ḡ and g̃ read

g = −κ
3

N − 3

N − 2

(

lpl

R

)N−2
1

1 − κ

N − 2

MADM

mpl

(

lpl

R

)N−3 , (34)

ḡ =
1

2
√

2

κ(N−3)/(N−2)

(N − 2)2

(

lpl

R

)N−3
1

1 − κ

N − 2

MADM

mpl

(

lpl

R

)N−3 , (35)

g̃ = −(N − 2)4κ−(N−4)/(N−2)

(

lpl

R

)4−N

·

·


1 − κ

(N − 2)2

MADM

mpl

(

lpl

R

)N−3






1 − κ

N − 2

MADM

mpl

(

lpl

R

)N−3


 . (36)

where κ = 16π/VN−2. Let us investigate the behavior of the coupling constants. For R → ∞
and fixed MADM , i.e. in the asymptotically flat region far away from a black hole of given
(classical) mass MADM , Eqs. (34)-(36) read

g∞ ∼ −κ
3

N − 3

N − 2

(

lpl

R

)N−2


1 +O

(

lpl

R

)N−3


 ,

ḡ∞ ∼ 1

2
√

2

κ(N−3)/(N−2)

(N − 2)2

(

lpl

R

)N−3


1 +O

(

lpl

R

)N−3


 , (37)

g̃∞ ∼ −(N − 2)4κ(−N−4)/(N−2)

(

lpl

R

)4−N


1 +O

(

lpl

R

)N−3


 .

As expected, the Riemann expansion is an expansion in powers of the curvature, i.e. in
powers of lpl/R. The theory becomes free in the asymptotically flat region where the first

order correction to the free theory is of order O
(

(lpl/R)N−2
)

. The perturbative expansion

fails on the black hole horizon, the coupling constants g and ḡ blowing up when RN−3 → J .
The perturbative Riemann expansion is also valid for large values of MADM/mpl at distances

R− J1/(N−3) ∼ lpl

(

MADM

mpl

)1/(N−3)

. (38)
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In this regime the dimensional coupling constants (34)-(36) read

g ∼
(

mpl

MADM

)(N−2)/(N−3)

,

ḡ ∼
(

mpl

MADM

)

, (39)

g̃ ∼
(

mpl

MADM

)(4−N)/(N−3)

and the Riemann expansion is an expansion in powers of mpl/MADM . The theory becomes
a free field theory when mpl/MADM ≪ 1.

4 Perturbative quantization

In this section we quantize the theory at one-loop and at the first order in the curvature
expansion (ḡ = g̃ = 0). Since the target space is not Ricci-flat, the conformal symmetry is
not preserved at the quantum level. Conformal symmetry breaking implies running coupling
constants and effective terms in the action that depend on the conformal factor. Since
quantum corrections to the ADM mass due to these terms are subdominant we will postpone
their discussion at the end of the section and work in the unit gauge.

The vacuum-to-vacuum amplitude is (for notations see Ref. [23])

W [J ] = N
∫

D[yi] eiS[y,J ] , S[y, J ] =
∫

d2σ [L + Jiy
i] . (40)

The free two-points Green function (propagator) is

< yi(σ1)yj(σ2) > = iηij

∫ d2p

(2π)2

1

p2 + iǫ
e−ip(σ1−σ2) ,

= − ηij
1

4π
ln
[

(σ1 − σ2)
2
]

. (41)

At the first order in the Riemann expansion the perturbative potential is

V1(y) =
g

2
εij εkl ∂µy

i∂µykyjyl . (42)

The corresponding Feynman rule for the interaction vertex is

2

p

p

3

4
p

p
1

j
i k

l
= −i g

4!
(2π)2δ

(

∑

pi

)

[εij εkl(p1 − p2)(p3 − p4)+

+ εik εkl(p1 − p3)(p2 − p4) + εil εkl(p1 − p4)(p3 − p2)] .
(43)
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The one-loop correction of the two-point Green function is

i jp
21

p

q
= (2π)2δ (

∑

pi)
∏ 1

p2
i + iǫ

Γ
(2)
ij ,

(44)

where

Γ
(2)
ij = −g ηij

∫ d2q

(2π)2

q2 + p2
1

q2 + iǫ
. (45)

The (on-shell) one-loop correction of the four-point Green function (s-channel) is

p

p

p

p

1

2

3

4
j

i k

l

q

= (2π)2δ (
∑

pi)
∏ 1

p2
i + iǫ

Γ
(4)
ijkl .

(46)

where

Γ
(4)
ijkl = g2

∫ d2q

(2π)2

1

(q2 + iǫ)[(p1 + p2 − q)2 + iǫ]
(ηikηjlA1 + ηilηjkA2 + ηijηklA3) , (47)

A1 = 4(p1p2)[(p1p2) − q2 + q(p1 + p2)] + q2[q2 − 2q(p1 + p2)] − 2[(qp2)(qp3) + (qp1)(qp4)] ,

A2 = 4(p1p2)[(p1p2) − q2 + q(p1 + p2)] + q2[q2 − 2q(p1 + p2)] − 2[(qp1)(qp3) + (qp2)(qp4)] ,

A3 = 8[q(p1 − p2)][q(p3 − p4)] .

The two- and four-point Green functions (44) and (46) are infrared and ultraviolet divergent.
The infrared divergence can be eliminated by inserting a infrared regulator. We will check a
posteriori the consistency of this procedure by proving that the theory is asymptotically free
in the ultraviolet region, i.e. that the theory is perturbative for large values of the energy.
In order to regularize the theory we have to compute the ultraviolet divergences. Using
dimensional regularization the divergence of the two-point Green function (44) is (details of
the calculation are given in appendix)

[divergence Γ
(2)
ij ] = i

g

2πǫ
ηijp

2 , (48)

where ǫ = 2 − d. The divergence above is eliminated by inserting in the Lagrangian density
the counterterm (minimal subtraction)

L(2) =
1

2

(

− g

2πǫ

)

∂µy
i∂µyi . (49)

The divergence of the four-point Green function (46) is (s+ t+ u-channels)

[divergence Γ
(4)
ijkl] = i

11

2πǫ
µǫg2[ηijηkls+ ηikηjlt+ ηilηjku] , (50)
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where s = (p1 + p2)
2, t = (p1 + p3)

2 and u = (p1 + p4)
2 are the Mandelstam variables. The

divergence (50) is eliminated by inserting in the Lagrangian density the counterterm

L(4) =
1

2
gµǫ

(

−11

6π

g

ǫ

)

εij εkl ∂µy
i∂µykyjyl . (51)

Finally, the one-loop renormalized Lagrangian density is

Lren =
1

2
Z1∂µy

i∂µyi +
1

2
gµǫZ2εij εkl ∂µy

i∂µykyjyl , (52)

where

Z1 = 1 − g

2πǫ
, Z2 = 1 − 11g

6πǫ
. (53)

Now we can calculate the β-function and the anomalous dimension γ(g) of the y fields at
one-loop. The result is

β(g) = − 5

6π
g2 +O(g3) , (54)

γ(g) =
g

2π
+O(g2) . (55)

Integrating Eq. (54) we obtain

g = gs
1

1 +
5

6π
gs ln

µ

µs

, (56)

where gs is the value of the coupling constant g at the renormalization scale µs. From Eq. (56)
we see that g → 0 for µ → ∞, i.e. the theory becomes free at high energy scales (asymptotic
freedom). The perturbative regime of the theory is realized at short distances, where the
theory itself exhibits an ultraviolet stable fixed point. Since the model is asymptotically
free in the ultraviolet region, it is possible to neglect the dependence of the Green functions
on the infrared regulator. Solving the renormalization group equation at one-loop for the
N -point Green function, we obtain

< y1y2 . . . yN ; g, µ >=

(

g

gs

)
3
10

N

< y1y2 . . . yN ; gs, µs > . (57)

Now let us evaluate the two-point Green function at one loop. We have

< yi(σ1)yj(σ2) >= −ηij
1

4π

[

1 − g

4π
ln
(

µ

m

)2

+O(g2)

]

ln
[

(σ1 − σ2)
2
]

. (58)

In term of the fields xi the only Green function different from zero is

< x0(σ1)x
1(σ2) >= − 1

4π

[

1 − g

4π
ln
(

µ

m

)2

+O(g2)

]

ln
[

(σ1 − σ2)
2
]

. (59)
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As a result, at the first order in the curvature expansion, the one-loop quantum correction
to the Schwarzschild mass is identically zero

< δM(σ1) δM(σ2) >= O(g2) . (60)

Actually, a simple observation shows that the two-point Green function at first order in
the curvature expansion is zero at any loop. This result follows from the invariance of the
interaction Lagrangian density, Eq. (42), under Poincaré group transformations in the y field
space. Since the interaction vertex (43) has two δM and two δφ legs, and the propagator
is anti-diagonal in the fields (δM, δφ), any two-point Green function is necessarily diagonal
[antidiagonal] in the yi [δM, δφ] fields, respectively.

Let us now consider the perturbative potential at second order in the curvature expansion

V2(y) =
1

2
gḡεijεklAq∂µy

i∂µykyjylyq . (61)

This interaction breaks the Poincarè invariance in the y field space. We have two different
vertices:

δφ

δφ

δφ δΜ

δΜ

g
2

δφ

δφ

δΜ

δΜ

δΜ 2
g (62)

where g2 ∼ gḡg̃.

Since V2(y) is an odd functional of the y fields we expect the interaction Lagrangian
density (61) to give a non-vanishing two-loop contribution to the one-point Green function
< δM >

g
2

δΜ
(63)

However, a straightforward computation of this diagram shows that < δM > is identically
zero. The first non-vanishing two-point Green function for the δM field at the second order
in the curvature expansion is given by the Feynman diagram

g
2

g
2

δΜ δΜ (64)

The above diagram gives a non-diagonal logaritmic divergence to the propagator of the y
fields. By adding the appropriate counterterm in the Lagrangian, the first finite, non-zero,
two point Green function for the δM field is

< δM(σ1) δM(σ2) >= − 1

4π
A ln

(

µ

m

)

(1 +Bg̃2)(gḡ)2 ln[(σ1 − σ2)
2] , (65)
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where A,B are constant adimensional factors.

Using Eq. (65) we can estimate the upper limit of the quantum corrections of MADM .
Since the perturbative expansion fails when g ln(µ) ∼ O(1) from Eq. (65) we have

(∆MADM )2<∼m2
pl |(1 +Bg̃2) g ḡ2| . (66)

Recalling Eqs. (37)and (39) we obtain

∆MADM <∼mpl

(

lpl

R

)N/2

, (67)

and

∆MADM <∼mpl

(

mpl

MADM

)
N

2(N−3)

(68)

for R/lpl ≫ 1 and mpl/MADM ≪ 1, respectively.

Up to now we have neglected effective terms due to the dependence of the action on
the conformal factor in d = 2 − ǫ dimensions. Equations (67) and (68) make sense only if
the contributions due to these terms are subleading. This is indeed the case, as we have
anticipated at the beginning of this section.

In the conformal gauge the one-loop renormalized sigma-model action at the second order
in the curvature expansion is

S =
∫

ddσ e−ǫΨ/2 Lren + SΨ + Sghost . (69)

Here SΨ is the effective action due to the Weyl anomaly and Lren is renormalized Lagrangian

Lren =
1

2
Z1∂µy

i∂µyi +
1

2
gµǫZ2εij εkl ∂µy

i∂µykyjyl +
1

2
gḡµǫ Z3εij εkl ∂µy

i∂µykyjylAq y
q , (70)

where the divergent part of the renormalization constant Z3 = 1+Cg/ǫ comes from the one
loop Feynman diagram with one four and one five point vertices, respectively. Note that
the conformal factor Ψ is a propagating field because the Weyl anomaly action contains a
kinetic term for Ψ.

Expanding around d = 2 the leading order Ψ-dependent term in the effective Lagrangian
that violates Poincaré invariance in the y field space is (recall that quantum corrections to
the ADM mass are only generated by these terms)

LCF
1 (Ψ) ∼ g2ḡ εij εklAq ∂µy

i∂µykyjylyq Ψ . (71)

Equation (71) gives a contribution to < δM(σ1)δM(σ2) > of order O(g4ḡ2g̃2) which is
subleading to Eq. (65). Finally, at three loops Eq. (61) originates the (Poincaré breaking)
term

LCF
2 (Ψ) ∼ (gḡg̃)2 ∂µy

i∂µyjΣijΨ , (72)

where Σij is a symmetric 2 × 2 matrix. Equation (72) gives a one-loop contribution to
< δM(σ1)δM(σ2) > of order O ((gḡg̃)4) whose counterterm is again subleading to Eq. (65).
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5 Conclusion

Let us summarize the main results of the paper. N -dimensional spherically symmetric grav-
ity in vacuo can be reduced to a two-dimensional conformal nonlinear sigma model form,
Eq. (27). The field content of the latter is given by two fields, M(σ) and φ(σ). The M
field is constant on the classical solutions of the field equations. It coincides, apart from a
constant factor, to the ADM mass of the system. The second field, φ, is related to the radius
of the (N − 2)-dimensional (hyper)sphere [see Eqs. (25) and (26)]. So both fields have a
direct physical meaning. This property makes the conformal nonlinear sigma model formu-
lation very attactive. Quantization of the theory in the (M,φ) representation gives quantum
corrections to the mass and to the radius in a direct and straightforward way. This result
cannot be achieved in the usual Einstein [Eq. (2)] or dilaton gravity [Eq. (3)] approaches.

The perturbative quantization of the theory is straightforward. Firstly, the nonlinear
sigma model target space is expanded in Riemann normal coordinates, i.e. in powers of the
target space curvature. Then the theory is quantized – at any order – by usual quantum
field theory techniques. The perturbative expansion fails on the black hole horizon(s) where
the target space metric exhibits a singularity. This is not surprising: On the horizon(s)
strong quantum gravity effects manifest themselves and a perturbative quantization must
necessarily fail. Conversely, far away from the horizon(s) quantum gravity effects are weak,
the sigma model target space is asymptotically flat and a perturbative treatment is possible.
[The perturbative results hold also at distances of the order of the horizon(s) for black holes
with large mass in Planck units – see Eq. (38).]

In this paper we have discussed first and second order corrections in the curvature ex-
pansion. Surprisingly, first order corrections to the ADM mass are identically zero at any
loop. This follows from the invariance of the first order interaction under Poincarè transfor-
mations in the (δM, δφ) field space and from the antidiagonal form of the field propagator.
Therefore, quantum corrections to the ADM mass of a four-dimensional black hole are not of
order ∆MADM ∼ R−1, as one would naively expect. The first nonzero quantum corrections
to MADM arise (at least) at second order in the curvature expansion [see Eq. (67) and (68)].

Equations (67) and (68) are the main contribution of the paper. Pure quantum gravity
effects make the classical ADM mass of a spherically symmetric black hole fluctuate according
to Eqs. (67) and (68). Hopefully, this result may help to shed light on open issues in quantum
gravity and black hole physics, such as information loss, black hole thermodynamics and
black hole evaporation.
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Appendix

In this appendix we sketch the evaluation of the Feynman diagrams (44) and (46). The
integrals are evaluated by dimensional regularization.

Two-point Green function

By dimensional regularization the calculation of the one-loop two-point Green function (44)
is reduced to the evaluation of the (Euclidean) integral in d = 2 − ǫ dimensions

I
(E)
2 = µǫ

∫

d2−ǫq

(2π)2

1

q2 +m2
, (73)

where we have added a regulator m2 to avoid the infrared divergence at q = 0. Indeed,
discarding the ultraviolet quadratically divergent integral (see e.g. [24]) and Wick rotating
to the Euclidean space (see Fig. 1, Eq. (45)) can be written

Γ
(2)
ij = ig ηij p

2I
(E)
2 . (74)

The integral (73) can be immediately evaluated (see [23], Eq. (B.16), p. 317). The result is

I
(E)
2 =

1

4
πd/2−2Γ(1 − d/2)

(

µ

m

)2−d

. (75)

Expanding around d = 2 we obtain

I
(E)
2 =

1

4π

(

µ

m

)ǫ
[

2

ǫ
+ ψ(1) +

ǫ

4

(

π2

3
+ ψ2(1) − ψ′(1)

)

+ . . .

]

, (76)

where ψ is the digamma function. Substituting Eq. (76) in Eq. (74) we obtain Eq. (48).

Four-point Green function

With a little bit of algebra Eq. (47) can be cast in the form [(s+ t+ u)-channels, d = 2 − ǫ
dimensions]

Γ = g2[ηijηklC1 + ηikηjlC2 + ηilηkjC3] , (77)
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1

q
0

Im

Re

Figure 1: Wick rotation in the Q0 plane. The two crosses represent the poles of the integral
in the Minkowski space, I2. The latter is equal to −iI(E)

2 .

where

C1 = −9

2
ut[I4(t) + I4(u)] + (9u+ 2t)I2(t) + (9t+ 2u)I2(u) ,

C2 = −9

2
us[I4(s) + I4(u)] + (9u+ 2s)I2(s) + (9s+ 2u)I2(u) , (78)

C3 = −9

2
st[I4(s) + I4(t)] + (9t+ 2s)I2(s) + (9s+ 2t)I2(t) ,

and

I4(p) = µǫ
∫

d2−ǫq

(2π)2

1

(q2 + iǫ)[(p− q)2 + iǫ]
. (79)

In the reduction we have discarded the quadratically divergent integrals [24] and used the
following relations

∫

ddq

(2π)2

qiqj(d− 1)

(q2 + iǫ)[(p− q)2 + iǫ]
=
pipj

2p2

[

(d− 2)I2(p) +
dp2

2
I4(p)

]

+
ηij

2

[

I2(p) −
p2

2
I4(p)

]

,

∫

ddq

(2π)2

piqi
(q2 + iǫ)[(p− q)2 + iǫ]

=
p2

2
I4(p) ,

∫

ddq

(2π)2

piqi
(p− q)2 + iǫ

=
p2

2
I2(p) +

1

2

∫

d2q

(2π)2

q2

(p− q)2 + iǫ
.

I4(p) can be easily evaluated by inserting an infrared regulator and performing a Wick
rotation similar to the one which is described in Fig. 1. [I4(p) is infrared divergent and
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ultraviolet convergent.] Using [23] [Eq. (B.16) p. 317] and expanding around d = 2 we have

I4(p) = − i

2π

(

µ

m

)ǫ 1

p2
√

1 + 4m2/p2
ln

∣

∣

∣

∣

∣

∣

1 +
√

1 + 4m2/p2

1 −
√

1 + 4m2/p2

∣

∣

∣

∣

∣

∣

. (80)

Finally, substituting Eq. (80) and Eq. (76) in Eq. (77) we obtain Eq. (50).
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