Asymptotic Form of Zero Energy Wave Functions in Supersymmetric Matrix Models

J. Fröhlich ${ }^{(a)}$, G.M. Graf $^{(a)}$, D. $\operatorname{Hasler}^{(a)}$, J. Hoppe ${ }^{(b, c)}$, S.-T. Yau ${ }^{(d)}$
(a) Theoretische Physik, ETH-Hönggerberg, CH-8093 Zürich
${ }^{(b)}$ Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, D-14473 Potsdam
${ }^{(c)}$ Fachbereich Mathematik, TU Berlin, D-10623 Berlin
${ }^{(d)}$ Department of Mathematics, Harvard University, Cambridge, MA 02138

February 1, 2008

Abstract

We derive the power law decay, and asymptotic form, of $\mathrm{SU}(2) \times \operatorname{Spin}(d)$ invariant wave-functions satisfying $Q_{\beta} \psi=0$ for all $s_{d}=2(d-1)$ supercharges of reduced $(d+1)$-dimensional supersymmetric $\mathrm{SU}(2)$ Yang Mills theory, resp. of the $\mathrm{SU}(2)-$ matrix model related to supermembranes in $d+2$ dimensions.

1 Introduction

It is generally believed that supersymmetric $\mathrm{SU}(N)$ matrix models in $d=9$ dimensions admit exactly one normalizable zero-energy solution for each $N>1$, while they admit none for all other dimensions for which the models can be formulated, i.e., for $d=2,3,5$. For various approaches to this problem see e.g. (1]-13].

In this article, we would like to summarize (and slightly modify/extend) what is known about the behaviour of $\mathrm{SU}(2)$ zero-energy solutions far out at infinity in (and near) the space of configurations where the bosonic potential (the trace of all commutator-squares) vanishes. Based on some early 'negative' result concerning $N=2, d=2$ (that used rather different techniques/arguments; see [1] 18]) we started our investigation of the asymptotic behaviour, in the fall of 1997, with a Hamiltonian Born-Oppenheimer analysis of that $N=2, d=2$ case. Some months later, we realized that the rather complicated Hamiltonian analysis (Halpern and Schwartz [8] had, in the meantime, derived the form of the wave function for $d=9$ near ∞, by Hamiltonian Born-Oppenheimer methods) can be replaced by a simple first order analysis, using only the first order operators Q, and first order perturbation theory. One finds that asymptotically normalizable, $\mathrm{SU}(2)$ and $\mathrm{SO}(d)$ invariant, wave functions do not exist for $d=2,3$, and 5 , in contrast to $d=9$, where there is exactly one.

We close these introductory words by recalling that the models discussed below arise in at least 3 somewhat different ways: As supersymmetric extensions of regulated membrane
theories in $d+2$ space-time dimensions [14, 18], as reductions (to $0+1$ dimension) of $d+1$ dimensional Super Yang Mills theories [15]-17], and, for $d=9$, as a description of the dynamics of $\mathrm{D}-0$ branes in superstring theory, 20, 21]. In this physical interpretation, the existence of a normalizable zero-energy solution is an important consistency requirement.

The paper is organized as follows. In Section 2 we recall the definition of the models, and in Section 3 we state our main result about zero-modes. The proof is given in Section $\boxed{4}$ and Appendix 1. We suggest to skip Subsection 4.5 and Appendix 1 at a first reading. As a warm-up the reader is advised to read Appendix 2, where a simpler model is treated by the same method.

2 The models

The configuration space of the bosonic degrees of freedom is $X=\mathbb{R}^{3 d}$ with coordinates

$$
q=\left(\overrightarrow{q_{1}}, \ldots, \overrightarrow{q_{d}}\right)=\left(q_{s A}\right)_{\substack{s=1, \ldots, d \\ A=1,2,3}}
$$

To describe the fermionic degrees of freedom let, as a preliminary,

$$
\begin{equation*}
\gamma^{i}=\left(\gamma_{\alpha \beta}^{i}\right)_{\alpha, \beta=1, \ldots, s_{d}}, \quad(i=1, \ldots, d), \tag{1}
\end{equation*}
$$

be the real representation of smallest dimension, called s_{d}, of the Clifford algebra with d generators: $\left\{\gamma^{s}, \gamma^{t}\right\}=2 \delta^{s t} \mathbb{I}$. On the representation $\operatorname{space}, \operatorname{Spin}(d)$ is realized through matrices $R \in \mathrm{SO}\left(s_{d}\right)$, so that we may view

$$
\begin{equation*}
\operatorname{Spin}(d) \hookrightarrow \mathrm{SO}\left(s_{d}\right), \tag{2}
\end{equation*}
$$

as a simply connected subgroup. We recall that

$$
s_{d}= \begin{cases}2^{[d / 2]}, & d=0,1,2 \bmod 8 \\ 2^{[d / 2]+1}, & \text { otherwise },\end{cases}
$$

where [•] denotes the integer part. We then consider the Clifford algebra with s_{d} generators and its irreducible representation on $\mathcal{C}=\mathbb{C}^{2_{d} / 2}$. On $\mathcal{C}^{\otimes 3}$ the Clifford generators

$$
\left(\vec{\Theta}_{1}, \ldots, \vec{\Theta}_{s_{d}}\right)=\left(\Theta_{\alpha A}\right)_{\substack{\alpha=1, \ldots, s_{d} \\ A=1,2,3}}
$$

are defined, satisfying $\left\{\Theta_{\alpha A}, \Theta_{\beta B}\right\}=\delta_{\alpha \beta} \delta_{A B}$. The Hilbert space, finally, is

$$
\begin{equation*}
\mathcal{H}=\mathrm{L}^{2}\left(X, \mathcal{C}^{\otimes 3}\right) . \tag{3}
\end{equation*}
$$

There is a natural representation of $\mathrm{SU}(2) \times \operatorname{Spin}(d) \ni(U, R)$ on \mathcal{H}. In fact, the group acts naturally on X through its representation $\mathrm{SO}(3) \times \mathrm{SO}(d)$ (which we also denote by (U, R)). On $\mathcal{C}^{\otimes 3}$ we have the representation \mathcal{R} of $\operatorname{Spin}\left(s_{d}\right) \ni R$

$$
\begin{equation*}
\mathcal{R}(R)^{*} \Theta_{\alpha A} \mathcal{R}(R)=\widetilde{R}_{\alpha \beta} \Theta_{\beta A} \tag{4}
\end{equation*}
$$

where $\widetilde{R}=\widetilde{R}(R)$ is its $\mathrm{SO}\left(s_{d}\right)$ representation. Through $\mathrm{SO}\left(s_{d}\right)=\operatorname{Spin}\left(s_{d}\right) / \mathbb{Z}_{2}$ and (Z) we have

$$
\begin{equation*}
\operatorname{Spin}(d) \hookrightarrow \operatorname{Spin}\left(s_{d}\right), \tag{5}
\end{equation*}
$$

and thus a representation \mathcal{R} of $\operatorname{Spin}(d)$. The representation \mathcal{U} of $\operatorname{SU}(2) \ni U$ on $\mathcal{C}^{\otimes 3}$ is characterized by $\mathcal{U}(U)^{*} \Theta_{\alpha A} \mathcal{U}(U)=U_{A B} \Theta_{\alpha B}$.

We shall now restrict to $d=2,3,5,9$, where $s_{d}=2,4,8,16$, the reason being that in these cases

$$
\begin{equation*}
s_{d}=2(d-1), \tag{6}
\end{equation*}
$$

whereas s_{d} is strictly larger otherwise. Eq. (6) is essential for the algebra (7) below [17].
The supercharges, acting on \mathcal{H}, are given by the s_{d} hermitian operators

$$
Q_{\beta}=\vec{\Theta}_{\alpha} \cdot\left(-\mathrm{i} \gamma_{\alpha \beta}^{t} \vec{\nabla}_{t}+\frac{1}{2} \vec{q}_{s} \times \vec{q}_{t} \gamma_{\beta \alpha}^{s t}\right), \quad\left(\beta=1, \ldots, s_{d}\right),
$$

where $\gamma^{s t}=(1 / 2)\left(\gamma^{s} \gamma^{t}-\gamma^{t} \gamma^{s}\right)$. These supercharges transform as scalars under $\mathrm{SU}(2)$ transformations generated by

$$
J_{A B}=-\mathrm{i}\left(q_{s A} \partial_{s B}-q_{s B} \partial_{s A}\right)-\frac{\mathrm{i}}{2}\left(\Theta_{\alpha A} \Theta_{\alpha B}-\Theta_{\alpha B} \Theta_{\alpha A}\right) \equiv L_{A B}+M_{A B}
$$

resp. as vectors in $\mathbb{R}^{s_{d}}$ under $\operatorname{Spin}(d)$ transformation generated by

$$
J_{s t}=-\mathrm{i}\left(\vec{q}_{s} \cdot \vec{\nabla}_{t}-\vec{q}_{t} \cdot \vec{\nabla}_{s}\right)-\frac{\mathrm{i}}{4} \vec{\Theta}_{\alpha} \gamma_{\alpha \beta}^{s t} \vec{\Theta}_{\beta} \equiv L_{s t}+M_{s t}
$$

The anticommutation relations of the supercharges are

$$
\begin{equation*}
\left\{Q_{\alpha}, Q_{\beta}\right\}=\delta_{\alpha \beta} H+\gamma_{\alpha \beta}^{t} q_{t A} \varepsilon_{A B C} J_{B C} \tag{7}
\end{equation*}
$$

Here, H is the Hamiltonian

$$
\begin{equation*}
H=-\sum_{s=1}^{9} \vec{\nabla}_{s}^{2}+\sum_{s<t}\left(\vec{q}_{s} \times \vec{q}_{t}\right)^{2}+\mathrm{i} \vec{q}_{s} \cdot\left(\vec{\Theta}_{\alpha} \times \vec{\Theta}_{\beta}\right) \gamma_{\alpha \beta}^{s} \tag{8}
\end{equation*}
$$

which commutes with both $J_{A B}$ and $J_{s t}$. The question we address is the possibility of a normalizable state $\psi \in \mathcal{H}$ with zero energy, i.e., with $H \psi=0$, which is a singlet w.r.t. both $\operatorname{SU}(2)$ and $\operatorname{Spin}(d)$. Note that on $\mathrm{SU}(2)$ invariant states $H=2 Q_{\beta}^{2} \geq 0$ and in fact the energy spectrum is $(\| \mathbb{\| |]}) \sigma(H)=[0, \infty)$. Equivalently, we look for zero-modes

$$
Q_{\beta} \psi=0, \quad\left(\beta=1, \ldots, s_{d}\right)
$$

3 Results

The potential $\sum_{s<t}\left(\vec{q}_{s} \times \vec{q}_{t}\right)^{2}$ vanishes on the manifold

$$
\vec{q}_{s}=r \vec{e} E_{s}
$$

with $r>0$ and $\vec{e}^{2}=\sum_{s} E_{s}^{2}=1$. The dimension of the manifold is $1+2+(d-1)=$ $3 d-2(d-1)$. Points in a conical neighborhood of the manifold can be expressed in terms of tubular (or "end-point") coordinates (23]

$$
\begin{equation*}
\vec{q}_{s}=r \vec{e} E_{s}+r^{-1 / 2} \vec{y}_{s} \tag{9}
\end{equation*}
$$

with

$$
\begin{equation*}
\vec{y}_{s} \cdot \vec{e}=0, \quad \vec{y}_{s} E_{s}=\overrightarrow{0} \tag{10}
\end{equation*}
$$

A prefactor has been put explicitely in front of the transversal coordinates \vec{y}_{s}, so as to anticipate the length scale $r^{-1 / 2}$ of the ground state. The change

$$
\begin{equation*}
(\vec{e}, E, y) \mapsto(-\vec{e},-E, y) \tag{11}
\end{equation*}
$$

does not affect \vec{q}_{s}. Rather than identifying the two coordinates for \vec{q}_{s}, we shall look for states which are even under the antipode map (11).

We can now describe the structure of a putative ground state.
Theorem Consider the equations $Q_{\beta} \psi=0$ for a formal power series solution near $r=\infty$ of the form

$$
\begin{equation*}
\psi=r^{-\kappa} \sum_{k=0}^{\infty} r^{-\frac{3}{2} k} \psi_{k} \tag{12}
\end{equation*}
$$

where: $\psi_{k}=\psi_{k}(\vec{e}, E, y)$ is square integrable w.r.t. $\mathrm{d} e \mathrm{~d} E \mathrm{~d} y$;
ψ_{k} is $\mathrm{SU}(2) \times \operatorname{Spin}(d)$ invariant;
$\psi_{0} \neq 0$.
Then, up to linear combinations,

- $d=9$: The solution is unique, and $\kappa=6$;
- $d=5$: There are three solutions with $\kappa=-1$ and one with $\kappa=3$;
- d=3: There are two solutions with $\kappa=0$;
- d=2: There are no solutions.

All solutions are even under the antipode map (11),

$$
\psi_{k}(\vec{e}, E, y)=\psi_{k}(-\vec{e},-E, y)
$$

except for the state $d=5, \kappa=3$, which is odd.
Remarks 1. The equation $Q_{\beta} \psi=0$ can be viewed as an ordinary differential equation in $z=r^{3 / 2}$ for a function taking values in $\mathrm{L}^{2}\left(\mathrm{~d} e \mathrm{~d} E \mathrm{~d} y, \mathcal{C}^{\otimes 3}\right)$ (see eq. (14) below). It turns out that $z=\infty$ is a singular point of the second kind [22]. In such a situation the series (12) is typically asymptotic to a true solution, but not convergent.
2. The integration measure is $\mathrm{d} q=\mathrm{d} r \cdot r^{2} \mathrm{~d} e \cdot r^{d-1} \mathrm{~d} E \cdot r^{-\frac{1}{2} \cdot 2(d-1)} \mathrm{d} y=r^{2} \mathrm{~d} r \mathrm{~d} e \mathrm{~d} E \mathrm{~d} y$. The wave function (12) is square integrable at infinity if $\int^{\infty} \mathrm{d} r r^{2}\left(r^{-\kappa}\right)^{2}<\infty$, i.e., if $\kappa>3 / 2$. The theorem is consistent with the statement according to which only for $d=9$ a (unique) normalizable ground state for (8) (which would have to be even) is possible.
3. Note that the connection of matrix models with supergravity requires the zero-energy solutions to be $\operatorname{Spin}(d)$ singlets only for $d=9$.

The case $d=2$ can be dealt with immediately. We may assume $\gamma^{2}=\sigma_{3}, \gamma^{1}=\sigma_{1}$ (Pauli matrices), so that

$$
M_{12}=\frac{\mathrm{i}}{2} \Theta_{1 A} \Theta_{2 A}
$$

with commuting terms. Since, for each $A=1,2,3,\left(\Theta_{1 A} \Theta_{2 A}\right)^{2}=-1 / 4$, we see that M_{12} has spectrum in $\mathbb{Z} / 2+1 / 4$. Given that L_{12} has spectrum \mathbb{Z}, no state with $J_{12} \psi=0$ is possible. We mention [1] that, more generally, for $d=2$ no normalizable $\mathrm{SU}(2)$ invariant ground state exists.

The proof of the theorem will thus deal with $d=9,5,3$ only.

4 Proof

We shall first derive the power series expansion of the supercharges Q_{β}. To this end we note that

$$
\begin{align*}
\frac{\partial}{\partial q_{t A}}= & r^{1 / 2}\left(\delta_{s t}-E_{s} E_{t}\right)\left(\delta_{A B}-e_{A} e_{B}\right) \frac{\partial}{\partial y_{s B}} \tag{13}\\
& +r^{-1}\left[e_{A} E_{t}\left(r \frac{\partial}{\partial r}+\frac{1}{2} y_{s B} \frac{\partial}{\partial y_{s B}}\right)+\mathrm{i} e_{B} E_{t} L_{B A}+\mathrm{i} e_{A} E_{s} L_{s t}\right]+\mathrm{O}\left(r^{-5 / 2}\right)
\end{align*}
$$

with the remainder not containing derivatives w.r.t. r (see Appendix 1 for derivation). This yields

$$
\begin{equation*}
Q_{\beta}=r^{1 / 2} Q_{\beta}^{0}+r^{-1}\left(\widehat{Q}_{\beta}^{1} r \frac{\partial}{\partial r}+Q_{\beta}^{1}\right)+r^{-5 / 2} Q_{\beta}^{2}+\ldots \tag{14}
\end{equation*}
$$

with r-independent operators

$$
\begin{aligned}
& Q_{\beta}^{0}=-\mathrm{i} \Theta_{\alpha A} \gamma_{\alpha \beta}^{t}\left(\delta_{s t}-E_{s} E_{t}\right)\left(\delta_{A B}-e_{A} e_{B}\right) \frac{\partial}{\partial y_{s B}}+\vec{\Theta}_{\alpha} \cdot\left(\vec{e} \times \vec{y}_{t}\right) E_{s} \gamma_{\beta \alpha}^{s t} \\
& \widehat{Q}_{\beta}^{1}=-\mathrm{i}\left(\vec{\Theta}_{\alpha} \cdot \vec{e}\right) \gamma_{\alpha \beta}^{t} E_{t}, \\
& Q_{\beta}^{1}=\Theta_{\alpha A} \gamma_{\alpha \beta}^{t}\left(e_{B} E_{t} L_{B A}+e_{A} E_{s} L_{s t}-\frac{\mathrm{i}}{2} e_{A} E_{t} y_{s B} \frac{\partial}{\partial y_{s B}}\right)+\frac{1}{2} \vec{\Theta}_{\alpha} \cdot\left(\vec{y}_{s} \times \vec{y}_{t}\right) \gamma_{\beta \alpha}^{s t} .
\end{aligned}
$$

The explicit expressions of $Q_{\beta}^{n},(n \geq 2)$ will not be needed. We then equate coefficients of powers of $r^{-3 / 2}$ in the equation $Q_{\beta} \psi=0$ with the result

$$
\begin{align*}
Q_{\beta}^{0} \psi_{n}+\left(-\left(\kappa+\frac{3}{2}(n-1)\right) \widehat{Q}_{\beta}^{1}+Q_{\beta}^{1}\right) \psi_{n-1}+Q_{\beta}^{2} \psi_{n-2}+\ldots+Q_{\beta}^{n} \psi_{0} & =0 \\
(n & =0,1, \ldots) \tag{15}
\end{align*}
$$

4.1 The equation at $n=0$

The equation at $n=0$,

$$
\begin{equation*}
Q_{\beta}^{0} \psi_{0}=0 \tag{16}
\end{equation*}
$$

admits precisely the (not necessarily $\mathrm{SU}(2) \times \operatorname{Spin}(d)$ invariant) solutions

$$
\begin{equation*}
\psi_{0}(\vec{e}, E, y)=\mathrm{e}^{-\sum_{s} \vec{y}_{s}^{2} / 2}|F(E, \vec{e})\rangle \tag{17}
\end{equation*}
$$

(with \vec{y} restricted to (10)), where the fermionic states $|F(E, \vec{e})\rangle$ can be described as follows: Let $\vec{n}_{ \pm}$be two complex vectors satisfying $\vec{n}_{+} \cdot \vec{n}_{-}=1, \vec{e} \times \vec{n}_{ \pm}=\mp \mathrm{i} \vec{n}_{ \pm}$(and hence
$\left.\vec{n}_{ \pm} \cdot \vec{n}_{ \pm}=0, \vec{n}_{+} \times \vec{n}_{-}=-i \vec{e}\right)$. For any vector $v \in \mathbb{R}^{s_{d}}$ we may introduce $\vec{\Theta}(v)=\vec{\Theta}_{\alpha} v_{\alpha}$, as well as fermionic operators $\vec{\Theta}(v) \cdot \vec{n}_{ \pm}$satisfying canonical anticommutation relations:

$$
\left\{\vec{\Theta}(u) \cdot \vec{n}_{+}, \vec{\Theta}(v) \cdot \vec{n}_{-}\right\}=u_{\alpha} v_{\alpha}, \quad\left\{\vec{\Theta}(u) \cdot \vec{n}_{ \pm}, \vec{\Theta}(v) \cdot \vec{n}_{ \pm}\right\}=0 .
$$

Then, $|F(E, \vec{e})\rangle$ is required to obey

$$
\begin{equation*}
\vec{\Theta}(v) \cdot \vec{n}_{ \pm}|F(E, \vec{e})\rangle=0 \quad \text { for } \quad E_{s} \gamma^{s} v= \pm v \tag{18}
\end{equation*}
$$

To prove the above, let us note that

$$
\begin{align*}
& \left\{Q_{\alpha}^{0}, Q_{\beta}^{0}\right\}=\delta_{\alpha \beta} H^{0}+\gamma_{\alpha \beta}^{t} E_{t} \varepsilon_{A B C} M_{A B} e_{C}, \tag{19}\\
H^{0}= & {\left[-\left(\delta_{s t}-E_{s} E_{t}\right)\left(\delta_{A B}-e_{A} e_{B}\right) \frac{\partial}{\partial y_{s A}} \frac{\partial}{\partial y_{t B}}+\sum_{s} \vec{y}_{s}^{2}\right]+\mathrm{i} E_{s} \gamma_{\alpha \beta}^{s} \vec{e} \cdot\left(\vec{\Theta}_{\alpha} \times \vec{\Theta}_{\beta}\right) } \\
\equiv & H_{B}^{0}+H_{F}^{0} .
\end{align*}
$$

By contracting eq. (19) against $\delta_{\alpha \beta}$, resp. $\gamma_{\alpha \beta}^{t} E_{t}$ we see that the equations (16) are equivalent to the pair of equations

$$
\begin{equation*}
H^{0} \psi_{0}=0, \quad \varepsilon_{A B C} M_{A B} e_{C} \psi_{0}=0 \tag{20}
\end{equation*}
$$

Here, H_{B}^{0} is a harmonic oscillator in $2(d-1)$ degrees of freedom, with orbital ground state wave function $\mathrm{e}^{-\sum_{s} \vec{y}_{s}^{2} / 2}$ and energy $2(d-1)$. On the other hand,

$$
\begin{align*}
H_{F}^{0} & =-E_{s} \gamma_{\alpha \beta}^{s}\left(\left(\vec{\Theta}_{\alpha} \cdot \vec{n}_{+}\right)\left(\vec{\Theta}_{\beta} \cdot \vec{n}_{-}\right)-\left(\vec{\Theta}_{\alpha} \cdot \vec{n}_{-}\right)\left(\vec{\Theta}_{\beta} \cdot \vec{n}_{+}\right)\right) \\
& =-s_{d}+2 P_{\alpha \beta}^{+}\left(\vec{\Theta}_{\alpha} \cdot \vec{n}_{-}\right)\left(\vec{\Theta}_{\beta} \cdot \vec{n}_{+}\right)+2 P_{\alpha \beta}^{-}\left(\vec{\Theta}_{\alpha} \cdot \vec{n}_{+}\right)\left(\vec{\Theta}_{\beta} \cdot \vec{n}_{-}\right), \tag{21}
\end{align*}
$$

where we used the spectral decomposition $E_{s} \gamma^{s}=P^{+}-P^{-}$. In view of (6), the equation $H^{0} \psi_{0}=0$ is fulfilled iff the fermionic state is annihilated by the last two positive terms in (21), i.e., if (18) holds. The second equation (20) is now also satisfied, since

$$
\begin{align*}
\frac{1}{2} \varepsilon_{A B C} M_{A B} e_{C} & =-\frac{i}{2} \vec{e} \cdot\left(\vec{\Theta}_{\alpha} \times \vec{\Theta}_{\alpha}\right) \\
& =\frac{1}{2}\left(\left(\vec{\Theta}_{\alpha} \cdot \vec{n}_{+}\right)\left(\vec{\Theta}_{\alpha} \cdot \vec{n}_{-}\right)-\left(\vec{\Theta}_{\alpha} \cdot \vec{n}_{-}\right)\left(\vec{\Theta}_{\alpha} \cdot \vec{n}_{+}\right)\right) \\
& =P_{\alpha \beta}^{-}\left(\vec{\Theta}_{\alpha} \cdot \vec{n}_{+}\right)\left(\vec{\Theta}_{\beta} \cdot \vec{n}_{-}\right)-P_{\alpha \beta}^{+}\left(\vec{\Theta}_{\alpha} \cdot \vec{n}_{-}\right)\left(\vec{\Theta}_{\beta} \cdot \vec{n}_{+}\right) \tag{22}
\end{align*}
$$

annihilates $|F(E, \vec{e})\rangle$.

4.2 $\mathrm{SU}(2) \times \operatorname{Spin}(d)$ invariant states

We recall that the representation $\mathcal{R}[\cdot]$ of $\operatorname{Spin}(d)$ on \mathcal{H} is $(\mathcal{R}[R] \psi)(q)=\mathcal{R}(R)\left(\psi\left(R^{-1} q\right)\right)$, where $\mathcal{R}(R)$ acts on $\mathcal{C}^{\otimes 3}$. Similarly for $\mathrm{SU}(2)$. The invariant solutions among (17) are thus those which satisfy

$$
\begin{equation*}
\mathcal{U}(U)|F(E, \vec{e})\rangle=|F(E, U \vec{e})\rangle, \quad \mathcal{R}(R)|F(E, \vec{e})\rangle=|F(R E, \vec{e})\rangle \tag{23}
\end{equation*}
$$

for $(U, R) \in \mathrm{SU}(2) \times \operatorname{Spin}(d)$. These states are in bijective correspondence to states invariant under the 'little group' $(U, R) \in \mathrm{U}(1) \times \operatorname{Spin}(d-1)$, i.e., to states $|F(E, \vec{e})\rangle$ satisfying

$$
\begin{equation*}
\mathcal{U}(U)|F(E, \vec{e})\rangle=|F(E, \vec{e})\rangle, \quad \mathcal{R}(R)|F(E, \vec{e})\rangle=|F(E, \vec{e})\rangle, \tag{24}
\end{equation*}
$$

for some arbitrary but fixed (E, \vec{e}) and all U, R with $U \vec{e}=\vec{e}, R E=E$. The first relation holds on all of (18). In fact the generator (22) of the group $\mathcal{U}(U)$ of rotations U about \vec{e} annihilates $|F(E, \vec{e})\rangle$, as we just saw. To discuss the second relation (24) we note that the generators of $\operatorname{Spin}(d-1)$ (i.e., of the fermionic rotations about E), are $M_{s t} U_{s} V_{t}$ with $U_{s} E_{s}=V_{s} E_{s}=0$. We write $M_{s t}=M_{s t}^{\perp}+M_{s t}^{\|}$, where

$$
\begin{equation*}
M_{s t}^{\perp}=-(\mathrm{i} / 2)\left(\vec{\Theta}_{\alpha} \cdot \vec{n}_{+}\right) \gamma_{\alpha \beta}^{s t}\left(\vec{\Theta}_{\beta} \cdot \vec{n}_{-}\right), \quad M_{s t}^{\|}=-(\mathrm{i} / 4)\left(\vec{\Theta}_{\alpha} \cdot \vec{e}\right) \gamma_{\alpha \beta}^{s t}\left(\vec{\Theta}_{\beta} \cdot \vec{e}\right) \tag{25}
\end{equation*}
$$

and remark that, by a computation similar to (22), $M_{s t}^{\perp} U_{s} V_{t}$ annihilates $|F(E, \vec{e})\rangle$. As a result, we may study the representation \mathcal{R} of the group $\operatorname{Spin}(d-1)$ through its embedding in the Clifford algebra generated by the $\vec{\Theta}_{\alpha} \cdot \vec{e}$.

The operators $\vec{\Theta}_{\alpha} \cdot \vec{e}$ leave the space (18) invariant and act irreducibly on it. That space is thus isomorphic to \mathcal{C}, and $\operatorname{Spin}\left(s_{d}\right)$ acts according to (4) (with $\Theta_{\alpha A}$ replaced by $\vec{\Theta}_{\alpha} \cdot \vec{e}$. This representation decomposes (see e.g. [24]) as

$$
\begin{equation*}
\mathcal{C}=\left(2^{\left(s_{d} / 2\right)-1}\right)_{+} \oplus\left(2^{\left(s_{d} / 2\right)-1}\right)_{-} \tag{26}
\end{equation*}
$$

w.r.t. the subspaces where $\Theta \equiv 2^{s_{d} / 2} \prod_{\alpha=1}^{s_{d}} \vec{\Theta}_{\alpha} \cdot \vec{e}=+1$, resp. -1 . The embedding (5) and the corresponding branching of the representation (but not the statement of the theorem!) depend on the choice of the γ-matrices. In order to select a definite embedding, let

$$
\gamma^{d}=\left(\begin{array}{cc}
\mathbb{I} & 0 \tag{27}\\
0 & -\mathbb{I}
\end{array}\right), \quad \gamma^{d-1}=\left(\begin{array}{ll}
0 & \mathbb{I} \\
\mathbb{I} & 0
\end{array}\right), \quad \gamma^{j}=\left(\begin{array}{cc}
0 & \mathrm{i} \Gamma^{j} \\
-\mathrm{i} \Gamma^{j} & 0
\end{array}\right)
$$

with $\Gamma^{j},(j=1, \ldots, d-2)$ purely imaginary, antisymmetric, and $\left\{\Gamma^{j}, \Gamma^{k}\right\}=2 \delta_{j k} \mathbb{I}_{s_{d} / 2}$. Then (26) branches as (see [25], resp. [12, 13])

$$
\mathcal{C}= \begin{cases}(44 \oplus 84) \oplus 128, & (d=9) \tag{28}\\ (5 \oplus 1 \oplus 1 \oplus 1) \oplus(4 \oplus 4), & (d=5) \\ 2 \oplus(1 \oplus 1), & (d=3)\end{cases}
$$

when viewed as a representation of $\operatorname{Spin}(d)$. (The choice $\widetilde{\gamma}_{\alpha \beta}^{i}=\widetilde{R}_{\alpha^{\prime} \alpha} \gamma_{\alpha^{\prime} \beta^{\prime}}^{i} \widetilde{R}_{\beta^{\prime} \beta}$ with $\widetilde{R} \in \mathrm{O}\left(s_{d}\right)$, $\operatorname{det} \widetilde{R}=-1$ would have inverted the branching of the representations on the r.h.s. of (26)). The case $d=3$ deserves a remark, as there are additional inequivalent embeddings $\operatorname{Spin}(d=3) \hookrightarrow \operatorname{Spin}\left(s_{d}=4\right)$, and one has to consider the one appropriate to (5). In fact $R \in \operatorname{Spin}(3)=\mathrm{SU}(2)$ acts in the fundamental representation on \mathbb{C}^{2}, the irreducible representation space of the complex Clifford algebra with 3 generators. The real representation (27) is obtained by joining two complex representations, followed by an appropriate change T of basis. The embedding (5) is thus realized through $R \mapsto T^{-1}\left(R \otimes \mathbb{I}_{2}\right) T$ and the embedding $\operatorname{su}(2)_{\mathbb{C}} \hookrightarrow \mathrm{so}(4)_{\mathbb{C}}=\mathrm{su}(2)_{\mathbb{C}} \oplus \mathrm{su}(2)_{\mathbb{C}}$ is equivalent to $u \mapsto(u, 0)$.

The further branching $\operatorname{Spin}(d) \hookleftarrow \operatorname{Spin}(d-1)$ yields

$$
\mathcal{C}= \begin{cases}\left(1 \oplus 8_{\mathrm{v}} \oplus 35_{\mathrm{v}}\right) \oplus\left(28 \oplus 56_{\mathrm{v}}\right) \oplus\left(8_{\mathrm{s}} \oplus 8_{\mathrm{c}} \oplus 56_{\mathrm{s}} \oplus 56_{\mathrm{c}}\right), & (d-1=8) \tag{29}\\ 1 \oplus 1 \oplus 1 \oplus(1 \oplus 4) \oplus\left(2_{+} \oplus 2_{-}\right) \oplus\left(2_{+} \oplus 2_{-}\right), & (d-1=4) \\ \left(1_{1} \oplus 1_{-1}\right) \oplus 1_{0} \oplus 1_{0}, & (d-1=2)\end{cases}
$$

The content of invariant states stated in the theorem is now manifest. One should notice that for $d=3$ the little group $\mathrm{U}(1)$ is abelian and the singlets $1_{ \pm 1}$ do not correspond to invariant states. For later use we also retain the fermionic $\operatorname{Spin}(d)$ representation to which the remaining singlets are associated,

$$
\begin{equation*}
44 \quad(d=9) ; \quad 1,1,1,5 \quad(d=5) ; \quad 1,1 \quad(d=3), \tag{30}
\end{equation*}
$$

together with the corresponding eigenvalue of Θ :

$$
\begin{equation*}
\Theta=1 \quad(d=9) ; \quad 1,1,1,1 \quad(d=5) ; \quad-1,-1 \quad(d=3) . \tag{31}
\end{equation*}
$$

4.3 Even states

It remains to check which of these states satisfy $|F(-E,-\vec{e})\rangle=|F(E, \vec{e})\rangle$. Let us begin by noting that by (23)

$$
|F(-E,-\vec{e})\rangle=\mathrm{e}^{\mathrm{i} M_{A B} e_{A} u_{B} \pi} \mathrm{e}^{\mathrm{i} M_{s t} E_{s} U_{t} \pi}|F(E, \vec{e})\rangle,
$$

where $\vec{u} \in \mathbb{R}^{3}$, resp. $U \in \mathbb{R}^{d}$ are unit vectors orthogonal to \vec{e}, resp. E. The $\operatorname{Spin}(d)$ rotation can be factorized as $\mathrm{e}^{\mathrm{i} M_{s t} E_{s} U_{t} \pi}=\mathrm{e}^{\mathrm{i} M_{s t}^{\perp} E_{s} U_{t} \pi} \mathrm{e}^{\mathrm{i} M_{s t}^{\|} E_{s} U_{t} \pi}$. We claim that $\mathrm{e}^{\mathrm{i} M_{s t}^{\|} E_{s} U_{t} \pi}$ $|F(E, \vec{e})\rangle=\sigma|F(E, \vec{e})\rangle$ with

$$
\begin{equation*}
\sigma=1 \quad(d=9) ; \quad 1,1,1,-1 \quad(d=5) ; \quad 1,1 \quad(d=3) \tag{32}
\end{equation*}
$$

The operator represents a rotation $R \in \operatorname{Spin}(d)$ with $R E=-E$ in the representation (30). For $d=9$ the latter can be realized on symmetric traceless tensors $T_{i j},(i, j=$ $1, \ldots, 9)$, where the $\operatorname{Spin}(8)$-singlet is $E_{i} E_{j}-(1 / 9) \delta_{i j}$, implying $\sigma=1$. For $d=5$, the last representation (30) is just the vector representation, where $\sigma=-1$. As the remaining cases are evident, eq. (32) is proven. A computation using (27) and, without $\operatorname{loss} E=(0, \ldots, 0,1), U=(0, \ldots, 1,0)$ shows

$$
\begin{aligned}
\mathrm{e}^{\mathrm{i} M_{d, d-1}^{\perp} \pi}|F(E, \vec{e})\rangle & =\prod_{\alpha=1}^{s_{d} / 2} \mathrm{e}^{\left[\left(\vec{\Theta}_{\alpha} \cdot \vec{n}_{+}\right)\left(\vec{\Theta}_{\alpha+s_{d} / 2} \cdot \vec{n}_{-}\right)-\left(\vec{\Theta}_{\alpha+s_{d} / 2} \cdot \vec{n}_{+}\right)\left(\vec{\Theta}_{\alpha} \cdot \vec{n}_{-}\right)\right] \pi / 2}|F(E, \vec{e})\rangle \\
& =\prod_{\alpha=1}^{s_{d} / 2}\left(\vec{\Theta}_{\alpha+s_{d} / 2} \cdot \vec{n}_{+}\right)\left(\vec{\Theta}_{\alpha} \cdot \vec{n}_{-}\right)|F(E, \vec{e})\rangle \equiv|\bar{F}(E, \vec{e})\rangle \\
\mathrm{e}^{\mathrm{i} M_{A B} e_{A} u_{B} \pi}|\bar{F}(E, \vec{e})\rangle & =\prod_{\alpha=1}^{s_{d}} \mathrm{e}^{\left(\vec{\Theta}_{\alpha} \cdot \vec{e}\right)\left(\vec{\Theta}_{\alpha} \cdot \vec{u}\right) \pi}|\bar{F}(E, \vec{e})\rangle \\
& =(-1)^{s_{d} / 4} \Theta \prod_{\alpha=1}^{s_{d} / 2}\left(\vec{\Theta}_{\alpha} \cdot \vec{n}_{+}\right)\left(\vec{\Theta}_{\alpha+s_{d} / 2} \cdot \vec{n}_{-}\right)|\bar{F}(E, \vec{e})\rangle=|F(E, \vec{e})\rangle
\end{aligned}
$$

where we used (31) in the last step. Together with (32) this proves the statement of theorem concerning the invariance under (11).

4.4 The equation at $n>0$

We next discuss the equations $(15)_{n}$ with $n \geq 1$. Let P_{0} be the orthogonal projection onto the states (17), i.e., onto the null space of Q_{β}^{0}. We replace them with an equivalent
pair of equations, obtained by multiplication of $(15)_{n+1}$ with P_{0}, resp. of (15) $)_{n}$ with Q_{β}^{0}, which is injective on the range of the complementary projection $\bar{P}_{0}=1-P_{0}$:

$$
\begin{array}{r}
\left.P_{0}\left(-\left(\kappa+\frac{3}{2} n\right)\right) \widehat{Q}_{\beta}^{1}+Q_{\beta}^{1}\right) P_{0} \psi_{n}=-P_{0}\left(Q_{\beta}^{1} \bar{P}_{0} \psi_{n}+Q_{\beta}^{2} \psi_{n-1}+\ldots+Q_{\beta}^{n+1} \psi_{0}\right) \\
(n=0,1, \ldots) \\
\left(Q_{\beta}^{0}\right)^{2} \psi_{n}=-Q_{\beta}^{0}\left(\left(-\left(\kappa+\frac{3}{2}(n-1)\right) \widehat{Q}_{\beta}^{1}+Q_{\beta}^{1}\right) \psi_{n-1}+Q_{\beta}^{2} \psi_{n-2}+\ldots+Q_{\beta}^{n} \psi_{0}\right) \\
(n=1,2, \ldots) \tag{34}
\end{array}
$$

(we used $P_{0} \widehat{Q}_{\beta}^{1} \bar{P}_{0}=0$). Here, and until the end of this subsection, no summation over β is understood. The equation (33) at $n=0$ reads

$$
\begin{equation*}
P_{0} Q_{\beta}^{1} \psi_{0}=\kappa P_{0} \widehat{Q}_{\beta}^{1} \psi_{0}\left(=\kappa \widehat{Q}_{\beta}^{1} \psi_{0}\right) . \tag{35}
\end{equation*}
$$

We shall verify this by explicit computation later on. Since a similar issue will show up in solving the equation (33) at $n>0$, let us also present a more general statement, whose proof is postponed to the next subsection.
Lemma Let T_{β} be linear operators on the range of P_{0}, which transform as real spinors of $\operatorname{Spin}(d)$ and commute with the antipode map. Then, for each invariant state we have

$$
\begin{equation*}
T_{\beta} \psi_{0}=\kappa \widehat{Q}_{\beta}^{1} \psi_{0} \tag{36}
\end{equation*}
$$

with κ depending only on the associated representation (30).
We now assume having solved the equations (33, 34) up to $n-1$ for $\operatorname{Spin}(d)$ invariant $\psi_{1}, \ldots \psi_{n-1}$ (which is true for $n-1=0$), and claim the same is possible for n. Since Q_{β}^{0} is invertible on the range of \bar{P}_{0}, eq. (34) $)_{n}$ determines $\bar{P}_{0} \psi_{n}$ uniquely. The fact that the solution so obtained is independent of β and is $\operatorname{Spin}(d)$ invariant may deserve a comment, because the equivalence of the equations $Q_{\beta} \psi=0$ and $\left(Q_{\beta}\right)^{2} \psi=0$, which holds on (3), does not apply in the sense of formal power series (12). Consider the expansion (14), i.e.,

$$
Q_{\beta}=r^{1 / 2} \sum_{k=0}^{\infty} r^{-\frac{3}{2} k}\left[Q_{\beta}\right]_{k}, \quad\left[Q_{\beta}\right]_{k}=Q_{\beta}^{k}+\delta_{1 k} \widehat{Q}_{\beta}^{1} r \frac{\partial}{\partial r}
$$

as well as its formal square

$$
\left(Q_{\beta}\right)^{2}=r \sum_{k=0}^{\infty} r^{-\frac{3}{2} k}\left[\left(Q_{\beta}\right)^{2}\right]_{k}
$$

Notice that $\left(Q_{\beta}\right)^{2}$ is, by (\mathbb{Z}), independent of β and $\operatorname{Spin}(d)$ invariant as an operator on $\mathrm{SU}(2)$ invariant power series. Similarly, let $\left[Q_{\beta} \psi\right]_{k}$ (given by the l.h.s. of (15)) and $\left[\left(Q_{\beta}\right)^{2} \psi\right]_{k}$ be the coefficients of the corresponding series. By induction assumption we have $\left[Q_{\beta} \psi\right]_{k}=0$ for $k=0, \ldots, n-1$. Since $Q_{\beta}\left(Q_{\beta} \psi\right)=\left(Q_{\beta}\right)^{2} \psi$, we obtain

$$
\begin{aligned}
{\left[\left(Q_{\beta}\right)^{2} \psi\right]_{n} } & =\sum_{k=0}^{n} Q_{\beta}^{k}\left[Q_{\beta} \psi\right]_{n-k}-\left(\kappa+\frac{3}{2} n-2\right) \widehat{Q}_{\beta}^{1}\left[Q_{\beta} \psi\right]_{n-1}=Q_{\beta}^{0}\left[Q_{\beta} \psi\right]_{n} \\
{\left[\left(Q_{\beta}\right)^{2} \psi\right]_{n} } & =\left(Q_{\beta}^{0}\right)^{2} \psi_{n}+\widetilde{\psi}_{n-1}
\end{aligned}
$$

where $\widetilde{\psi}_{n-1}$ (determined by $\psi_{0}, \ldots \psi_{n-1}$) has the desired properties. The equation $(34)_{n}$, i.e., $Q_{\beta}^{0}\left[Q_{\beta} \psi\right]_{n}=0$ is thus equivalent to $\left(Q_{\beta}^{0}\right)^{2} \psi_{n}=-\widetilde{\psi}_{n-1}$, which exhibits the claim.

On the other hand, invariance requires $P_{0} \psi_{n}$ to be a linear combination of invariant singlets. For the ansatz $P_{0} \psi_{n}=\lambda_{n} \psi_{0}$, eq. (33) ${ }_{n}$ reads

$$
\frac{3}{2} n \lambda_{n} \widehat{Q}_{\beta}^{1} \psi_{0}=-P_{0}\left(Q_{\beta}^{1} \bar{P}_{0} \psi_{n}+Q_{\beta}^{2} \psi_{n-1}+\ldots+Q_{\beta}^{n+1} \psi_{0}\right)
$$

because of (35). Again, by the lemma, this holds true for suitable λ_{n}. Indeed, this solution for $P_{0} \psi_{n}$ is the only one.

4.5 Proof of the lemma

The vectors $T_{\beta} \psi_{0},\left(\beta=1, \ldots, s_{d}\right)$ transform under $\operatorname{Spin}(d)$ as real spinors, although they might be linearly dependent. By reducing matters to the little group as before, any representation of that sort is specified by the values $\left|F^{\beta}(E, \vec{e})\right\rangle$ of its states (see (17)) at one point (E, \vec{e}), which are required to satisfy

$$
\widetilde{R}_{\beta \alpha}(R)\left|F^{\alpha}(E, \vec{e})\right\rangle=\mathcal{R}(R)\left|F^{\beta}(E, \vec{e})\right\rangle
$$

for R with $R E=E$. Pretending the states $\left|F^{\beta}(E, \vec{e})\right\rangle$ to be linearly independent, the branching $\operatorname{Spin}(d) \hookleftarrow \operatorname{Spin}(d-1)$ yields

$$
\begin{aligned}
& 16=8_{\mathrm{s}} \oplus 8_{\mathrm{c}} \quad(d=9) ; 4 \oplus 4=\left(2_{+} \oplus 2_{-}\right) \oplus\left(2_{+} \oplus 2_{-}\right) \quad(d=5) \\
& 2 \oplus 2=\left(1_{1} \oplus 1_{-1}\right) \oplus\left(1_{1} \oplus 1_{-1}\right) \quad(d=3)
\end{aligned}
$$

For $d=9,5$ each term on the r.h.s. occurs as often as in (29), and ψ_{0} can indeed be chosen so that the s_{d} vectors $\widehat{Q}_{\beta}^{1} \psi_{0}$ are independent. Not so in the last case, where the vectors $T_{\beta} \psi_{0}$ just belong to $1_{1} \oplus 1_{-1}$. We continue the discussion for different values of d separately.
$\bullet d=9$. Any linear transformation K commuting with a $\operatorname{Spin}(9)$ representation as above is thus of the form $K=\kappa_{\mathrm{s}} \oplus \kappa_{\mathrm{c}}$. If K also commutes with the antipode map, then $\kappa_{\mathrm{s}}=\kappa_{\mathrm{c}} \equiv \kappa$. Applying this to the representation $\widehat{Q}_{\beta}^{1} \psi_{0}$ and to the map $K: \widehat{Q}_{\beta}^{1} \psi_{0} \mapsto T_{\beta} \psi_{0}$ yields the claim.
$\bullet d=5$. Let us regroup $\left(2_{+} \oplus 2_{-}\right) \oplus\left(2_{+} \oplus 2_{-}\right) \cong\left(2_{+} \otimes \mathbb{1}_{2}\right) \oplus\left(2_{-} \otimes \mathbb{1}_{2}\right)$. Then any map K commuting with the representation is of the form

$$
K=\left(\mathbb{1} \otimes K_{+}\right) \oplus\left(\mathbb{I} \otimes K_{-}\right),
$$

where K_{-}is conjugate to K_{+}if K commutes with the antipode map. This allows for a four dimensional space of such maps K. To proceed further we shall again assume that $E=(0, \ldots, 0,1)$ and introduce creation operators

$$
a_{\alpha}^{*}=\frac{1}{\sqrt{2}}\left[\left(\vec{\Theta}_{\alpha} \cdot \vec{e}\right)+\mathrm{i}\left(\vec{\Theta}_{\alpha+4} \cdot \vec{e}\right)\right], \quad(\alpha=1, \ldots 4)
$$

which then define a vacuum through $a_{\alpha}|0\rangle=0$. We next choose an orthonormal basis $\left\{\psi_{0}^{1}, \ldots, \psi_{0}^{4}\right\}$ for the 4 -dimensional subspace of singlets in the range of P_{0} by specifying
the values of the corresponding fermionic parts (see (17)) at (E, \vec{e}) :

$$
\begin{aligned}
\left|F_{0}^{4}(E, \vec{e})\right\rangle & =\frac{1}{\sqrt{2}}\left(|0\rangle-a_{1}^{*} a_{2}^{*} a_{3}^{*} a_{4}^{*}|0\rangle\right), \\
\left|F_{0}^{i}(E, \vec{e})\right\rangle & =\frac{1}{2 \sqrt{2}} \widetilde{\Gamma}_{\alpha \beta}^{i} a_{\alpha}^{*} a_{\beta}^{*}|0\rangle=\frac{i}{4}\left(\gamma^{4} \widetilde{\gamma}^{i}\right)_{\alpha \beta}\left(\vec{\Theta}_{\alpha} \cdot \vec{e}\right)\left(\vec{\Theta}_{\beta} \cdot \vec{e}\right)\left|F_{0}^{4}(E, \vec{e})\right\rangle, \quad(i=1,2,3),
\end{aligned}
$$

where

$$
\widetilde{\gamma}^{i}=\left(\begin{array}{cc}
0 & \mathrm{i} \widetilde{\Gamma}^{i} \\
-i \widetilde{\Gamma}^{i} & 0
\end{array}\right)=\sigma^{-1} \gamma^{i} \sigma, \quad \sigma=\left(\begin{array}{cc}
\Sigma & 0 \\
0 & \Sigma
\end{array}\right)
$$

with $\Sigma \in \mathrm{O}(4)$ and $\operatorname{det} \Sigma=-1$. Note that ψ_{0}^{4} is the singlet belonging to the 5 -dimensional fermionic representation of $\operatorname{Spin}(5)$. One can verify that the four maps

$$
K^{i}: \widehat{Q}_{\beta}^{1} \psi_{0}^{1} \mapsto \begin{cases}\widehat{Q}_{\beta}^{1} \psi_{0}^{i}, & (i=1,2,3), \\ \gamma_{\beta \alpha}^{t} E_{t} \widehat{Q}_{\alpha}^{1} \psi_{0}^{4}, & (i=4),\end{cases}
$$

besides being of the kind just discussed, are linearly independent. Therefore any map K of the above form is a linear combination thereof. In particular this applies, for any $\left(\underline{x}, x_{4}\right) \in \mathbb{R}^{3+1}$, to the map $K: \widehat{Q}_{\beta}^{1} \psi_{0}^{1} \mapsto x_{i} T_{\beta} \psi_{0}^{i}+x_{4} \gamma_{\beta \alpha}^{t} E_{t} T_{\alpha} \psi_{0}^{4}$, hence

$$
x_{i} T_{\beta} \psi_{0}^{i}+x_{4} \gamma_{\beta \alpha}^{t} E_{t} T_{\alpha} \psi_{0}^{4}=y_{i} \widehat{Q}_{\beta}^{1} \psi_{0}^{i}+y_{4} \gamma_{\beta \alpha}^{t} E_{t} \widehat{Q}_{\alpha}^{1} \psi_{0}^{4} .
$$

This defines a linear map $\kappa:\left(\underline{x}, x_{4}\right) \mapsto\left(\underline{y}, y_{4}\right)$ on \mathbb{R}^{3+1}. We claim that

$$
\begin{equation*}
\kappa:\left(R \underline{x}, x_{4}\right) \mapsto\left(R \underline{y}, y_{4}\right) \tag{37}
\end{equation*}
$$

for $R \in \operatorname{SO}(3)$, which implies $\kappa=\operatorname{diag}\left(\kappa_{1}=\kappa_{2}=\kappa_{3}, \kappa_{4}\right)$ and hence (36). Eq. (37) can be proven using $R_{i j} \psi_{0}^{i}=\mathcal{R} \psi_{0}^{j}$ for $\mathcal{R} \in \operatorname{Spin}(8)$ projecting to $R \in \operatorname{Spin}(3) \subset \operatorname{Spin}(5) \hookrightarrow \mathrm{SO}(8)$. This in turn follows from (4) and from $\mathcal{R} \psi_{0}^{4}=\psi_{0}^{4}$.
$\bullet d=3$. Analogously to $d=9$.

4.6 Determination of κ

Since $J_{A B} \psi_{0}=J_{s t} \psi_{0}=0$ we may replace Q_{β}^{1} by

$$
\begin{equation*}
Q_{\beta}^{1}=\Theta_{\alpha A} \gamma_{\alpha \beta}^{t}\left(-e_{B} E_{t} M_{B A}-e_{A} E_{s} M_{s t}-\frac{\mathrm{i}}{2} e_{A} E_{t} y_{s B} \frac{\partial}{\partial y_{s B}}\right)+\frac{1}{2} \vec{\Theta}_{\alpha} \cdot\left(\vec{y}_{s} \times \vec{y}_{t}\right) \gamma_{\beta \alpha}^{s t} . \tag{38}
\end{equation*}
$$

We discuss the contributions to (35) of these four terms separately.
i) With

$$
e_{B} M_{B A}=-\frac{\mathrm{i}}{2}\left(\left(\vec{\Theta}_{\beta} \cdot \vec{e}\right) \Theta_{\beta A}-\Theta_{\beta A}\left(\vec{\Theta}_{\beta} \cdot \vec{e}\right)\right)
$$

we find

$$
\begin{aligned}
\Theta_{\alpha A} e_{B} M_{B A} & =\mathrm{i}\left(\left(\vec{\Theta}_{\alpha} \cdot \vec{n}_{+}\right)\left(\vec{\Theta}_{\beta} \cdot \vec{n}_{-}\right)+\left(\vec{\Theta}_{\alpha} \cdot \vec{n}_{-}\right)\left(\vec{\Theta}_{\beta} \cdot \vec{n}_{+}\right)\right)\left(\vec{\Theta}_{\beta} \cdot \vec{e}\right), \\
P_{0} \Theta_{\alpha A} e_{B} M_{B A} \psi_{0} & =\mathrm{i}\left(\vec{\Theta}_{\alpha} \cdot \vec{e}\right) \psi_{0}
\end{aligned}
$$

since only the term with $\beta=\alpha$ survives the projection P_{0}. Hence

$$
\begin{equation*}
-P_{0} \Theta_{\alpha A} \gamma_{\alpha \beta}^{t} e_{B} E_{t} M_{B A} \psi_{0}=\widehat{Q}_{\beta}^{1} \psi_{0} \tag{39}
\end{equation*}
$$

contributes 1 to κ.
ii) Similarly,

$$
-P_{0}\left(\vec{\Theta}_{\alpha} \cdot \vec{e}\right) \gamma_{\alpha \beta}^{t} E_{s} M_{s t} \psi_{0}=-\left(\vec{\Theta}_{\alpha} \cdot \vec{e}\right) \gamma_{\alpha \beta}^{t} E_{s} M_{s t}^{\|} \psi_{0}
$$

where $M_{s t}^{\|}$is given in (31). For the r.h.s. we then claim

$$
\begin{equation*}
-\left(\vec{\Theta}_{\alpha} \cdot \vec{e}\right) \gamma_{\alpha \beta}^{t} E_{s} M_{s t}^{\|} \psi_{0}=\kappa^{\prime} \widehat{Q}_{\beta}^{1} \psi_{0} \tag{40}
\end{equation*}
$$

with

$$
\kappa^{\prime}= \begin{cases}9, & (d=9), \tag{41}\\ 0,0,0,4, & (d=5), \\ 0,0, & (d=3) .\end{cases}
$$

This is clear in the cases where the representation in (30) is already a singlet, i.e., when $\kappa^{\prime}=0$. To prove the two remaining cases we first establish

$$
\begin{equation*}
-\left(\vec{\Theta}_{\alpha} \cdot \vec{e}\right) \gamma_{\alpha \beta}^{t} E_{s} M_{s t}^{\|} \psi_{0}=-\frac{\mathrm{i}}{2} \gamma_{\alpha \beta}^{s} E_{s}\left[\vec{\Theta}_{\alpha} \cdot \vec{e}, M_{u t}^{\|} M_{u t}^{\|}\right] \psi_{0}-\mathrm{i} \frac{d^{2}-d}{8}\left(\vec{\Theta}_{\alpha} \cdot \vec{e}\right) \gamma_{\alpha \beta}^{s} E_{s} \psi_{0} \tag{42}
\end{equation*}
$$

or the equivalent equation obtained by multiplication from the right with $E_{u} \gamma^{u}$:

$$
\begin{equation*}
-\left(\vec{\Theta}_{\alpha} \cdot \vec{e}\right)\left(\gamma^{t} \gamma^{u}\right)_{\alpha \beta} E_{u} E_{s} M_{s t}^{\|} \psi_{0}=-\frac{\mathrm{i}}{2}\left[\vec{\Theta}_{\beta} \cdot \vec{e}, M_{u t}^{\|} M_{u t}^{\|}\right] \psi_{0}-\mathrm{i} \frac{d^{2}-d}{8}\left(\vec{\Theta}_{\beta} \cdot \vec{e}\right) \psi_{0} . \tag{43}
\end{equation*}
$$

To this end we note that, by the invariance of ψ_{0}, its fermionic part $|F(E, \vec{e})\rangle$ at $E \in S^{d-1}$ is invariant under rotations of $\operatorname{Spin}(d)$ leaving E fixed: $\left(\delta_{u s}-E_{u} E_{s}\right) M_{s v}^{\|}\left(\delta_{v t}-E_{v} E_{t}\right) \psi_{0}=0$, i.e.,

$$
\begin{equation*}
\left(M_{s t}^{\|} E_{u} E_{s}+M_{u v}^{\|} E_{v} E_{t}\right) \psi_{0}=M_{u t}^{\|} \psi_{0} . \tag{44}
\end{equation*}
$$

Using $\gamma^{t} \gamma^{u}=-\gamma^{u t}+\delta^{u t} \mathbb{I}$ and the observation just made we rewrite the l.h.s. of (43) as

$$
\begin{aligned}
-\left(\vec{\Theta}_{\alpha} \cdot \vec{e}\right)\left(\gamma^{t} \gamma^{u}\right)_{\alpha \beta} E_{u} E_{s} M_{s t}^{\|} \psi_{0} & =\left(\vec{\Theta}_{\alpha} \cdot \vec{e}\right) \gamma_{\alpha \beta}^{u t} E_{u} E_{s} M_{s t}^{\|} \psi_{0} \\
& =\frac{1}{2}\left(\vec{\Theta}_{\alpha} \cdot \vec{e}\right) \gamma_{\alpha \beta}^{u t}\left(E_{u} E_{s} M_{s t}^{\|}-E_{t} E_{s} M_{s u}^{\|}\right) \psi_{0} \\
& =\frac{1}{2}\left(\vec{\Theta}_{\alpha} \cdot \vec{e}\right) \gamma_{\alpha \beta}^{u t} M_{u t}^{\|} \psi_{0} .
\end{aligned}
$$

The commutation relation

$$
\mathrm{i}\left[\vec{\Theta}_{\alpha} \cdot \vec{e}, M_{u t}^{\|}\right]=\frac{1}{2} \gamma_{\alpha \beta}^{u t}\left(\vec{\Theta}_{\beta} \cdot \vec{e}\right)
$$

follows from (4) or by direct computation. It implies

$$
\mathrm{i}\left[\vec{\Theta}_{\alpha} \cdot \vec{e}, M_{u t}^{\|} M_{u t}^{\|}\right]=\frac{1}{2} \gamma_{\alpha \beta}^{u t}\left\{\vec{\Theta}_{\beta} \cdot \vec{e}, M_{u t}^{\|}\right\}=\gamma_{\alpha \beta}^{u t}\left(\vec{\Theta}_{\beta} \cdot \vec{e}\right) M_{u t}^{\|}-\frac{1}{2} \gamma_{\alpha \beta}^{u t}\left[\vec{\Theta}_{\beta} \cdot \vec{e}, M_{u t}^{\|}\right]
$$

$$
=\gamma_{\alpha \beta}^{u t}\left(\vec{\Theta}_{\beta} \cdot \vec{e}\right) M_{u t}^{\|}-\mathrm{i} \frac{d^{2}-d}{4} \vec{\Theta}_{\alpha} \cdot \vec{e} .
$$

Solving for the first term on the r.h.s. proves (43) and hence (42). Let us now note that for $d=9$ the fermionic part of ψ_{0}, resp. of $\left(\vec{\Theta}_{\alpha} \cdot \vec{e}\right) \psi_{0}$ belongs to the 44, resp. 128 representation of $\operatorname{Spin}(9)$ (see (28)). Eq. (42) then implies

$$
-\left(\vec{\Theta}_{\alpha} \cdot \vec{e}\right) \gamma_{\alpha \beta}^{t} E_{s} M_{s t}^{\|} \psi_{0}=(C(44)-C(128)+9) \widehat{Q}_{\beta}^{1} \psi_{0}=9 \widehat{Q}_{\beta}^{1} \psi_{0}
$$

where we used the values [25] of the Casimir: $C(44)=C(128)=18$. In the case $d=5$ the fermionic part of ψ_{0}, resp. of $\left(\vec{\Theta}_{\alpha} \cdot \vec{e}\right) \psi_{0}$ belongs to the representation 5 , resp. $4 \oplus 4$. We conclude that

$$
-\left(\vec{\Theta}_{\alpha} \cdot \vec{e}\right) \gamma_{\alpha \beta}^{t} E_{s} M_{s t}^{\|} \psi_{0}=\left(C(5)-C(4)+\frac{5}{2}\right) \widehat{Q}_{\beta}^{1} \psi_{0}=4 \widehat{Q}_{\beta}^{1} \psi_{0}
$$

given that $C(5)=4, C(4)=5 / 2$.
We remark that the proof of (41) can be shortened by using the lemma, according to which (40) holds true for some κ^{\prime}. Thus, contracting with $\widehat{Q}_{\beta}^{1} \psi_{0}$ and summing over β, we find

$$
\begin{aligned}
-\kappa^{\prime}\left(\psi_{0}, \widehat{Q}_{\beta}^{1} \widehat{Q}_{\beta}^{1} \psi_{0}\right) & =-\mathrm{i}\left(\psi_{0},\left(\vec{\Theta}_{\gamma} \cdot \vec{e}\right) \gamma_{\gamma \beta}^{u} E_{u}\left(\vec{\Theta}_{\alpha} \cdot \vec{e}\right) \gamma_{\alpha \beta}^{t} E_{s} M_{s t}^{\|} \psi_{0}\right) \\
& =4\left(\psi_{0}, E_{u} M_{u t}^{\|} M_{s t}^{\|} E_{s} \psi_{0}\right) \\
& =2\left(\psi_{0}, M_{u t}^{\|}\left(M_{s t}^{\|} E_{u} E_{s}+M_{u v}^{\|} E_{v} E_{t}\right) \psi_{0}\right)=2\left(\psi_{0}, M_{u t}^{\|} M_{u t}^{\|} \psi_{0}\right) .
\end{aligned}
$$

In the step before last we relabeled indices in half the expression; in the last one we used (44). Using $\widehat{Q}_{\beta}^{1} \widehat{Q}_{\beta}^{1}=-s_{d} / 2$ we obtain $\left(s_{d} / 2\right) \kappa^{\prime}=2 \cdot 2 \cdot C$, i.e., $\kappa^{\prime}=8 C / s_{d}$, where C is the Casimir in the representation (30). The above values of $C(44)(d=9)$ and of $C(5)(d=5)$ yield again (41).
iii) Using $\mathrm{de}^{-y^{2} / 2} / \mathrm{d} y=-y \mathrm{e}^{-y^{2} / 2}$ we get

$$
\begin{equation*}
\frac{1}{2} y_{s B} \frac{\partial}{\partial y_{s B}} \psi_{0}=-\frac{1}{2} y_{s B} y_{s B} \psi_{0}=-\frac{1}{2} \sum_{s B}\left(y_{s B}^{2}-\frac{1}{2}\right) \psi_{0}-\frac{1}{4} \cdot 2(d-1) \psi_{0} \tag{45}
\end{equation*}
$$

where the sum, consisting of second Hermite functions, is annihilated by P_{0}.
iv) The last term in (38), when acting on ψ_{0}, is similarly annihilated by P_{0}.

Collecting terms (39, 41, (45) we find

$$
\kappa=1+\kappa^{\prime}-\frac{1}{2}(d-1)= \begin{cases}6, & (d=9) \\ -1,-1,-1,3, & (d=5) \\ 0,0, & (d=3)\end{cases}
$$

Appendix 1

To prove (13) we shall compute the partial derivatives in

$$
\begin{equation*}
\frac{\partial}{\partial q_{t A}}=\frac{\partial r}{\partial q_{t A}} \frac{\partial}{\partial r}+\frac{\partial e_{B}}{\partial q_{t A}} \frac{\partial}{\partial e_{B}}+\frac{\partial E_{s}}{\partial q_{t A}} \frac{\partial}{\partial E_{s}}+\frac{\partial y_{s B}}{\partial q_{t A}} \frac{\partial}{\partial y_{s B}} . \tag{46}
\end{equation*}
$$

We regard r, \vec{e}, E, y as functions of q defined by $\vec{e}^{2}=\sum_{s} E_{s}^{2}=1$ and (9, 10) and solve for their differentials by taking different contractions of

$$
\mathrm{d} q_{t A}=\left(e_{A} E_{t}-\frac{1}{2} r^{-3 / 2} y_{t A}\right) \mathrm{d} r+r E_{t} \mathrm{~d} e_{A}+r e_{A} \mathrm{~d} E_{t}+r^{-1 / 2} \mathrm{~d} y_{t A}
$$

Using that

$$
\begin{aligned}
e_{A} \mathrm{~d} y_{t A}+y_{t A} \mathrm{~d} e_{A} & =0,
\end{aligned} E_{t} \mathrm{~d} y_{t A}+y_{t A} \mathrm{~d} E_{t}=0,
$$

the contractions are:

$$
\begin{align*}
e_{A} E_{t} \mathrm{~d} q_{t A} & =\mathrm{d} r \\
\left(\delta_{B A}-e_{B} e_{A}\right) E_{t} \mathrm{~d} q_{t A} & =r \mathrm{~d} e_{B}-r^{-1 / 2} y_{t A} \mathrm{~d} E_{t} \tag{47}\\
e_{A}\left(\delta_{s t}-E_{s} E_{t}\right) \mathrm{d} q_{t A} & =r \mathrm{~d} E_{s}-r^{-1 / 2} y_{s A} \mathrm{~d} e_{A} \tag{48}\\
\left(\delta_{B A}-e_{B} e_{A}\right)\left(\delta_{s t}-E_{s} E_{t}\right) \mathrm{d} q_{t A} & =-\frac{1}{2} r^{-3 / 2} y_{s B} \mathrm{~d} r+r^{-1 / 2}\left(\mathrm{~d} y_{s B}+e_{B} y_{s A} \mathrm{~d} e_{A}+E_{s} y_{t B} \mathrm{~d} E_{t}\right)
\end{align*}
$$

We solve (47, 48) for $\mathrm{d} e_{B}, \mathrm{~d} E_{s}$:

$$
\begin{aligned}
\mathrm{d} r & =e_{A} E_{t} \mathrm{~d} q_{t A} \\
\mathrm{~d} e_{B} & =\left(m^{-1}\right)_{B C}\left(r^{-1}\left(\delta_{C A}-e_{C} e_{A}\right) E_{t}+r^{-5 / 2} y_{t C} e_{A}\right) \mathrm{d} q_{t A} \\
& =\left(r^{-1}\left(\delta_{B A}-e_{B} e_{A}\right) E_{t}+\mathrm{O}\left(r^{-5 / 2}\right)\right) \mathrm{d} q_{t A} \\
\mathrm{~d} E_{s} & =\left(M^{-1}\right)_{s u}\left(r^{-1}\left(\delta_{u t}-E_{u} E_{t}\right) e_{A}+r^{-5 / 2} y_{s A} E_{t}\right) \mathrm{d} q_{t A} \\
& =\left(r^{-1}\left(\delta_{s t}-E_{s} E_{t}\right) e_{A}+\mathrm{O}\left(r^{-5 / 2}\right)\right) \mathrm{d} q_{t A} \\
\mathrm{~d} y_{s B} & =\left[r^{1 / 2}\left(\delta_{B A}-e_{B} e_{A}\right)\left(\delta_{s t}-E_{s} E_{t}\right)+\frac{1}{2} r^{-1} e_{A} E_{t} y_{s B}\right] \mathrm{d} q_{t A}-e_{B} y_{s A} \mathrm{~d} e_{A}-E_{s} y_{t B} \mathrm{~d} E_{t}
\end{aligned}
$$

where m, M are the matrices

$$
m_{A B}=\delta_{A B}-r^{-3} y_{t A} y_{t B}, \quad M_{s t}=\delta_{s t}-r^{-3} y_{s A} y_{t A}
$$

We can now read off the partial derivatives appearing in (46) and obtain

$$
\begin{align*}
\frac{\partial}{\partial q_{t A}}= & r^{1 / 2}\left(\delta_{s t}-E_{s} E_{t}\right)\left(\delta_{A B}-e_{A} e_{B}\right) \frac{\partial}{\partial y_{s B}}+r^{-1}\left[e_{A} E_{t}\left(r \frac{\partial}{\partial r}+\frac{1}{2} y_{s B} \frac{\partial}{\partial y_{s B}}\right)\right] \\
& +r^{-1}\left(\delta_{A C}-e_{A} e_{C}\right) E_{t}\left(\delta_{C B} \frac{\partial}{\partial e_{B}}-e_{B} y_{s C} \frac{\partial}{\partial y_{s B}}\right) \\
& +r^{-1}\left(\delta_{u t}-E_{u} E_{t}\right) e_{A}\left(\delta_{u s} \frac{\partial}{\partial E_{s}}-E_{s} y_{u B} \frac{\partial}{\partial y_{s B}}\right)+\mathrm{O}\left(r^{-5 / 2}\right) \tag{49}
\end{align*}
$$

with the remainder not containing derivatives w.r.t. r. Finally, we insert this expression into

$$
\begin{aligned}
\mathrm{i} L_{B A}= & q_{s B} \frac{\partial}{\partial q_{s A}}-q_{s A} \frac{\partial}{\partial q_{s B}} \\
= & {\left[\left(\delta_{A C}-e_{A} e_{C}\right) y_{s B}-\left(\delta_{B C}-e_{B} e_{C}\right) y_{s A}\right] \frac{\partial}{\partial y_{s C}} } \\
& +e_{B}\left(\delta_{A C} \frac{\partial}{\partial e_{C}}-e_{C} y_{s A} \frac{\partial}{\partial y_{s C}}\right)-e_{A}\left(\delta_{B C} \frac{\partial}{\partial e_{C}}-e_{C} y_{s B} \frac{\partial}{\partial y_{s C}}\right)
\end{aligned}
$$

(with no higher order corrections, as $L_{A B}$ is of exact order $\mathrm{O}\left(r^{0}\right)$) and then into

$$
\mathrm{i} r^{-1} e_{B} E_{t} L_{B A}=r^{-1}\left(\delta_{A C}-e_{A} e_{C}\right) E_{t}\left(\delta_{C B} \frac{\partial}{\partial e_{B}}-e_{B} y_{s C} \frac{\partial}{\partial y_{s B}}\right)
$$

Similarly, we have

$$
\mathrm{i} r^{-1} e_{A} E_{s} L_{s t}=r^{-1}\left(\delta_{u t}-E_{u} E_{t}\right) e_{A}\left(\delta_{u s} \frac{\partial}{\partial E_{s}}-E_{s} y_{u B} \frac{\partial}{\partial y_{s B}}\right) .
$$

Together with (49), this proves (13).

Appendix 2

Consider

$$
H=\left(-\partial_{x}{ }^{2}-\partial_{y}{ }^{2}+x^{2} y^{2}\right) \mathbb{I}+\left(\begin{array}{cc}
x & -y \tag{50}\\
-y & -x
\end{array}\right)
$$

which is the square of

$$
Q=\mathrm{i}\left(\begin{array}{cc}
\partial_{x} & \partial_{y}+x y \\
\partial_{y}-x y & -\partial_{x}
\end{array}\right) .
$$

Just as in (8), the bosonic potential $V\left(=x^{2} y^{2}\right)$ is non-negative, but vanishing in regions of the configuration space that extend to infinity (causing the classical partition function to diverge). Quantum-mechanically, just as in (8), the bosonic system is stabilized by the zero point energy of fluctuations transverse to the flat directions; the fermionic matrix part in (50) exactly cancels this effect, causing the spectrum to cover the whole positive real axis [19]. As simple as it is, it has remained an open question (for now more than 10 years) whether (50) admits a normalizable zero energy solution, or not. The argument, derived in a few lines below, gives 'no' as an answer and provides the simplest illustration of our method: as $x \rightarrow+\infty, Q \Psi=0$ has two approximate solutions,

$$
\begin{equation*}
\Psi_{+}=e^{-\frac{x y^{2}}{2}}\binom{0}{1} \quad \text { and } \quad \Psi_{-}=e^{+\frac{x y^{2}}{2}}\binom{1}{0} \tag{51}
\end{equation*}
$$

the first of which should be chosen for Ψ_{0} in the asymptotic expansions

$$
\begin{equation*}
\Psi=x^{-\kappa}\left(\Psi_{0}+\Psi_{1}+\ldots\right) \tag{52}
\end{equation*}
$$

In this simple example, the sum $Q=\sum_{n=0}^{\infty} Q^{(n)}$ terminates after the first two terms, and

$$
0 \stackrel{!}{=} Q \Psi=\left(\left(\begin{array}{cc}
0 & \partial_{y}+x y \\
\partial_{y}-x y & 0
\end{array}\right)+\left(\begin{array}{cc}
\partial_{x} & 0 \\
0 & -\partial_{x}
\end{array}\right)\right)\left(x^{-\kappa}\left(\Psi_{0}+\Psi_{1}+\ldots\right)\right)
$$

yields (as already anticipated, cp. (51))

$$
\left(\begin{array}{cc}
0 & \partial_{y}+x y \\
\partial_{y}-x y & 0
\end{array}\right) \Psi_{0}=0
$$

and

$$
\left(\begin{array}{cc}
0 & \partial_{y}+x y \tag{53}\\
\partial_{y}-x y & 0
\end{array}\right) \Psi_{n}+x^{\kappa}\left(\begin{array}{cc}
\partial_{x} & 0 \\
0 & -\partial_{x}
\end{array}\right) x^{-\kappa} \Psi_{n-1}=0, \quad n=1,2, \ldots .
$$

Multiplying (53) by Ψ_{0}^{\dagger} and integrating over y one sees that

$$
\int_{-\infty}^{+\infty} e^{-\frac{x y^{2}}{2}} x^{\kappa}\left(0,-\partial_{x}\right) x^{-\kappa} \Psi_{n-1} d y
$$

has to vanish, implying in particular

$$
\begin{aligned}
0 & =\int_{-\infty}^{+\infty}\left(\frac{y^{2}}{2}+\frac{\kappa}{x}\right) e^{-x y^{2}} d y \\
\kappa & =-\frac{1}{4}
\end{aligned}
$$

which proves that (50) does not admit any square-integrable solution of the form (52). A different approach has recently been undertaken by Avramidi [26]. Finally note that, calculating the $\Psi_{n>0}$ from (53), yields the asymptotic expansion, $x \rightarrow+\infty$,

$$
\Psi(x, y)=x^{\frac{1}{4}} e^{-\frac{x y^{2}}{2}} \sum_{n=0}^{\infty} x^{-\frac{3 n}{2}}\binom{\frac{y}{4 x} f_{n}\left(x y^{2}\right)}{g_{n}\left(x y^{2}\right)}
$$

where $f_{0}=1=g_{0}, f_{1}=0=g_{1}$, and the $f_{n}(s), g_{n}(s)$ are the (unique) polynomial solutions

$$
f_{n}(s)=\sum_{i=0}^{n} f_{n, i} s^{i}, \quad g_{n}(s)=\sum_{i=0}^{n} g_{n, i} s^{i}
$$

of

$$
\begin{aligned}
2 s f_{n}^{\prime}+(1-2 s) f_{n} & =(1-2 s-6 n) g_{n}+4 s g_{n}^{\prime} \\
8 g_{n+2}^{\prime} & =\left(\frac{3}{4}+\frac{s}{2}+\frac{3 n}{2}\right) f_{n}-s f_{n}^{\prime}
\end{aligned}
$$

Acknowledgments. We thank A. Alekseev, I. Avramidi, V. Bach, F. Finster, H. Nicolai, C. Schweigert, R. Suter, P. Yi for useful discussions. We also thank the following institutions for support: the Albert Einstein Institute, the Fields Institute, the Erwin Schrödinger Institute, the Institute for Theoretical Physics of ETH, the Mathematics Department of Harvard University, the Deutsche Forschungsgemeinschaft.

References

[1] J. Fröhlich, J. Hoppe, On zero-mass ground states in super-membrane matrix models. Comm. Math. Phys. 191, 613-626 (1998); hep-th/9701119.
[2] P. Yi, Witten index and threshold bound states of D-branes, Nucl. Phys. B505, 307-318 (1997); hep-th/9704098.
[3] S. Sethi, M. Stern, D-Brane bound state redux. Comm. Math. Phys. 194, 675-705 (1998); hep-th/9705046.
[4] M. Porrati, A. Rozenberg, Bound states at threshold in supersymmetric quantum mechanics, Nucl. Phys. B515, 184-202 (1998); hep-th/9708119.
[5] J. Hoppe, On the construction of zero energy states in supersymmetric matrix models I, II, III, hep-th/9709132, hep-th/9709217, hep-th/9711033.
[6] M.B. Green, M. Gutperle, D-particle bound states and the D-instanton measure, JHEP 9801 (1998); hep-th/9711107.
[7] J. Hoppe, S.-T. Yau, Absence of zero energy states in reduced SU(N) 3d supersymmetric Yang Mills theory, hep-th/9711169.
[8] M.B. Halpern, C. Schwartz, Asymptotic search for ground states of SU(2) matrix theory, Int. J. Mod. Phys. A13, 4367-4408 (1998); hep-th/9712133.
[9] W. Krauth, H. Nicolai, M. Staudacher, Monte Carlo approach to M-theory, Phys. Lett. B431, 31-41 (1998); hep-th/9803117.
[10] G. Moore, N. Nekrasov, S. Shatashvili, D-particle bound states and generalized instantons, hep-th/9803265.
[11] A. Konechny, On asymptotic Hamiltonian for $\operatorname{SU}(\mathrm{N})$ matrix theory, JHEP 9810 (1998); hep-th/9805046.
[12] G.M. Graf, J. Hoppe, Asymptotic ground state for 10 dimensional reduced supersymmetric $\mathrm{SU}(2)$ Yang Mills theory, hep-th/9805080.
[13] J. Hoppe, S.-T. Yau, Absence of zero energy states in the simplest $d=3(d=5$?) matrix models, hep-th/9806152.
[14] J. Goldstone, unpublished.
J. Hoppe, Quantum theory of a massless relativistic surface, MIT Ph.D. Thesis (1982); Proceedings of the workshop Constraints theory and relativistic dynamics, World Scientific (1987).
[15] M. Claudson, M. Halpern, Supersymmetric ground state wave functions, Nucl. Phys. B250, 689-715 (1985).
[16] R. Flume, On quantum mechanics with extended supersymmetry and nonabelian gauge constraints, Ann. Phys. 164, 189-220 (1985).
[17] M. Baake, P. Reinicke, V. Rittenberg, Fierz identities for real Clifford algebras and the number of supercharges, J. Math. Phys. 26, 1070-1071 (1985).
[18] B. de Wit, J. Hoppe, H. Nicolai, On the quantum mechanics of supermembranes, Nucl. Phys. B305, 545-581 (1988).
[19] B. de Wit, M. Lüscher, H. Nicolai, The supermembrane is unstable, Nucl. Phys. B320, 135-159 (1989).
[20] E. Witten, Bound states of strings and p-branes. Nuclear Phys. B460, 335-350 (1996); hep-th/9510135.
[21] T. Banks, W. Fischler, S.H. Shenker, L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D55, 5112-5128 (1997); hep-th/9610043.
[22] E.A. Coddington, N. Levinson, Theory of ordinary differential equations, Krieger (1987).
[23] R.S. Palais, C. Terng, Critical point theory and submanifold geometry, Springer (1988).
[24] B. Simon, Representations of finite and compact groups, American Mathematical Society (1996).
[25] W.G. McKay, J. Patera, Tables of dimensions, indices, and branching rules for representations of simple Lie algebras, Dekker (1981).
[26] I. Avramidi, On strict positivity of some matrix-valued differential operators, (work in progress).

