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Abstract

We derive the power law decay, and asymptotic form, of SU(2)×Spin(d) invariant
wave–functions satisfying Qβψ = 0 for all sd = 2(d − 1) supercharges of reduced
(d + 1)–dimensional supersymmetric SU(2) Yang Mills theory, resp. of the SU(2)–
matrix model related to supermembranes in d+ 2 dimensions.

1 Introduction

It is generally believed that supersymmetric SU(N) matrix models in d = 9 dimensions
admit exactly one normalizable zero-energy solution for each N > 1, while they admit
none for all other dimensions for which the models can be formulated, i.e., for d = 2, 3, 5.
For various approaches to this problem see e.g. [1]–[13].

In this article, we would like to summarize (and slightly modify/extend) what is known
about the behaviour of SU(2) zero–energy solutions far out at infinity in (and near) the
space of configurations where the bosonic potential (the trace of all commutator–squares)
vanishes. Based on some early ’negative’ result concerning N = 2, d = 2 (that used
rather different techniques/arguments; see [1, 18]) we started our investigation of the
asymptotic behaviour, in the fall of 1997, with a Hamiltonian Born–Oppenheimer analysis
of that N = 2, d = 2 case. Some months later, we realized that the rather complicated
Hamiltonian analysis (Halpern and Schwartz [8] had, in the meantime, derived the form
of the wave function for d = 9 near∞, by Hamiltonian Born–Oppenheimer methods) can
be replaced by a simple first order analysis, using only the first order operators Q, and
first order perturbation theory. One finds that asymptotically normalizable, SU(2) and
SO(d) invariant, wave functions do not exist for d = 2, 3, and 5, in contrast to d = 9,
where there is exactly one.

We close these introductory words by recalling that the models discussed below arise in
at least 3 somewhat different ways: As supersymmetric extensions of regulated membrane
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theories in d+2 space–time dimensions [14, 18], as reductions (to 0+1 dimension) of d+1
dimensional Super Yang Mills theories [15]–[17], and, for d = 9, as a description of the
dynamics of D–0 branes in superstring theory, [20, 21]. In this physical interpretation, the
existence of a normalizable zero–energy solution is an important consistency requirement.

The paper is organized as follows. In Section 2 we recall the definition of the models,
and in Section 3 we state our main result about zero–modes. The proof is given in Section
4 and Appendix 1. We suggest to skip Subsection 4.5 and Appendix 1 at a first reading.
As a warm–up the reader is advised to read Appendix 2, where a simpler model is treated
by the same method.

2 The models

The configuration space of the bosonic degrees of freedom is X = R3d with coordinates

q = (~q1, . . . , ~qd) = (qsA)s=1,... ,d
A=1,2,3

.

To describe the fermionic degrees of freedom let, as a preliminary,

γi = (γi
αβ)α,β=1,... ,sd

, (i = 1, . . . , d) , (1)

be the real representation of smallest dimension, called sd, of the Clifford algebra with
d generators: {γs, γt} = 2δst

1I. On the representation space, Spin(d) is realized through
matrices R ∈ SO(sd), so that we may view

Spin(d) →֒ SO(sd) , (2)

as a simply connected subgroup. We recall that

sd =

{
2[d/2] , d = 0, 1, 2 mod 8 ,

2[d/2]+1 , otherwise ,

where [·] denotes the integer part. We then consider the Clifford algebra with sd generators

and its irreducible representation on C = C2sd/2

. On C⊗3 the Clifford generators

(~Θ1, . . . , ~Θsd
) = (ΘαA)α=1,... ,sd

A=1,2,3

are defined, satisfying {ΘαA,ΘβB} = δαβ δAB. The Hilbert space, finally, is

H = L2(X, C⊗3) . (3)

There is a natural representation of SU(2)×Spin(d) ∋ (U,R) on H. In fact, the group
acts naturally on X through its representation SO(3)× SO(d) (which we also denote by
(U,R)). On C⊗3 we have the representation R of Spin(sd) ∋ R

R(R)∗ΘαAR(R) = R̃αβΘβA , (4)

where R̃ = R̃(R) is its SO(sd) representation. Through SO(sd) = Spin(sd)/Z2 and (2) we
have

Spin(d) →֒ Spin(sd) , (5)
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and thus a representation R of Spin(d). The representation U of SU(2) ∋ U on C⊗3 is
characterized by U(U)∗ΘαAU(U) = UABΘαB.

We shall now restrict to d = 2, 3, 5, 9, where sd = 2, 4, 8, 16, the reason being that
in these cases

sd = 2(d− 1) , (6)

whereas sd is strictly larger otherwise. Eq. (6) is essential for the algebra (7) below [17].
The supercharges, acting on H, are given by the sd hermitian operators

Qβ = ~Θα ·
(
−iγt

αβ
~∇t +

1

2
~qs × ~qt γst

βα

)
, (β = 1, . . . , sd) ,

where γst = (1/2)(γsγt − γtγs). These supercharges transform as scalars under SU(2)
transformations generated by

JAB = −i(qsA∂sB − qsB∂sA)− i

2
(ΘαAΘαB −ΘαBΘαA) ≡ LAB +MAB ,

resp. as vectors in Rsd under Spin(d) transformation generated by

Jst = −i(~qs · ~∇t − ~qt · ~∇s)−
i

4
~Θαγ

st
αβ
~Θβ ≡ Lst +Mst .

The anticommutation relations of the supercharges are

{
Qα, Qβ

}
= δαβH + γt

αβqtAεABCJBC . (7)

Here, H is the Hamiltonian

H = −
9∑

s=1

~∇2
s +

∑

s<t

(
~qs × ~qt

)2
+ i~qs ·

(
~Θα × ~Θβ

)
γs

αβ , (8)

which commutes with both JAB and Jst. The question we address is the possibility of a
normalizable state ψ ∈ H with zero energy, i.e., with Hψ = 0, which is a singlet w.r.t.
both SU(2) and Spin(d). Note that on SU(2) invariant states H = 2Q2

β ≥ 0 and in fact
the energy spectrum is ([19]) σ(H) = [0,∞). Equivalently, we look for zero-modes

Qβψ = 0 , (β = 1, . . . , sd) .

3 Results

The potential
∑

s<t(~qs × ~qt)2 vanishes on the manifold

~qs = r~eEs

with r > 0 and ~e 2 =
∑

s E
2
s = 1. The dimension of the manifold is 1 + 2 + (d − 1) =

3d−2(d−1). Points in a conical neighborhood of the manifold can be expressed in terms
of tubular (or “end–point”) coordinates [23]

~qs = r~eEs + r−1/2~ys (9)
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with

~ys · ~e = 0 , ~ysEs = ~0 . (10)

A prefactor has been put explicitely in front of the transversal coordinates ~ys, so as to
anticipate the length scale r−1/2 of the ground state. The change

(~e, E, y) 7→ (−~e,−E, y) (11)

does not affect ~qs. Rather than identifying the two coordinates for ~qs, we shall look for
states which are even under the antipode map (11).

We can now describe the structure of a putative ground state.

Theorem Consider the equations Qβψ = 0 for a formal power series solution near r =∞
of the form

ψ = r−κ
∞∑

k=0

r−
3

2
kψk , (12)

where: ψk = ψk(~e, E, y) is square integrable w.r.t. de dE dy;
ψk is SU(2)× Spin(d) invariant;
ψ0 6= 0.

Then, up to linear combinations,

• d=9: The solution is unique, and κ = 6;

• d=5: There are three solutions with κ = −1 and one with κ = 3;

• d=3: There are two solutions with κ = 0;

• d=2: There are no solutions.

All solutions are even under the antipode map (11),

ψk(~e, E, y) = ψk(−~e,−E, y) ,

except for the state d = 5, κ = 3, which is odd.

Remarks 1. The equation Qβψ = 0 can be viewed as an ordinary differential equation
in z = r3/2 for a function taking values in L2(de dE dy, C⊗3) (see eq. (14) below). It turns
out that z =∞ is a singular point of the second kind [22]. In such a situation the series
(12) is typically asymptotic to a true solution, but not convergent.

2. The integration measure is dq = dr · r2de · rd−1dE · r− 1

2
·2(d−1)dy = r2dr de dE dy. The

wave function (12) is square integrable at infinity if
∫∞

dr r2(r−κ)2 <∞, i.e., if κ > 3/2.
The theorem is consistent with the statement according to which only for d = 9 a (unique)
normalizable ground state for (8) (which would have to be even) is possible.
3. Note that the connection of matrix models with supergravity requires the zero–energy
solutions to be Spin(d) singlets only for d = 9.

The case d = 2 can be dealt with immediately. We may assume γ2 = σ3, γ
1 = σ1

(Pauli matrices), so that

M12 =
i

2
Θ1AΘ2A ,
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with commuting terms. Since, for each A = 1, 2, 3, (Θ1AΘ2A)2 = −1/4, we see that M12

has spectrum in Z/2 + 1/4. Given that L12 has spectrum Z, no state with J12ψ = 0 is
possible. We mention [1] that, more generally, for d = 2 no normalizable SU(2) invariant
ground state exists.

The proof of the theorem will thus deal with d = 9, 5, 3 only.

4 Proof

We shall first derive the power series expansion of the supercharges Qβ . To this end we
note that

∂

∂qtA
= r1/2(δst − EsEt)(δAB − eAeB)

∂

∂ysB
(13)

+r−1[eAEt(r
∂

∂r
+

1

2
ysB

∂

∂ysB
) + ieBEtLBA + ieAEsLst] + O(r−5/2) ,

with the remainder not containing derivatives w.r.t. r (see Appendix 1 for derivation).
This yields

Qβ = r1/2Q0
β + r−1(Q̂1

βr
∂

∂r
+Q1

β) + r−5/2Q2
β + . . . (14)

with r–independent operators

Q0
β = −iΘαAγ

t
αβ(δst − EsEt)(δAB − eAeB)

∂

∂ysB

+ ~Θα · (~e× ~yt)Esγ
st
βα ,

Q̂1
β = −i(~Θα · ~e )γt

αβEt ,

Q1
β = ΘαAγ

t
αβ

(
eBEtLBA + eAEsLst −

i

2
eAEtysB

∂

∂ysB
) +

1

2
~Θα · (~ys × ~yt)γ

st
βα .

The explicit expressions of Qn
β, (n ≥ 2) will not be needed. We then equate coefficients

of powers of r−3/2 in the equation Qβψ = 0 with the result

Q0
βψn +

(
−(κ +

3

2
(n− 1))Q̂1

β +Q1
β

)
ψn−1 +Q2

βψn−2 + . . .+Qn
βψ0 = 0 ,

(n = 0, 1, . . . ) . (15)

4.1 The equation at n = 0

The equation at n = 0,

Q0
βψ0 = 0 , (16)

admits precisely the (not necessarily SU(2)× Spin(d) invariant) solutions

ψ0(~e, E, y) = e−
∑

s ~ys
2/2|F (E,~e)〉 , (17)

(with ~y restricted to (10)), where the fermionic states |F (E,~e)〉 can be described as
follows: Let ~n± be two complex vectors satisfying ~n+ ·~n− = 1, ~e×~n± = ∓i~n± (and hence
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~n± · ~n± = 0, ~n+ × ~n− = −i~e ). For any vector v ∈ Rsd we may introduce ~Θ(v) = ~Θαvα, as

well as fermionic operators ~Θ(v) · ~n± satisfying canonical anticommutation relations:
{
~Θ(u) · ~n+, ~Θ(v) · ~n−

}
= uαvα ,

{
~Θ(u) · ~n±, ~Θ(v) · ~n±

}
= 0 .

Then, |F (E,~e)〉 is required to obey

~Θ(v) · ~n±|F (E,~e)〉 = 0 for Esγ
sv = ±v . (18)

To prove the above, let us note that
{
Q0

α, Q
0
β

}
= δαβH

0 + γt
αβEtεABCMABeC , (19)

H0 =
[
−(δst − EsEt)(δAB − eAeB)

∂

∂ysA

∂

∂ytB
+
∑

s

~y2
s

]
+ iEsγ

s
αβ~e ·

(
~Θα × ~Θβ

)

≡ H0
B +H0

F .

By contracting eq. (19) against δαβ , resp. γt
αβEt we see that the equations (16) are

equivalent to the pair of equations

H0ψ0 = 0 , εABCMABeCψ0 = 0 . (20)

Here, H0
B is a harmonic oscillator in 2(d−1) degrees of freedom, with orbital ground state

wave function e−
∑

s ~y2
s/2 and energy 2(d− 1). On the other hand,

H0
F = −Esγ

s
αβ

(
(~Θα · ~n+)(~Θβ · ~n−)− (~Θα · ~n−)(~Θβ · ~n+)

)

= −sd + 2P+
αβ(~Θα · ~n−)(~Θβ · ~n+) + 2P−

αβ(~Θα · ~n+)(~Θβ · ~n−) , (21)

where we used the spectral decomposition Esγ
s = P+− P−. In view of (6), the equation

H0ψ0 = 0 is fulfilled iff the fermionic state is annihilated by the last two positive terms
in (21), i.e., if (18) holds. The second equation (20) is now also satisfied, since

1

2
εABCMABeC = − i

2
~e ·
(
~Θα × ~Θα

)

=
1

2

(
(~Θα · ~n+)(~Θα · ~n−)− (~Θα · ~n−)(~Θα · ~n+)

)

= P−
αβ(~Θα · ~n+)(~Θβ · ~n−)− P+

αβ(~Θα · ~n−)(~Θβ · ~n+) (22)

annihilates |F (E,~e)〉.

4.2 SU(2)× Spin(d) invariant states

We recall that the representation R[·] of Spin(d) on H is (R[R]ψ)(q) = R(R)(ψ(R−1q)),
where R(R) acts on C⊗3. Similarly for SU(2). The invariant solutions among (17) are
thus those which satisfy

U(U)|F (E,~e)〉 = |F (E,U~e)〉 , R(R)|F (E,~e)〉 = |F (RE,~e)〉 , (23)

for (U,R) ∈ SU(2) × Spin(d). These states are in bijective correspondence to states
invariant under the ‘little group’ (U,R) ∈ U(1) × Spin(d − 1), i.e., to states |F (E,~e)〉
satisfying

U(U)|F (E,~e)〉 = |F (E,~e)〉 , R(R)|F (E,~e)〉 = |F (E,~e)〉 , (24)
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for some arbitrary but fixed (E,~e) and all U, R with U~e = ~e, RE = E. The first relation
holds on all of (18). In fact the generator (22) of the group U(U) of rotations U about
~e annihilates |F (E,~e)〉, as we just saw. To discuss the second relation (24) we note that
the generators of Spin(d− 1) (i.e., of the fermionic rotations about E), are MstUsVt with

UsEs = VsEs = 0. We write Mst = M⊥
st +M

‖
st, where

M⊥
st = −(i/2)(~Θα · ~n+)γst

αβ(~Θβ · ~n−) , M
‖
st = −(i/4)(~Θα · ~e )γst

αβ(~Θβ · ~e ) , (25)

and remark that, by a computation similar to (22), M⊥
stUsVt annihilates |F (E,~e)〉. As a

result, we may study the representation R of the group Spin(d−1) through its embedding

in the Clifford algebra generated by the ~Θα · ~e.
The operators ~Θα · ~e leave the space (18) invariant and act irreducibly on it. That

space is thus isomorphic to C, and Spin(sd) acts according to (4) (with ΘαA replaced by
~Θα · ~e). This representation decomposes (see e.g. [24]) as

C = (2(sd/2)−1)+ ⊕ (2(sd/2)−1)− (26)

w.r.t. the subspaces where Θ ≡ 2sd/2
∏sd

α=1
~Θα ·~e = +1, resp. −1. The embedding (5) and

the corresponding branching of the representation (but not the statement of the theorem!)
depend on the choice of the γ–matrices. In order to select a definite embedding, let

γd =

(
1I 0
0 −1I

)
, γd−1 =

(
0 1I
1I 0

)
, γj =

(
0 iΓj

−iΓj 0

)
(27)

with Γj, (j = 1, . . . , d − 2) purely imaginary, antisymmetric, and {Γj,Γk} = 2δjk1Isd/2.
Then (26) branches as (see [25], resp. [12, 13])

C =






(44⊕ 84)⊕ 128 , (d = 9) ,

(5⊕ 1⊕ 1⊕ 1)⊕ (4⊕ 4) , (d = 5) ,

2⊕ (1⊕ 1) , (d = 3) ,

(28)

when viewed as a representation of Spin(d). (The choice γ̃i
αβ = R̃α′αγ

i
α′β′R̃β′β with

R̃ ∈ O(sd), det R̃ = −1 would have inverted the branching of the representations on
the r.h.s. of (26)). The case d = 3 deserves a remark, as there are additional inequivalent
embeddings Spin(d = 3) →֒ Spin(sd = 4), and one has to consider the one appropri-
ate to (5). In fact R ∈ Spin(3) = SU(2) acts in the fundamental representation on
C2, the irreducible representation space of the complex Clifford algebra with 3 genera-
tors. The real representation (27) is obtained by joining two complex representations,
followed by an appropriate change T of basis. The embedding (5) is thus realized through
R 7→ T−1(R ⊗ 1I2)T and the embedding su(2)

C
→֒ so(4)

C
= su(2)

C
⊕ su(2)

C
is equivalent

to u 7→ (u, 0).
The further branching Spin(d) ←֓ Spin(d− 1) yields

C =





(1⊕ 8v ⊕ 35v)⊕ (28⊕ 56v)⊕ (8s ⊕ 8c ⊕ 56s ⊕ 56c) , (d− 1 = 8) ,

1⊕ 1⊕ 1⊕ (1⊕ 4)⊕ (2+ ⊕ 2−)⊕ (2+ ⊕ 2−) , (d− 1 = 4) ,

(11 ⊕ 1−1)⊕ 10 ⊕ 10 , (d− 1 = 2) .

(29)

7



The content of invariant states stated in the theorem is now manifest. One should notice
that for d = 3 the little group U(1) is abelian and the singlets 1±1 do not correspond
to invariant states. For later use we also retain the fermionic Spin(d) representation to
which the remaining singlets are associated,

44 (d = 9) ; 1, 1, 1, 5 (d = 5) ; 1, 1 (d = 3) , (30)

together with the corresponding eigenvalue of Θ:

Θ = 1 (d = 9) ; 1, 1, 1, 1 (d = 5) ; −1,−1 (d = 3) . (31)

4.3 Even states

It remains to check which of these states satisfy |F (−E,−~e)〉 = |F (E,~e)〉. Let us begin
by noting that by (23)

|F (−E,−~e)〉 = eiMABeAuBπeiMstEsUtπ|F (E,~e)〉 ,

where ~u ∈ R3, resp. U ∈ Rd are unit vectors orthogonal to ~e, resp. E. The Spin(d)

rotation can be factorized as eiMstEsUtπ = eiM⊥
stEsUtπeiM

‖
stEsUtπ. We claim that eiM

‖
stEsUtπ

|F (E,~e)〉 = σ|F (E,~e)〉 with

σ = 1 (d = 9) ; 1, 1, 1,−1 (d = 5) ; 1, 1 (d = 3) . (32)

The operator represents a rotation R ∈ Spin(d) with RE = −E in the representation
(30). For d = 9 the latter can be realized on symmetric traceless tensors Tij , (i, j =
1, . . . , 9), where the Spin(8)–singlet is EiEj − (1/9)δij, implying σ = 1. For d = 5,
the last representation (30) is just the vector representation, where σ = −1. As the
remaining cases are evident, eq. (32) is proven. A computation using (27) and, without
loss E = (0, . . . , 0, 1), U = (0, . . . , 1, 0) shows

eiM⊥
d,d−1

π|F (E,~e)〉 =

sd/2∏

α=1

e[(~Θα·~n+)(~Θα+sd/2·~n−)−(~Θα+sd/2·~n+)(~Θα·~n−)]π/2|F (E,~e)〉

=

sd/2∏

α=1

(~Θα+sd/2 · ~n+)(~Θα · ~n−)|F (E,~e)〉 ≡ |F (E,~e)〉 ,

eiMABeAuBπ|F (E,~e)〉 =

sd∏

α=1

e(~Θα·~e)(~Θα·~u)π|F (E,~e)〉

= (−1)sd/4Θ

sd/2∏

α=1

(~Θα · ~n+)(~Θα+sd/2 · ~n−)|F (E,~e)〉 = |F (E,~e)〉 ,

where we used (31) in the last step. Together with (32) this proves the statement of
theorem concerning the invariance under (11).

4.4 The equation at n > 0

We next discuss the equations (15)n with n ≥ 1. Let P0 be the orthogonal projection
onto the states (17), i.e., onto the null space of Q0

β. We replace them with an equivalent
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pair of equations, obtained by multiplication of (15)n+1 with P0, resp. of (15)n with Q0
β ,

which is injective on the range of the complementary projection P 0 = 1− P0:

P0

(
−(κ +

3

2
n))Q̂1

β +Q1
β

)
P0ψn = −P0

(
Q1

βP 0ψn +Q2
βψn−1 + . . .+Qn+1

β ψ0

)
,

(n = 0, 1, . . . ) , (33)

(Q0
β)2ψn = −Q0

β

((
−(κ+

3

2
(n− 1))Q̂1

β +Q1
β

)
ψn−1 +Q2

βψn−2 + . . .+Qn
βψ0

)
,

(n = 1, 2, . . . ) (34)

(we used P0Q̂
1
βP 0 = 0). Here, and until the end of this subsection, no summation over β

is understood. The equation (33) at n = 0 reads

P0Q
1
βψ0 = κP0Q̂

1
βψ0 (= κQ̂1

βψ0) . (35)

We shall verify this by explicit computation later on. Since a similar issue will show
up in solving the equation (33) at n > 0, let us also present a more general statement,
whose proof is postponed to the next subsection.

Lemma Let Tβ be linear operators on the range of P0, which transform as real spinors of
Spin(d) and commute with the antipode map. Then, for each invariant state we have

Tβψ0 = κQ̂1
βψ0 , (36)

with κ depending only on the associated representation (30).

We now assume having solved the equations (33, 34) up to n − 1 for Spin(d) invariant
ψ1, . . . ψn−1 (which is true for n− 1 = 0), and claim the same is possible for n. Since Q0

β

is invertible on the range of P 0, eq. (34)n determines P 0ψn uniquely. The fact that the
solution so obtained is independent of β and is Spin(d) invariant may deserve a comment,
because the equivalence of the equations Qβψ = 0 and (Qβ)2ψ = 0, which holds on (3),
does not apply in the sense of formal power series (12). Consider the expansion (14), i.e.,

Qβ = r1/2

∞∑

k=0

r−
3

2
k[Qβ ]k , [Qβ ]k = Qk

β + δ1kQ̂
1
βr

∂

∂r
,

as well as its formal square

(Qβ)2 = r

∞∑

k=0

r−
3

2
k[(Qβ)2]k .

Notice that (Qβ)2 is, by (7), independent of β and Spin(d) invariant as an operator on
SU(2) invariant power series. Similarly, let [Qβψ]k (given by the l.h.s. of (15)) and
[(Qβ)2ψ]k be the coefficients of the corresponding series. By induction assumption we
have [Qβψ]k = 0 for k = 0, . . . , n− 1. Since Qβ(Qβψ) = (Qβ)2ψ, we obtain

[(Qβ)2ψ]n =
n∑

k=0

Qk
β [Qβψ]n−k − (κ+

3

2
n− 2)Q̂1

β[Qβψ]n−1 = Q0
β [Qβψ]n ,

[(Qβ)2ψ]n = (Q0
β)2ψn + ψ̃n−1 ,

9



where ψ̃n−1 (determined by ψ0, . . . ψn−1) has the desired properties. The equation (34)n,

i.e., Q0
β[Qβψ]n = 0 is thus equivalent to (Q0

β)2ψn = −ψ̃n−1, which exhibits the claim.
On the other hand, invariance requires P0ψn to be a linear combination of invariant

singlets. For the ansatz P0ψn = λnψ0, eq. (33)n reads

3

2
nλnQ̂

1
βψ0 = −P0

(
Q1

βP 0ψn +Q2
βψn−1 + . . .+Qn+1

β ψ0

)
,

because of (35). Again, by the lemma, this holds true for suitable λn. Indeed, this solution
for P0ψn is the only one.

4.5 Proof of the lemma

The vectors Tβψ0, (β = 1, . . . , sd) transform under Spin(d) as real spinors, although they
might be linearly dependent. By reducing matters to the little group as before, any
representation of that sort is specified by the values |F β(E,~e)〉 of its states (see (17)) at
one point (E,~e), which are required to satisfy

R̃βα(R)|F α(E,~e)〉 = R(R)|F β(E,~e)〉

for R with RE = E. Pretending the states |F β(E,~e)〉 to be linearly independent, the
branching Spin(d) ←֓ Spin(d− 1) yields

16 = 8s ⊕ 8c (d = 9) ; 4⊕ 4 = (2+ ⊕ 2−)⊕ (2+ ⊕ 2−) (d = 5) ;

2⊕ 2 = (11 ⊕ 1−1)⊕ (11 ⊕ 1−1) (d = 3) .

For d = 9, 5 each term on the r.h.s. occurs as often as in (29), and ψ0 can indeed be

chosen so that the sd vectors Q̂1
βψ0 are independent. Not so in the last case, where the

vectors Tβψ0 just belong to 11 ⊕ 1−1. We continue the discussion for different values of d
separately.
• d = 9. Any linear transformation K commuting with a Spin(9) representation as

above is thus of the form K = κs ⊕ κc. If K also commutes with the antipode map, then
κs = κc ≡ κ. Applying this to the representation Q̂1

βψ0 and to the map K : Q̂1
βψ0 7→ Tβψ0

yields the claim.
• d = 5. Let us regroup (2+⊕ 2−)⊕ (2+⊕ 2−) ∼= (2+⊗ 1I2)⊕ (2−⊗ 1I2). Then any map

K commuting with the representation is of the form

K = (1I⊗K+)⊕ (1I⊗K−) ,

where K− is conjugate to K+ if K commutes with the antipode map. This allows for a
four dimensional space of such maps K. To proceed further we shall again assume that
E = (0, . . . , 0, 1) and introduce creation operators

a∗α =
1√
2
[(~Θα · ~e) + i(~Θα+4 · ~e)] , (α = 1, . . . 4)

which then define a vacuum through aα|0〉 = 0. We next choose an orthonormal basis
{ψ1

0 , . . . , ψ
4
0} for the 4-dimensional subspace of singlets in the range of P0 by specifying

10



the values of the corresponding fermionic parts (see (17)) at (E,~e):

|F 4
0 (E,~e)〉 =

1√
2
(|0〉 − a∗1a∗2a∗3a∗4|0〉) ,

|F i
0(E,~e)〉 =

1

2
√

2
Γ̃i

αβa
∗
αa

∗
β|0〉 =

i

4
(γ4γ̃i)αβ(~Θα · ~e)(~Θβ · ~e)|F 4

0 (E,~e)〉 , (i = 1, 2, 3) ,

where

γ̃i =

(
0 iΓ̃i

−iΓ̃i 0

)
= σ−1γiσ , σ =

(
Σ 0
0 Σ

)

with Σ ∈ O(4) and det Σ = −1. Note that ψ4
0 is the singlet belonging to the 5–dimensional

fermionic representation of Spin(5). One can verify that the four maps

Ki : Q̂1
βψ

1
0 7→

{
Q̂1

βψ
i
0 , (i = 1, 2, 3) ,

γt
βαEtQ̂

1
αψ

4
0 , (i = 4) ,

besides being of the kind just discussed, are linearly independent. Therefore any map
K of the above form is a linear combination thereof. In particular this applies, for any
(x, x4) ∈ R3+1, to the map K : Q̂1

βψ
1
0 7→ xiTβψ

i
0 + x4γ

t
βαEtTαψ

4
0, hence

xiTβψ
i
0 + x4γ

t
βαEtTαψ

4
0 = yiQ̂

1
βψ

i
0 + y4γ

t
βαEtQ̂

1
αψ

4
0 .

This defines a linear map κ : (x, x4) 7→ (y, y4) on R3+1. We claim that

κ : (Rx, x4) 7→ (Ry, y4) (37)

for R ∈ SO(3), which implies κ = diag(κ1 = κ2 = κ3, κ4) and hence (36). Eq. (37) can be
proven using Rijψ

i
0 = Rψj

0 forR ∈ Spin(8) projecting toR ∈ Spin(3) ⊂ Spin(5) →֒ SO(8).
This in turn follows from (4) and from Rψ4

0 = ψ4
0.

• d = 3. Analogously to d = 9.

4.6 Determination of κ

Since JABψ0 = Jstψ0 = 0 we may replace Q1
β by

Q1
β = ΘαAγ

t
αβ

(
−eBEtMBA − eAEsMst −

i

2
eAEtysB

∂

∂ysB
) +

1

2
~Θα · (~ys × ~yt)γ

st
βα . (38)

We discuss the contributions to (35) of these four terms separately.
i) With

eBMBA = − i

2

(
(~Θβ · ~e)ΘβA −ΘβA(~Θβ · ~e)

)

we find

ΘαAeBMBA = i
(
(~Θα · ~n+)(~Θβ · ~n−) + (~Θα · ~n−)(~Θβ · ~n+)

)
(~Θβ · ~e ) ,

P0ΘαAeBMBAψ0 = i(~Θα · ~e )ψ0 ,

11



since only the term with β = α survives the projection P0. Hence

−P0ΘαAγ
t
αβeBEtMBAψ0 = Q̂1

βψ0 (39)

contributes 1 to κ.
ii) Similarly,

−P0(~Θα · ~e )γt
αβEsMstψ0 = −(~Θα · ~e )γt

αβEsM
‖
stψ0 ,

where M
‖
st is given in (31). For the r.h.s. we then claim

−(~Θα · ~e )γt
αβEsM

‖
stψ0 = κ′Q̂1

βψ0 (40)

with

κ′ =





9 , (d = 9) ,

0, 0, 0, 4 , (d = 5) ,

0, 0 , (d = 3) .

(41)

This is clear in the cases where the representation in (30) is already a singlet, i.e., when
κ′ = 0. To prove the two remaining cases we first establish

−(~Θα · ~e )γt
αβEsM

‖
stψ0 = − i

2
γs

αβEs[~Θα · ~e ,M‖
utM

‖
ut]ψ0 − i

d2 − d
8

(~Θα · ~e )γs
αβEsψ0 , (42)

or the equivalent equation obtained by multiplication from the right with Euγ
u:

−(~Θα · ~e )(γtγu)αβEuEsM
‖
stψ0 = − i

2
[~Θβ · ~e ,M‖

utM
‖
ut]ψ0 − i

d2 − d
8

(~Θβ · ~e )ψ0 . (43)

To this end we note that, by the invariance of ψ0, its fermionic part |F (E,~e)〉 at E ∈ Sd−1

is invariant under rotations of Spin(d) leaving E fixed: (δus−EuEs)M
‖
sv(δvt−EvEt)ψ0 = 0,

i.e.,

(M
‖
stEuEs +M‖

uvEvEt)ψ0 = M
‖
utψ0 . (44)

Using γtγu = −γut + δut
1I and the observation just made we rewrite the l.h.s. of (43) as

−(~Θα · ~e )(γtγu)αβEuEsM
‖
stψ0 = (~Θα · ~e )γut

αβEuEsM
‖
stψ0

=
1

2
(~Θα · ~e )γut

αβ(EuEsM
‖
st − EtEsM

‖
su)ψ0

=
1

2
(~Θα · ~e )γut

αβM
‖
utψ0 .

The commutation relation

i[~Θα · ~e ,M‖
ut] =

1

2
γut

αβ(~Θβ · ~e )

follows from (4) or by direct computation. It implies

i[~Θα · ~e ,M‖
utM

‖
ut] =

1

2
γut

αβ{~Θβ · ~e ,M‖
ut} = γut

αβ(~Θβ · ~e )M
‖
ut −

1

2
γut

αβ[~Θβ · ~e ,M‖
ut]

12



= γut
αβ(~Θβ · ~e )M

‖
ut − i

d2 − d
4

~Θα · ~e .

Solving for the first term on the r.h.s. proves (43) and hence (42). Let us now note

that for d = 9 the fermionic part of ψ0, resp. of (~Θα · ~e )ψ0 belongs to the 44, resp. 128
representation of Spin(9) (see (28)). Eq. (42) then implies

−(~Θα · ~e )γt
αβEsM

‖
stψ0 = (C(44)− C(128) + 9)Q̂1

βψ0 = 9Q̂1
βψ0 ,

where we used the values [25] of the Casimir: C(44) = C(128) = 18. In the case d = 5

the fermionic part of ψ0, resp. of (~Θα · ~e )ψ0 belongs to the representation 5, resp. 4⊕ 4.
We conclude that

−(~Θα · ~e )γt
αβEsM

‖
stψ0 = (C(5)− C(4) +

5

2
)Q̂1

βψ0 = 4Q̂1
βψ0 ,

given that C(5) = 4, C(4) = 5/2.
We remark that the proof of (41) can be shortened by using the lemma, according to

which (40) holds true for some κ′. Thus, contracting with Q̂1
βψ0 and summing over β, we

find

−κ′(ψ0, Q̂
1
βQ̂

1
βψ0) = −i(ψ0, (~Θγ · ~e)γu

γβEu(~Θα · ~e)γt
αβEsM

‖
stψ0)

= 4(ψ0, EuM
‖
utM

‖
stEsψ0)

= 2(ψ0,M
‖
ut(M

‖
stEuEs +M‖

uvEvEt)ψ0) = 2(ψ0,M
‖
utM

‖
utψ0) .

In the step before last we relabeled indices in half the expression; in the last one we used
(44). Using Q̂1

βQ̂
1
β = −sd/2 we obtain (sd/2)κ′ = 2 · 2 ·C, i.e., κ′ = 8C/sd, where C is the

Casimir in the representation (30). The above values of C(44) (d = 9) and of C(5) (d = 5)
yield again (41).

iii) Using de−y2/2/dy = −ye−y2/2 we get

1

2
ysB

∂

∂ysB
ψ0 = −1

2
ysBysBψ0 = −1

2

∑

sB

(y2
sB −

1

2
)ψ0 −

1

4
· 2(d− 1)ψ0 , (45)

where the sum, consisting of second Hermite functions, is annihilated by P0.
iv) The last term in (38), when acting on ψ0, is similarly annihilated by P0.

Collecting terms (39, 41, 45) we find

κ = 1 + κ′ − 1

2
(d− 1) =





6 , (d = 9) ,

−1,−1,−1, 3 , (d = 5) ,

0, 0 , (d = 3) .

Appendix 1

To prove (13) we shall compute the partial derivatives in

∂

∂qtA
=

∂r

∂qtA

∂

∂r
+
∂eB

∂qtA

∂

∂eB

+
∂Es

∂qtA

∂

∂Es

+
∂ysB

∂qtA

∂

∂ysB

. (46)
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We regard r, ~e, E, y as functions of q defined by ~e 2 =
∑

sE
2
s = 1 and (9, 10) and solve

for their differentials by taking different contractions of

dqtA = (eAEt −
1

2
r−3/2ytA)dr + rEtdeA + reAdEt + r−1/2dytA .

Using that

eAdytA + ytAdeA = 0 , EtdytA + ytAdEt = 0 ,

eAdeA = 0 , EtdEt = 0 ,

the contractions are:

eAEtdqtA = dr ,

(δBA − eBeA)EtdqtA = rdeB − r−1/2ytAdEt , (47)

eA(δst − EsEt)dqtA = rdEs − r−1/2ysAdeA , (48)

(δBA − eBeA)(δst − EsEt)dqtA = −1

2
r−3/2ysBdr + r−1/2(dysB + eBysAdeA + EsytBdEt) .

We solve (47, 48) for deB, dEs:

dr = eAEtdqtA ,

deB = (m−1)BC(r−1(δCA − eCeA)Et + r−5/2ytCeA)dqtA

= (r−1(δBA − eBeA)Et + O(r−5/2))dqtA ,

dEs = (M−1)su(r
−1(δut −EuEt)eA + r−5/2ysAEt)dqtA

= (r−1(δst − EsEt)eA + O(r−5/2))dqtA ,

dysB = [r1/2(δBA − eBeA)(δst − EsEt) +
1

2
r−1eAEtysB]dqtA − eBysAdeA −EsytBdEt ,

where m, M are the matrices

mAB = δAB − r−3ytAytB , Mst = δst − r−3ysAytA .

We can now read off the partial derivatives appearing in (46) and obtain

∂

∂qtA
= r1/2(δst − EsEt)(δAB − eAeB)

∂

∂ysB
+ r−1[eAEt(r

∂

∂r
+

1

2
ysB

∂

∂ysB
)]

+r−1(δAC − eAeC)Et(δCB
∂

∂eB

− eBysC
∂

∂ysB

)

+r−1(δut − EuEt)eA(δus
∂

∂Es
− EsyuB

∂

∂ysB
) + O(r−5/2) , (49)

with the remainder not containing derivatives w.r.t. r. Finally, we insert this expression
into

iLBA = qsB
∂

∂qsA
− qsA

∂

∂qsB

= [(δAC − eAeC)ysB − (δBC − eBeC)ysA]
∂

∂ysC

+eB(δAC
∂

∂eC

− eCysA
∂

∂ysC

)− eA(δBC
∂

∂eC

− eCysB
∂

∂ysC

) ,
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(with no higher order corrections, as LAB is of exact order O(r0)) and then into

ir−1eBEtLBA = r−1(δAC − eAeC)Et(δCB
∂

∂eB

− eBysC
∂

∂ysB

) .

Similarly, we have

ir−1eAEsLst = r−1(δut − EuEt)eA(δus
∂

∂Es
− EsyuB

∂

∂ysB
) .

Together with (49), this proves (13).

Appendix 2

Consider

H = (−∂x
2 − ∂y

2 + x2y2)1I +

(
x −y
−y −x

)
, (50)

which is the square of

Q = i

(
∂x ∂y + xy

∂y − xy −∂x

)
.

Just as in (8), the bosonic potential V (= x2y2) is non-negative, but vanishing in regions
of the configuration space that extend to infinity (causing the classical partition function
to diverge). Quantum–mechanically, just as in (8), the bosonic system is stabilized by the
zero point energy of fluctuations transverse to the flat directions; the fermionic matrix
part in (50) exactly cancels this effect, causing the spectrum to cover the whole positive
real axis [19]. As simple as it is, it has remained an open question (for now more than 10
years) whether (50) admits a normalizable zero energy solution, or not. The argument,
derived in a few lines below, gives ‘no’ as an answer and provides the simplest illustration
of our method: as x→ +∞, QΨ = 0 has two approximate solutions,

Ψ+ = e−
xy2

2

(
0
1

)
and Ψ− = e+

xy2

2

(
1
0

)
, (51)

the first of which should be chosen for Ψ0 in the asymptotic expansions

Ψ = x−κ(Ψ0 + Ψ1 + ...) . (52)

In this simple example, the sum Q =
∑∞

n=0Q
(n) terminates after the first two terms, and

0
!
= QΨ =

((
0 ∂y + xy

∂y − xy 0

)
+

(
∂x 0
0 −∂x

))(
x−κ(Ψ0 + Ψ1 + ...)

)
,

yields (as already anticipated, cp. (51))

(
0 ∂y + xy

∂y − xy 0

)
Ψ0 = 0
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and
(

0 ∂y + xy
∂y − xy 0

)
Ψn + xκ

(
∂x 0
0 −∂x

)
x−κΨn−1 = 0 , n = 1, 2, ... . (53)

Multiplying (53) by Ψ†
0 and integrating over y one sees that

∫ +∞

−∞

e−
xy2

2 xκ(0,−∂x)x
−κΨn−1dy

has to vanish, implying in particular

0 =

∫ +∞

−∞

(
y2

2
+
κ

x

)
e−xy2

dy ,

κ = −1

4
,

which proves that (50) does not admit any square–integrable solution of the form (52).
A different approach has recently been undertaken by Avramidi [26]. Finally note that,
calculating the Ψn>0 from (53), yields the asymptotic expansion, x→ +∞,

Ψ(x, y) = x
1

4e−
xy2

2

∞∑

n=0

x−
3n
2

(
y
4x
fn(xy2)
gn(xy2)

)
,

where f0 = 1 = g0, f1 = 0 = g1, and the fn(s), gn(s) are the (unique) polynomial solutions

fn(s) =

n∑

i=0

fn,is
i , gn(s) =

n∑

i=0

gn,is
i

of

2sf ′
n + (1− 2s)fn = (1− 2s− 6n) gn + 4sg′n ,

8g′n+2 =

(
3

4
+
s

2
+

3n

2

)
fn − sf ′

n .
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