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Abstract

In four-dimensional Ns2 compactifications of string theory or M-theory, modifications of the
Bekenstein–Hawking area law for black hole entropy in the presence of higher-derivative
interactions are crucial for finding agreement between the macroscopic entropy obtained from
supergravity and subleading corrections to the microscopic entropy obtained via state counting.
Here we compute the modifications to the area law for various classes of black holes, such as
heterotic black holes, stemming from certain higher-derivative gravitational Wilsonian coupling
functions. We consider the extension to heterotic Ns4 supersymmetric black holes and their
type-II duals and we discuss its implications for the corresponding micro-state counting. In the
effective field theory approach the Wilsonian coupling functions are known to receive non-holo-
morphic corrections. We discuss how to incorporate such corrections into macroscopic entropy
formulae so as to render them invariant under duality transformations, and we give a concrete
example thereof. q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the presence of higher-derivative interactions, modifications of the Bekenstein–
Hawking area law for the macroscopic entropy of a black hole are crucial for finding
agreement with microscopic entropy calculations based on state counting. The latter
involve corrections that are subleading in the limit of large charges, and these correc-
tions are captured on the macroscopic side by the modifications of the area law that
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ensure the validity of the first law of black hole mechanics in the presence of
higher-derivative interactions. For supersymmetric black hole solutions arising in four-
dimensional Ns2 supersymmetric effective field theories with terms quadratic in the

w xRiemann tensor, they were determined in 1 , where it was shown that, for a particular
class of black holes arising in compactifications of M-theory and type-IIA string theory,
the modified macroscopic entropy exactly matches the microscopic entropy computed in
w x2,3 .

w xThe four-dimensional supersymmetric black hole solutions considered in 1 are
static, rotationally symmetric solitonic interpolations between two Ns2 supersymmet-
ric ground states: flat Minkowski space-time at spatial infinity and Bertotti–Robinson

w x w xspace-time at the horizon 4 . The crucial ingredients of the work reported in 1 are as
follows. One departs from the Bekenstein–Hawking area formula and adopts Wald’s
proposal for the entropy based on a Noether charge associated with an isometry

w xevaluated at the corresponding Killing horizon 5–9 . The computation of the macro-
scopic entropy is based on the effective Ns2 Wilsonian action describing the couplings
of abelian vector multiplets to Ns2 supergravity in the presence of a certain class of
terms quadratic in the Riemann tensor. This Wilsonian action is determined from a

Ž . I Ž .holomorphic, homogeneous function F Y,F , where the Y denote the rescaled
complex scalar fields which reside in the abelian vector multiplets, and where F denotes

Ž . Ž . ab i jthe rescaled square of the auxiliary anti-self-dual Lorentz tensor field T which
resides in the Weyl multiplet. The macroscopic entropy of a static, supersymmetric

w xblack hole computed from the effective Wilsonian Lagrangian is then given by 1
2< <SS sp Z q4 Im F F Y ,F withFsy64 . 1.1Ž . Ž .Ž .macro F

< < 2 I Ž . IThe first term in the entropy formula, Z sp F Y,F yq Y , coincides with theI I

Bekenstein–Hawking area contribution. The values of the scalar fields Y I on the
w xhorizon are, when assuming fixed-point behaviour 10–15 , determined in terms of the

Ž I .magnetic and electric charges p ,q carried by the black hole. Their precise value isI

determined from a set of equations, called the stabilization equations, which take the
w xfollowing form 16 :

I I IY yY s i p , F Y ,F yF Y ,F s i q . 1.2Ž . Ž .Ž .I I I

The entropy is thus entirely determined in terms of the charges carried by the extremal
black hole.

The above equations can usually not be solved in explicit form. Often they can be
solved by iteration, order-by-order in F . Let Q denote a generic electric or magnetic
charge. Then the homogeneity of the function F implies that the entropy can be
expanded in powers of Q, according to

`

2y2 gSS sp a Q , 1.3Ž .Ýmacro g
gs0

with constant coefficients a . These coefficients follow from the coefficient functions ing
Ž .the power expansion for the holomorphic function F, which takes the form F Y,F s

Ž g .Ž . gÝ F Y F .g 0 0
Ž .In this paper we present a variety of applications of the entropy formula 1.1 . In

particular we consider Ns2 heterotic black holes, whose macroscopic entropy formula
can be generalized to the case of Ns4 supersymmetric black holes. In order to
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appreciate the consequences of our results we will return to the counting of micro-states
in the dual type-II or M-theory version of these black holes, following the same

w x 2approach as in 2,3 . In this analysis certain special features of K 3=T emerge which
are not present for generic Calabi–Yau threefolds, implying that the micro-state
counting in the former case is more subtle than in the latter case. Based on this analysis
we propose a modification of the state counting for K 3=T 2 which is consistent with
the macroscopic result.

Several comments are in order here. First, as mentioned above, the entropy formula
Ž .1.1 is based on the Wilsonian Lagrangian approach. In this approach, the coupling
function multiplying the square of the Weyl tensor C is denoted by Im F . It ismnrs F

customary to assume that F possesses a power expansion in F , i.e. F sF F
Ž g .Ž . gy1 w xÝ F Y F . As pointed out recently in 17,18 , this is not necessarily the caseg 01

due to the fact that the F is non-analytic at Fs0. Second, the stabilization equationsF

Ž . Ž I . Ž I Ž ..1.2 are constructed out of the two symplectic vectors p ,q and Y ,F Y,F . It isI I

important to note that under symplectic transformations the Y I will in general transform
into F-dependent terms. Thus, under the subset of duality transformations the moduli

A A 0 2 Ž .fields z sY rY will, in the presence of C terms that is F /0 , transform intomnrs F

F-dependent quantities! Finally, we recall that in theories with massless fields the
physical effective couplings are different from the Wilsonian couplings, which presup-
pose the presence of an infrared cut-off. While the physical couplings have different
analyticity properties, they fully capture the physics and its underlying symmetries.
Thus, in order to arrive at entropy formulae that are manifestly duality invariant, it is

Ž . Ž .necessary to modify both 1.1 and 1.2 , which were derived in a Wilsonian approach,
by taking into account non-holomorphic corrections to the physical effective couplings.
In the context of string theory one can actually determine these non-holomorphic terms,
because the massless states are included in the string loops. Here we choose to
incorporate the non-holomorphic corrections by imposing the correct symmetry be-
haviour. Therefore we include certain non-holomorphic corrections to the F-dependent

Ž .part of the function F, or equivalently, to F Y,Y,F . Here the correspondingF

Ž .F Y,Y,F is homogeneous of degree two in Y and of degree zero in Y. The corrections
IŽ Ž ..to F should be such that the associated symplectic vector Y ,F Y,Y,F transformsF I

Ž I .in the same way as p ,q under symplectic transformations associated withI

electricrmagnetic duality. The associated stabilization equations now read

I I IY yY s i p , F Y ,Y ,F yF Y ,Y ,F s i q . 1.4Ž . Ž .Ž .I I I

Provided that the duality transformations on the Y I induce the corresponding symplectic
2 I I< < Ž .transformations on the F , the quantity Z sp F Y,Y,F yq Y is then invariantI I I

under duality transformations. However, in order to arrive at a duality invariant
expression for the entropy of an Ns2 black hole, it will not suffice to only take into

< < 2account the above modification of F and, hence, of Z . As it turns out, also theF

second term associated with the deviation from the area law requires a non-holomorphic
correction. Hence we are forced to use the following expression for the entropy:

I ISS sp p F Y ,Y ,F yq Y q4 Im F F Y ,Y ,F qD Y ,Y ,F ,Ž . Ž . Ž .Ž .macro I I F

with Fsy64 , 1.5Ž .
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Ž . Ž .where D Y,Y,F denotes an appropriate quantity whose role is to render Im F F qDF

duality invariant. In general it should be complicated to determine the explicit form of
Ž . Ž .the non-holomorphic corrections entering both in 1.4 and 1.5 due to the fact,

mentioned above, that the moduli fields z A will transform into F-dependent terms
under duality transformations. This is to be contrasted with the usual approach for

w xdetermining non-holomorphic corrections to physical couplings in string theory 19–23 ,
in which each of the gravitational coupling functions in the expansion of the holomor-
phic function F in powers of F is required to transform as a modular function of the
appropriate weight. This is achieved by taking into account non-holomorphic corrections
to these coupling functions, which are governed by a set of recursive holomorphic

Ž .anomaly equations. In the case at hand, however, not only does F Y,Y,F and therefore
2IŽ Ž .. < <also the symplectic vector Y ,F Y,Y,F and Z receive non-holomorphic correc-I

tions, but there are additional non-holomorphic contributions encoded in D. While this is
an important feature of the above mechanism for incorporating non-holomorphic correc-
tions into macroscopic entropy formulae, its real significance is not yet clear to us.

The structure of this paper is as follows. In Section 2 we compute the macroscopic
entropy of a generic tree-level black hole in a heterotic Ns2 compactification in the
presence of a tree-level C 2 term. Subsequently we consider its extension to Ns4mnrs

supersymmetric black holes. In Section 3 we then reconsider the Ns2 and Ns4
counting of micro-states in the dual type-II and M-theory formulations of the black
holes. We show that the expression for the macroscopic Ns4 entropy agrees with a

w xmicroscopic entropy computation along the lines of 2,3 for a class of black holes
occurring in dual type-II compactifications on K 3=T 2, provided that the micro-state
counting for K 3=T 2 is suitably modified, as we discuss. In Section 4 we turn to the
issue of non-holomorphic corrections to the macroscopic entropy. We discuss a het-
erotic-like Ns2 model for which we are able to determine the non-holomorphic
corrections to the entropy needed for obtaining a strong-weak coupling duality invariant

w xexpression for the entropy. And finally, in Section 5, we use the recent results of 17,18
to compute corrections to the macroscopic entropy of certain type-IIA black holes
stemming from T abi j-dependent higher-derivative interaction terms in the effective
action.

2. Heterotic tree-level black holes

2Ž .In the presence of an SqS C term in the effective Wilsonian action, where S ismnrs

Ž .the dilaton field, the tree-level holomorphic function F Y,F associated with a heterotic
Ns2 compactification on K 3=T 2 is given by

Y 1Y ah Y b Y 1
ab

F Y ,F sy qc F . 2.1Ž . Ž .10 0Y Y

Here

n
2a b 2 3 aY h Y sY Y y Y , as2, . . . ,n , 2.2Ž . Ž .Ýab

as4



( )G.L. Cardoso et al.rNuclear Physics B 567 2000 87–110 91

with real constants h and c . In a type-II dual picture, these constants can be related toab 1

geometrical properties of the K 3 fibration of the corresponding Calabi–Yau space. The
dilaton field S is defined by SsyiY 1rY 0.

Ž . aUsing 1.2 with Isa one readily proves that the Y are given by

1
1a ab aY s y h q q iS p , 2.3Ž .b2SqS

where h ab h sd a. Using the same equations once more one establishesbc c

< < 2 I IZ sp F yq YI I

I Is i Y F yY FŽ .I I
2.4Ž .

0Y
a b a bs SqS Y h Y q yY h Y qc F q h.c. ,Ž . ab ab 10ž /Y

as well as

0 0 0q p sy Y yY F yFŽ . Ž .1 1 1

0 2.5Ž .Y
a bs y1 yY h Y qc F q h.c.ab 10ž /Y

Combining these two equations and substituting the values for the Y a yields

2 1< < ² :Z s SqS N , N q c Fq h.c. , 2.6Ž . Ž . Ž .Ž .12

² : Ž 0 1 a b. Ž 0 a b. Iwhere N, N s2 N N qN h N s2 p q qp h p . The vector N of mag-ab 1 ab
Ž . I Ž 0 2 3 n.netic charges in a certain duality basis is defined by N s p ,q , p , p , . . . , p , and1

Ž .transforms linearly under the target-space duality group SO 2,ny1 . The second
independent vector of electric charges, which also transforms linearly under the target-

Ž 1 .space duality group, will be needed shortly and equals M s q ,yp ,q ,q , . . . ,q .I 0 2 3 n
Ž .From 2.6 we can now determine the entropy of a generic heterotic black hole, by

Ž .using 1.1 . The second term in the formula doubles the coefficient of the second term in
Ž .2.6 and we find

1 ² :SS s p SqS N , N y512 c . 2.7Ž . Ž .Ž .macro 12

w xFor c s0 this expression coincides with the one given in 24 , where it was also shown1

that in the presence of string-loop corrections the entropy takes the same form as the
tree-level entropy, but with the heterotic tree-level coupling constant SqS replaced by
the perturbative coupling constant.

Now we continue and find the equations that govern the value of the dilaton field in
Ž .terms of the charges. Just as above we use Eqs. 1.2 to write down expressions for the

0 1 0 1 0Ž .combinations SS q p qq p and i SyS q p qq p yq p , which do not ex-1 0 1 1 0

plicitly depend on Y 0. This leads to two equations for S:

² : ² :SS N , N s M , M y2 SqS c F Sq h.c. ,Ž . Ž .1

² :SyS N , N s2 i MPNq2 SqS c Fy h.c. . 2.8Ž . Ž . Ž . Ž .1
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At the horizon this leads to the following results for the dilaton and for the entropy
formula:

2² :² :M , M N , N y MPN MPNŽ .
Ss q i ,) ² : ² : ² :N , N N , N y512 c N , NŽ .1

512 c12² :² :(SS sp M , M N , N y MPN 1y , 2.9Ž . Ž .(macro ² :N , N

w xwhere we recall the three target-space duality invariant combinations of the charges 25 ,

1 1ab 1 ab² :M , M s2 M M q M h M s2 yq p q q h q ,Ž . Ž .0 1 a b 0 a b4 4

² : 0 1 a b 0 a bN , N s2 N N qN h N s2 p q qp h p ,Ž . Ž .ab 1 ab

MPNsM N I sq p0 yq p1 qq p2 q . . . qq pn . 2.10Ž .I 0 1 2 n

A significant feature of these results is that they are manifestly invariant under the
Ž .continuous SO 2,ny1 target-space duality transformations, which are valid in the tree

approximation. We analyze these transformations as well as the discrete S-duality
transformations in Section 4.

The above entropy formula can be immediately generalized to the case of a heterotic
Ž . 2Ns4 compactification with a tree-level term proportional to Re S C turned on.mnrs

Ž .This can be done by replacing the SO 2,ny1 bilinear combinations of the charges by
Ž . Ž .the appropriate SO 6,22 bilinears in 2.9 . Here we remind the reader that the Ns4

electricrmagnetic charges are associated with six graviphotons of pure supergravity and
22 vector multiplets, whose Ns2 decomposition is as follows. One graviphoton
belongs to the Ns2 graviton multiplet, four graviphotons belong to the two Ns2

Žgravitini multiplets which cannot be incorporated in the context of the Ns2 theory
.discussed above , and one graviphoton belongs to an Ns2 vector multiplet. The

additional 22 Ns4 matter multiplets each decompose into an Ns2 vector and an
Ns2 hypermultiplet, so that altogether one is dealing with 67 complex moduli. In the
Ns2 truncation one thus has ns23 and must suppress 4 of the 28 electric and 4 of the
28 magnetic charges. Of course, the Ns2 truncation does not constitute by itself a
heterotic Ns2 string compactification, which has only ns19 and which is described
by different Wilsonian couplings functions beyond the tree approximation.

The Ns4 supersymmetric heterotic models have dual realizations as type-II string
theory compactified on K 3=T 2 and as eleven-dimensional M-theory compactified on
K 3=T 2 =S1. The Ns2 models have dual realizations as compactifications of the
same theories but now on a generic Calabi–Yau manifold. In Section 3 we will discuss
certain aspects of the state counting for these dual realizations.

3. State counting for type-II and M-theory black holes

Motivated by the possible extension of the heterotic Ns2 black hole entropy
formula to the corresponding case of Ns4 supersymmetric black holes, we now return
to the counting of micro-states for the dual type-II and M-theory realizations of the
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heterotic models discussed above. If one restricts the four-dimensional charges in an
Ž 0appropriate way we take p sq s0 for convenience, but the discussion should alsoA

0 w x.apply to the more general case p s0 by replacing q by q as in 2 , then the blackˆ0 0

hole can be given a ten- or eleven-dimensional interpretation, as follows. In the type-IIA
picture one wraps a D4-brane on a holomorphic four-cycle P in either a generic

2 < <Calabi–Yau threefold or in K 3=T and considers a bound state with q D0-branes.0

This will then lead to a four-dimensional black hole with Ns2 or Ns4 supersymme-
try, respectively. In the M-theory picture one wraps an M5-brane on the same cycle P
and obtains a five-dimensional black string which is then wrapped around the M-theory

< <circle. Adding q quanta of lightlike momentum along this string yields a four-dimen-0

sional black hole with a finite event horizon.
w xIn both pictures a microscopic entropy can be computed along the lines of 2,3 . The

w xapproach of Ref. 2 is based on analyzing the two-dimensional s-model that describes
the massless excitations of an M5-brane wrapped on P. Then, using Cardy’s formula,
the asymptotic density of states of a two-dimensional conformal field theory in a finite
volume is given by

1< < < <d q ,c fexp SS fexp 2p q c , 3.1(Ž . Ž .Ž . ž /0 L micro 0 L6

< <where q is large and counts quanta of lightlike, left-moving momentum, and c is the0 L
w xcentral charge for the left-moving sector. On the other hand in Ref. 3 the asymptotic

growth of the dimension of the moduli space of a bound state of a wrapped D4-brane
< < w xwith q D0-branes was computed. The explicit formulae given in 2,3 assume certain0

properties of the four-cycle P, and there it was mentioned that in the case of K 3=T 2

additional subleading terms are to be expected.
2 Ž .The holonomy group of K 3=T is SU 2 , unlike the holonomy group of a generic

Ž .Calabi–Yau threefold which is equal to SU 3 . This difference reflects itself in the
number of residual supersymmetries and in the different Hodge diamonds which we will

w xdiscuss below. We will apply the methods of 2,3 in parallel to both a generic
Calabi–Yau threefold and to K 3=T 2. As it will turn out, in the case of K 3=T 2

certain complications arise which indicate that the associated state counting has to be
modified in order to achieve consistency with the macroscopic analysis based on Ns2
supergravity.

w xLet us first recall some geometric properties of Calabi–Yau threefolds 26–29 ,
starting with the homology and cohomology of a Calabi–Yau threefold X, which is
either K 3=T 2 or a generic one and which corresponds to an Ns4 or Ns2
supersymmetric compactification, respectively. In the case of a generic Calabi–Yau

Ž . Ž .manifold the only undetermined Hodge numbers are h X and h X . In addition2,1 1,1
Ž . Ž .one has non-vanishing h X sh X s1, whereas all other independent Hodge0,0 3,0

numbers vanish.
The Hodge numbers of K 3=T 2 are easily obtained from those of K 3 and T 2. For

later convenience let us derive them in terms of cohomology, i.e. by listing harmonic
Ž . 2p,q -forms. The harmonic forms on T can be built out of the constant function, the
Ž . Ž .1,0 -form dz and the 0,1 -form dz, where z is a holomorphic coordinate. On K 3 one
has the constant function, no one-forms and 22 two-forms v , as2, . . . ,23, which cana

Ž . Ž . Ž .be decomposed into one 2,0 -form v, one 0,2 -form v and twenty 1,1 -forms. The
reason for leaving out the index as1 will become clear shortly. The harmonic
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Ž . 2p,q -forms on K 3=T are readily found by taking appropriate products. The
resulting independent Hodge numbers for K 3=T 2 are: h sh sh sh s1 and0,0 1,0 2,0 3,0

h sh s21. The two-forms on K 3=T 2 will be denoted by v with As1,1 2,1 A

1,2, . . . ,23, where v Adznd z and the v are the K 3 forms introduced above.1 a

The triple intersection numbers C of a Calabi–Yau threefold are defined byA BC

C s v nv nv . 3.2Ž .HA BC A B C
X

2Ž .As we will be dealing with the integer-valued cohomology group H X,Z , the basic
two-forms are normalized such that the intersection numbers are integers. For XsK 3
=T 2 the appropriate normalization is based on

vnvs1 , v s1 , v nv sC , 3.3Ž .H H H1 a b ab
2K 3 T K 3

where C is the intersection form of two-cycles in K 3. The non-vanishing componentsab

of the triple intersection form C of K 3=T 2 are thereforeA BC

C sC . 3.4Ž .ab1 ab

In order to discuss the wrapping of D4- or M5-branes on four-cycles, we turn to the
homology. We recall that Poincare duality provides a natural relation between i-forms v´
and 2ky i cycles V for every real 2k-fold X by

fs vnf , 3.5Ž .H H
V X

Ž . iŽ .for all 2ky i -forms f. This defines an isomorphism between H X,R and
Ž .H X,R . In the particular case of Calabi–Yau threefolds, four-cycles are dual to2 kyi

Ž .two-forms. We can therefore fix a basis for H X,R by taking the four-cycles dual to a4
2Ž . Ž .basis of H X,R . This basis will be denoted by S , where As1, . . . b X and whereA 2

Ž . 2Ž . Ž . Ž . Ž .b X sdim H X,R sh X qh X qh X is the second Betti number. In2 R 2,0 1,1 0,2

the case of XsK 3=T 2 we have b s23 and the cycles S with A/1 are products2 A

of the basic two-cycles of K 3 with T 2, whereas S corresponds to K 3. The four-cycle1

P on which the D4- or M5-brane is wrapped can thus be expanded in a homology basis
S ,A

Psp A S . 3.6Ž .A

The integers p A count how many times the D4- or M5-brane is wrapped around the
corresponding cycle, so that we are actually dealing with integer-valued cohomology

2Ž . Ž . Aand homology groups, H X,Z and H X,Z . In four-dimensional terms the p are4

magnetic charges, which are quantized according to Dirac’s rule.
ŽBy Poincare duality the triple intersection numbers also count the numbers weighted´

.with orientation of intersections of generic four-cycles in a given homology class. The
triple intersection for a four-cycle is therefore

PPPPPsC p Ap BpC . 3.7Ž .A BC



( )G.L. Cardoso et al.rNuclear Physics B 567 2000 87–110 95

For K 3=T 2 the non-vanishing triple intersections of four-cycles are

S PS PS sC , 3.8Ž .a b 1 ab

so that the triple intersection of a four-cycle P in the class pa S qp1 S is given bya 1

PPPPPs3 C papbp1 . 3.9Ž .ab

Another quantity that will appear in the microscopic entropy formula is the second
Ž .Chern class c X of X evaluated on the four-cycle P. Recall that the second Chern2

4Ž .class is a four-form which defines a cohomology class in H X,Z . Hence there is a
Ž .dual two-cycle in H X,Z which we will denote be C . Since X is a Calabi–Yau2 2

A Ž .manifold we can choose a basis S of H X,Z which is dual to the basis S of2 A
Ž . A A AH X,Z , i.e. S PS sd . Expanding C sc S we find4 B B 2 2 A

C PPs c X sc p A . 3.10Ž . Ž .H2 2 2 A
P

For K 3=T 2 the total Chern class can be computed from the total Chern classes of K 3
and T 2 by the Whitney product formula

c K 3=T 2 sc K 3 nc T 2 s 1qc K 3 n1s1qc K 3 , 3.11Ž . Ž . Ž . Ž . Ž . Ž .Ž .2 2

Ž . Ž 2 . Ž .where we used c K 3 s0 and c T s0. Since c K 3 is the Euler class of K 3 and1 1 2

since K 3 has Euler number 24 we find

C PPsx K 3 p1 s24 p1 . 3.12Ž . Ž .2

So far we have discussed only topological aspects of the threefold. But in order to get a
supersymmetric state by wrapping a D4- or M5-brane on P, the four-cycle must be

w xholomorphic 30 and must therefore define a divisor in X. A divisor is an integer linear
combination of irreducible analytic hypersurfaces, where the word analytic emphasizes
that a divisor can be locally characterized as the zero locus of a holomorphic function.
The corresponding homology classes are called algebraic. According to the Lefschetz

Ž . 2Ž . 1,1Ž .theorem on 1,1 -classes, every cohomology class in H X,Z lH X,R is alge-
2Ž .braic. Here the integer valued cohomology group H X,Z might be visualized as a

2Ž . 1,1Ž .lattice in the real vector space H X,R , whereas H X,R is a linear subspace. If the
1,1Ž . 2Ž .dimension of H X,R is smaller than the dimension of H X,R and if the subspace

1,1Ž . 2Ž .H X,R is generic, then it will intersect the lattice H X,Z in no point but the
origin. Therefore it is in general not guaranteed that algebraic classes exist.

Ž . 1,1Ž .For generic Calabi–Yau threefolds, h X s0, and therefore H X,R will2,0
2Ž .coincide with H X,R , implying that all fourth homology classes are algebraic.

2 1,1Ž .However, for K 3=T we have h s1 and therefore H X,R is only contained in,2,0
2Ž .but not identical with H X,R . Obviously the problem resides in the K 3 factor, which

Ž .has h K 3 s1. Whether or not a K 3 space has algebraic classes is controlled by the2,0

so-called algebraic lattice, or Picard lattice of K 3,

G sH 2 K 3,Z lH 1,1 K 3,R . 3.13Ž . Ž . Ž .P

Special K 3 spaces, which have a non-empty G and therefore have holomorphic cycles,P

are called algebraic. Hence we will below restrict ourselves to these algebraic K 3
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surfaces, which are associated to subspaces of codimension 1 in the moduli space of
complex structures.1 The computation of the microscopic entropy amounts to counting
the massless excitations of a D4- or M5-brane wrapped on P. In addition to being
holomorphic, one has to require that P is a so-called ‘very ample’ divisor in order to
ensure that the entropy calculation is not affected by a

X-corrections in the type-II picture
and by instanton corrections in the M-theory picture, as we will discuss in due course.
By definition a divisor P in a space X is called very ample if X can be embedded into a
complex projective space CP N such that P is the intersection of X with some
hyperplane in CP N. Then Bertini’s theorem implies that, generically, P is a smooth
manifold. In our particular case the divisor P is a compact, complex Kahler surface. On¨
general grounds one therefore expects that the collective modes of the wrapped brane

Ž .are controlled by the Hodge numbers h P of P. Therefore we will discuss how thep,q
Ž . Ž . Ž .independent Hodge numbers h P , h P and h P of P are related to known1,0 2,0 1,1

quantities of X.
ŽThree standard invariants can be computed using index theorems only two of them

are independent due to the fact that a complex surface can only have two independent
.Chern classes . These are the Euler number x , the holomorphic Euler number x andh

the Hirzebruch signature s , defined by

pqq
x P s y1 h P s2y4h P q2h P qh P ,Ž . Ž . Ž . Ž . Ž . Ž .Ý p ,q 1,0 2,0 1,1

p ,q

q
x P s y1 h P s1yh P qh P ,Ž . Ž . Ž . Ž . Ž .Ýh 0,q 1,0 2,0

q

s P sbq P yby P s2h P yh P q2 , 3.14Ž . Ž . Ž . Ž . Ž . Ž .2 2 2,0 1,1

"Ž . Ž .where we used that b P , which denote the number of anti self-dual harmonic2
qŽ . Ž . yŽ . Ž .two-forms, are equal to b P s2h P q1 and b P sh P y1 for a compact2 2,0 2 1,1
Ž . Ž .Kahler surface. Now x P and s P can be computed using the following index¨

theorems:

22 1
x P s c P , s P s y c P q c P , 3.15Ž . Ž . Ž . Ž . Ž . Ž .H H Ž .2 2 13 3

P P

1Ž . Ž .which then determines x P s xqs as well.h 4

To every very ample divisor P in X one can associate a line bundle L over X, such
0Ž .that P is the zero locus of a holomorphic section of L. The space H X, L of

Ž .holomorphic sections of L is closely related to the moduli space MM P of P, i.e. to the
space of deformations of P inside X. Since divisors are obtained as zero loci of
sections, multiplying a section by a non-vanishing complex number does not change the

1 Conformal field theories describing type-II strings in the background of such algebraic K 3 spaces have
w xbeen discussed in 31 . In particular the moduli spaces of algebraic K 3 string backgrounds factorize into two

subspaces containing the complex structure moduli and the complexified Kahler moduli, respectively. If one¨
compactifies type-II strings on K 3=T 2, then this is the part of the moduli space that can be described in an
Ns2 truncation of the Ns4 theory.
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divisor. Therefore the moduli space of P is the projective space associated to the vector
0Ž .space H X, L :

MM P sPH 0 X , L . 3.16Ž . Ž . Ž .

Another way of thinking about the moduli of P is as sections of the normal bundle
N of P,P r X

N sTT X rTTP , 3.17Ž .PP r X

where TT X is the holomorphic tangent bundle of X restricted to P and TTP is theP

holomorphic tangent bundle of P. When wrapping a D-brane or M-brane on a
holomorphic cycle, the scalar fields of the world volume theory corresponding to

w xtransverse motions of P inside X become sections of the normal bundle 32 . Both
descriptions of the moduli of P are equivalent because the first adjunction formula
implies that the line bundles N and L are isomorphic.P r X

The next step is to express the Chern classes of P in terms of the Chern classes of X.
Because the normal bundle N of P is the quotient of the tangent bundle of X and ofP r X

the tangent bundle of P, the Whitney product formula for Chern classes implies
Ž . Ž . Ž .c X sc P nc N orP r X

1qc X qc X q . . . s 1qc P qc P n 1qc N . 3.18Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .1 2 1 2 1 P r X

Ž . Ž .Since X is Calabi–Yau, we have c X s0. Hence one gets the relations c P q1 1
Ž . Ž . Ž . Ž . Ž .c N s0 and c P qc P nc N sc X , which can be combined into1 P r X 2 1 1 P r X 2

2
c P sc X qc N . 3.19Ž . Ž . Ž .Ž .2 2 1 P r X

Ž .What remains is to express c N by a quantity defined on X. To do so we recall1 P r X

that the first adjunction formula implies that the normal bundle N is isomorphic toP r X

the line bundle L. In particular the first Chern classes of both line bundles are equal,
Ž . Ž . Ž .c N sc L . Moreover the two-form c L is Poincare dual to the four-cycle P,´1 P r X 1 1

and one can rewrite the above integrals as integrals over X:

2
x P s c X qc L nc L ,Ž . Ž . Ž . Ž .Ž .H 2 1 1

X

22 1
s P s y c X y c L nc L . 3.20Ž . Ž . Ž . Ž . Ž .H Ž .2 1 13 3

X

Finally the integrals on the right-hand side can be interpreted as intersection products
using

33P :sPPPPPs c L , c X s c L nc X sC PP , 3.21Ž . Ž . Ž . Ž . Ž .H H H1 2 1 2 2
X P X

Ž .where C is the two-cycle Poincare dual to c X . With these results one can express´2 2

the invariants in terms of intersection numbers,

1 23 3x P sP qC PP , s P sy P y C PP . 3.22Ž . Ž . Ž .2 23 3
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Now it is straightforward to obtain the following relations for the Hodge numbers:
1 13h P s P q C PPqh P y1 ,Ž . Ž .2,0 2 1,06 12

3.23Ž .2 53h P s P q C PPq2h P ,Ž . Ž .1,1 2 1,03 6

or, equivalently,
1 1q 3b P s P q C PPq2h P y1 ,Ž . Ž .2 2 1,03 6

3.24Ž .2 5y 3b P s P q C PPq2h P y1 .Ž . Ž .2 2 1,03 6

Ž .What remains is to calculate h P . Here one uses again that P is a very ample1,0
Ž . Ž .divisor. Therefore the Lefschetz hyperplane theorem implies that h P sh X .1,0 1,0

Ž . Ž .Thus we have h P s0 when X is a generic Calabi–Yau threefold and h P s11,0 1,0

when XsK 3=T 2.
w xThe final step in the approach of 2 is to count the massless left-moving bosons and

fermions of the wrapped M5-brane and to express them in terms of the topological
w xquantities computed above. As argued in 3 the analysis of the equivalent D4–D0

w xsystem should give the same answer. We will follow Ref. 2 .
In flat space, the massless degrees of freedom of the M5-brane correspond to a

Ž .six-dimensional Ns 0,2 tensor multiplet, which contains a self-dual antisymmetric
tensor, five scalars which describe transverse motions and two Weyl spinors. In order to
compute the microscopic entropy one needs to dimensionally reduce this system on the
divisor P and to count the massless modes in the non-supersymmetric, left-moving
sector of the resulting two-dimensional theory.

yŽ .Dimensional reduction of the antisymmetric tensor on P gives b P left-moving2
qŽ . Ž . Ž .and b P right-moving scalars together with b P s2 h P gauge fields. Two-di-2 1 1,0

mensional gauge fields do not carry dynamical degrees of freedom themselves, but may
Ž . Ž .modify the counting for the other modes. For a generic threefold one has b P sb X1 1

s0 and this problem is absent. A full analysis would require a detailed study of the
effective s-model describing the collective modes of a M5-brane wrapped on the divisor
P in K 3=T 2. This will not be attempted here.

w xInstead we will first review the counting performed in 2,3 and assume that there are
no modifications for K 3=T 2. As we will see in a moment the resulting microscopic
formula contains, in the case of K 3=T 2, sub-subleading terms that are puzzling from
the supergravity point of view. Moreover, with this unmodified mode counting the
right-moving sector of the effective M5-brane theory turns out not to be supersymmetric.
This implies that the microscopic analysis in the case of K 3=T 2 must be more subtle.
We will then propose a modification of the zero-mode counting which is consistent with
the supergravity analysis.

The M5-brane theory in flat space has five scalars describing the transverse motions.
These split into three scalars corresponding to the position of the brane in the three
non-compact space dimensions and two scalars corresponding to motions of the divisor
P inside the Calabi–Yau threefold. Whereas the first set just gives three scalar
zero-modes, the zero-modes associated to the second set are more subtle. One gets one
zero-mode for every independent holomorphic deformation of P inside X. In other
words these zero-modes are sections of the normal bundle N . As reviewed above theP r X

dimension of the corresponding moduli space is

dim MM P sdim PH 0 X , L sdim H 0 X , L y2 . 3.25Ž . Ž . Ž . Ž .R R R
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w xIt was emphasized in 2 that this quantity is hard to compute in general, but that there is
Ž .a Riemann–Roch index theorem for the holomorphic Euler number x L sh

Ž . i iŽ .Ý y1 dim H X, L of line bundles L over complex manifolds. We already men-i C

tioned that the divisor P is chosen to be very ample. Then the Kodaira vanishing
theorem together with the fact that X is a Calabi–Yau manifold implies that

iŽ . Ž . Ž .dim H X, L s0 for i)0. Therefore dim MM P s2 x P y2 and henceC R h

dim MM P s2 h P yh P . 3.26Ž . Ž . Ž . Ž .R 2,0 1,0

This is the number of real left- and right-moving scalars related to transverse motions of
P inside X. Combining it with the counting of modes descending from the antisymmet-
ric tensor field, one finds that the number of left- and right-moving bosonic degrees of
freedom is

N left sdim MM P q3qby P s2h P qh P q2y2h P ,Ž . Ž . Ž . Ž . Ž .bosonic R 2 2,0 1,1 1,0

N right sdim MM P q3qbq P s4h P q4y2h P . 3.27Ž . Ž . Ž . Ž . Ž .bosonic R 2 2,0 1,0

The number of real left- and right-moving fermions, on the other hand, is given by the
w xsum of odd and even cohomology elements, respectively 3 ,

left rightN s4h P , N s4 h P qh P . 3.28Ž . Ž . Ž . Ž .fermionic 1,0 fermionic 2,0 0,0

The effective two-dimensional theory describing the collective modes of a BPS black
Ž . Ž .hole is a 0,4 supersymmetric sigma-model. Here we recall that the 0,4 world-sheet

supersymmetry is crucial for describing an Ns2 BPS black hole in four-dimensional
space-time. Therefore, the number of right-moving bosons and fermions has to match.
Moreover the right-moving scalars are expected to parametrize a quaternionic manifold
and therefore the number of right-moving real bosons should be a multiple of four.

Ž . Ž .Inspection of 3.27 and 3.28 shows that in the case of a generic threefold, for which
Ž . Ž .h P s0, the counting of right-moving modes is consistent with 0,4 supersymmetry,1,0

2 Ž .whereas this is not the case for K 3=T , for which h P s1. This implies that the1,0

zero-mode counting for K 3=T 2 has to deviate from the one described above.
Ž . Ž .Using 3.27 and 3.28 the central charge of the left-moving sector is computed to be

1left left 3c sN q N sP qC PPq4h PŽ .L bosonic fermionic 2 1,02
3.29Ž .

A B C AsC p p p qc p q4h P .Ž .A BC 2 A 1,0

Ž .For the generic case, where h P s0, this leads via Cardy’s formula to the final result1,0
w x2,3

1 A B C A< <SS s2p q C p p p qc p . 3.30( Ž .Ž .micro 0 A BC 2 A6

In the case of K 3=T 2 the intersection and second Chern class numbers take a simpler
Ž . Ž . Ž .form. Using 3.29 with h P s1, the associated microscopic entropy 3.1 is1,0

computed to be
1 a b 1 1< <SS s2p q 3 C p p p q24 p q4 . 3.31( Ž .Ž .micro 0 ab6

We note that the sub-subleading third term in this expression is not consistent with the
macroscopic computation of the entropy based on Ns2 supergravity. As mentioned in
the introduction, the homogeneity properties of the prepotential together with the

Ž .stabilization equations imply that the entropy should take the form 1.3 , and hence
terms containing odd powers of the charges cannot be present in the entropy formula.
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Another reason why this sub-subleading term is troublesome is that the approaches of
w x w x2 and 3 seem to give a slightly different numerical value for this term. Namely, when

w xsubstituting the Hodge numbers of P into the entropy formula 3
1 1< <SS s2p q b P q b P , 3.32( Ž . Ž . Ž .Ž .micro 0 even odd6 2

Ž . Ž .where b P and b P denote the sums of the even and of the odd Betti numbers,even odd
Ž .respectively, we obtain 3.31 but with a six instead of a four in the last term. Note that

Ž . w x Ž .for generic threefolds, where h P s0, both approaches 2,3 yield 3.30 .1,0

How is the zero-mode counting for K 3=T 2 to be modified in order to remove the
Ž .inconsistencies mentioned above? Let us recall that there are b s2h P s2 non-dy-1 1,0

namical gauge fields present. If we assume that the zero-modes are charged and couple
to these gauge fields, then the following mechanism suggests itself. Due to gauge
invariance, the number of left- and right-moving scalar fields is reduced by two, so that
the number of right-moving scalar fields is indeed a multiple of four. Due to supersym-
metry this must be accompanied by the removal of four right-moving fermionic real
degrees of freedom. If, in addition, we assume that the removal of fermionic degrees of
freedom is left–right symmetric, then the actual number of left-moving fermionic
degrees of freedom is zero. The central charge in the left-moving sector is now
computed to be c sP 3 qC PPs3 C papbp1 q24 p1, which is odd in the charges.L 2 ab

The resulting microscopic entropy formula is then in full agreement with the macro-
scopic computation, which we now briefly describe.

Let us analyze the same system from the supergravity point of view. The Wilsonian
action controlling the vector multiplet sector of an Ns2 compactification and the
relevant Ns2 subsector of an Ns4 compactification is encoded in the holomorphic
function

Y AY B Y C Y A
1 1 1F Y ,F sy C y c FŽ . A BC 2 A6 24 640 0Y Y

Y 1Y aY b Y 1
1 1sy C y F , 3.33Ž .ab2 640 0Y Y

where the first formula refers to the generic case, whereas the second formula refers to a
compactification on K 3=T 2. In the latter case Y arY 0 are the complexified Kahler¨
moduli of an algebraic K 3 and Y 1rY 0 is the complexified Kahler modulus of T 2.¨

Ž .Since the function 3.33 represents the leading part of the holomorphic function in
the a

X-expansion,2 we briefly discuss under which conditions a solution based on this
w x Xfunction can be reliable 2,24 . The issue of a -corrections is not quite the same for

compactifications on generic threefolds and for compactifications on K 3=T 2. For
Žgeneric threefolds, which lead to Ns2 compactifications, both the prepotential F Y,F

. 2 Xs0 and the C -coupling function F receive a -corrections. In contrast the metric onF

Ž .the Ns4 moduli space and, hence, the prepotential F Y,Fs0 in the Ns2 subsector
of an Ns4 compactification, do not receive a

X-corrections. However, the gravitational
2 w x Ž .C -coupling function F does get corrected 33 . Therefore 3.33 is valid for bothF

Ns2 and Ns4 compactifications in the limit of large Kahler moduli, only. In¨

2 In the M-theory picture a
X-corrections appear as instanton corrections corresponding to wrapped M-branes.

For convenience we will use the type-IIA picture in the following.
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Ž A 0.particular the Kahler moduli Im Y rY must take large positive values at the event¨
horizon. Since the Kahler moduli are space dependent for a generic extremal four-di-¨
mensional black hole solution, the geometry of the internal manifold will change
accordingly over space. The values of the moduli at the event horizon are fixed by the

A w xstabilization equations. For a black hole with non-vanishing charges q , p we have 10

A < <Y 6 q0As ip . 3.34Ž .(0 B C D BY C p p p qc pBC D 2 Bhorizon

A 0 < < < AThus, in order to guarantee Im Y rY 40 we need to impose q 4p )0. Inhorizon 0
< < Afact we will impose the stronger condition q 4p 40 in order to make contact with0

the microscopic entropy counting.
From the microscopic point of view the charges p A are the expansion coefficients of

the divisor P in the homology basis, Psp AS . By Poincare duality there is a dual´A
Ž . A 2Ž .1,1 -form p v , where v belong to the basis of H X,Z introduced above. TheA A

Ž A 0.Kahler form of the internal threefold is proportional to Im Y rY v . Note that the¨ A
Ž .stabilization equations 3.34 imply that the Kahler form, evaluated with the values that¨

the Kahler moduli take at the horizon, is proportional to the Poincare dual of P. If all¨ ´
A Ž . Ap are positive, the 1,1 -form p v lays in the interior of the Kaher cone and this¨A

provides a link between suppression of a
X corrections and P being a very ample

Ž .divisor. Namely, by multiplying the 1,1 -form with a large positive number or,
equivalently, by taking the p A very large, we can arrange that p Av is far away fromA

the boundaries of the Kahler cone. In terms of homology p A )0 implies that the divisor¨
P has positive intersection numbers with all complex submanifolds of X. This shows
that P is a so-called ample divisor according to the Nakai–Moishezon criterion. By
definition a divisor is called ample if it can be made very ample by multiplying it with a
sufficiently large positive number. Thus P is ample if p A )0 and very ample if
p A

40. As we explained above one has to require that P is very ample in order to be
able to reliably compute the microscopic entropy.

We now turn to the macroscopic entropy of a black hole with non-vanishing charges
A Ž .q and p , which can be computed by substituting the function 3.33 into the general0
Ž .formula 1.1 . In the case of a generic threefold the resulting expression for the

Ž .macroscopic entropy fully agrees with the microscopic formula 3.30 , as we already
w x 2showed in 1 . For the case of a compactification on K 3=T we find

1 a b 1 1< <SS s2p q 3 C p p p q24 p . 3.35( Ž .Ž .macro 0 ab6

This too is in full agreement with the microscopic computation provided that the
zero-mode counting for K 3=T 2 is modified as described above.

4. A non-perturbative example

Let us now consider an extension of the heterotic-like model of Section 2, where the
term proportional to F is replaced by a more general function of SsyiY 1rY 0,

Y 1Y ah Y b
ab Ž1.F Y ,F sy qF S F , 4.1Ž . Ž . Ž .0Y
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where h is defined as before. In Section 2 we noted that the dilaton and the black holeab

entropy depended only on combinations of the electric and magnetic charges that are
Ž .invariant under classical i.e. continuous target-space duality transformations. For the

extension discussed here, target-space duality remains realized, so we will first analyze
this aspect in some more detail. Subsequently we will consider the possible invariance
under S-duality.

Ž .First of all, the invariance under the SO 1,ny2 subgroup of the target-space duality
Ž .group is manifest, as this is an invariance of 4.1 . The transformations that extend this

Ž .subgroup to the full SO 2,ny1 group of target-space dualities depend on 2ny1
parameters, which we write as two vectors a and ba and a scalar c under the subgroup.a

The charges M and N I transform under the corresponding infinitesimal transformationsI

according to
a dN 0 syc N 0 ya N a ,dM sc M qb M , a0 0 a

1 1 1 a bab dN sc N q2h b N ,dM syc M y h a M , 4.2Ž .ab1 1 a b2

a 1a a 0 ab 1dM sa M y2h b M , dN syb N q h a N .a a 0 ab 1 b2

Ž 0 2 n. Ž 1 . IUsing that the vectors Y ,F ,Y , . . . ,Y and F ,yY ,F , . . . ,F transform as N1 0 2 n
w x Iand M under target-space duality 34,35 , the corresponding transformations of Y andI

F are given byI

0 0 a dF sc F qba F ,d Y syc Y ya Y , 0 0 aa

1 a b1 1 ab dF sc F q2h b Y ,d Y syc Y q h a F , 4.3Ž .1 1 aba b2

a 11a a 0 ab dF sa F q2h b Y .d Y syb Y q h a F , a a 0 abb 12

The crucial observation is now that S is invariant under the above transformations of the
Y I, whereas these transformations induce the correct transformations on the derivatives

Ž .F as specified above. This means that the continuous SO 2,ny1 transformations areI
Ž .preserved for any function F of the type given in 4.1 . This explains the manifest

target-space duality invariance of the expressions found in Section 2.
We now proceed and analyze the behaviour under S-duality. In general it is not

known which subset of the S-duality transformations will be realized in Ns2 heterotic
string compactifications. But we consider this option, first as an example to appreciate
the relevance of the non-holomorphic corrections for the entropy formula, and secondly
with an eye towards the Ns4 theory of which the Ns2 theory is just a truncation. On
the electric and the magnetic charges, the S-duality transformations act according to

1J I I I I J˜ ˜M ™M sa M y2 b h N , N ™N sd N y ch M , 4.4Ž .I I I I J J2

where the parameters a, b, c and d are integers satisfying adybcs1, and where the
symmetric matrix h and its inverse h I J are defined byI J

h N IN J sN 0N 1 qh N aN b , h I JM M s4M M qh abM M . 4.5Ž .I J ab I J 0 1 a b
1Ž . ² :The above expressions are equal to two of the SO 2,ny1 invariants, N, N and2

² : Ž .2 M, M , defined in 2.10 . Under S-duality the three invariants transform according to

² : 2 ² : 2 ² :M , M ™a M , M qb N , N y2 ab MPN ,
² : 2 ² : 2 ² :N , N ™c M , M qd N , N y2 cd MPN ,

² : ² :MPN™yac M , M ybd N , N q adqbc MPN . 4.6Ž . Ž .
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The quantities Y I and F transform asI

˜0 0 0 1 F ™F sa F yb F ,˜ 0 0 0 1Y ™Y sd Y qc Y ,
1 1 1 0˜ ˜ 4.7Y ™Y sa Y qb Y , F ™F sd F yc F , Ž .1 1 1 0

1a a a ab˜ bY ™Y sd Y y ch F , ˜b2 F ™F sa F y2 b h Y .a a a ab

As a result of these transformations one easily verifies that S transforms according to
Ž .the well-known SL 2 formula,

a Sy ib
˜S™Ss . 4.8Ž .

ic Sqd
However, in this case the transformations of the F are not, in general, correctly inducedI

by the transformations of the Y I. This is only the case when
2˜f S s ic Sqd f S , 4.9Ž . Ž . Ž .Ž .

Ž . Ž1.Ž . Ž .where f S syi E F S rES. This implies that f S must transform under S-duality
transformations as a modular form of weight 2.

Ž1.Ž .In heterotic-like string compactifications, the Wilsonian coupling function F S
Ž1.Ž . Ž . Ž .has an expansion of the type F S s ic Sq f q , where f q denotes a series1

Ž .expansion in positive powers of qsexp y2p S and c is the constant appearing in1
Ž . Ž2.1 actually, in Ns2 heterotic string compactifications the function F will in general
also receive perturbative corrections which depend on the moduli T a syiY arY 0. Here

.we do not discuss these perturbative corrections . It is well known that there is no such
Ž1.Ž . Ž .holomorphic F S satisfying 4.9 . Thus, there is no holomorphic Wilsonian coupling

function consistent with S-duality. This, however, does not pose a problem, since in the
presence of massless fields the Wilsonian coupling functions do not, in general, exhibit
all the invariances of the physical effective coupling functions. In order to obtain a

Ž .coupling function that is consistent with 4.9 , we have to give up holomorphicity, which
is a characteristic feature of Wilsonian couplings, and assume that F Ž1. depends both on

ŽS and on S. In doing so, we can still preserve the stabilization equations where the FI
I . Ž .remain given by E FrE Y and moreover the classical target-space duality invariance

Ž1.Ž . Ž .remains intact. A non-holomorphic F S,S which satisfies 4.9 and which in the
Ž1. Ž1.Ž . Ž .weak coupling limit Re S™` turns into F S,S ™ ic S is given by F S,S syic1 1

6 32 Ž1.Ž . Ž . Ž .logh S q log SqS , so that f S,S syiE F S,S sc G S,S , whereŽ . Ž .Ž . 2S 1 2p p

Ž . Ž . Ž . Ž . Ž . Ž w x.G S,S sG S y2pr SqS and G S sy4p E logh S see, e.g., Ref. 33 . We2 2 2 S
Ž1.should stress here that F is only determined up to an anti-holomorphic function of S,

which we suppressed in view of the fact that it should vanish for weak coupling. Thus, a
Ž . Ž1.Ž .function F which is consistent with S-duality is given by 4.1 with F S replaced by

Ž1. Ž1.Ž . Ž . Ž .F S,S . We note that F S,S is not invariant under 4.8 , but rather transforms as
6Ž1. Ž1.Ž . Ž . Ž .F S,S ™F S,S q ic log yicSqd .1 p

Let us now turn to the entropy calculation using the same definitions for the
Ž1.Ž .stabilization equation and the entropy as before, but now with F S replaced by

2Ž1. I IŽ . < < Ž .F S,S . First we determine Z sp F Y,Y,F yq Y . By following the same stepsI I

as in Section 2 we obtain
2 1< < ² :Z s SqS N , N q f S,S Fq h.c. , 4.10Ž . Ž . Ž .Ž .2

Ž .which reduces to 2.6 in the weak coupling limit Re S™`. The value of the dilaton S
at the horizon is, in principle, determined in terms of the charges M and N I carried byI
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Ž .the black hole through the stabilization equations 1.4 . Again, following the very same
steps as in Section 2, we find

² : ² :SS N , N s M , M y2 SqS f S,S SFq h.c. ,Ž . Ž .Ž .
² :SyS N , N s2 i MPNq2 SqS f S,S Fy h.c. . 4.11Ž . Ž . Ž . Ž .Ž .

These two equations are combined into

1
1 K I J Lf S,S Fs M y2 i Sh N h M y2 i Sh N . 4.12Ž . Ž .Ž . Ž .I IK J JL4 2

SqSŽ .
Ž .Note that this equation should not be regarded as the solution for the function f S,S but

rather as an equation that determines S in terms of the charges. It is clear that this
Ž .equation is consistent with the required S-duality transformation of f S,S , since

SqS
SqS™ ,2< <icSqd

M q2 i Sh N K
I IKKM q2 i Sh N ™ , 4.13Ž .I IK icSqd

Ž . Ž . Ž . < < 2under the transformations 4.4 and 4.8 . Using 4.12 the expression for Z takes a
very simple form,

K I J LM q2 i Sh N h M y2 i Sh NŽ . Ž .I IK J JL2< <Z s , 4.14Ž .
2 SqSŽ .

whose invariance under S-duality is manifest.
Using the result for F Ž1. with the non-holomorphic corrections included, one

evaluates the expression for the entropy. As it turns out, the result is not invariant under
S-duality, which forces us to include an extra term. Thus, not only does the symplectic

IŽ Ž ..vector Y ,F Y,Y,F receive non-holomorphic corrections, but there is an additionalI

non-holomorphic correction to the coupling function of the C 2 term, with the resultmnrs
Ž1.Ž .that its effective S-duality invariant coupling function is given by F S,S q

3 Ž .i c log SqS . The combined S- and T-duality invariant expression for the entropy1 p

Ž .then reads with Fsy64

3
2 Ž .1< <SS sp Z q4 Im F F S,S q i c F log SqSŽ . Ž .macro 1ž /p

K I J Lp M q2 i Sh N h M y2 i Sh NŽ . Ž .I IK J JL
s

2 SqS
4< <q768 c log SqS h S . 4.15Ž . Ž . Ž .1

Ž .We should stress here that the first term does implicitly depend on the function f S,S
Ž .through the solution of 4.12 for S.

The above Ns2 example can be viewed as describing an Ns2 subsector of the
effective Lagrangian of heterotic string theory compactified on a six-torus. We already

Ž .discussed this truncation in Section 2. Hence 4.15 can be promoted to an Ns4
target-space duality invariant result. This is accomplished by simply replacing the

Ž . Ž .SO 2,ny1 invariants bilinear in the charges by the corresponding SO 6,22 ones.
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w xIndeed, it is known 33 that the effective Lagrangian of this Ns4 theory possesses a
32 Ž1.Ž . Ž .C term with an effective coupling function given by F S,S q i c log SqS .mnrs 1 p

Since the Ns4 theory is conjectured to be invariant under S-duality, the black hole
entropy in the heterotic Ns4 theory should also be invariant under strong-weak
coupling duality. It would be interesting to make contact between the Ns4 extension of
Ž . w x4.15 and the entropy formula of 36 .

Ž .Eq. 4.12 for S can be solved iteratively order-by-order in F . In the case of purely
² :imaginary S, the solution remains unmodified, that is Ss iMPNr N, N .

5. Corrections from T-dependent higher-derivative interaction terms

Ž .So far we considered holomorphic functions F Y,F that depended at most linearly
on F . In this section we will study functions that depend more generally on F , which
we recall, is just proportional to the square of the auxiliary tensor field T ab i j which is
the lowest component of the Weyl multiplet. More specifically, we will consider

Ž .functions F Y,F associated with a type-IIA string compactification on a Calabi–Yau
threefold. In the limit of large Kahler moduli, the corresponding homogeneous holomor-¨
phic function is given by

D Y AY B Y C Y A
A BC 0F Y ,F s qd FqG Y ,F , 5.1Ž . Ž . Ž .A0 0Y Y

1 1 1where D sy C , d sy c . The coefficients C denote the intersec-A BC A BC A 2 A A BC6 24 64

tion numbers of the four-cycles of the Calabi–Yau threefold, whereas the coefficients
Ž 0 .c denote its second Chern-class numbers. The function G Y ,F is proportional to2 A

w x17,18
2

`a ds 1
y2 p i n sI a s e . 5.2Ž . Ž .Ý H 124 s sinh a sŽ .0 2ngZ ,n/0

0'Here a is proportional to F rY . As we shall argue below the proportionality factor
Ž 0 . Ž . Ž 0 . Ž Ž .3. Ž 0.2 Ž .relating G Y ,F to I a is given by G Y ,F syir 2 2p x Y I a , where x

denotes the Euler number of the Calabi–Yau manifold. Observe that G satisfies the
homogeneity relation

Y 0 G q2F G s2G , 5.3Ž .0 F

where G and G denote the derivatives of G with respect to Y 0 and F , respectively.0 F

Ž . w xAn explicit evaluation of the integral 5.2 has been given in two regimes 17,18 ,
namely one in which a is taken to be small and the other in which a is taken to be

Ž .large. When computing 5.2 a regularisation prescription needs to be adopted. In the
Ž . w xcase of small a , the regularised expression 5.2 reads 17,18,37

z 2 g z 3y2 gŽ . Ž .g2 gI a s b a , b s y 2 2 gy1 .Ž . Ž . Ž .reg Ý g g 2 g2pŽ .gs0,2,3, . . .

5.4Ž .
Ž .The coefficient b , in particular, is given by b syz 3 , which shows that the0 0

Ž 0 . Ž .proportionality factor relating G Y ,F to I a must be the one mentioned above,reg
Ž Ž .3. Ž . Ž 0.2 w xsince the function F is known to contain a term ir 2 2p z 3 x Y 38 . We note
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Ž 0 . Ž .that, for small a , the function G Y ,F is not actually fully captured by 5.4 since
w xthere are additional contributions to it which are not analytic near as0 17,18 .

In a number of cases one can perform explicit calculations and determine the value of
I Ž Ž .. Ž Ž ..the scalar fields Y from 1.2 and of the entropy from 1.1 in the presence of a

Ž 0 . 0 Ž 0 .function G Y ,F . Below we will evaluate the case with p s0 so that Y is real ,
the case of axion-free black holes and the case where Y 0 is imaginary and thus equal to
1 0ip . To facilitate this discussion we first collect a number of useful formulae.2

First of all, the scalars Y A do not appear in the function G, which implies that

3 D Y B Y C qd FA BC A
F s 5.5Ž .A 0Y

Žremains unchanged. Therefore the stabilization equations for q are universal sinceA
.these equations are only valid at the horizon, we have Fsy64 ,

1
0 B C 0 B C 0q s yd p Fy3iD Y Y Y yY Y Y . 5.6Ž .Ž .A A A BC20< <Y

The stabilization equation for q does depend on the function G and reads0

A B C A A B C AD Y Y Y qd Y F D Y Y Y qd Y FA BC A A BC A
q s i y i y i G yG .Ž .0 0 02 20 0YŽ . YŽ .

5.7Ž .

< < 2 I IFurthermore, the expression for Z sp F yq Y can be written as follows:I I

A B C A B C A B C 0 A B C 03 Y Y Y 3 Y Y Y Y Y Y Y Y Y Y Y
2< <Z s i D y y qA BC 0 2 20 0 0Y Y YŽ . YŽ .

A A A 0 A 0Y F Y F Y Y F Y Y F
1 0 0q id y y q q i Y qY G yGŽ . Ž .A 0 020 2 20 0 0Y Y YŽ . YŽ .

1 0q p G qG . 5.8Ž .Ž .0 02

The entropy is given by

A AY Y
2< <SS sp Z y2 id Fy F y2 i F G yF G . 5.9Ž .Ž .macro A F F0 0ž /Y Y

We now turn to the three separate cases.

5.1. Black holes with p0 s0

Let us compute the entropy for a class of type-IIA black holes with p0 s0. This
0 0 Ž .implies immediately that Y sY . Eq. 5.6 then simplifies and one establishes directly

that
1 1A 0 A B A C BC CY s Y D q q ip , where D 'D p , D D sd , 5.10Ž .B A B A BC A B A6 2
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where we recall that D and d are related to the four-cycle intersection numbers andA BC A

the second Chern-class numbers of an underlying Calabi–Yau manifold. Similarly, one
Ž .obtains from 5.7 ,

D p Ap BpC y4d p AF2 A BC A04 Y s , 5.11Ž . Ž .
q q i G yGˆ Ž .0 0 0

1 A B Ž .where q 'q q D q q . Furthermore, from 5.8 we determineˆ0 0 A B12

D p Ap BpC y2 d p AFA BC A2 0< <Z sy q iY G yG . 5.12Ž .Ž .0 00Y

Combining these results leads to the following equation for the entropy:

SS sy4p Y 0 q y ip 3Y 0 G q2F G y h.c. . 5.13Ž .ˆ Ž .macro 0 0 F

w xFor vanishing G this result agrees with that given in 1 , which was consistent with the
w xresults of state counting presented in 2,3 in appropriate limits.

Ž . 0Eq. 5.11 can be solved iteratively for Y in terms of the charges, as follows. Let us
denote the value of Y 0 by y0 when G is switched off. We take the magnetic charges

A Ž 0.2 Ž .p to be positive and q -0, so that y )0, as can be seen from 5.11 . In a regimeˆ0
< Ž 0 . < < < Ž .where Im G y ,F < q , 5.11 can, to first approximation, be written asˆ0 0

0 0i G y ,F yG y ,FŽ . Ž .Ž .0 010 0Y sy 1q q . . . . 5.14Ž .2 < <ž /q̂0

Ž . Ž .Inserting 5.14 into 5.13 then yields, to first approximation,

1 A B C A< <SS s2p q C p p p qc p( ˆ Ž .macro 0 A BC 2 A6

0 0y2p i G y ,F yG y ,F q PPP , 5.15Ž .Ž . Ž .Ž .
Ž .where we used the homogeneity property 5.3 for G and expressed the result in terms

of the intersection numbers and second Chern-class numbers.

5.2. Axion-free black holes

Now let us consider axion-free black holes, which are characterized by the fact that
A A 0 0 A 0 Athe moduli z sY rY are imaginary. Using Y Y qY Y s0, it readily follows

that

Y 0
1A A 0 0Y s ip , where Y s lq ip . 5.16Ž .Ž .2

l

Ž .The charges q follow directly from 5.6 ,A

p0 p0F
B Cq sy3 D p p y4d . 5.17Ž .A A BC A2 22 0l l q pŽ .
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This equation implies that the charges are tightly constrained. It also implies a quadratic
equation for l2. Its solution thus fixes all the moduli in terms of the charges. The

Ž .stabilization Eq. 5.7 for q shows that q is not independent, but given by0 0

16 p0
A 0 A 0q p q3q p syd p F y3ip G yG . 5.18Ž .Ž .A 0 A 0 022 0l q pŽ .
Ž .In this case 5.8 yields

2 22 0 2 0l q p l y pŽ . Ž .2 A B C A< <Z sy2 D p p p q4 d p FA BC A3 22 0l l l q pŽ .ž /
1 1 0q il G yG q p G qG . 5.19Ž .Ž . Ž .0 0 0 02 2

Ž .The entropy can be written as follows with Fsy64 :
22 0l q p lŽ .

A B C AwSS sp y2 D p p p q8 d p Fmacro A BC A3 22 0l 5.20Ž .l q pŽ .
1 1 0q il G yG q p G qG y2 iF G yG .Ž . Ž . Ž .0 0 0 0 F F2 2

Ž 0.2 w xFor Gs ic Y and d s0 this result coincides with that obtained in 24 .A

5.3. Black holes with Re Y 0 s0

10 0 0Finally, we consider black holes for which Re Y s0 and, hence, Y s ip . The2

Ž . Ž .stabilization equations 5.6 and 5.7 yield the following two conditions:

0 B C B Cp q sy6 D Y Y qY Y y4d F ,Ž .A A BC A

20 A B C B C B Cp q s4 D p Y Y qY Y qY YŽ . Ž .0 A BC

2A 0q4d p Fy i p G yG . 5.21Ž .Ž . Ž .A 0 0

Just as in the previous subsection the charge q is not independent and is constrained by0

20 I A B C 0p p q s2 D p p p y i p G yG . 5.22Ž .Ž . Ž .I A BC 0 0

Ž . AEqs. 5.21 are quadratic in terms of the scalars Y which can therefore be determined
in terms of the charges. However, we do not wish to pursue this in full generality. Below
we will determine the value of the Y A for type-II models with a dual heterotic
description.

Ž . Ž .From 5.8 and 5.9 we obtain

2 4A B C A2< <Z s D YqY YqY YqY q d YqY FŽ . Ž . Ž . Ž .A BC A0 0p p
1 0q p G qG ,Ž .0 02

2p A B C
SS s D YqY YqY YqY y2 ip GyG , 5.23Ž . Ž . Ž . Ž . Ž .macro A BC0p

Ž .where we made use of the homogeneity property 5.3 for G.
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For type-II models with a dual heterotic description, we can use the first equation in
Ž . A5.21 to determine the Y , along the same lines as in Section 2. We start from

D Y AY B Y C syY 1Y ah Y b , d Y A sc Y 1 , 5.24Ž .A BC ab A 1

1 Ž .so that D sy h . Then the first equation in 5.21 yields1ab ab3

1
1a 0 ab 1 aY s p h q q iY p ,b41 1Y qY

1 2 210 a b 0 ab 1 a b4c Fqp q qp h p s p q h q q p p h pŽ . Ž .1 1 ab a b ab421 1Y qYŽ .
0 1 aqp p p q . 5.25Ž .a

Substituting this into the above entropy formula, we obtain

2p 2 21 0 ab 1 a b 0 1 aSS sy p q h q q p p h p qp p p qŽ . Ž .macro a b ab a40 1 1p Y qYŽ .

y2 ip GyGŽ .
p 2 20 ab 1 a b 0 1 asy p q h q q4 p p h p q4 p p q p( Ž . Ž .ž /a b ab a0p

= 0 a bq p qp h p q4c F y2 ip GyG , 5.26( Ž . Ž .Ž .1 ab 1

We thus see that we have to choose p0 -0. This expression can be rewritten as follows
in terms of the heterotic electric and magnetic charges M and N I given in Section 2,I

p 2 20 1 0 1² : ² :SS sy p M , M q p N , N q2 p p MPN( Ž . Ž .ž /macro 0p

= ² :N , N q8c F y2 ip GyG . 5.27( Ž . Ž .Ž .1

Ž .Observe that the charges are subject to the constraint 5.22 , which in the case at hand
0 1 0 2² : Ž . Ž . Ž .reads p MPNqp N, N syi p G yG . Substituting this into 5.27 yields0 0

222 0² :² :(SS sp M , M N , N y MPN y p G yGŽ . Ž . Ž .macro 0 0

=
512 c1

1y y2 ip GyG , 5.28Ž . Ž .( ² :N , N

Ž .where we also used Fsy64. This expression reduces to 2.9 in the case of Gs0.

Note added

It should be noted that the revised counting of micro-states proposed in Section 3
w xyields results that are consistent with anomaly inflow arguments 39 . We would like to

thank J.A. Harvey and F. Larsen for discussions concerning this point.
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