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Spacetimes admitting isolated horizons
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Abstract. We characterize a general solution to the vacuum Einstein equations which admits
isolated horizons. We show that it is a nonlinear superposition (in a precise sense) of the
Schwarzschild metric with a certain free data set propagating tangentially to the horizon. This
proves Ashtekar’s conjecture about the structure of spacetime near the isolated horizon. The same
superposition method applied to the Kerr metric gives another class of vacuum solutions admitting
isolated horizons. More generally, a vacuum spacetime admitting any null, non-expanding, shear-
free surface is characterized. The results are applied to show that, generically, the non-rotating
isolated horizon does not admit a Killing vector field and a spacetime is not spherically symmetric
near a symmetric horizon.

PACS numbers: 0470B, 0420

The quantum geometry considerations applied to black hole entropy [1] led Askteldo

a new approach to black hole mechanics. The idea is to consider a null surface which locally
has the properties of the Schwarzschild horizon, but is not necessarily infinitely extendible,
so the spacetime metric in a neighbourhood is not necessarily that of Schwarzschild. Such a
surface was called a non-rotating isolated horizon (NRIH). The number of degrees of freedom
describing a spacetime admitting a NRIH is much larger than that describing a static black hole
(see below). In a series of works the laws of the black hole thermodynamics and mechanics
were extended to this case [2, 3].

In this letter we completely characterize a general solution to the Einstein vacuum
equations which admits an isolated horizon and, in particular, a NRIH. For that purpose,
we use Friedrich’s characteristic Cauchy problem defined on null surfaces [4]. (The idea of
constructing solutions to Einstein’s equations starting with data defined on a null surface was
first formulated by Newman [5].) The null Cauchy problem formulation gives rise to our
superposition method: given a local solution to the Einstein vacuum equations and the data
it defines on a null surface, a new solution can be constructed from the null surface data and
certain new data freely defined on a transversal null surface. We show that a general solution
which admits a NRIH is given by the superposition of the data defined by the Schwarzschild
metric on the horizon and the data defined freely on a transversal null surface. This result is
then applied to prove that a generic NRIH does not admit a Killing vector field. Even though
there are vector fields defined on the horizon which Lie annihilate the metric tensor [7], none
of them, generically, can be extended to a neighbourhood. The statement concerns the null
vector fields as well as the spacelike vectors generating symmetries of the internal geometry
induced on the two-dimensional cross sections of the NRIH.
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We also characterize a general solution to the Einstein vacuum equations which admits a
null non-expanding surface. An interesting subclass of spacetimes is obtained by superposing,
in our sense, the data defined by the Kerr metric on its horizon with the data freely defined
on a transversal null surface. By analogy to the non-rotating case, the resulting null surface
equipped with the data corresponding to those of the Kerr metric may be thought of as a rotating
isolated horizon.

Another way to extend our results is to admit matter fields in spacetime. In particular, the
Maxwell field fits the null surfaces formulations of the Cauchy problem very well. We use
Newman—Penrose spin connection and curvature coefficients in the notation of [8]. All our
considerations and results will lcalin the following sense: given two null 3-surfacggand
N; intersecting in their future, bipcally we mean ‘in the past part of a suitable neighbourhood
of an Ny N N; bounded by the incoming parts of the surfaces’.

Isolated horizons: definitions

Consider a null 3-submanifoltly of a four-dimensional spacetinié diffeomorphic to

S2 x [vo, v1], 1)
where 2-spheres, can be identified with spacelike cross sections and the intervgls,|
lie along the null generators d¥y. We say thatV, is an isolated horizon if the intrinsic,

degenerate metric tensor inducedvigiis annihilated by the Lie derivative with respect to any
vector field

[ =—o0"0" 2)
tangent to the null generators 8f. In other words/ is non-expanding and shear-free,

An isolated horizonVy equipped with a foliation by spacelike 2-cross sections is called a
non-rotating isolated horizon whenever a transversal, future-oriented null vector field

n=—"", 4)

defined onVy by the gradient of a function labelling the leaves of the foliationt satisfies the
following conditions onVo:

(a) n is shear-free, and its expansion is a negative functian of

A =0, uw= f() <0. (5)
(b) Moreover, it is assumed that the Newman—Penrose spin-coefficieanishes

7 =0. (6)
(c) The Ricci tensor compone®,,m*m" is a function, sayX, of the functiorw only;

R,ym"m’ = K (v), (7

wherem is a null, complex-valued vector field tangent to the sliees= constant
normalized byn*m, = 1.
(d) The vector field* = G*"l,,, whereG ,, is the Einstein tensor, is causktk, < 0.

The vanishing of the shear and of the expansiohigfescaling invariant. We normalize
[ such that

Itn, = —1. ®)

An NRIH will be denoted by(Ng, [(I, n)]) where the bracket indicates that the vector fields
(1, n) are defined up to the foliation-preserving transformatiors v'(v).

T Thatis, for every vectok tangent taVg, we haveX?n, = Xv ,.
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Spacetimes admitting NRIH

Suppose now thatVy, [(/, n)]) is an NRIH and the Einstein vacuum equations hold in the past
of a neighbourhood oiVy. To characterize (locally) a general solution we need to introduce
another null surfacey; say. LetN; be a surface generated by finite segments of the incoming
null geodesics which intersedf, at v = v; (see (1): we are assuming that the Cartesian
product corresponds to the foliation and the varial)land are parallel to the vector fietdat

the intersection points. Thus the intersection

NoNNy=:§ (9)

is the cross section = v, of Ny. Locally (see above for the definition of ‘locally’), the metric
tensor is uniquely characterized (up to diffeomorphisms) by Friedrich’s reduced data:

onS:. m,Rep, Reu, o, A, m, (10)
onNp: W, (12)
onNy: Wy, (12)

wherem is a complex-valued vector field tangentSo The resulting solution is given by a
null frame which satisfies the following gauge conditions:

\):]/:‘[:71’—0[—/8:/_,{,—/,120, (13)
locally in the spacetime, and
e=0 onNp. (14)

Conversely, given submanifolds, U N; of a time-oriented 4-manifold/, the triple
(M, Ny, N1) being diffeomorphic (by the time-orientation-preserving diffeomorphism) to the
one above, every freely chosen data (10)—(12) corresponds to a unique solution to the vacuum
Einstein equations.

Let (No, [(Z, n)]) be an NRIH. To calculate Friedrich’s data, we need to satisfy the gauge
conditions (14) and (13). Sina¥, is non-diverging and shear-free, we can choos&/pa
normalized complex vector field tangent to the foliation, such thatis a Lie constant along
the null generators aVy. This implies the vanishing af — €. From the generalized ‘zeroth
law’ [3] we know that if we parametrize the foliation ofy by a functionv’ such that

u' = constant onvy, (15)
then owing to the vacuum Einstein’s equations

€' +& =constant onvg. (16)
The geometric meaning of this law is that another function

v = exp2ev) a7)

defines an affine parameter along the null generataiy o herefore, if we use the pait, n)
corresponding to the functian then

"l,., =0, hence ¢ =0, onNj. (18)

(Incidentally, in this normalization/*n,,, = 0 due toxr = 0.) The vanishing of
m —a — B, u — [ is automatically ensured oNp by the pullback ofz on Ny being .
Finally, the gauge conditions (13) can be satisfied locally/ity appropriate rotations of a
null frame along the incoming geodesics, not affecting the data already fix&g.on
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Now, we can consider the reduced data of the horizon. It follows directly from the
definition, that

onS: o=A=Relp)=m=0, = constant< 0

(19)
onNg: Y¥o=0.

We also know [3] that the property (c) in the definition of NRIH implies that the 2-metric tensor
induced onS is spherically symmetric. The above conditions are necessary for the reduced
data to define a NRIH.

Conversely, suppose that reduced data (10) and (11) satisfy the conditions (19) and that
they define a spherically symmetric 2-metric on the slic&hen, it follows from the Einstein
vacuum equations that, locallyy is an NRIH. To summarize, locallyo is a NRIH if and only
if the vacuum spacetime is given by the reduced data (10)—(12) such that (19) holds and the
vector fieldm defines on the slic§ a homogeneous 2-metric tensor. The degrees of freedom
are: (a) the radiug of the 2-metric ofS, and (b) a complex-valued functicky freely defined
on Ni. The constanfy s can be rescaled to be any fixad < 0.

Non-existence of Killing vector fields for NRIH

Let us now apply our result to the issue of the existence of Killing vectors. The usual way one
addresses that problem is by writing the Killing equation and trying to solve it. Another way
is to look for invariant objects and see whether they have a common symmetryt. (Perhaps the
first way is a little better to prove the existence, whereas the second way may be more useful
to disprove it.) We will apply the second one. As was indicated in [2], a null surface admits
at most onestructure of NRIH. Moreover, let us fix a numbeg < 0 and use the rescaling
freedom to fix the null vector fieldg, n) representing the NRIH structurd [»)], such that

W= o, ONNo. (20)

There is exactly one paft, n) on No which satisfies the NRIH properties and the normalization
of u. Every isometry of spacetime-preserving, preserves the value ¢f. Therefore,

it necessarily preserves the vector fieldsndn. Hence, the potential local isometry also
preserves the function

|W4l? = |Cypapn”m"n“mP|?, (21)

whereC is the Weyl tensor.
Let us use the above isometry invariant to see whethexdmits a tangential null Killing
vector field. OnNy, the (would be) Killing vector is of the form

§ = bol (22)
whereby is a function. The following should be true:
0 = bol" (|Wa|?).,, = —8boe|W4|*> = —4bo(surface gravity| W,|?, (23)

the second equality being the consequence of the Einstein equations and the Bianchi identities.
Since the surface gravity is not zero, this contradicts the existence of a null Killing vector field
on the horizon unless

Wy =0, (24)

T Scalar invariants can be defined &hor even on the bundle of null directions, see Nurovetial [6].
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The general formula for a possible Killing vector field tangentiavtas
§ =bol + K (25)

whereK is tangent to the leaves of the foliation and together witis subject to the following
restrictions. Since the isometry generated thas to preserve the foliation 8f, and the flow
generated by already does, the functidiy is constant on each leaf of the foliation. Since
the symmetry has to preserve the vector figlgh is constant onvy and K commutes with.
Finally, because the symmetry should preserve the internal degenerate metric teligokon
on each leaf is a Killing vector field. On the other hand, the equation

E(|W4l®) =0, (26)
implies
bo = 8£K(|n|\1/4|2). (27)
€

For a generial, defined on the cross sectiSrof Ny, the right-hand side of (27) is not constant
on S for any Killing vector field ofSt. So, generically, there is no Killing vector field in a past
neighbourhood of an NRIH which is tangentig. (Sufficient conditions for the existence of
a Killing symmetry of an isolated horizon will be derived in a forthcoming paper.)

General isolated horizons

A solution admitting the general isolated horizon can also be characterized using the reduced
data. One can easily check that, whenever

c=p =0, onSs, and Yy =0, onNp, (28)

in the reduced data set (10)—(12), then the corresponding solution satisfigs= Wy = 0 on
No, henceNy is an isolated horizon. Of course the above data are also necessarily an isolated
horizon data.

Therefore:

No is an isolated horizon in Einstein’s vacuum spacetime, if and only if it is locally
given by the reduced data (10)—(12) and the conditions (28), the remaining data
Reu, A, w onS and ¥, on N; being arbitrary.

The superposition method

There is one feature of the characteristic Cauchy problem of [4] we would like to emphasize
more strongly here because of its relevance to the generalization of BH mechanics. Given
a reduced data (10)—(12) one can evolve it, in particular, along the su¥iacerhe data
determines at each point &f; a vacuum solution: a null 4-frame, the spin connection and
the Weyl tensor. Remarkably, the evolution of every field along the null generatdig isf
independent o, except for the evolution ob, itself. We tend to think of this construction

as a nonlinear superposition of a vacuum solution given Ngavith the contribution coming

from dataA W, given onN; and evolved tangentially t&vy. If we know a spacetime whose
Newman—Penrose coefficients dfy we particularly like, buty, is not relevant for us, by
varying ¥, on a transversal null surfac¥; we obtain a large family of solutions each of
which has the desired properties 8. For example, let us take the Schwarzschild metric

T Ifit were constant, on the other hand, then necessagily O provided the orbits oK in the 2-sphere are closed.
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as the preferred solutioNy being a part of its horizon. The family of solutions obtained by
the superposition withy, coming in tangentially taVy, is exactly the set of general vacuum
solutions admitting a NRIH which we have derived in this pagesr every member of this
family, on Ny, the 4-metric tensor, and all, excepf, Newman—Penrose coefficients are the
same, as those of Schwarzschild. Ashtekar and collaborators wrote the laws of black-hole
mechanics of the Schwarzschild horizon purely in terms of the spin and curvature coefficients
on Np, not involvingW,. That is why the laws hold automatically for a general NRIH [3].

Kerr-like isolated horizons

The superposition can be well applied to the Kerr metric. Consider reduced data given by the
following recipe:

(a) take a reduced data for Kerr, such thitis an isolated horizon, anl; is an arbitrary
transversal null surface;

(b) keep¥oon Ny, and Rep, Repu, o, A, w on the intersectio, but use an arbitrary function
for &4 on NV;.

The resulting solution will be described by the same 4-metric tensor and the Newman—
Penrose coefficients aky, excepty,, as the original Kerr metric.

Following this example and the definition of NRIH, we propose to defilkea-like
isolated horizono be a null surfac&/, equipped with an induced (degenerate) intrinsic metric
tensor and the Newman—Penrose spin connection coefficients of the Kerr solution. This will
determine the Weyl tensor spin coefficients except Therefore, if we formulate the laws of
rotating BH exclusively in terms of this data on the horizon, the same laws will hold for every
metric tensor admitting the Kerr-like isolated horizon. Since an analogous Schwarzschild-like
horizon would be exactly an NRIH, the above definition is a natural step toward defining a
rotating case.

NRIH in the Einstein—Maxwell case

In a non-vacuum case, the conditions imposed on an NRIH imply restrictions on the stress—
energy tensor of the matter. They are [2]

oo = Po1 = Pop = 0= (P11 + %R) (29)

the last equation being condition (c) in the definition of NRIH. Those conditions are met by
an electromagnetic field such that

®o =0, (30)

and|®4|? is constant on the leaves of the foliation/a.

If we assume the Einstein—Maxwell equations to holdMnuU N, by looking at the
Newman—Penrose version of the Maxwell equations, it is easy to complete the vacuum-free
data with suitable data for the electromagnetic field. Indeedpfogiven onNy, ¢, defined
on S and @, defined onN;, the Einstein—-Maxwell equations determine the metric tensor,
connection, curvature and electromagnetic field on the null surfgend N1, as well as
their rates of change in the transversal directions. Thgnis an NRIH if and only if the
Einstein—Maxwell data are given by the reduced data (10)—(12) of the vacuum NRIH case, and

®o =0, onNp, |®,| = constant onsS, (31)

@, being arbitrary onv;.
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The electromagnetic field affects only the evolution of the gravitational data in the direction
transversal taVo U N;. In this case the existence/uniqueness statements can be found in
Friedrich’s contribution in [9].
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