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Quantum gravity corrections to the Schwarzschild mass
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Vacuum spherically symmetric Einstein gravity inN>4 dimensions can be cast in a two-dimensional
conformal nonlinear sigma model form by first integrating on the (N22)-dimensional~hyper!sphere and then
performing a canonical transformation. The conformal sigma model is described by two fields which are
related to the Arnowitt-Deser-Misner~ADM ! mass and to the radius of the (N22)-dimensional~hyper!sphere,
respectively. By quantizing perturbatively the theory we estimate the quantum corrections to the ADM mass of
a black hole.

PACS number~s!: 04.60.2m, 04.62.1v, 04.70.Dy
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I. INTRODUCTION

Classically, a neutral, nonrotating, spherically symme
black hole in vacuum is completely identified by the value
its Arnowitt-Deser-Misner~ADM ! mass MADM ~see e.g.
@1#!. Since gravity does not couple to any matter field—a
we imposeab initio spherical symmetry—MADM is constant
and the geometry possesses one extra Killing vector in a
tion to the Killing vectors which are associated with t
spherical symmetry~Birkhoff theorem!. The general solution
of Einstein equations is the famous Schwarzschild metric
describes aneternal black hole.

Naively, we would expect both properties—the Birkho
theorem andMADM5const—to be broken at the quantu
level. The validity of the Birkhoff theorem in the quantu
canonical theory of spherically symmetric gravity has be
investigated in Refs.@2–4#. It has been shown that th
Birkhoff theorem holds at the quantum level; i.e., the qua
tum theory of spherically symmetric gravity in vacuum is
quantum mechanical system with a finite number of degr
of freedom~quantum Birkhoff theorem! @2#. Moreover, the
Hilbert space of the quantum theory is completely det
mined by the eigenstates of the~gauge invariant! mass op-
erator.

The aim of this paper is to explore whether the oth
classical property (MADM5const) holds in the quantum
gravity regime as well. The result of our investigation is th
quantum gravity corrections to the Schwarzschild mass
pear at the second order in the curvature perturbative ex
sion. For instance, quantum fluctuations of the mass o
four-dimensional black hole are, for distances much gre
than the horizon radius,
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, ~1!

wherel pl andmpl are the Planck length and the Planck ma
respectively.~Notations: Here and throughout the paper w
use natural units.!

A number of approximations are needed to obtain Eq.~1!.
We will discuss them in detail in the following section
Here let us just emphasize two important points concern
Eq. ~1!. Firstly, the quantum theory breaks down on the h
rizon~s! where the coupling constants of the perturbative
pansion diverge. Therefore, Eq.~1! is strictly valid for dis-
tances much greater than the Schwarzschild radius of
black hole. Secondly, quantum fluctuations vanish for la
radii, i.e., at large distances from the black hole. In t
asymptotic regime the black hole behaves classically and
mass is constant. Quantum fluctuations of the Schwarzsc
mass due to pure quantum gravity effects become man
when the black hole horizon is approached.

Equation~1! is obtained in the context of the nonlinea
sigma model approach to spherically symmetric grav
whose basic ingredients are described in Ref.@2#. First,
N-dimensional spherically symmetric gravity is cast in a
laton gravity form by integrating over the (N22) spherical
coordinates. Then, by a canonical field redefinition the act
is transformed in a two-dimensional conformal nonline
sigma model with a fixed target metric. The new fields a
the dilaton and a gauge invariant fieldM which is constant
on the classical solutions of the field equations and can
identified with the ADM mass of the black hole.

The new action can be quantized perturbatively by
panding the metric of the target space in normal Riema
coordinates@5#. Since the expansion parameter is prop
tional to the curvature of the manifold, the theory is a fr
field theory far away from the black hole horizon and f
large ADM mass in Planck units. The perturbative theo
turns out to be infrared and ultraviolet divergent. Infrar
divergences are eliminated by the introduction of an infra
regulatorm. The theory is regularized by usual dimension
regularization techniques. The consistency of the proced

cs,
,
:
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is verified a posteriori by calculating the one-loopb func-
tion. The theory becomes asymptotically free at large ene
scales, where the perturbative regime is valid and the in
red regulator can be neglected.

The amplitude of the quantum fluctuations of the AD
mass at a given order in the perturbative expansion can
read straightforwardly from the two-point Green functions
the theory. This is possible because the nonlinear sig
model fields are the ADM mass and the dilaton. Since
fields have a direct geometrical meaning any problem rela
to their interpretation in terms of physical quantities disa
pears.

The outline of the paper is as follows. In the next sect
we illustrate the classical theory ofN-dimensional (N>4)
spherically symmetric gravity. We start with the dilato
gravity description and then introduce the nonlinear sig
model picture. Although a part of this section reviews pre
ous work~see@2# and references therein!, its content is use-
ful to make the paper self-contained. Sections III and IV
devoted to the classical expansion in normal Riemann c
dinates and to the perturbative quantization of the theo
respectively.~The evaluation of the relevant Feynman d
grams is briefly outlined in the Appendix.! Finally, in Sec. V
we state our conclusions.

II. CLASSICAL THEORY

It is well known@6–9# that for spherically symmetric met
rics theN-dimensional Einstein-Hilbert action~the Ricci ten-
sor is defined as in@10# !

S(N)5
1

16p l pl
N22E dNyA2GR(N)~G! ~2!

can be cast, upon integration on theN22 spherical coordi-
nates, in the dilaton gravity form

SDG5E d2xA2gFfR(2)~g!2
d

df
ln@W~f!#~¹f!2

1V~f!G , ~3!

where the dilaton field is related to the radius of theN
22)-dimensional sphere andW(f) and V(f) are given
functions whose form depends on theN-dimensional metric
ansatz.~We neglect surface terms as they are irrelevant
the following discussion. For a detailed discussion about
role of boundary terms see e.g.@2,11,12# and references
therein.!

Theories of the form~3! admit the existence of the~gauge
invariant! quantity @2,13#

M5N~f!2W~f!~¹f!2, N~f!5Ef

df8@W~f8!V~f8!#,

~4!

which is locally conserved, i.e.,

¹mM50. ~5!
06401
y
a-

be
f
a

e
d

-

n

a
-

e
r-
y,

r
e

Equation~5! can be easily proved by differentiating Eq.~4!
and using the field equations

¹ (m¹n)f2gmn¹2f1
1

2
gmnV~f!1

d

df
ln@W~f!#F¹ (m¹n)f

2
1

2
gmn~¹f!2G50, ~6!

R(2)~g!12¹2 ln@W~f!#1
dV~f!

df
50. ~7!

A further property ofM is conformal~Weyl! invariance@14#.
Indeed, by rescaling the two-dimensional metric@15#

gmn~x!→gmn~x!A~f!, ~8!

V(f) andW(f) transform as

V~f!→V~f!/A~f!,

W~f!→W~f!A~f!. ~9!

Equation ~4! is clearly invariant under Eqs.~8!,~9!. Using
Eqs.~8!,~9!, the action~3! can be cast in a simpler form by
suitable choice ofA(f). Here and throughout the paper w
will set A(f)51/W(f) which corresponds to choosing th
spherically symmetric ansatz (a,b50, . . . ,N21, m,n50,1!
@9#

dsN
2 5Gabdyadyb

5@f~x!#2(N23)/(N22)gmn~x!dxmdxn

1@gf~x!#2/(N22)dVN22
2 , f.0. ~10!

With this choiceW(f)→1 and the dilaton gravity action~3!
becomes

SDG5E d2xA2g@fR(2)~g!1V~f!#, ~11!

where

V~f!5~N22!~N23!~g2f!21/(N22). ~12!

Here g516p l pl
N22/VN22 and VN2252p (N21)/2/G@(N

21)/2# is the volume of the (N22)-dimensional unit sphere
dVN22

2 . On the gauge shell the quantityM coincides, apart
from some numerical factors, with the ADM@1# mass

MADM5
g1/(N22)

N22
M . ~13!

This property will be essential in the following.
The dilaton gravity action~3! can be cast in a nonlinea

conformal sigma model form. Here our treatment follow
closely @2#. In two-dimensions the Ricci scalarR(2)(g) can
be locally written as
9-2
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R(2)~g!52¹mAm, Am5
¹m¹nx¹nx2¹n¹nx¹mx

¹rx¹rx
,

~14!

wherex is an arbitrary, nonconstant, function of the coor
nates. Equation~14! can be easily checked using conform
coordinates. Since Eq.~14! is a generally covariant expres
sion, and any two-dimensional metric can be locally cas
the conformal form by a coordinate transformation@16#, Eq.
~14! is valid in any system of coordinates.

Differentiating Eq.~4!, and using Eq.~14! with x5f, the
action ~3! can be written as a functional ofM and f. The
result is

S5E
S
d2xA2g

¹mf¹mM

N~f!2M
1S] , ~15!

whereS] is the surface term

S]52E
S
d2xA2g¹m@¹mf1fAm#. ~16!

Let us investigate the classical solutions of Eq.~15!. Varying
Eq. ~15! with respect toM andf we find

¹m¹mf2V~f!50, ~17!

¹mM¹mM1¹nf¹nf¹m¹mM50. ~18!

Equations~17! and ~18! must be complemented by the co
straints

¹ (mf¹n)M2
1

2
gmn¹sf¹sM50, ~19!

which are obtained by varying Eq.~15! with respect to the
metric gmn . The general solution of Eqs.~17!–~19! can be
easily obtained using conformal coordinates. Setting

gmn5rS 0 1

1 0D→ds252r~u,v !du dv, ~20!

Eqs.~17!,~18! and the constraints~19! read

]u]vf2
r

2
V~f!50,

]u]vM1
]uM]vM

N2M
50, ~21!

]uf]uM50, ]vf]vM50.

From Eqs.~21! and ~12! it follows that M is constant,M
5M0 . Using Eqs.~21! and ~4! the general solution can b
written

M5M0 , f5f~C!,
df

dC
5N@f~C!#2M0 , ~22!
06401
l

n

whereC5U(u)1V(v), U andV being arbitrary functions.
~The arbitrariness in the choice ofC reflects the residua
coordinate reparametrization invariance in the conform
gauge. GivenU and V correspond to a particular choice o
conformal coordinates.! The two-dimensional metric is

ds254@N~f!2M0#]uC]vCdu dv

54@N~f!2M0#dU dV, ~23!

or, using the coordinates@f[f(U1V),T[U2V#,

ds252@N~f!2M0#dT21@N~f!2M0#21df2. ~24!

The general solution depends on the single variablef. This
result is usually known as thegeneralized Birkhoff theorem
~see e.g.@13,17–19#!. Finally, substituting Eq.~12! in Eq.
~24! and using Eq.~10! we have

dsN
2 52@12J/RN23#dt21@12J/RN23#21dR2

1R2dVN22 , ~25!

where

t5~N22!g21/(N22)t,

R5~gf!1/(N22), ~26!

J5
g (N21)/(N22)

~N22!2
M05

g

N22
MADM .

Let us conclude this section with a couple of remarks. W
have seen that two-dimensional dilaton gravity can be
scribed by a two-dimensional nonlinear sigma model with
given target space metric. In particular, forN-dimensional
spherically symmetric gravity the fields appearing in the co
formal sigma model are the dilaton and the ADM mass,
quantities which have a direct physical interpretation. T
description of spherically symmetric gravity in terms of ge
metrical variables is essential for the quantization of
model since the quantum fields can be directly related to
original spacetime geometry and problems related to th
interpretation do not show up. The equivalence between
nonlinear sigma model action~15! and the dilaton gravity
action~11! can be proved at the canonical level as well. Th
has been done in Ref.@2#. The general canonical transforma
tion includes, as particular cases, the canonical transfor
tions discussed in Ref.@20# for the Callan-Giddings-Harvey
Strominger~CGHS! @21# model and Ref.@12# for the four-
dimensional black hole.

III. SIGMA MODEL CURVATURE EXPANSION

The nonlinear sigma model~15! can be quantized pertur
batively by expanding the target space metric in Riema
normal coordinates@5#. Let us define the adimensional ma
M5g2/(N22)M . The bulk term of the action~15! in the con-
formal gauge can be cast in the form@s[(u,v)#
9-3
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S5E d2s Gi j ~X!]mXi]mXj , ~27!

whereX0[M, X1[f and the metric of the target space

Gi j ~X!5
1

N~X1!2X0 S 0 1/2

1/2 0 D , N~X1!5g2/(N22)N~f!.

~28!

Now we expand the target metric~28! in Riemann normal
coordinates around a pointX(0) ~vacuum expectation value!.
At the second order in the Riemann expansion the metri
@22#

Gi j ~X!5Gi j @X~0!#2
1

3
Ri jkl @X~0!#xkxl

2
1

3!
Ri jkl ;m@X~0!#xkxlxm1O~x4!, ~29!

whereXi5Xi(0)1xi , xi[dXi . Using Eq.~28! and substi-
tuting Eq.~29! in Eq. ~27! the action at the second order
the Riemann expansion is

S5E d2s L,

L5
1

2
@]myi]myi

1g« i j «kl]myi]mykyjyl
„11ḡAqyq1O~y2!…#. ~30!

Here « i j is the two-dimensional completely antisymmetr
Levi Civita tensor,yi5(x06x1)/A2, Aq5(11g̃,12g̃), and
g, ḡ, g̃ are the adimensional coupling constants

g52
1

3

V @X1~0!#

N @X1~0!#2X0~0!
52

1

3

V~f0!

N~f0!2M0
, ~31!

ḡ5
1

2A2

1

N @X1~0!#2X1~0!
5

1

2A2

g22/(N22)

N~f0!2M0
,

~32!

g̃5FV8@X1~0!#

V @X1~0!#
†N @X1~0!#2X0~0!‡

2V @X1~0!#G †N @X1~0!#2X0~0!‡

5FV8~f0!

V~f0!
@N~f0!2M0#2V~f0!G

3@N~f0!2M0#g4/(N22), ~33!

whereV5dN/dX1 . Using Eqs.~12!, ~13!, and~26! g, ḡ, and
g̃ read
06401
is

g52
k

3

N23

N22 S l pl

R D N22 1

12
k

N22

MADM

mpl
S l pl

R D N23 ,

~34!

ḡ5
1

2A2

k (N23)/(N22)

~N22!2 S l pl

R D N23 1

12
k

N22

MADM

mpl
S l pl

R D N23 ,

~35!

g̃52~N22!4k2(N24)/(N22)S l pl

R D 42NF12
k

~N22!2

3
MADM

mpl
S l pl

R D N23GF12
k

N22

MADM

mpl
S l pl

R D N23G ,
~36!

wherek516p/VN22 . Let us investigate the behavior of th
coupling constants. ForR→` and fixedMADM , i.e., in the
asymptotically flat region far away from a black hole
given ~classical! massMADM , Eqs.~34!–~36! read

g`;2
k

3

N23

N22 S l pl

R D N22F11OS l pl

R D N23G ,
ḡ`;

1

2A2

k (N23)/(N22)

~N22!2 S l pl

R D N23F11OS l pl

R D N23G ,
~37!

g̃`;2~N22!4k2~N24)/(N22)S l pl

R D 42N

3F11OS l pl

R D N23G .
As expected, the Riemann expansion is an expansion in p
ers of the curvature, i.e., in powers ofl pl /R. The theory
becomes free in the asymptotically flat region where the fi
order correction to the free theory is of ord
O„( l pl /R)N22

…. The perturbative expansion fails on th
black hole horizon, the coupling constantsg and ḡ blowing
up whenRN23→J. The perturbative Riemann expansion
also valid for large values ofMADM /mpl at distances

R2J1/(N23); l plS MADM

mpl
D 1/(N23)

. ~38!

In this regime the dimensional coupling constants~34!–~36!
read

g;S mpl

MADM
D (N22)/(N23)

,

ḡ;S mpl

MADM
D , ~39!
9-4
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g̃;S mpl

MADM
D (42N)/(N23)

and the Riemann expansion is an expansion in power
mpl /MADM . The theory becomes a free field theory wh
mpl /MADM!1.

IV. PERTURBATIVE QUANTIZATION

In this section we quantize the theory at one loop and
the first order in the curvature expansion (ḡ5g̃50). Since
the target space is not Ricci flat, the conformal symmetry
not preserved at the quantum level. Conformal symme
breaking implies running coupling constants and effect
terms in the action that depend on the conformal fac
Since quantum corrections to the ADM mass due to th
terms are subdominant we will postpone their discussion
the end of the section and work in the unit gauge.

The vacuum-to-vacuum amplitude is~for notations see
Ref. @23#!
n
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W@J#5NE D@yi #eiS[ y,J] , S@y,J#5E d2s@L1Jiy
i #.

~40!

The free two-points Green function~propagator! is

^yi~s1!yj~s2!&5 ih i j E d2p

~2p!2

1

p21 i e
e2 ip(s12s2),

52h i j

1

4p
ln@~s12s2!2#. ~41!

At the first order in the Riemann expansion the perturbat
potential is

V1~y!5
g

2
« i j «kl]myi]mykyjyl . ~42!

The corresponding Feynman rule for the interaction verte
~43!

The one-loop correction of the two-point Green function is

~44!
where

G i j
(2)52gh i j E d2q

~2p!2

q21p1
2

q21 i e
. ~45!

The ~on-shell! one-loop correction of the four-point Gree
function ~s channel! is

~46!
where

G i jkl
(4) 5g2E d2q

~2p!2

1

~q21 i e!@~p11p22q!21 i e#

3~h ikh j l A11h i l h jkA21h i j hklA3!,

~47!

A154~p1p2!@~p1p2!2q21q~p11p2!#

1q2@q222q~p11p2!#

22@~qp2!~qp3!1~qp1!~qp4!#,

A254~p1p2!@~p1p2!2q21q~p11p2!#

1q2@q222q~p11p2!#
9-5
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MARCO CAVAGLIÀ AND CARLO UNGARELLI PHYSICAL REVIEW D 61 064019
22@~qp1!~qp3!1~qp2!~qp4!#,

A358@q~p12p2!#@q~p32p4!#.

The two- and four-point Green functions~44! and ~46! are
infrared and ultraviolet divergent. The infrared divergen
can be eliminated by inserting an infrared regulator. We w
checka posteriorithe consistency of this procedure by pro
ing that the theory is asymptotically free in the ultravio
region, i.e., that the theory is perturbative for large values
the energy. In order to regularize the theory we have to co
pute the ultraviolet divergences. Using dimensional regu
ization the divergence of the two-point Green function~44!
is ~details of the calculation are given in the Appendix!

@divergenceG i j
(2)#5 i

g

2pe
h i j p

2, ~48!

wheree522d. The divergence above is eliminated by i
serting in the Lagrangian density the counterterm~minimal
subtraction!

L (2)5
1

2 S 2
g

2pe D ]myi]myi . ~49!

The divergence of the four-point Green function~46! is
(s1t1u channels!

@divergenceG i jkl
(4) #5 i

11

2pe
meg2@h i j hkls1h ikh j l t

1h i l h jku#, ~50!

where s5(p11p2)2, t5(p11p3)2 and u5(p11p4)2 are
the Mandelstam variables. The divergence~50! is eliminated
by inserting in the Lagrangian density the counterterm

L (4)5
1

2
gmeS 2

11

6p

g

e D « i j «kl]myi]mykyjyl . ~51!

Finally, the one-loop renormalized Lagrangian density is

Lren5
1

2
Z1]myi]myi1

1

2
gmeZ2« i j «kl]myi]mykyjyl ,

~52!

where

Z1512
g

2pe
, Z2512

11g

6pe
. ~53!

Now we can calculate theb function and the anomalou
dimensiong(g) of the y fields at one loop. The result is

b~g!52
5

6p
g21O~g3!, ~54!

g~g!5
g

2p
1O~g2!. ~55!

Integrating Eq.~54! we obtain
06401
e
ll

f
-

r-

g5gs

1

11
5

6p
gs ln

m

ms

, ~56!

wheregs is the value of the coupling constantg at the renor-
malization scalems . From Eq.~56! we see thatg→0 for
m→`, i.e., the theory becomes free at high energy sca
~asymptotic freedom!. The perturbative regime of the theor
is realized at short distances, where the theory itself exhi
an ultraviolet stable fixed point. Since the model is asym
totically free in the ultraviolet region, it is possible to negle
the dependence of the Green functions on the infrared re
lator. Solving the renormalization group equation at one lo
for the N-point Green function, we obtain

^y1y2 . . . yN ;g,m&5S g

gs
D (3/10)N

^y1y2 . . . yN ;gs ,ms&.

~57!

Now let us evaluate the two-point Green function at o
loop. We have

^yi~s1!yj~s2!&52h i j

1

4p F12
g

4p
lnS m

mD 2

1O~g2!G
3 ln@~s12s2!2#. ~58!

In term of the fieldsxi the only Green function different from
zero is

^x0~s1!x1~s2!&52
1

4p F12
g

4p
lnS m

mD 2

1O~g2!G
3 ln@~s12s2!2#. ~59!

As a result, at the first order in the curvature expansion,
one-loop quantum correction to the Schwarzschild mas
identically zero

^dM~s1!dM~s2!&5O~g2!. ~60!

Actually, a simple observation shows that the two-po
Green function at first order in the curvature expansion
zero at any loop. This result follows from the invariance
the interaction Lagrangian density, Eq.~42!, under Poincare´
group transformations in they field space. Since the interac
tion vertex~43! has twodM and twodf legs, and the propa
gator is antidiagonal in the fields~dM,df!, any two-point
Green function is necessarily diagonal@antidiagonal# in the
yi @dM,df# fields, respectively.

Let us now consider the perturbative potential at seco
order in the curvature expansion

V2~y!5
1

2
gḡ« i j «klAq]myi]mykyjylyq. ~61!

This interaction breaks the Poincare´ invariance in they field
space. We have two different vertices:
9-6
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~62!

whereg2;gḡg̃.
SinceV2(y) is an odd functional of they fields we expect

the interaction Lagrangian density~61! to give a non-
vanishing two-loop contribution to the one-point Green fun
tion ^dM&

~63!

However, a straightforward computation of this diagra
shows that̂ dM& is identically zero. The first nonvanishin
two-point Green function for thedM field at the second
order in the curvature expansion is given by the Feynm
diagram

~64!

The above diagram gives a nondiagonal logarithmic div
gence to the propagator of they fields. By adding the appro
priate counterterm in the Lagrangian, the first finite, nonze
two point Green function for thedM field is

^dM~s1!dM~s2!&52
1

4p
A lnS m

mD ~11Bg̃2!~gḡ!2

3 ln@~s12s2!2#, ~65!

whereA,B are constant adimensional factors.
Using Eq. ~65! we can estimate the upper limit of th

quantum corrections ofMADM . Since the perturbative ex
pansion fails wheng ln(m);O(1) from Eq.~65! we have

~DMADM!2&mpl
2 u~11Bg̃2!gḡ2u. ~66!

Recalling Eqs.~37!and ~39! we obtain

DMADM&mplS l pl

R D N/2

, ~67!

and

DMADM&mplS mpl

MADM
D N/2(N23)

~68!

for R/ l pl@1 andmpl /MADM!1, respectively.
Up to now we have neglected effective terms due to

dependence of the action on the conformal factor ind52
2e dimensions. Equations~67! and~68! make sense only if
06401
-

n

r-

,

e

the contributions due to these terms are subleading. Th
indeed the case, as we have anticipated at the beginnin
this section.

In the conformal gauge the one-loop renormalized sigm
model action at the second order in the curvature expan
is

S5E dds e2eC/2Lren1SC1Sghost. ~69!

HereSC is the effective action due to the Weyl anomaly a
Lren is renormalized Lagrangian

Lren5
1

2
Z1]myi]myi1

1

2
gmeZ2« i j «kl]myi]mykyjyl

1
1

2
gḡmeZ3« i j «kl]myi]mykyjylAqyq, ~70!

where the divergent part of the renormalization constantZ3
511Cg/e comes from the one loop Feynman diagram w
one four and one five point vertices, respectively. Note t
the conformal factorC is a propagating field because th
Weyl anomaly action contains a kinetic term forC.

Expanding aroundd52 the leading orderC-dependent
term in the effective Lagrangian that violates Poincare´ in-
variance in they field space is~recall that quantum correc
tions to the ADM mass are only generated by these term!

L 1
CF~C!;g2ḡ« i j «klAq]myi]mykyjylyqC. ~71!

Equation ~71! gives a contribution tô dM(s1)dM(s2)&
of orderO(g4ḡ2g̃2) which is subleading to Eq.~65!. Finally,
at three loops Eq.~61! originates the~Poincare´ breaking!
term

L 2
CF~C!;~gḡg̃!2]myi]myjS i j C, ~72!

whereS i j is a symmetric 232 matrix. Equation~72! gives a
one-loop contribution to ^dM(s1)dM(s2)& of order
O„(gḡg̃)4

… whose counterterm is again subleading to E
~65!.

V. CONCLUSION

Let us summarize the main results of the pap
N-dimensional spherically symmetric gravityin vacuocan be
reduced to a two-dimensional conformal nonlinear sig
model form, Eq.~27!. The field content of the latter is give
by two fields,M (s) andf~s!. TheM field is constant on the
classical solutions of the field equations. It coincides, ap
from a constant factor, to the ADM mass of the system. T
second field, f, is related to the radius of the
(N22)-dimensional~hyper!sphere@see Eqs.~25! and ~26!#.
So both fields have a direct physical meaning. This prope
makes the conformal nonlinear sigma model formulat
very attactive. Quantization of the theory in the (M ,f) rep-
resentation gives quantum corrections to the mass and to
radius in a direct and straightforward way. This result can
be achieved in the usual Einstein@Eq. ~2!# or dilaton gravity
@Eq. ~3!# approaches.
9-7
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The perturbative quantization of the theory is straightf
ward. Firstly, the nonlinear sigma model target space is
panded in Riemann normal coordinates, i.e., in powers of
target space curvature. Then the theory is quantized—at
order—by usual quantum field theory techniques. The p
turbative expansion fails on the black hole horizon~s! where
the target space metric exhibits a singularity. This is
surprising: On the horizon~s! strong quantum gravity effect
manifest themselves and a perturbative quantization m
necessarily fail. Conversely, far away from the horizon~s!
quantum gravity effects are weak, the sigma model tar
space is asymptotically flat and a perturbative treatmen
possible.@The perturbative results hold also at distances
the order of the horizon~s! for black holes with large mass i
Planck units—see Eq.~38!.#

In this paper we have discussed first and second o
corrections in the curvature expansion. Surprisingly, first
der corrections to the ADM mass are identically zeroat any
loop. This follows from the invariance of the first order in
teraction under Poincare´ transformations in the (dM ,df)
field space and from the antidiagonal form of the field pro
gator. Therefore, quantum corrections to the ADM mass o
four-dimensional black hole are not of orderDMADM
;R21, as one would naively expect. The first nonzero qu
tum corrections toMADM arise~at least! at second order in
the curvature expansion@see Eqs.~67! and ~68!#.

Equations~67! and ~68! are the main contribution of the
paper. Pure quantum gravity effects make the classical A
mass of a spherically symmetric black hole fluctuate acco
ing to Eqs.~67! and ~68!. Hopefully, this result may help to
shed light on open issues in quantum gravity and black h
physics, such as information loss, black hole thermodyn
ics and black hole evaporation.

Note added in proof. After this paper was accepted fo
publication, we became aware of an article by Kazakov a
Solodukhin @25# in which quantum corrections to th
Schwarzschild metric are calculated. Kazakov and
lodukhin find that for large distances the first quantum c
rection to the Schwarzschild metric is of order (l pl/R)22 and
does not affect the mass term. Their result is in comp
agreement with the results of this paper.
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APPENDIX

In this appendix we sketch the evaluation of the Feynm
diagrams~44! and ~46!. The integrals are evaluated by d
mensional regularization.
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Two-point Green function

By dimensional regularization the calculation of the on
loop two-point Green function~44! is reduced to the evalu
ation of the~Euclidean! integral ind522e dimensions

I 2
(E)5meE d22eq

~2p!2

1

q21m2 , ~A1!

where we have added a regulatorm2 to avoid the infrared
divergence atq50. Indeed, discarding the ultraviolet qua
dratically divergent integral~see e.g.@24#! and Wick rotating
to the Euclidean space@see Fig. 1, Eq.~45!# can be written

G i j
(2)5 igh i j p

2I 2
(E) . ~A2!

The integral~A1! can be immediately evaluated~see@23#,
Eq. ~B.16!, p. 317!. The result is

I 2
(E)5

1

4
pd/222G~12d/2!S m

mD 22d

. ~A3!

Expanding aroundd52 we obtain

I 2
(E)5

1

4p S m

mD eF2

e
1c~1!1

e

4 S p2

3
1c2~1!2c8~1! D1•••G ,

~A4!

wherec is the digamma function. Substituting Eq.~A4! in
Eq. ~A2! we obtain Eq.~48!.

Four-point Green function

With a little bit of algebra Eq.~47! can be cast in the form
@(s1t1u)-channels,d522e dimensions#

G5g2@h i j hklC11h ikh j l C21h i l hk jC3#, ~A5!

where

C152
9

2
ut@ I 4~ t !1I 4~u!#1~9u12t !I 2~ t !

1~9t12u!I 2~u!,

C252
9

2
us@ I 4~s!1I 4~u!#1~9u12s!I 2~s!

1~9s12u!I 2~u!, ~A6!

FIG. 1. Wick rotation in theQ0 plane. The two crosses represe
the poles of the integral in the Minkowski space,I 2 . The latter is
equal to2 i I 2

(E) .
9-8
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C352
9

2
st@ I 4~s!1I 4~ t !#1~9t12s!I 2~s!

1~9s12t !I 2~ t !,

and

I 4~p!5meE d22eq

~2p!2

1

~q21 i e!@~p2q!21 i e#
. ~A7!

In the reduction we have discarded the quadratically div
gent integrals@24# and used the following relations:

E ddq

~2p!2

qiqj~d21!

~q21 i e!@~p2q!21 i e#

5
pipj

2p2 F ~d22!I 2~p!1
dp2

2
I 4~p!G

1
h i j

2 F I 2~p!2
p2

2
I 4~p!G ,

E ddq

~2p!2

piqi

~q21 i e!@~p2q!21 i e#
5

p2

2
I 4~p!,
o-

-

i,

ys

. D

06401
r-

E ddq

~2p!2

piqi

~p2q!21 i e

5
p2

2
I 2~p!1

1

2E d2q

~2p!2

q2

~p2q!21 i e
.

I 4(p) can be easily evaluated by inserting an infrared re
lator and performing a Wick rotation similar to the on
which is described in Fig. 1.@ I 4(p) is infrared divergent and
ultraviolet convergent.# Using @23# @Eq. ~B.16! p. 317# and
expanding aroundd52 we have

I 4~p!52
i

2p
S m

m
D e 1

p2A114m2/p2

3 lnU11A114m2/p2

12A114m2/p2
U . ~A8!

Finally, substituting Eq.~A8! and Eq.~A4! in Eq. ~A5! we
obtain Eq.~50!.
for-
a-

ys.
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