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Quantum gravity corrections to the Schwarzschild mass
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Vacuum spherically symmetric Einstein gravity M=4 dimensions can be cast in a two-dimensional
conformal nonlinear sigma model form by first integrating on tNe-Q)-dimensionalhypepsphere and then
performing a canonical transformation. The conformal sigma model is described by two fields which are
related to the Arnowitt-Deser-MisnéADM) mass and to the radius of the - 2)-dimensionalhypepsphere,
respectively. By quantizing perturbatively the theory we estimate the quantum corrections to the ADM mass of
a black hole.

PACS numbegps): 04.60—m, 04.62+v, 04.70.Dy

I. INTRODUCTION |p| 2

AMADMSmpI(E) , (1
Classically, a neutral, nonrotating, spherically symmetric

black hole in vacuum is completely identified by the value ofwherel ol and mp are the Planck length and the Planck mass,

its Arnowitt-Deser-Misner(ADM) mass M py (see e.g. respectively.(Notations: Here and throughout the paper we

[1]). Since gravity does not couple to any matter field—anduse natural units.

we imposeab initio spherical symmetry-M ,py IS constant A number of approximations are needed to obtain (&j.

and the geometry possesses one extra Killing vector in addWe will discuss them in detail in the following sections.

tion to the Killing vectors which are associated with the Here let us just emphasize two important points concerning

spherical symmetryBirkhoff theorem). The general solution EQ. (1). Firstly, the quantum theory breaks down on the ho-

of Einstein equations is the famous Schwarzschild metric. 1fizon(s) where the coupling constants of the perturbative ex-

describes amternal black hole pansion diverge. Therefore, E@L) is strictly valid for dis-
Naively, we would expect both properties—the Birkhoff tances much greater than the Schwar_zschild r_adius of the

theorem andVl o= const—to be broken at the quantum black hole. Secondly, quantum fluctuations vanish for large

level. The validity of the Birkhoff theorem in the quantum radil, €., at Igrge distances from the black hole. In the
canonical theory of spherically symmetric gravity has been"’lsymp.tmIC regime the black hole be_haves classically and the
investigated in Refs[2—4]. It has been shown that the mass is constant. Quantum fluctuations of the Schwarzschild
Birkhoff theorem holds at the quantum level; i.e., the quan-maSS due to pure quantum gravity effects become manifest

. : Lo . when the black hole horizon is approached.
tum theory of spherically symmetric gravity in vacuum is a

. . o Equation(1) is obtained in the context of the nonlinear
guantum mechanical system with a finite number of degree§igma model approach to spherically symmetric gravity

of freedom(quantum Birkhoff theore}r[?]. Moreover, the  \ynose basic ingredients are described in Rél. First,
Hilbert space of the quantum theory is completely deter.gimensional spherically symmetric gravity is cast in a di-
mined by the eigenstates of tiigauge invariantmass op- |aton gravity form by integrating over theN(-2) spherical
erator. coordinates. Then, by a canonical field redefinition the action
The aim of this paper is to explore whether the otherfis transformed in a two-dimensional conformal nonlinear
classical property Nlapy=const) holds in the quantum sigma model with a fixed target metric. The new fields are
gravity regime as well. The result of our investigation is thatthe dilaton and a gauge invariant fieldl which is constant
quantum gravity corrections to the Schwarzschild mass apen the classical solutions of the field equations and can be
pear at the second order in the curvature perturbative expafidentified with the ADM mass of the black hole.
sion. For instance, quantum fluctuations of the mass of a The new action can be quantized perturbatively by ex-
four-dimensional black hole are, for distances much greatgpanding the metric of the target space in normal Riemann
than the horizon radius, coordinates[5]. Since the expansion parameter is propor-
tional to the curvature of the manifold, the theory is a free
field theory far away from the black hole horizon and for
*Email address: cavaglia@mercury.ubi.pt large ADM mass in Planck units. The perturbative theory
"Present address: School of Computer Science and Mathematidairns out to be infrared and ultraviolet divergent. Infrared
University of Portsmouth, Mercantile House, Hampshire Terracedivergences are eliminated by the introduction of an infrared
Portsmouth P01 2EG, United Kingdom; email address:regulatorm. The theory is regularized by usual dimensional
ungarell@aei-potsdam.mpg.de regularization techniques. The consistency of the procedure
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is verified a posteriori by calculating the one-loop func-  Equation(5) can be easily proved by differentiating Ed)
tion. The theory becomes asymptotically free at large energgnd using the field equations
scales, where the perturbative regime is valid and the infra-
red regulator can be neglected. ) 1 d

The amplitude of the quantum fluctuations of the ADM Y (xV»® =09V ¢+ EgWV(qb)Jr%In[W(@] ViV
mass at a given order in the perturbative expansion can be

read straightforwardly from the two-point Green functions of 1 9

the theory. This is possible because the nonlinear sigma _ng(vd’) =0, ©®
model fields are the ADM mass and the dilaton. Since the

fields have a direct geometrical meaning any problem related dV(¢)

to their interpretation in terms of physical quantities disap- R2)(g)+2VZIn[W(¢)]+ o =0. (7)

pears.
The outline of the paper is as follows. In the next sectionA

we illustrate the classical theory &f-dimensional N=4)

spherically symmetric gravity. We start with the dilaton

gravity description and then introduce the nonlinear sigma 9,,(X) =7, ()A(S) ®)

model picture. Although a part of this section reviews previ- mr rr ’

ous work(see[2] and references thergijrits content is use- V(¢) andW(¢) transform as

ful to make the paper self-contained. Sections Ill and IV are

further property oM is conformal(Weyl) invariance 14].
Indeed, by rescaling the two-dimensional mefi&]

devoted to the classical expansion in normal Riemann coor- V() —V(p)IA(P),
dinates and to the perturbative quantization of the theory,
respectively.(The evaluation of the relevant Feynman dia- W( ) —W(S)A(). 9)
grams is briefly outlined in the Appendpinally, in Sec. V
we state our conclusions. Equation (4) is clearly invariant under Eq¥8),(9). Using
Egs.(8),(9), the action(3) can be cast in a simpler form by a
Il. CLASSICAL THEORY suitable choice ofA\(¢). Here and throughout the paper we

will set A(¢)=1MW(¢$) which corresponds to choosing the

It is well known[6-9] that for spherically symmetric met-
[6-9) b y oy spherically symmetric ansatzv(8=0, ... N—1, u,v=0,1)

rics theN-dimensional Einstein-Hilbert actiofthe Ricci ten-

sor is defined as ifil0]) 9]
(N) 1 Ny /= GRMN d5=Capdy“dy”
SW=—F——-14d -GR™W(G 2
16! E.J ! © ? =[¢(x)]- NI O2g, (x)dx dx”

/(N— 2
can be cast, upon integration on tNe-2 spherical coordi- +yp(01*M2dQ 5, ¢>0. (10)

nates, in the dilaton gravity form ] . ] . ] )
With this choiceW(¢)—1 and the dilaton gravity actiofB)

becomes

d
Spe= f dzw—_g[wm(g)—@m[wwn(w)z

Spe= f d2x\— gl pRP(g) + V()] (12)

+V(e)|, ©)

where
where the dilaton field is related to the radius of thé (
—2)-dimensional sphere and/(¢) and V(¢) are given V(¢)=(N—2)(N—3)(y>¢) YN-2), (12)
functions whose form depends on tNedimensional metric
ansatz.(We neglect surface terms as they are irrelevant foHere y=16al%?/Vy_, and Vy_,=27MN"DAT[(N
the following discussion. For a detailed discussion about the- 1)/2] is the volume of thel — 2)-dimensional unit sphere
role of boundary terms see e.f[2,11,17 and references dQﬁl_z_ On the gauge shell the quantity coincides, apart

therein) from some numerical factors, with the ADM] mass
Theories of the forni3) admit the existence of thgauge
invariany quantity[2,13] yY(N=2)
Maon="—2 M- (13

¢
M=N($)—W($)(V)?, N(d)):f de'TW(¢")V(e')],

This property will be essential in the following.

@ The dilaton gravity actior{3) can be cast in a nonlinear
which is locally conserved, i.e., conformal sigma model form. Here our treatment follows
closely[2]. In two-dimensions the Ricci scal&®?)(g) can
V,M=0. (5) be locally written as
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whereW =U(u)+V(v), U andV being arbitrary functions.
(The arbitrariness in the choice & reflects the residual
coordinate reparametrization invariance in the conformal
gauge. GiverlJ andV correspond to a particular choice of
wherey is an arbitrary, nonconstant, function of the coordi- conformal coordinatesThe two-dimensional metric is

nates. Equatioiil4) can be easily checked using conformal
coordinates. Since E@14) is a generally covariant expres-
sion, and any two-dimensional metric can be locally cast in
the conformal form by a coordinate transformatfd®], Eq.

A VAV XYV x— V., V'xV#x

R®)(g)=2V A*,
(g) y2a VPXVPX
(14

ds?>=4[N(¢)—Mqld,¥a,¥du dv

=4[N(¢)—MyldU dV, (23

(14) is valid in any system of coordinates.

Differentiating Eq.(4), and using Eq(14) with y=d¢, the
action (3) can be written as a functional &l and ¢. The
result is

V,$pVEM
s:f d’xV—g - +S,, 15
whereS; is the surface term
Sa=2Ld2x\/—gVM[V”¢+ HAH]. (16)

Let us investigate the classical solutions of Ekp). Varying
Eq. (15) with respect tavl and ¢ we find

17)
(18)

V. VEhp—V($)=0,

V,MVEM+V ¢V’ ¢V, VM =0.

Equations(17) and(18) must be complemented by the con-

straints

1
ViudV, M-

Egﬂ,,V(,QSV"M:O, (19

which are obtained by varying E15) with respect to the
metricg,,. The general solution of Eq$17)—(19) can be
easily obtained using conformal coordinates. Setting

0 1
gM,,:p(l 0>Hd52=2p(u,v)du du, (20
Egs.(17),(18) and the constraint&l9) read
p
dudy$—5V($)=0,

JuMI,M
IuI,M+ —2 =0,

N—M @D

IupIM=0, 3,3,M=0.

From Egs.(21) and (12) it follows that M is constant,M

=My. Using Egs.(21) and(4) the general solution can be

written

dé

M=Mo, ¢=¢(V), G =N&(¥)]-Mo, (22

or, using the coordinatgsp= (U +V),T=U—-V],

ds*=—[N(¢$)—MoldT?+[N($)—Mo] 'd¢p*. (24)
The general solution depends on the single varighl@his
result is usually known as thgeneralized Birkhoff theorem
(see e.9[13,17-19). Finally, substituting Eq(12) in Eq.
(24) and using Eq(10) we have

ds{=—[1-J/RV3]d?+[1-J/RV 3]~ 1dR?

+R2dQy_,, (29
where
7=(N—2)y YN-2)¢
R=(y¢)"N"2, (26)
S 7,(|\1—1)/(r\|—2)|v|0: y Mo
(N—2)2 N—2

Let us conclude this section with a couple of remarks. We
have seen that two-dimensional dilaton gravity can be de-
scribed by a two-dimensional nonlinear sigma model with a
given target space metric. In particular, fNrdimensional
spherically symmetric gravity the fields appearing in the con-
formal sigma model are the dilaton and the ADM mass, i.e.
guantities which have a direct physical interpretation. The
description of spherically symmetric gravity in terms of geo-
metrical variables is essential for the quantization of the
model since the quantum fields can be directly related to the
original spacetime geometry and problems related to their
interpretation do not show up. The equivalence between the
nonlinear sigma model actiofl5) and the dilaton gravity
action(11) can be proved at the canonical level as well. This
has been done in ReR2]. The general canonical transforma-
tion includes, as particular cases, the canonical transforma-
tions discussed in Ref20] for the Callan-Giddings-Harvey-
Strominger(CGHS [21] model and Ref[12] for the four-
dimensional black hole.

Ill. SIGMA MODEL CURVATURE EXPANSION

The nonlinear sigma modé€15) can be quantized pertur-
batively by expanding the target space metric in Riemann
normal coordinatefs]. Let us define the adimensional mass
M= »?N=2)M . The bulk term of the actiofiL5) in the con-
formal gauge can be cast in the fofv=(u,v)]
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S= J d20 G;;(X)d,X 9*XI, (27)

whereX°= M, X'=¢ and the metric of the target space is

0
12 0

1/2
, MXH=»"N2N( ).

(28

1
G”“):m(

Now we expand the target metri28) in Riemann normal
coordinates around a poiKk{0) (vacuum expectation valyie

At the second order in the Riemann expansion the metric is

[22]
1
Gij(X)=G;;[X(0)]— §Rijkl[x(0)]xkxl

1
— 37 R [ X(0) XXM+ O(x%), (29

whereX'=X(0)+x', x=6X'". Using Eq.(28) and substi-

tuting Eqg.(29) in Eq. (27) the action at the second order in
the Riemann expansion is

S= j d?c L,

1
L=,y o"y;

+geijend,y MYyl (1+gAgy+0(y?)]. (30

Here ¢;; is the two-dimensional completely antisymmetric
Levi Civita tensory' = (x°=x%)/\/2, A;=(1+9,1-7), and
g, g, g are the adimensional coupling constants

BN S . OV N S (U R
3 N[X0)]—X°(0) 3 N(¢g)—My’
_ 1 1 1 ),72/(N72)
T 22 NIXYH0)]=XY(0) 242 N(do) =My’
(32
~ | VIXY0)]
=| — 7 IN[X*0)]-X°%0
Dixio)] MXH@1-X70)]
—V[XY0)][[NTX1(0)]—X°(0)]
V' (o)
=| Vg (N($0) ~Mol = V(o)
X[N(¢pg) —Mgly*N=2), (33

whereV=dA7dX!. Using Eqs(12), (13), and(26) g,a and
g read

PHYSICAL REVIEW D 61 064019

L T 1
g_ §N_2 E 1 K MADM |ﬂ -3
N-2 my |R
(34)
_ 1 K(N—3)/(N—2)(|pI)N—3 1
_2\/5 (N-2)2 |R Kk Mapm lﬂ -
N-2 my |R
(35)
T= — (N—2)4,— (N-4)/(N-2) lpr| " K
9= (N2 Rl TNz
XMADM loi N3 1- X Mapwm [ o1 N3
my, | R N-2 m, |R '
(36)

wherex=167/Vy_,. Let us investigate the behavior of the
coupling constants. FdR—« and fixedM ppy , 1.€., in the
asymptotically flat region far away from a black hole of
given (classical massM apyv, EQgs.(34)—(36) read

KN_3 |p| N-2 1 O |p| N-3
9-""3N=2|R TOIR] |
EN 1 K(N3)/(N2)(|ﬂ)N3 140 |ﬂ>N3}
“2y2 (N-22 |R R ’

(37

aoo"” —(N— 2)4K_(N_4)/(N_2)(

Ipl N-3

E .

As expected, the Riemann expansion is an expansion in pow-
ers of the curvature, i.e., in powers bfi/R. The theory
becomes free in the asymptotically flat region where the first

order correction to the free theory is of order
O((I,/R)N"2). The perturbative expansion fails on the
black hole horizon, the coupling constaigtg&ndg blowing

up whenRN"3-J. The perturbative Riemann expansion is
also valid for large values d1 .o /My, at distances

| 4—N
Ipt
:

X|1+0

MADM
Mp)

1/(N—-3)
R_Jl/(N—3)~|p|( )

(39

In this regime the dimensional coupling constaf®4)—(36)

read
g~( d

MADM

)(N—Z)/(N—S)

(39
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5 my, (4—N)/(N-3)

W[J]szD[y‘]eiS[y’J], S[y,J]zJ d2o[L+Jy'].
IVIADM
(40)
and the Riemann expansion is an expansion in powers of
Mpi/Mapm - The theory becomes a free field theory whenThe free two-points Green functidpropagator is
N d’p
IV. PERTURBATIVE QUANTIZATION (Yilow)yj(oz))=imn (2m)? p’+ie

e*ip(lfl*”z),

In this section we quantize the theory at one loop and at 1
the first order in the curvature expansiog=(g=0). Since = — 7ij 4—|n[(0'1—0'2)2]. (41
the target space is not Ricci flat, the conformal symmetry is m
not preserved at the quantum level. Conformal symmetry i , ) , )
breaking implies running coupling constants and effectivet the .fII’S.t order in the Riemann expansion the perturbative
terms in the action that depend on the conformal factorPotential is
Since quantum corrections to the ADM mass due to these

terms are subdominant we will postpone their discussion at _9 i gy Kyiy
the end of the section and work in the unit gauge. Vi(Y)= 3 8ijeduy d"YylY. (42)
The vacuum-to-vacuum amplitude {for notations see
Ref.[23]) The corresponding Feynman rule for the interaction vertex is
4 b,
i k
. g
N = iy (2)%6 (3 pi) lesi emilpr — p2)(ps — pa) +
p2 p4 ¢
+ €ir €1(p1 — p3)(p2 — pa) + it exj(pr — p4)(p3 — p2)) - 43
The one-loop correction of the two-point Green function is
oL
i J 2 1 L@
pl p2 - (27") J(Ept)]:[p? +i€l—‘ij ’ (44)
|
where where
d?q o°+ pi (4) 2J' d%q 1
@= _gp: [ —s ——= iy = - -
=g, [ 5o e (49 =9 @m? (@ +ial(ptpo-a2rie] 4P

_ _ X (i 71 AL+ 711 ikPaF 75 Tals),
The (on-shel) one-loop correction of the four-point Green (i Aa iAo 715 7aAa)

function (s channel is
unction ( i A1=4(p1p2)[(P1P2) — G2+ q(p1+po)]

P 9 1 P, +9°19*~2q(p1+py)]
—2[(ap2)(aps) +(ap)(apa) ],
>O< — (972 R0
Py I'~p, = (27) ‘S(ZP‘)HWP“"" A2=4(p1p2)[ (P1P2) —9*+a(P1+P2)]
(46) +0°[9*—2q(p1+p2)]
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—2[(qpy)(aps)+(ap2)(aps)], 1

9=09s— =
Az=8[q(p1—p2) I[ad(Ps—Pa) ]

S s

+ 67Tgsln e
The two- and four-point Green functiori44) and (46) are
infrared and ultraviolet divergent. The infrared divergencewheregs is the value of the coupling constagat the renor-
can be eliminated by inserting an infrared regulator. We willmalization scaleus. From Eq.(56) we see thag—0 for
checka posteriorithe consistency of this procedure by prov- u—, i.e., the theory becomes free at high energy scales
ing that the theory is asymptotically free in the ultraviolet (asymptotic freedom The perturbative regime of the theory
region, i.e., that the theory is perturbative for large values ofs realized at short distances, where the theory itself exhibits
the energy. In order to regularize the theory we have to coman ultraviolet stable fixed point. Since the model is asymp-
pute the ultraviolet divergences. Using dimensional regulartotically free in the ultraviolet region, it is possible to neglect

(56)

ization the divergence of the two-point Green functidd)
is (details of the calculation are given in the Appendix

[divergencel“i(z)]—l <P’ (48)

wheree=2—d. The divergence above is eliminated by in-

serting in the Lagrangian density the countertérminimal
subtraction

1 g
(2) = -z
L 2( oy ) 3,y "Yi - (49)
The divergence of the four-point Green functi¢46) is
(s+t+u channels

. (4) : 11 €n2
[divergenceljj ] =i 2aeM9 [ 7ij mas+ mikmyit

+ 77Ul (50
where s=(p;+p2)% t=(p1+ps)® and u=(py+p,)* are
the Mandelstam variables. The divergeig6) is eliminated
by inserting in the Lagrangian density the counterterm

1

11 g
5(4)=§9M6

C6me

gijend,y *y<yly'. (51

Finally, the one-loop renormalized Lagrangian density is

1 . 1 ) )
Lrenzizlauylaﬂyi+ Egﬂezzgijeklﬁuylaﬂyk)’]yl,
(52

where

1
lel_i, 22:1__1g;

2me (53

Now we can calculate thg function and the anomalous
dimensiony(g) of they fields at one loop. The result is

B( )=—i ?+0(g°) (54)
9)=-5,9°+0(g%),

g
7(g)=%+0(92). (55

Integrating Eq(54) we obtain

the dependence of the Green functions on the infrared regu-
lator. Solving the renormalization group equation at one loop
for the N-point Green function, we obtain

(3/10)N
<y1y2---yN;g,u>=<g—) (Y1Y2 - - -YN:Os: Ms)-
S
(57)

Now let us evaluate the two-point Green function at one
loop. We have

1
(Vi(a)Yi(02)=— 7 7= [1—iln(”) +0(gz>}

XIn[(o1—07)?]. (58
In term of the fields<' the only Green function different from

Zero is

2
<X0(0'1

02)>

1—iln(

02)2]-

+O(gz)}

XIn[(o1— (59
As a result, at the first order in the curvature expansion, the
one-loop quantum correction to the Schwarzschild mass is
identically zero
(SM(01) SM(07))=0(g?). (60)

Actually, a simple observation shows that the two-point
Green function at first order in the curvature expansion is
zero at any loop. This result follows from the invariance of
the interaction Lagrangian density, E42), under Poincare
group transformations in thefield space. Since the interac-
tion vertex(43) has twodM and twoé¢ legs, and the propa-
gator is antidiagonal in the fielde®$M,d¢), any two-point
Green function is necessarily diagoriahtidiagonal in the
y' [ 6 M, 8¢] fields, respectively.

Let us now consider the perturbative potential at second
order in the curvature expansion

1 -
Va(y) = 599eijekAqdy 9y yly'y.  (6D)

This interaction breaks the Poincarwariance in they field
space. We have two different vertices:
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5¢ SM SM 3¢ the contributions due to these terms are subleading. This is
indeed the case, as we have anticipated at the beginning of
this section.

g g In the conformal gauge the one-loop renormalized sigma-
¢ 2 SM 2 model action at the second order in the curvature expansion
is

o¢ M oM 3¢ _
62 S= f d%o e V2L o0t Sy + Synost- (69
wheregz~g_g§. Here Sy is the effective action due to the Weyl anomaly and

SinceV,(y) is an odd functional of thg fields we expect L., is renormalized Lagrangian
the interaction Lagrangian densit§61) to give a non-

L ) . . e g 1 ) 1 . )
;/Iggfgcg two-loop contribution to the one-point Green func ﬁrenzzzl%)ﬂ My, + Egﬂezzsij SklaMyla,uyknyl
1 — € i Ky /il q
+T599u Zzeijed,y MYy Y Agy, (70)
8, (63
M where the divergent part of the renormalization consint

=1+ Cg/e comes from the one loop Feynman diagram with
one four and one five point vertices, respectively. Note that
However, a straightforward computation of this diagramthe conformal factor? is a propagating field because the
shows thafdM) is identically zero. The first nonvanishing Weyl anomaly action contains a kinetic term bt
two-point Green function for theSM field at the second Expanding aroundl=2 the leading ordet’-dependent
order in the curvature expansion is given by the Feynmanerm in the effective Lagrangian that violates Poincare
diagram variance in they field space iqrecall that quantum correc-
8,/ \& tions to the ADM mass are only generated by these terms

—7 (64 _ . .
M M LTV ~0%gei e,y oMyRylylyiw. (7D

The above diagram gives a npndiagonal quarithmic divergquation (71) gives a contribution to SM(0r) SM(03))
gence to the propagator of tiydields. By adding the appro- ¢ orderO(g“EZQZ) which is subleading to Eq65). Finally,

priate counterterm in t_he Lagrangian_, the_first finite, nonzerog; (hree loops Eq(61) originates the(Poincafebreaking
two point Green function for théM field is

term
1 ~ _ — . )
(5M(al)5M(02)>=—EAIn(% (1+B¢?)(gg)? L5F(W)~(999)%0,y "y ¥, (72)
5 whereZ.;; is a symmetric X2 matrix. Equatior(72) gives a
XIn[(oy—0)7], (65 one-loop contribution to{(8M(o1)S5M(oy)) of order
whereA,B are constant adimensional factors. O((999)*) whose counterterm is again subleading to Eq.

Using Eq. (65 we can estimate the upper limit of the (65).
guantum corrections oM apy - Since the perturbative ex-

pansion fails whemg In(ux)~0O(1) from Eg.(65) we have V. CONCLUSION
o 2 ~ = Let us summarize the main results of the paper.
(AMapwm) Smpl|(1+ Bg*)gg’|. (66) N-dimensional spherically symmetric gravityvacuocan be

reduced to a two-dimensional conformal nonlinear sigma
model form, Eq.(27). The field content of the latter is given
N/2 by two fields,M (o) and¢(o). TheM field is constant on the
AMADMsmm(E , (67) classical solutions of the field equations. It coincides, apart
from a constant factor, to the ADM mass of the system. The
and second field, ¢, is related to the radius of the
(N—2)-dimensionalhypepsphere see Eqs(25) and (26)].
mp | V2N=3) So both fields have a direct physical meaning. This property
AMapm=my, M aom (68)  makes the conformal nonlinear sigma model formulation
very attactive. Quantization of the theory in thd (¢) rep-
for R/1,>1 andmy /M pp<<1, respectively. resentation gives quantum corrections to the mass and to the
Up to now we have neglected effective terms due to theadius in a direct and straightforward way. This result cannot
dependence of the action on the conformal factodn?2 be achieved in the usual Einstdifig. (2)] or dilaton gravity
— e dimensions. Equation®7) and(68) make sense only if [Eg. (3)] approaches.

Recalling Egs(37)and (39) we obtain

loi
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The perturbative quantization of the theory is straightfor- Im A
ward. Firstly, the nonlinear sigma model target space is ex- L%
panded in Riemann normal coordinates, i.e., in powers of the ‘\
target space curvature. Then the theory is quantized—at any . q
order—by usual quantum field theory techniques. The per- -q .
turbative expansion fails on the black hole hori@mwhere !
the target space metric exhibits a singularity. This is not
surprising: On the horizae) strong quantum gravity effects
manifest themselves and a perturbative quantization must
necessarily fail. Conversely, far away from the hori@n FIG. 1. Wick rotation in th&), plane. The two crosses represent
quantum gravity effects are weak, the sigma model targethe poles of the integral in the Minkowski spadg, The latter is

o

X

space is asymptotically flat and a perturbative treatment igqual to—il$™.

possible.[The perturbative results hold also at distances of

the order of the horizds) for black holes with large mass in Two-point Green function

Planck units—see Ed38).] By dimensional regularization the calculation of the one-

In this paper we have discussed first and second ordgpop two-point Green functiori44) is reduced to the evalu-

corrections in the curvature expansion. Surprisingly, first oration of the(Euclidean integral ind=2— e dimensions
der corrections to the ADM mass are identically zat@any

loop. This follows from the invariance of the first order in- c d>~¢q 1
teraction under Poincartansformations in the {M, 8¢) |(2 )=,u5f
field space and from the antidiagonal form of the field propa-

gator. Therefore, quantum corrections to the ADM mass of vhere we have added a regulato? to avoid the infrared

four:(iimensional tl)(ljack_ h(l)le are no;c] (;f OrderM sp divergence afj=0. Indeed, discarding the ultraviolet qua-
~R™, as one would naively expect. The first nonzero quan'dratically divergent integralsee e.g[24]) and Wick rotating

tum corrections tdVl 5py arise(at least at second order in to the Euclidean spadsee Fia. 1. Ea(45)] can be written
the curvature expansidisee Eqs(67) and(68)]. pad g- 1. Eq(45)]

Equations(67) and (68) are the main contribution of the Fi(,-z)=ig77ijpzl(2E)- (A2)
paper. Pure quantum gravity effects make the classical ADM
mass of a spherically symmetric black hole fluctuate accordThe integral(Al) can be immediately evaluatddee[23],
ing to Eqgs.(67) and (68). Hopefully, this result may help to Eq. (B.16), p. 317. The result is
shed light on open issues in quantum gravity and black hole g
physics, such as information loss, black hole thermodynam- |(E):E di2-2p(1— (ﬁ)
! : ) T (1—-d/2) . (A3)
ics and black hole evaporation. m
Note added in proofAfter this paper was accepted for ) .
publication, we became aware of an article by Kazakov andexpanding aroundi=2 we obtain
Solodukhin [25] in which quantum corrections to the 1 (4 e/ 2
Schwarzschild metric are calculated. Kazakov and Soq (2E):_(_ D)+~ =+ AL = (1) ]+ }
lodukhin find that for large distances the first quantum cor- 4m\m/ | e 4\ 3
rection to the Schwarzschild metric is of ordda,g;,(R)‘2 and (A4)

does not affect the mass term. Their result is in complete . : . - _
agreement with the results of this paper. where ¢ is the digamma function. Substituting EGA4) in

Eq. (A2) we obtain Eq(48).

(2m)2 P+ m?’ (AL

€
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APPENDIX 9
In this appendix we sketch the evaluation of the Feynman Co=— S usll(s) +14(u)]+(Su+2s)l5(s)
diagrams(44) and (46). The integrals are evaluated by di-
mensional regularization. +(9s+2u)l,(u), (AB)
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Ca=— gst[|4(s)+|4(t)]+(9t+25)lz(8)
+(9s+2t)1,(t),
and

dZ*Eq 1
(2m)2 (P+ie)[(p—q)+ie]’

14(p) =,tff (A7)

PHYSICAL REVIEW D61 064019
f dq p'q;
(2m)? (p—q)°+ie

- p? 1( d%q 9
~ 71403 e parrie

I,(p) can be easily evaluated by inserting an infrared regu-
lator and performing a Wick rotation similar to the one

which is described in Fig. 1.1,(p) is infrared divergent and
In the reduction we have discarded the quadratically diverultraviolet convergent.Using [23] [Eq. (B.16) p. 317 and

gent integral§24] and used the following relations:

dq 0ig;(d—1)
(2m)? (®+ie)[(p—q)°+ie]

») dp?
=Z—§2‘[<d—2>lz<p>+7pl4(p>}
7ij

2

2
lz(m—%um)}

dq p'q; p?

(277)2 (q2+ie)[(p—q)2+ie] = ?|4(p),

expanding around=2 we have

€ 1
p2V1+4m?/p?
1+1+4m?/p?

1—\1+4m?/p?|

i
|4(p)=—;

m
m

xIn (A8)

Finally, substituting Eq(A8) and Eq.(A4) in Eq. (A5) we
obtain Eq.(50).
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