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Abstract

We derive the power law decay, and asymptotic form, of SU(2) X Spin(d) invariant wavefunc-
tions satisfying Qg#=0 for al sy=2(d— 1) supercharges of reduced (d+ 1)-dimensional
supersymmetric SU(2) Yang—Mills theory, of, respectively, the SU(2) matrix model related to
supermembranes in d + 2 dimensions. © 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

During the past few years there has been renewed interest in matrix models, owing to
some interesting developments in string and M-theory, in particular the discovery of
D-branes.

Bosonic matrix models were originally introduced in the early eighties as regulariza-
tions of relativistic membrane dynamics; see Refs. [1-3]. (A particularly original feature
of the work in [1-3] is the use of non-commutative parameter spaces approximating
classical surfaces.) These models also arise as-dimensional reduction to 0+ 1 dimen-
sions of Yang—Mills theory. A few years later, supersymmetric matrix models were
proposed and analyzed in [4—-8]. There was comparatively little activity in the analysis of
these models until, three years ago, they were proposed as models for the dynamics of
DO-branes and of M-theory (with a flat, eleven-dimensional target space-time) in [9],
following seminal work in [10]. This led to a reinterpretation of the physical significance
of supersymmetric matrix models avoiding problems described in [8].

The question of whether the Hamiltonian of supersymmetric SU(N) matrix models
has a normalizable, unique, gauge-invariant ground state, for arbitrary N=2,3,... and
in different dimensions d =2,3,5 and 9, where d + 2 is the dimension of space-time,
has emerged as one of the fundamental issues in the study of these models and has
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attracted a lot of interest. Early negative results for d < 9 can be found in [11-13], at
least for N = 2. Different approaches to establishing properties of normalizable ground
states for various values of N and d = 9 have been developed in [14—21]. The approach
in [14—16,18] (see also Ref. [22] and references therein) is based on a calculation of the
Witten index. In [19], the asymptotic form of the ground state wave function for the
N=2,d=9 mode is derived with the help of Hamiltonian Born—Oppenheimer meth-
ods. A noteworthy feature of [19] is that the analysis applies to possible ground states
which are not Spin(9) singlets. In [13,23] a Born—Oppenheimer method involving an
explicit use of the supercharges is described. This note is an elaboration of the methods
proposed there. With the help of Born—Oppenheimer-type calculations with super-
charges, we find that asymptotically normalizable SU(2)- and Spin(d)-invariant ground
state wave functions do not exist for d = 2,3, and 5, whilein d = 9 dimensions precisely
one such wave function appears to exist (in agreement with Ref. [19)).

The paper is organized as follows. In Section 2 we recall the definition of the models,
and in Section 3 we state our main result about zero-modes. The proof is given in
Section 4 and Appendix A. We suggest to skip Subsection 4.5 and Appendix A at afirst
reading. As awarm-up the reader is advised to read Appendix B, where a simpler model
is treated by the same method.

2. The models

The configuration space of the bosonic degrees of freedom is X=R3? with
coordinates

d=(dg---,04) = (Asn) s=1,...a A-1.23"
To describe the fermionic degrees of freedom let, as a preliminary,

V' = (Yag)apor, s, (I=1...0), (1)

be the real representation of smallest dimension, called s, of the Clifford algebra with
d generators: {y®,y'} = 25%1. On the representation space, Spin(d) is realized through
matrices R € SO(s,), so that we may view

Spin(d) < SO(s,), (2)
as a simply connected subgroup. We recall that

o _ /24 d=012mods8,

9| 29241 otherwise,

where [-] denotes the integer part. We then consider the 2Clifford agebra with s,
generators and its irreducible representation on = C2™*. On #®3 the Clifford
generators

(@11"'l@sd):(@aA)a:l ..... sq, A=1,.23
are defined, satisfying {©, »,0;5} = 8,5 S55- The Hilbert space, finally, is
7 =L%(X,&%%). (3
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There is a natural representation of SU(2) X Spin(d) = (U,R) on .Z. In fact, the
group acts naturally on X through its representation SO(3) X SO(d) (which we also
denote by (U,R)). On 3 we have the representation % of Spin(s,) 2 R

A(R) O p#(R) =R, 65, (4)
where R=R(R) is its SO(s,) representation. Through SO(s,) = Spin(s,)/Z, and (2)
we have

Spin(d) = Spin(s,), (5
and thus a representation % of Spin(d). The representation % of SU(2) > U on #°®3 is
characterized by Z(U)*O, % (U) = U,z 0, 5.

We shall now restrict to d = 2,3,5,9, where s, = 2,4, 8, 16, the reason being that in
these cases

s;=2(d—1), (6)
whereas s, is strictly larger otherwise. Eq. (6) is essential for the algebra (7) below [6].

The supercharges, acting on .7, are given by the s; hermitian operators

Q=0, (—ingVi+3axa%s) (B=1....5),

1

where vy = 3(y%"'— y'y®). These supercharges transform as scalars under SU(2)

transformations generated by
i
‘]AB = _I(QSAasB - QSBasA) - E(@a;’-\@aB - @aB@aA) = I-AB + MAB'
and as vectors in R% under Spin(d) transformation generated by
) i
‘]st= _I(qs' Vt_qt' VS ) - Z @a’}’asé@BE LSt+ Mst-

The anticommutation relations of the supercharges are

{Q. aQ/;} = 8pH + Yat/; Oia€asc e (7)
Here, H is the Hamiltonian
9
H=— Y V.2+ ¥ (q.xq)*+ia (0, X 6) 75, (8)
s=1 s<t

which commutes with both J,5 and J. The question we address is the possibility of a
normalizable state s € 7 with zero energy, i.e. with Hys = 0, which is a singlet with
respect to both SU(2) and Spin(d). Note that on SU(2) invariant states H =2Q7 >0
and in fact the energy spectrum is ([8]) o(H)=[0,). Equivalently, we look for
zero-modes

Q=0 (B=1,...,8)-

3. Results
The potential ¥ _ (g, X g,)? vanishes on the manifold
Qs = rekg
with r >0 and e = ¥ _EZ= 1. The dimension of the manifold is 1+ 2+ (d — 1) = 3d
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— 2(d — 1). Pointsin a conical neighborhood of the manifold can be expressed in terms
of tubular (or ‘‘end-point’’) coordinates [25]

Qs = rekg + ril/zys (9)
with

y,-e=0, y.E,=0. (10)
A prefactor has been put explicitly in front of the transversal coordinates y,, so as to
anticipate the length scale r ~1/2 of the ground state. The change

(e,E,y) > (—e,—E)y) (11)

does not affect g.. Rather than identifying the two coordinates for g, we shall look for
states which are even under the antipode map (11).
We can now describe the structure of a putative ground state.

Theorem 1. Consider the equations Qg = 0 for a formal power series solution near
r = o of the form

P=r" Y oy, (12)
k=0

where

¥, = Y (e E,y) is square integrable with respect to dedE dy;
P 1sSU(2) X Spin(d) invariant;
W, # 0.

Then, up to linear combinations,

- d=9: The solution is unique, and k = 6;

- d=5: There are three solutions with k = —1 and one with k = 3;
- d = 3: There are two solutions with k= 0;

- d = 2: There are no solutions.

All solutions are even under the antipode map (11),

lrl’k(evE'y) = l/fk(_ey_ E,Y),
except for the state d =5, k = 3, which is odd.

Remark 2. The equation Qg4 = 0 can be viewed as an ordinary differential equation in
z=r%/2 for afunction taking values in L?(dedEdy,Z ®3) (see Eq. (14) below). It turns
out that z= oo is a singular point of the second kind [24]. In such a situation the series
(12) is typically asymptotic to a true solution, but not convergent.

Remark 3. The integration measure is dg=dr-r2de-rd IdE-r~ 24Dy =
r 2dr dedE dy. The wave function (12) is square integrable at infinity if [“drr2(r=<)? <
o, i.e. if k> 3/2. The theorem is consistent with the statement according to which only
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for d =9 a (unique) normalizable ground state for (8) (which would have to be even) is
possible.

Remark 4. Note that the connection of matrix models with supergravity requires the
zero-energy solutions to be Spin(d) singlets only for d = 9.

Remark 5. The result for d = 9 agrees with the one found in [19] for the Spin(9)-singlet
case.

The case d =2 can be dedt with immediately. We may assume y? = o3, y' =0,
(Pauli matrices), so that

i
M, = E @lA@ZA!

with commuting terms. Since, for each A=1,2,3,(0,,0,,)%= —1/4, we see tha
M,, has spectrum in Z/2+ 1/4. Given that L,, has spectrum Z, no state with
J, =0 is possible. We mention [11] that, more generally, for d = 2 no normalizable
SU(2) invariant ground state exists.

The proof of the theorem will thus deal with d = 9,5,3 only.

4. Proof

We shall first derive the power series expansion of the supercharges Q. To this end
we note that

d
3th = r1/2(5st - EsEt)(aAB - eAeB)WSB

d N d
+_ JRE—
2ysBa

+r7t r—
ar ysB

+i€gE Lga +i€sEsLg |+ O(r™%?),

€a Et(
(13)

with the remainder not containing derivatives with respect to r (see Appendix A for
derivation). This yields

~ 0
QB=r1/2Qg+r1(Q};ra—r+Qé)+r5/2Q§+... (14)
with r-independent operators

0
QE = _|@aA7atB(5st —EsE)(0pp — eAeB)W +0,-(exy,) EsVﬁSoEv

sB

QAEZ —i(0, )y, E,

+30, - (Yo XYy

sB

[ ad
Q= @aA%}ﬁ(eBEtLBA +enEslLg — > eaE Yss dy
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The explicit expressions of Qg (n> 2) will not be needed. We then equate coefficients
of powers of r~*/? in the equation Q4 = 0 with the result

QR+ (—(k+3(n—1)) Qb+ Q} )1 + Q2o+ ... + Qi =0
(n=01,...). (15)

4.1. The equation at n=10

The equation at n=0,
Qg#o=0, (16)

admits precisely the (not necessarily SU(2) X Spin(d) invariant) solutions

Yo(e.Ey) =e” LY/2[F(E.e)), (17)

(with y restricted to (10)), where the fermionic states |F(E,e)) can be described as
follows: Let n, be two complex vectors satisfying n,-n_=1,exn,= Fin, (and
hencen,-n,=0,n,Xn_= —ie). For any vector v € R* we may introduce @(v) =
0,v,, as well as fermionic operators @(v) - n, satisfying canonical anticommutation

relations:

{O(w) -n,.0() n}=up {@(u)-n..0()-n.}=0.

Then, |F(E,e)) is required to obey
O(v)-n, |F(E,e))=0 forEgy®v= +v. (18)

To prove the above, let us note that

{ 27Q2}=5a3"|0+%fﬁ Eieasc Mag€c: (19
HO 1) E 1) ? i 2
== (84— - —
(0 sEt)(8ag — €a€3) Yo 9y gys

+iEyse (0,X @;)=Hg +H?.

By contracting Eq. (19) with 8,, and vy, E, we see that Egs. (16), respectively, are
equivalent to the pair of equations

H %, =0, eapcMag€c o =0. (20)

Here, H? is a harmonic c;scillator in 2(d — 1) degrees of freedom, with orbital ground
state wave function e <% /2 and energy 2(d — 1). On the other hand,

HE = ~E3((@,-n.)(€;-n) = (@,-n.)(6;-n.))

= —5;+2P5(0,-n_)(0;-n,)+2P4(0, n,)(6O;-n_), (21)
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where we used the spectral decomposition E.y*= P*— P~. In view of (6), the equation
H %, = 0 is fulfilled iff the fermionic state is annihilated by the last two positive terms
in (21), i.e. if (18) holds. The second equation (20) is now also satisfied, since

3€ascMag€c = _IEe' (0,x06,)
= %((@a'n+)(@a'n—) - (@a'n—)(@a‘ n+))
=Pa_3(@a'n+)(@ﬁ'n—)_Pa+ﬁ(@a'n—)(@ﬁ'n+) (22)

annihilates |F(E,e)).
4.2. SU(2) x Spin(d) invariant states

We recall that the representation #[-] of Spin(d) on # is (Z[Rly)(q) =
Z(R(Y(R1q)), where #Z(R) acts on 3. Similarly for SU(2). The invariant solu-
tions among (17) are thus those which satisfy

#(U)|F(E,e)) =|F(E,Ue)), Z(R)|IF(E,e)) =|F(RE,e)), (23)

for (U,R) € SU(2) X Spin(d). These states are in bijective correspondence to states
invariant under the ‘little group’ (U,R) € U(1) X Spin(d — 1), i.e. to states |F(E,e))
satisfying

#(U)|IF(E,e)) =IF(E,e)), Z(R)IF(E,e)) =|F(E,e)), (24)

for some arbitrary but fixed (E,e) and all U, R with Ue= e, RE = E. The first relation
holds on all of (18). In fact the generator (22) of the group (U ) of rotations U about e
annihilates |F(E,e)), as we just saw. To discuss the second relation (24) we note that
the generators of Spin(d — 1) (i.e. of the fermionic rotations about E), are M, U.V, with
U.E, = V.E,= 0. We write M, = Mg + M/, where

st

Mg = —(1/2)(0, n.)5(0-n),  Mg=—(i/4)(0, e)75(6;e),
(25)

and remark that, by a computation similar to (22), Mg UV, annihilates |F(E,e)). Asa
result, we may study the representation # of the group Spin(d— 1) through its
embedding in the Clifford algebra generated by the @, - e.

The operators @, - e leave the space (18) invariant and act irreducibly on it. That
space is thus isomorphic to %, and Spin(s,) acts according to (4) (with @, , replaced by
0, - e). This representation decomposes (see e.g. Ref. [26]) as

Z = (Z(Sd/Z)*l)Jr@(Z(Sd/Z)*l)_ (26)

with respect to the subspaces where @ = 2%/2[1%_,0,-e= +1, and — 1, respectively.
The embedding (5) and the corresponding branching of the representation (but not the
statement of the theorem!) depend on the choice of the y-matrices. In order to select a
definite embedding, let

I SRR IR A IE
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with I' (j=1,...,d— 2) purely imaginary, antisymmetric, and {I"),I"*} = 25,1, ,.
Then (26) branches as (see Ref. [27], and Refs. [13,23], respectively)

(44 @ 84) @ 128, (d=9),
z=({(50olelel)o (404, (d=5), (28)
20 (1e1), (d=3),

when viewed as a representation of Spin(d). (The choice ¥,; = Raﬂa 8 R 5p With
Re O(sy), det R= —1 would have inverted the branchi ng of the representations on the
r.h.s. of (26)). The case d =3 deserves a remark, as there are additional inequivalent
embeddings Spin(d = 3) = Spin(s, = 4), and one has to consider the one appropriate to
(5). In fact Re Spin(3) = SU(2) acts in the fundamental representation on C2, the
irreducible representation space of the complex Clifford algebra with 3 generators. The
real representation (27) is obtained by joining two complex representations, followed by
an appropriate change T of basis. The embedding (5) is thus realized through R—
T '(R® 1,)T and the embedding su(2). = so(4). = su(2). ® su(2). is equivalent to
u+— (u,0).
The further branching Spin(d) <= Spin(d — 1) yields

(1le8,©35,)®(28®56,) ® (8,8, ®56,®56.), (d—1=8),

z={lolele(lod) e (2,02 )a(2,02.), (d—1=4),
(L1 )ele1,, (d—1=2).
(29)

The content of invariant states stated in the theorem is now manifest. One should notice
that for d = 3 the little group U(1) is abelian and the singlets 1, ; do not correspond to
invariant states. For later use we also retain the fermionic Spin(d) representation to
which the remaining singlets are associated,

44 (d=9); 1,115 (d=5); 1,1 (d=23), (30)
together with the corresponding eigenvalue of O:
O= 1 (d=9); 1,111 (d=5); -1,-1 (d=3). (31)

4.3. Even states

It remains to check which of these states satisfy |F(—E,— e)) =|F(E,e)). Let us
begin by noting that by (23)
| F( _ E, _ e)> — ei MABeAuBﬂ'eiMstEsUtT"| F( E,e)>,
where u € R3 and U € R? are unit vectors orthogonal to e and E, respectively. The
Spin(d) rotation can be factorized as € MsELim = /M EUmgiMiEUm \We claim that
eVEUT |F(E,e)) = o|F(E,e)) with

o=1 (d=9);
o=111,-1 (d=5):; (32)
o=11 (d=3).

The operator represents a rotation R e Spin(d) with RE= —E in the representation
(30). For d=9 the latter can be realized on symmetric traceless tensors T;;, (i, =
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1,...,9), where the Spin(8)-singlet is E E; — (1/9)§,;, implying o= 1. For d =5, the
last representation (30) is just the vector representation, where o= —1. As the
remaining cases are evident, Eq. (32) is proven. A computation using (27) and, without
loss E=(0,...,0,1),U=(0,...,1,0) shows
Sq/2
eiMdJ,-d—17T| F( E’e)> = 1_[ é(@u'n+)(@a+sd/2'n—)_(@a+sd/2'n+)(@a'nf)]77/2| F( E’e)>

o2 )
= T1(0.iq2n.)(0, 0 )IF(ER) =IF(Ee)),

a=
Sd

eiMABeAuB7T| |E( Eye)) — 1_[ e(@a'e)(@a'u)ﬂ'l |E( E'e)>

a=1
s/2 ~
=(-1 ) Ul(@a ‘ n+)(@a+sd/2 n_)IF(E,e))

=|F(E,e)),
where we used (31) in the last step. Together with (32) this proves the statement of
theorem concerning the invariance under (11).

4.4. The equation at n> 0

We next discuss Egs. (15), with n> 1. Let P, be the orthogonal projection onto the
states (17), i.e. onto the null space of Qg. We replace them with an equivalent pair of
equations, obtained by multiplication of (15),, , with P;, and (15), with Qg, respec-
tively, which is injective on the range of the complementary projection Py =1 — P:

PO(_(K+ %n))éé_*' Q;l;) Poll’n: _PO(Q}; 5Olrlln_‘_(g[%:l;[lnfl_{— +QE+1¢0)

(n=04,...), (33)
(@) v = — QB[ (x+ 2(n— 1)) 8+ Qb )1+ Qe o+ ... + Qo)
(n=12,...) (34)

(we used Po(jé P, = 0). Here, and until the end of this subsection, no summation over 8
is understood. Eq. (33) at n=0 reads

PoQb o = kPo Qg (= k Qg ). (35)

We shall verify this by explicit computation later on. Since a similar issue will show

up in solving Eq. (33) a n> 0, let us aso present a more general statement, whose
proof is postponed to the next subsection.

Lemma 6. Let T, be linear operators on the range of P,, which transform as real
spinors of Spin(d) and commute with the antipode map. Then, for each invariant state
we have

Tetho = K Qf ¥, (36)
with k depending only on the associated representation (30).
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We now assume having solved Egs. (33), (34) up to n— 1 for Spin(d) invariant
Y1, ... ¥,_, (whichistrue for n—1=0), and claim the same is possible for n. Since
QY isinvertible on the range of Py, Eq. (34), determines P, ¢, uniquely. The fact that
the solution so obtained is independent of 8 and is Spin(d) invariant may deserve a
comment, because the equivalence of the equations Qg¢=0 and (Q,)%= 0, which
holds on (3), does not apply in the sense of formal power series (12). Consider the
expansion (14), i.e.

0 . " 0
Q=12 Y r#[Qs],. [QB]k=Q5+81kQ}3ra_r’
k=0
as well as its formal square
2 Z _3 2
(@) =r T *[(@)],

Notice that (QB)2 is, by (7), independent of 8 and Spin(d) invariant as an operator on
SU(2) invariant power series. Similarly, let [Qg ], (given by the Lh.s. of (15)) and
[(Qg)3) ] be the coefficients of the corresponding series. By induction assumption we
have [Qz /] =0for k=0,...,n— 1. Since Q4(Q, ¥) = (Qz)%), we obtain

[(@)0],= X Qi[Qu], ~ (x+ 2n-2&[Qu], , = GFlQu ],

[(Qe)*w] = (QR) v+ s,

where i, , (determined by ¢, ..., ,) has the desired properties. The Eq. (34),,, i.e.
QalQg 1, = 0is thus equivalent to (Qg), = — ¢;,_,, which exhibits the claim.

On the other hand, invariance requires P, to be a linear combination of invariant
singlets. For the ansatz Py, = A, Eq. (33), reads

%n)\néi& lrllo = PO(Q/]; ISOlr[/n + Q/? l!jn—l +... +QE+1¢10)!
because of (35). Again, by the lemma, this holds true for suitable A,. Indeed, this
solution for Py, is the only one.

4.5. Proof of the lemma

The vectors Tg i, (B=1,...,sy transform under Spin(d) as rea spinors, although
they might be linearly dependent. By reducing matters to the little group as before, any
representation of that sort is specified by the values |FP(E,e)) of its states (see (17)) at
one point (E,e), which are required to satisfy

Rs.(R)IF*(E,e)) =%(R)|FF(E,e))

for R with RE = E. Pretending the states |FA(E,e)) to be linearly independent, the
branching Spin(d) < Spin(d — 1) yields

16=8,08, (d=9); 4@4=(2,92 )@ (2,02_) (d=5);
202=(L,¢1_))e (1,21 ;) (d=3).
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For d =9,5 each term on the r.h.s. occurs as often as in (29), and s, can indeed be
chosen so that the s, vectors Q1 i, are independent. Not so in the last case, where the
vectors T, i, just belong to 1, EB 1_,. We continue the discussion for different values of
d separately.

@® d=9. Any linear transformation K commuting with a Spin(9) representation as
above isthus of the form K = k& k.. If K also commutes with the antipode map, then
ks = K. = k. Applying this to the representation Qj ¢, and to the map K: Qp s, — T, ¥y
yields the claim.

@ d=5 Letusregroup 2,82 )8 (2,2 )=(2,®1,)8(2_®1,). Then any
map K commuting with the representation is of the form

K=(1®K,)® (1®K_),
where K_ isconjugateto K, if K commutes with the antipode map. This allows for a

four-dimensional space of such maps K. To proceed further we shall again assume that
E=(0,...,0,1) and introduce creation operators

1
« ‘/—[(@ &) +i(0,.,-0)], (a=1,...4)

which then define a vacuum through a,|0) = 0. We next choose an orthonormal basis
{13, ...,g) for the 4-dimensional subspace of singletsin the range of P, by specifying
the values of the corresponding fermionic parts (see (17)) at (E,e):

a

1
IF3(E.e)) = = (10> ~aa; 858 0)),
1 i .
Fi(E0) = 5= Tpaa :'°>=Iz(v“?')aﬁ(@a-e)(@ﬁ'e)|F6‘(E,e)>,
(i=1.23),
where
S0 iF_ o __(3 0
7 (—ifi 0 Ve (o 2)

with 3 O(4) and det X = — 1. Note that ¢, is the singlet belonging to the 5-dimen-
sional fermionic representation of Spin(5). One can verify that the four maps

Qs (i=123),
Y EQLyg, (i=4),

besides being of the kind just discussed, are linearly independent. Therefore any map K
of the above form is a linear combination thereof. In partlcular this applies, for any
(x,x,) € R***, to the map K: QB Y3 = X Tty + X, ¥, ET, g, hence

X Tatho + Xa Yo ET 05 = i QB Yo+ Ya¥sa EQLys.
This defines a linear map «:(x,x,) = (y,y,) on R***. We claim that

K< (RX,Xg) = (RY, Ya) (37)
for Re SO(3), which implies k = diag(k, = k, = k3,k,) and hence (36). Eq. (37) can

w%%w{
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be proven using R;; ¢r0 Yl for % € Spin(8) proj ecting to R < Spin(3) c Spin(5) =
SO(8). Thisin turn followsfrom (4) and from #yr§ = 5.
® d=3. Analogously to d=09.

4.6. Determination of

Since Jag i, = Iyt = 0 we may replace Qp by
i 0
Q;ls = @aAVatB —€gE Mgp — €,EMg — > eAEIySBV

sB
+30, (Vs X ¥) You - (38)
We discuss the contributions to (35) of these four terms separately.
(i) With
i

egMga= — E((@ﬁ : e)@BA - @BA(@B ) e))
we find

0,n8Mga=i((0,n.)(@;-n_)+ (0, n_)(6;-n,))(6; e),

PO, A€ Mgatho = 1( 0, - €) s,
since only the term with 8= « survives the projection P,. Hence

—Py06, AYaB eg EMgatho = QB o (39)
contributes 1 to «.
(i) Similarly,

—Py(0, - e)?’at;s EsMg o= — (6, - e)%}ﬁ E.Mq ¥,

where M is given in (31). For the r.h.s. we then claim

_(@ e)VaﬁEMH‘lfo KQﬁ‘lfo (40)
with
9, (d=9),
k'={0,0,0,4, (d=5), (41)
0,0, (d=3).

This is clear in the cases where the representation in (30) is aready a singlet, i.e. when
k' = 0. To prove the two remaining cases we first establish

_(@ e)YuBEM”lﬂo —I—Yug 5[@ eM”M"]w

2

( @a ’ e) ’}IaSB ES ‘/fo ’ (42)
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or the equivalent eguation obtained by multiplication from the right with E,y":

|
(0, e)(vY") apEuEsMg ho = — E[@B : e'MthMu”t] o

d>—d
8 (@B . e)l/lo. (43)
To this end we note that, by the invariance of ,, its fermionic part |[F(E,e)) at
E e S* ! isinvariant under rotations of Spin(d) leaving E fixed: (8, — E,E9)MJ(3,,
—E,E)ip=0, ie
(Mgt By Es+ My, E, B ) o = My o (44)
Using y'y" = —y"“'+ §"'1 and the observation just made we rewrite the I.h.s. of (43)
as

_(@a : e)(yLyu)aB EuEsMs‘i o= (@a : e)yau/; E, EsMsl'l Yo
= %(@a ’ e)')’au[;( E, EsMsl'l = ESMS‘L)l?[lO
= %(@a ’ e)’)/au[; MUHt 0
The commutation relation
i[O, eM}] =374(0;-e)
follows from (4) or by direct computation. It implies
i[0, e MIML] = 3%5{6- e M} =75(0, )M — 375 05 e M{]
2

= %5 (@5 - €)M —i 2
Solving for the first term on the r.h.s. proves (43) and hence (42). Let us now note that
for d=9 the fermionic part of ¢, and (@, -e)y, belongs to the 44 and 128
representation respectively of Spin(9) (see (28)). Eq. (42) then implies
—(0,- e)VatB EsMs‘i o= (C(44) - C(128) + 9)@; o= 9(3; o,
where we used the values [27] of the Casimir: C(44) = C(128) = 18. Inthe case d=5

the fermionic part of ¢, and (@, - e)y, belongs to the representation 5 and 4 & 4,
respectively. We conclude that

~(0, &) 7s E;MU v = (C(5) — C(4) + 3)Qhtho = 4Q5 v,
given that C(5) = 4,C(4) =5/2.
We remark that the proof of (41) can be shortened by using the lemma, according to

which (40) holds true for some «’. Thus, contracting with Q}g Y, and summing over 3,
we find

- Kl(‘rIIO!QA;l; QAlls 1,00) = _i((r[IO’(@y : e)ny;B Eu( @a ' e)‘)/atB EsMs‘i ‘/’0)
=4(¢O’EuMu”tMs‘l Eslrl’O)
= 2( %o, Myt (M{ B, Eg + My, E, B ) o) = 2( 0, Myt Mo ).

In the step before last we relabeled indices in half the expression; in the last one we used
(44). Using Q;Q; = —s;/2 we obtain (s;/2)x’=2-2-C, i.e. k' =8C/s,, where C

0, e.
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is the Casimir in the representation (30). The above values of C(44)(d=19) and of
C(5)(d=05) yield az\gain (42). ,
(iii) Using de ¥ /2 /dy = —ye ¥ /? we get

d
%ySBa_l//0= —3Yes Ysa Yo = _%Z(ySZB - %)% -3 2(d—1) ¢y, (45)
ysB sB
where the sum, consisting of second Hermite functions, is annihilated by P,.

(iv) The last term in (38), when acting on s, is similarly annihilated by P,.
Collecting terms (39, 41, 45) we find

6, (d=09),
k=1+k'—3(d=1)={-1,-1,-13, (d=5),
0,0, (d=3).
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Appendix A

To prove (13) we shall compute the partial derivativesin
d ar 9 deg 4 IE, 0 dyg 9
= — + — + .
s IGa Or  JGa d€g G JE;  IOs dYeg

(A1)

We regard r,e,E,y as functions of q defined by e = ¥ _EZ=1 and (9, 10) and solve
for their differentials by taking different contractions of

do . = (eAEt - %lﬁs/z)’tA)dr + rE,de, + re dE, +r~/2dy, 5.
Using that

eady;a + Yiade, =0, Eidyia + YiadE =0, exde, =0, E.d& =0,
the contractions are

exE dg, =dr,
(8ga — €5€,) E dg s = rdeg —r=1/?y,,dE,, (A.2)
eA( 85t - EsEt) dth = rdEs - r_l/zysAdeA' (A3)

(%sn —€€a) (04 — EsE) dia = — %r_3/2YsBdr + r—1/2( dysg + €5 Ysalen
+ EsthdEt)'
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We solve (A.2), (A.3) for deg, dE:
dr = e, E,do .
=(m™) BC(r_l(8CA —€ce) B+ r_5/2theA)dth
= (r"!(8ga—€g€x) E, + O(r™>/%))dqy,,
dEs = ( Mil)su(ril(‘sut —-EE)e + rfs/zysAEt)dth
= (r"1( 84— EqE) ey + O(r~°/?))do,,
dyeg = [rl/z(SBA_ es€)) (84 —EE) + 3 _leAEtysB]dth_ €g Ysnl€n
— EYigdE,,
where m,M are the matrices
Mag = 8ap =1 “ViaVie: Mo =084 =1 YoaVia-
We can now read off the partial derivatives appearing in (A.1) and obtain

B 9 9
el | r— ar ZySBaySB

=rY2(84— E;E)(8p5 — €r€5) +r

dGa 9Yep

0 0
+ 17 (8pc — €ac) Et( 5033_68 —€g ySCFSB)

+O(r™%2), (A.4)

0
usHE EsyuBF

S sB

+ r_1(5ut_ EuEt)eA(8

with the remainder not containing derivatives with respect to r. Finally, we insert this
expression into

. 9 9
BA = ClsawSA - quWSB

i) J
Oac7— — & ySAV

J
= [(SAC_eAeC)ysB_(6BC_eBeC)ysA]V + e e
C sC

sC

0 J
—€ 53c dee — €Y7 ay,
sC

(with no higher order corrections, as L, is of exact order O(r°)) and then into

9 d
Il’_leBEtLBA = r_l( Opc — eAec) Et(SCBa_eB GV 9Ysp )

Similarly, we have

ad d
Ir_leAEsLst:r_l(aut_EuEt)eA( aES —E yuB aysB)

Together with (A.4), this proves (13).
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Appendix B
Consider
H=(—a2—a2+x2y?)1+ | * 7Y B.1
_( X y X y ) _y —X |’ ( : )

which is the square of
( a, d, +xy
Q=il, - — 9
vy XY X
Just asin (8), the bosonic potential V (= x?y?) is non-negative, but vanishing in regions
of the configuration space that extend to infinity (causing the classical partition function
to diverge). Quantum mechanically, just asin (8), the bosonic system is stabilized by the
zero point energy of fluctuations transverse to the flat directions; the fermionic matrix
part in (B.1) exactly cancels this effect, causing the spectrum to cover the whole positive
real axis[8]. Assimple asit is, it has remained an open question (for now more than ten
years) whether (B.1) admits a normalizable zero energy solution, or not. The argument,
derived in a few lines below, gives ‘no’ as an answer and provides the simplest
illustration of our method: as x — +, Q¥ = 0 has two approximate solutions,

v,—e »(0) ad w_=e (L, (B.2)
1 0
the first of which should be chosen for ¥, in the asymptotic expansions
V=x""(¥Yy+ ¥, +...). (B.3)
In this simple example, the sum Q = X7 _ ,Q'™ terminates after the first two terms, and
| 0 d, + xy 9 0 ~
0=Q¥= (ay_xy 0 +(O 4, (X (W + W +...)),
yields (as dready anticipated, cf. (B.2))
0 a, + xy v —0
d,—xy 0 0
and
O ATw vl % % | o n-12 (B.4)
d—xy 0 n 0 -4 n-1m e '

Multiplying (B.4) by ¥, and integrating over y one sees that

Tt a2
f e Y x(0,— 4,)x ¥, _,dy

has to vanish, implying in particular

Yk
_+_
X

e Yy,
5 y

which proves that (B.1) does not admit any square-integrable solution of the form (B.3).
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A different approach has recently been undertaken by Avramidi [28]. Finally note that,
calculating the ¥, , from (B.4), yields the asymptotic expansion, x — + o,

y
L1 e 3n [ —f 2
Y(x,y)=xe 2 ) x 5| 4X (9%) ,
n=0 9n(y?)
where f,=1=g,, f,=0=g,;, and the f(s), g.(s) are the (unique) polynomial
solutions

fn( S) = Z fn,isi1 gn( S) = Z gn,iSi
i=0 i=0

of
28t/ +(1—-2s)f,=(1—-2s—6n)g, +4sg,,
) 5 S 3n )
89n+2= Z+E+7 fn_an'
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