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Abstract

Ž . Ž .We derive the power law decay, and asymptotic form, of SU 2 =Spin d invariant wavefunc-
Ž . Ž .tions satisfying Q cs0 for all s s2 dy1 supercharges of reduced dq1 -dimensionalb d

Ž . Ž .supersymmetric SU 2 Yang–Mills theory, of, respectively, the SU 2 matrix model related to
supermembranes in dq2 dimensions. q 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

During the past few years there has been renewed interest in matrix models, owing to
some interesting developments in string and M-theory, in particular the discovery of
D-branes.

Bosonic matrix models were originally introduced in the early eighties as regulariza-
w x Žtions of relativistic membrane dynamics; see Refs. 1–3 . A particularly original feature

w xof the work in 1–3 is the use of non-commutative parameter spaces approximating
.classical surfaces. These models also arise as-dimensional reduction to 0q1 dimen-

sions of Yang–Mills theory. A few years later, supersymmetric matrix models were
w xproposed and analyzed in 4–8 . There was comparatively little activity in the analysis of

these models until, three years ago, they were proposed as models for the dynamics of
Ž . w xD0-branes and of M-theory with a flat, eleven-dimensional target space-time in 9 ,

w xfollowing seminal work in 10 . This led to a reinterpretation of the physical significance
w xof supersymmetric matrix models avoiding problems described in 8 .
Ž .The question of whether the Hamiltonian of supersymmetric SU N matrix models

has a normalizable, unique, gauge-invariant ground state, for arbitrary Ns2,3, . . . and
in different dimensions ds2,3,5 and 9, where dq2 is the dimension of space-time,
has emerged as one of the fundamental issues in the study of these models and has
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w xattracted a lot of interest. Early negative results for d-9 can be found in 11–13 , at
least for Ns2. Different approaches to establishing properties of normalizable ground

w xstates for various values of N and ds9 have been developed in 14–21 . The approach
w x Ž w x .in 14–16,18 see also Ref. 22 and references therein is based on a calculation of the

w xWitten index. In 19 , the asymptotic form of the ground state wave function for the
Ns2, ds9 model is derived with the help of Hamiltonian Born–Oppenheimer meth-

w xods. A noteworthy feature of 19 is that the analysis applies to possible ground states
Ž . w xwhich are not Spin 9 singlets. In 13,23 a Born–Oppenheimer method involving an

explicit use of the supercharges is described. This note is an elaboration of the methods
proposed there. With the help of Born–Oppenheimer-type calculations with super-

Ž . Ž .charges, we find that asymptotically normalizable SU 2 - and Spin d -invariant ground
state wave functions do not exist for ds2,3, and 5, while in ds9 dimensions precisely

Ž w x.one such wave function appears to exist in agreement with Ref. 19 .
The paper is organized as follows. In Section 2 we recall the definition of the models,

and in Section 3 we state our main result about zero-modes. The proof is given in
Section 4 and Appendix A. We suggest to skip Subsection 4.5 and Appendix A at a first
reading. As a warm-up the reader is advised to read Appendix B, where a simpler model
is treated by the same method.

2. The models

The configuration space of the bosonic degrees of freedom is XsR3d with
coordinates

qs q , . . . ,q s q .Ž . Ž .1 d s A ss1, . . . ,d , As1,2,3

To describe the fermionic degrees of freedom let, as a preliminary,

g i s g i is1, . . . ,d , 1Ž . Ž .Ž .ab a ,bs1, . . . , sd

be the real representation of smallest dimension, called s , of the Clifford algebra withd
� s t4 st Ž .d generators: g ,g s2d 1. On the representation space, Spin d is realized through

Ž .matrices RgSO s , so that we may viewd

Spin d ®SO s , 2Ž . Ž . Ž .d

as a simply connected subgroup. We recall that

w xdr22 , ds0,1,2 mod 8,s sd w x½ dr2 q12 otherwise,

w xwhere P denotes the integer part. We then consider the Clifford algebra with sd

generators and its irreducible representation on CCsC2 sd r2
. On CCm3 the Clifford

generators

Q , . . . ,Q s QŽ .Ž . as1, . . . , s , As1,2,31 s a A dd

� 4are defined, satisfying Q ,Q sd d . The Hilbert space, finally, isa A b B a b A B

HHsL2 X ,CCm3 . 3Ž . Ž .
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Ž . Ž . Ž .There is a natural representation of SU 2 =Spin d 2 U, R on HH. In fact, the
Ž . Ž . Žgroup acts naturally on X through its representation SO 3 =SO d which we also

Ž .. m3 Ž .denote by U, R . On CC we have the representation RR of Spin s 2Rd
) ˜RR R Q RR R sR Q , 4Ž . Ž . Ž .a A a b b A

˜ ˜Ž . Ž . Ž . Ž . Ž .where RsR R is its SO s representation. Through SO s sSpin s rZ and 2d d d 2

we have

Spin d ®Spin s , 5Ž . Ž . Ž .d

Ž . Ž . m3and thus a representation RR of Spin d . The representation UU of SU 2 2U on CC is
Ž .) Ž .characterized by UU U Q UU U sU Q .a A A B a B

We shall now restrict to ds2, 3, 5, 9, where s s2, 4, 8, 16, the reason being that ind

these cases

s s2 dy1 , 6Ž . Ž .d

Ž . Ž . w xwhereas s is strictly larger otherwise. Eq. 6 is essential for the algebra 7 below 6 .d

The supercharges, acting on HH, are given by the s hermitian operatorsd

1t s tQ sQ P yig = q q =q g bs1, . . . ,s ,Ž .Ž .b a a b t s t ba d2

1st s t t sŽ . Ž .where g s g g yg g . These supercharges transform as scalars under SU 22

transformations generated by

i
J syi q E yq E y Q Q yQ Q 'L qM ,Ž . Ž .A B s A sB sB s A a A a B a B a A A B A B2

sd Ž .and as vectors in R under Spin d transformation generated by

i
stJ syi q P= yq P= y Q g Q 'L qM .Ž .st s t t s a a b b st st4

The anticommutation relations of the supercharges are

Q ,Q sd Hqg t q ´ J . 7� 4 Ž .a b a b a b t A A BC BC

Here, H is the Hamiltonian
9

22 sHsy = q q =q q iq P Q =Q g , 8Ž . Ž .Ž .Ý Ýs s t s a b a b

ss1 s-t

which commutes with both J and J . The question we address is the possibility of aA B st

normalizable state cgHH with zero energy, i.e. with Hcs0, which is a singlet with
Ž . Ž . Ž . 2respect to both SU 2 and Spin d . Note that on SU 2 invariant states Hs2Q 00b

Žw x. Ž . w .and in fact the energy spectrum is 8 s H s 0,` . Equivalently, we look for
zero-modes

Q cs0 bs1, . . . ,s .Ž .b d

3. Results

Ž .2The potential Ý q =q vanishes on the manifolds- t s t

q sreEs s

2 2 Ž .with r)0 and e sÝ E s1. The dimension of the manifold is 1q2q dy1 s3ds s
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Ž .y2 dy1 . Points in a conical neighborhood of the manifold can be expressed in terms
Ž . w xof tubular or ‘‘end-point’’ coordinates 25

q sreE qry1r2 y 9Ž .s s s

with

y Pes0, y E s0. 10Ž .s s s

A prefactor has been put explicitly in front of the transversal coordinates y , so as tos

anticipate the length scale ry1r2 of the ground state. The change

e , E, y ¨ ye ,yE, y 11Ž . Ž . Ž .
does not affect q . Rather than identifying the two coordinates for q , we shall look fors s

Ž .states which are even under the antipode map 11 .
We can now describe the structure of a putative ground state.

Theorem 1. Consider the equations Q cs0 for a formal power series solution nearb

rs` of the form
`

3yk y k2csr r c , 12Ž .Ý k
ks0

where

c sc e , E, y is square integrable with respect to de dE dy ;Ž .k k

c is SU 2 =Spin d invariant;Ž . Ž .k

c /0.0

Then, up to linear combinations,
P ds9: The solution is unique, and ks6;
P ds5: There are three solutions with ksy1 and one with ks3;
P ds3: There are two solutions with ks0;
P ds2: There are no solutions.

Ž .All solutions are even under the antipode map 11 ,

c e , E, y sc ye ,yE, y ,Ž . Ž .k k

except for the state ds5, ks3, which is odd.

Remark 2. The equation Q cs0 can be viewed as an ordinary differential equation inb
3r2 2Ž m3. Ž Ž . .zsr for a function taking values in L de dE dy,CC see Eq. 14 below . It turns

w xout that zs` is a singular point of the second kind 24 . In such a situation the series
Ž .12 is typically asymptotic to a true solution, but not convergent.

12 dy1 y P2Ždy1.2Remark 3. The integration measure is dq s dr P r de P r dE P r dy s
2 Ž . ` 2Ž yk .2r dr de dE dy. The wave function 12 is square integrable at infinity if H dr r r -

`, i.e. if k)3r2. The theorem is consistent with the statement according to which only
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Ž . Ž . Ž .for ds9 a unique normalizable ground state for 8 which would have to be even is
possible.

Remark 4. Note that the connection of matrix models with supergravity requires the
Ž .zero-energy solutions to be Spin d singlets only for ds9.

w x Ž .Remark 5. The result for ds9 agrees with the one found in 19 for the Spin 9 -singlet
case.

The case ds2 can be dealt with immediately. We may assume g 2 ss , g 1 ss3 1
Ž .Pauli matrices , so that

i
M s Q Q ,12 1 A 2 A2

Ž .2with commuting terms. Since, for each As1,2,3, Q Q sy1r4, we see that1 A 2 A

M has spectrum in Zr2q1r4. Given that L has spectrum Z, no state with12 12
w xJ cs0 is possible. We mention 11 that, more generally, for ds2 no normalizable12

Ž .SU 2 invariant ground state exists.
The proof of the theorem will thus deal with ds9,5,3 only.

4. Proof

We shall first derive the power series expansion of the supercharges Q . To this endb

we note that

E E
1r2sr d yE E d ye eŽ . Ž .st s t A B A BE q E yt A sB

E E
1y1 y5r2qr e E r q y q ie E L q ie E L qO r ,Ž .A t sB B t B A A s st2ž /E r E ysB

13Ž .
Žwith the remainder not containing derivatives with respect to r see Appendix A for

.derivation . This yields

E
1r2 0 y1 1 1 y5r2 2ˆQ sr Q qr Q r qQ qr Q q . . . 14Ž .b b b b bž /E r

with r-independent operators

E
0 t s tQ syiQ g d yE E d ye e qQ P e=y E g ,Ž . Ž . Ž .b a A a b st s t A B A B a t s baE ysB

ˆ1 tQ syi Q Pe g E ,Ž .b a a b t

i E
11 t s tQ sQ g e E L qe E L y e E y q Q P y =y g .Ž .b a A a b B t B A A s st A t sB a s t ba2ž /2 E ysB
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n Ž .The explicit expressions of Q n02 will not be needed. We then equate coefficientsb

of powers of ry3r2 in the equation Q cs0 with the resultb

30 1 1 2 nˆQ c q y kq ny1 Q qQ c qQ c q . . . qQ c s0Ž .Ž .ž /b n b b ny1 b ny2 b 02

ns0,1, . . . . 15Ž . Ž .

4.1. The equation at ns0

The equation at ns0,

Q0 c s0, 16Ž .b 0

Ž Ž . Ž . .admits precisely the not necessarily SU 2 =Spin d invariant solutions

y y 2r2sÝ < :c e , E, y se F E,e , 17Ž . Ž . Ž .0 s

Ž Ž .. < Ž .:with y restricted to 10 , where the fermionic states F E,e can be described as
Žfollows: Let n be two complex vectors satisfying n Pn s1, e=n s.in and" q y " "

. sd Ž .hence n Pn s0, n =n syie . For any vector ÕgR we may introduce Q Õ s" " q y
Ž .Q Õ , as well as fermionic operators Q Õ Pn satisfying canonical anticommutationa a "

relations:

Q u Pn ,Q Õ Pn su Õ , Q u Pn ,Q Õ Pn s0.� 4 � 4Ž . Ž . Ž . Ž .q y a a " "

< Ž .:Then, F E,e is required to obey

< : sQ Õ Pn F E,e s0 for E g Õs"Õ. 18Ž . Ž . Ž ." s

To prove the above, let us note that

Q0 ,Q0 sd H 0 qg t E ´ M e , 19Ž .� 4a b a b a b t A BC A B C

E E
0 2H s y d yE E d ye e q yŽ . Ž . Ýst s t A B A B sE y E ys A tB s

q i E g s eP Q =Q 'H 0 qH 0 .Ž .s a b a b B F

Ž . t Ž .By contracting Eq. 19 with d and g E we see that Eqs. 16 , respectively, areab a b t

equivalent to the pair of equations

H 0c s0, ´ M e c s0. 20Ž .0 A BC A B C 0

0 Ž .Here, H is a harmonic oscillator in 2 dy1 degrees of freedom, with orbital groundB
yÝ s ys

2 r2 Ž .state wave function e and energy 2 dy1 . On the other hand,

H 0 syE g s Q Pn Q Pn y Q Pn Q PnŽ . Ž .Ž . Ž .Ž .F s a b a q b y a y b q

sys q2 Pq Q Pn Q Pn q2 Py Q Pn Q Pn , 21Ž . Ž . Ž .Ž . Ž .d a b a y b q a b a q b y
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s q y Ž .where we used the spectral decomposition E g sP yP . In view of 6 , the equations

H 0c s0 is fulfilled iff the fermionic state is annihilated by the last two positive terms0
Ž . Ž . Ž .in 21 , i.e. if 18 holds. The second equation 20 is now also satisfied, since

i
1
´ M e sy eP Q =QŽ .A BC A B C a a2 2

1s Q Pn Q Pn y Q Pn Q PnŽ . Ž . Ž . Ž .Ž .a q a y a y a q2

sPy Q Pn Q Pn yPq Q Pn Q Pn 22Ž . Ž . Ž .Ž . Ž .ab a q b y a b a y b q

< Ž .:annihilates F E,e .

( ) ( )4.2. SU 2 =Spin d inÕariant states

w x Ž . Ž w x .Ž .We recall that the representation RR P of Spin d on HH is RR R c q s
Ž .Ž Ž y1 .. Ž . m3 Ž .RR R c R q , where RR R acts on CC . Similarly for SU 2 . The invariant solu-

Ž .tions among 17 are thus those which satisfy

< : < : < : < :UU U F E,e s F E,Ue , RR R F E,e s F RE,e , 23Ž . Ž . Ž . Ž . Ž . Ž . Ž .
Ž . Ž . Ž .for U, R gSU 2 =Spin d . These states are in bijective correspondence to states

Ž . Ž . Ž . < Ž .:invariant under the ‘little group’ U, R gU 1 =Spin dy1 , i.e. to states F E,e
satisfying

< : < : < : < :UU U F E,e s F E,e , RR R F E,e s F E,e , 24Ž . Ž . Ž . Ž . Ž . Ž . Ž .
Ž .for some arbitrary but fixed E,e and all U, R with Uese, REsE. The first relation

Ž . Ž . Ž .holds on all of 18 . In fact the generator 22 of the group UU U of rotations U about e
< Ž .: Ž .annihilates F E,e , as we just saw. To discuss the second relation 24 we note that

Ž . Ž .the generators of Spin dy1 i.e. of the fermionic rotations about E , are M U V withst s t

U E sV E s0. We write M sM H qM I , wheres s s s st st st

M Hs y ir2 Q Pn g st Q Pn , M Isy ir4 Q Pe g st Q Pe ,Ž . Ž . Ž . Ž .Ž . Ž .st a q a b b y st a a b b

25Ž .
Ž . H < Ž .:and remark that, by a computation similar to 22 , M U V annihilates F E,e . As ast s t

Ž .result, we may study the representation RR of the group Spin dy1 through its
embedding in the Clifford algebra generated by the Q Pe.a

Ž .The operators Q Pe leave the space 18 invariant and act irreducibly on it. Thata

Ž . Ž . Žspace is thus isomorphic to CC, and Spin s acts according to 4 with Q replaced byd a A
. Ž w x.Q Pe . This representation decomposes see e.g. Ref. 26 asa

CCs 2Ž sd r2.y1 [ 2Ž sd r2.y1 26Ž . Ž . Ž .q y

with respect to the subspaces where Q'2 sd r2Ł sd Q Pesq1, and y1, respectively.as1 a

Ž . ŽThe embedding 5 and the corresponding branching of the representation but not the
.statement of the theorem! depend on the choice of the g-matrices. In order to select a

definite embedding, let

0 i G j1 0 0 1d dy1 jg s , g s , g s 27Ž .
jž / ž / ž /0 y1 1 0 yi G 0
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j Ž . � j k4with G js1, . . . ,dy2 purely imaginary, antisymmetric, and G ,G s2d 1 .jk s r2d

Ž . Ž w x w x .Then 26 branches as see Ref. 27 , and Refs. 13,23 , respectively

° 44[84 [128, ds9 ,Ž . Ž .
~ 5[1[1[1 [ 4[4 , ds5 ,Ž . Ž . Ž .CCs 28Ž .¢2[ 1[1 , ds3 ,Ž . Ž .

i ˜ i ˜Ž . Ž X X X Xwhen viewed as a representation of Spin d . The choice g sR g R with˜ab a a a b b b

˜ ˜Ž .RgO s , det Rsy1 would have inverted the branching of the representations on thed
Ž ..r.h.s. of 26 . The case ds3 deserves a remark, as there are additional inequivalent

Ž . Ž .embeddings Spin ds3 ®Spin s s4 , and one has to consider the one appropriate tod
Ž . Ž . Ž . 25 . In fact RgSpin 3 sSU 2 acts in the fundamental representation on C , the
irreducible representation space of the complex Clifford algebra with 3 generators. The

Ž .real representation 27 is obtained by joining two complex representations, followed by
Ž .an appropriate change T of basis. The embedding 5 is thus realized through R¨

y1Ž . Ž . Ž . Ž . Ž .T Rm1 T and the embedding su 2 ®so 4 ssu 2 [su 2 is equivalent to2 C C C C

Ž .u¨ u,0 .
Ž . Ž .The further branching Spin d ¢Spin dy1 yields

° 1[8 [35 [ 28[56 [ 8 [8 [56 [56 , dy1s8 ,Ž . Ž . Ž . Ž .v v v s c s c

~1[1[1[ 1[4 [ 2 [2 [ 2 [2 , dy1s4 ,Ž . Ž . Ž . Ž .CCs q y q y¢ 1 [1 [1 [1 , dy1s2 .Ž . Ž .1 y1 0 0

29Ž .
The content of invariant states stated in the theorem is now manifest. One should notice

Ž .that for ds3 the little group U 1 is abelian and the singlets 1 do not correspond to"1
Ž .invariant states. For later use we also retain the fermionic Spin d representation to

which the remaining singlets are associated,

44 ds9 ; 1,1,1,5 ds5 ; 1,1 ds3 , 30Ž . Ž . Ž . Ž .
together with the corresponding eigenvalue of Q :

Qs 1 ds9 ; 1,1,1,1 ds5 ; y1,y1 ds3 . 31Ž . Ž . Ž . Ž .

4.3. EÕen states

< Ž .: < Ž .:It remains to check which of these states satisfy F yE,ye s F E,e . Let us
Ž .begin by noting that by 23

< : i MA B eA uBp i Mst EsUtp < :F yE,ye se e F E,e ,Ž . Ž .
where ugR3 and UgR d are unit vectors orthogonal to e and E, respectively. The

Ž . i Mst EsUtp i Mst
H EsUtp i Mst

I EsUtpSpin d rotation can be factorized as e se e . We claim that
i Mst

I EsUtp < Ž .: < Ž .:e F E,e ss F E,e with

ss1 ds9 ;Ž .
ss1,1,1,y1 ds5 ;Ž . 32Ž .
ss1,1 ds3 .Ž .

Ž .The operator represents a rotation RgSpin d with REsyE in the representation
Ž . Ž30 . For ds9 the latter can be realized on symmetric traceless tensors T , i, jsi j
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. Ž . Ž .1, . . . ,9 , where the Spin 8 -singlet is E E y 1r9 d , implying ss1. For ds5, thei j i j
Ž .last representation 30 is just the vector representation, where ssy1. As the

Ž . Ž .remaining cases are evident, Eq. 32 is proven. A computation using 27 and, without
Ž . Ž .loss Es 0, . . . ,0,1 , Us 0, . . . ,1,0 shows

s r2d
Hi M p wŽQ Pn .ŽQ Pn .yŽQ Pn .ŽQ Pn .xp r2d ,dy1 a q aqs r2 y aqs r2 q a y< : < :d de F E,e s e F E,eŽ . Ž .Ł

as1

s r2d

< : < :s Q Pn Q Pn F E,e ' F E,e ,Ž . Ž . Ž .Ž .Ł aqs r2 q a yd
as1

sd

i M e u p ŽQ Pe.ŽQ Pu.pA B A B a a< : < :e F E,e s e F E,eŽ . Ž .Ł
as1

s r2d
s r4d < :s y1 Q Q Pn Q Pn F E,eŽ . Ž . Ž .Ž .Ł a q aqs r2 yd

as1

< :s F E,e ,Ž .
Ž . Ž .where we used 31 in the last step. Together with 32 this proves the statement of

Ž .theorem concerning the invariance under 11 .

4.4. The equation at n)0

Ž .We next discuss Eqs. 15 with n01. Let P be the orthogonal projection onto then 0
Ž . 0states 17 , i.e. onto the null space of Q . We replace them with an equivalent pair ofb

Ž . Ž . 0equations, obtained by multiplication of 15 with P , and 15 with Q , respec-nq1 0 n b

tively, which is injective on the range of the complementary projection P s1yP :0 0

3 1 1 1 2 nq1ˆP y kq n Q qQ P c syP Q P c qQ c q . . . qQ c.Ž .Ž . ž /0 b b 0 n 0 b 0 n b ny1 b 02

ns0,1, . . . , 33Ž . Ž .
2 30 0 1 1 2 nˆQ c syQ y kq ny1 Q qQ c qQ c q . . . qQ cŽ .Ž .Ž . ž /ž /b n b b b ny1 b ny2 b 02

ns1,2, . . . 34Ž . Ž .
1ˆŽ .we used P Q P s0 . Here, and until the end of this subsection, no summation over b0 b 0

Ž .is understood. Eq. 33 at ns0 reads

1 ˆ1 ˆ1P Q c skP Q c sk Q c . 35Ž .ž /0 b 0 0 b 0 b 0

We shall verify this by explicit computation later on. Since a similar issue will show
Ž .up in solving Eq. 33 at n)0, let us also present a more general statement, whose

proof is postponed to the next subsection.

Lemma 6. Let T be linear operators on the range of P , which transform as realb 0
Ž .spinors of Spin d and commute with the antipode map. Then, for each invariant state

we have

ˆ1T c sk Q c , 36Ž .b 0 b 0

Ž .with k depending only on the associated representation 30 .
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Ž . Ž . Ž .We now assume having solved Eqs. 33 , 34 up to ny1 for Spin d invariant
Ž .c , . . . c which is true for ny1s0 , and claim the same is possible for n. Since1 ny1

0 Ž .Q is invertible on the range of P , Eq. 34 determines P c uniquely. The fact thatb 0 n 0 n
Ž .the solution so obtained is independent of b and is Spin d invariant may deserve a

Ž .2comment, because the equivalence of the equations Q cs0 and Q cs0, whichb b

Ž . Ž .holds on 3 , does not apply in the sense of formal power series 12 . Consider the
Ž .expansion 14 , i.e.

` E31r2 y k k 12 ˆQ sr r Q , Q sQ qd Q r ,Ýb b b b 1k bk k E rks0

as well as its formal square
`

32 2y k2Q sr r Q .Ž . Ž .Ýb b k
ks0

Ž .2 Ž . Ž .Notice that Q is, by 7 , independent of b and Spin d invariant as an operator onb

Ž . w x Ž Ž ..SU 2 invariant power series. Similarly, let Q c given by the l.h.s. of 15 andb k
wŽ .2 xQ c be the coefficients of the corresponding series. By induction assumption web k

w x Ž . Ž .2have Q c s0 for ks0, . . . , ny1. Since Q Q c s Q c , we obtainb k b b b

n
2 3k 1 0ˆQ c s Q Q c y kq ny2 Q Q c sQ Q c ,Ž . Ž .Ýb b b b b b b2nyk ny1 nn

ks0

22 0 ˜Q c s Q c qc ,Ž . Ž .b b n ny1n

˜ Ž . Ž .where c determined by c , . . . c has the desired properties. The Eq. 34 , i.e.ny1 0 ny1 n
0 0 2 ˜w x Ž .Q Q c s0 is thus equivalent to Q c syc , which exhibits the claim.b b n b n ny1

On the other hand, invariance requires P c to be a linear combination of invariant0 n
Ž .singlets. For the ansatz P c sl c , Eq. 33 reads0 n n 0 n

3 1 1 2 nq1ˆnl Q c syP Q P c qQ c q . . . qQ c ,ž /n b 0 0 b 0 n b ny1 b 02

Ž .because of 35 . Again, by the lemma, this holds true for suitable l . Indeed, thisn

solution for P c is the only one.0 n

4.5. Proof of the lemma

Ž . Ž .The vectors T c , bs1, . . . ,s transform under Spin d as real spinors, althoughb 0 d

they might be linearly dependent. By reducing matters to the little group as before, any
< bŽ .: Ž Ž ..representation of that sort is specified by the values F E,e of its states see 17 at

Ž .one point E,e , which are required to satisfy

˜ a b< : < :R R F E,e sRR R F E,eŽ . Ž . Ž . Ž .ba

< bŽ .:for R with REsE. Pretending the states F E,e to be linearly independent, the
Ž . Ž .branching Spin d ¢Spin dy1 yields

16s8 [8 ds9 ; 4[4s 2 [2 [ 2 [2 ds5 ;Ž . Ž . Ž . Ž .s c q y q y

2[2s 1 [1 [ 1 [1 ds3 .Ž . Ž . Ž .1 y1 1 y1



( )J. Frohlich et al.rNuclear Physics B 567 2000 231–248¨ 241

Ž .For ds9,5 each term on the r.h.s. occurs as often as in 29 , and c can indeed be0
ˆ1chosen so that the s vectors Q c are independent. Not so in the last case, where thed b 0

vectors T c just belong to 1 [1 . We continue the discussion for different values ofb 0 1 y1

d separately.
Ž .v ds9. Any linear transformation K commuting with a Spin 9 representation as

above is thus of the form Ksk [k . If K also commutes with the antipode map, thens c
ˆ1 ˆ1k sk 'k . Applying this to the representation Q c and to the map K : Q c ¨T cs c b 0 b 0 b 0

yields the claim.
Ž . Ž . Ž . Ž .v ds5. Let us regroup 2 [2 [ 2 [2 ( 2 m1 [ 2 m1 . Then anyq y q y q 2 y 2

map K commuting with the representation is of the form

Ks 1mK [ 1mK ,Ž . Ž .q y

where K is conjugate to K if K commutes with the antipode map. This allows for ay q
four-dimensional space of such maps K. To proceed further we shall again assume that

Ž .Es 0, . . . ,0,1 and introduce creation operators

1
)a s Q Pe q i Q Pe , as1, . . . 4Ž . Ž . Ž .a a aq4'2

< :which then define a vacuum through a 0 s0. We next choose an orthonormal basisa

� 1 44c , . . . ,c for the 4-dimensional subspace of singlets in the range of P by specifying0 0 0
Ž Ž .. Ž .the values of the corresponding fermionic parts see 17 at E,e :

1
4 ) ) ) )< : < : < :F E,e s 0 ya a a a 0 ,Ž . Ž .0 1 2 3 4'2

1 i
i i ) ) 4 i 4˜< : < : < :F E,e s G a a 0 s g g Q Pe Q Pe F E,e ,Ž . Ž . Ž .˜ Ž .Ž . ab0 a b a b a b 0' 42 2

is1,2,3 ,Ž .
where

˜ i0 i G S 0i y1 ig s ss g s , ss˜ ž /iž / 0 S˜yi G 0

Ž . 4with SgO 4 and det Ssy1. Note that c is the singlet belonging to the 5-dimen-0
Ž .sional fermionic representation of Spin 5 . One can verify that the four maps

° 1 iQ̂ c , is1,2,3 ,Ž .b 0i 1 1 ~ˆK : Q c ¨b 0 t 1 4¢ ˆg E Q c , is4 ,Ž .ba t a 0

besides being of the kind just discussed, are linearly independent. Therefore any map K
of the above form is a linear combination thereof. In particular this applies, for any

3q1 ˆ1 1 i t 4Ž .x, x gR , to the map K : Q c ¨x T c qx g E T c , hence4 b 0 i b 0 4 ba t a 0

i t 4 ˆ1 i t ˆ1 4x T c qx g E T c sy Q c qy g E Q c .i b 0 4 ba t a 0 i b 0 4 ba t a 0

Ž . Ž . 3q1This defines a linear map k : x, x ¨ y, y on R . We claim that4 4

k : Rx, x ¨ Ry, y 37Ž .Ž . Ž .4 4

Ž . Ž . Ž . Ž .for RgSO 3 , which implies ksdiag k sk sk ,k and hence 36 . Eq. 37 can1 2 3 4
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i j Ž . Ž . Ž .be proven using R c sRRc for RRgSpin 8 projecting to RgSpin 3 ;Spin 5 ®i j 0 0
Ž . Ž . 4 4SO 8 . This in turn follows from 4 and from RRc sc .0 0

v ds3. Analogously to ds9.

4.6. Determination of k

Since J c sJ c s0 we may replace Q1 byA B 0 st 0 b

i E
1 tQ sQ g ye E M ye E M y e E yb a A a b B t B A A s st A t sBž /2 E ysB

1 stq Q P y =y g . 38Ž . Ž .a s t ba2

Ž .We discuss the contributions to 35 of these four terms separately.
Ž .i With

i
e M sy Q Pe Q yQ Q PeŽ . Ž .Ž .B B A b b A b A b2

we find

Q e M s i Q Pn Q Pn q Q Pn Q Pn Q Pe ,Ž . Ž .Ž . Ž . Ž .Ž .a A B B A a q b y a y b q b

P Q e M c s i Q Pe c ,Ž .0 a A B B A 0 a 0

since only the term with bsa survives the projection P . Hence0

t ˆ1yP Q g e E M c sQ c 39Ž .0 a A a b B t B A 0 b 0

contributes 1 to k .
Ž .ii Similarly,

yP Q Pe g t E M c sy Q Pe g t E M Ic ,Ž . Ž .0 a a b s st 0 a a b s st 0

I Ž .where M is given in 31 . For the r.h.s. we then claimst

t I X ˆ1y Q Pe g E M c sk Q c 40Ž . Ž .a a b s st 0 b 0

with

°9 , ds9 ,Ž .
X ~0,0,0,4 , ds5 ,Ž .k s 41Ž .¢0,0 , ds3 .Ž .

Ž .This is clear in the cases where the representation in 30 is already a singlet, i.e. when
k

X s0. To prove the two remaining cases we first establish

i
t I s I Iy Q Pe g E M c sy g E Q Pe , M M cŽ .a a b s st 0 a b s a ut ut 02

d2 yd
sy i Q Pe g E c , 42Ž . Ž .a a b s 08
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or the equivalent equation obtained by multiplication from the right with E g u:u

i
t u I I Iy Q Pe g g E E M c sy Q Pe , M M cŽ . Ž . aba u s st 0 b ut ut 02

d2 yd
y i Q Pe c . 43Ž .Ž .b 08

< Ž .:To this end we note that, by the invariance of c , its fermionic part F E,e at0
dy1 Ž . Ž . I ŽEgS is invariant under rotations of Spin d leaving E fixed: d yE E M du s u s sÕ Õ t
.yE E c s0, i.e.Õ t 0

M I E E qM I E E c sM I c . 44Ž .Ž .st u s uÕ Õ t 0 ut 0

t u ut ut Ž .Using g g syg qd 1 and the observation just made we rewrite the l.h.s. of 43
as

y Q Pe g tg u E E M Ic s Q Pe g ut E E M IcŽ . Ž .Ž . aba u s st 0 a a b u s st 0

1 ut I Is Q Pe g E E M yE E M cŽ . Ž .a a b u s st t s su 02

1 ut Is Q Pe g M c .Ž .a a b ut 02

The commutation relation
1I uti Q Pe , M s g Q PeŽ .a ut a b b2

Ž .follows from 4 or by direct computation. It implies

1 1I I ut I ut I ut Ii Q Pe , M M s g Q Pe , M sg Q Pe M y g Q Pe , MŽ .� 4a ut ut a b b ut a b b ut a b b ut2 2

d2 yd
ut Isg Q Pe M yi Q Pe .Ž .ab b ut a4

Ž . Ž .Solving for the first term on the r.h.s. proves 43 and hence 42 . Let us now note that
Ž .for ds9 the fermionic part of c and Q Pe c belongs to the 44 and 1280 a 0

Ž . Ž Ž .. Ž .representation respectively of Spin 9 see 28 . Eq. 42 then implies
t I ˆ1 ˆ1y Q Pe g E M c s C 44 yC 128 q9 Q c s9Q c ,Ž . Ž . Ž .Ž .a a b s st 0 b 0 b 0

w x Ž . Ž .where we used the values 27 of the Casimir: C 44 sC 128 s18. In the case ds5
Ž .the fermionic part of c and Q Pe c belongs to the representation 5 and 4[4,0 a 0

respectively. We conclude that
5t I 1 1ˆ ˆy Q Pe g E M c s C 5 yC 4 q Q c s4Q c ,Ž . Ž . Ž .Ž .a a b s st 0 b 0 b 02

Ž . Ž .given that C 5 s4, C 4 s5r2.
Ž .We remark that the proof of 41 can be shortened by using the lemma, according to

X ˆ1Ž .which 40 holds true for some k . Thus, contracting with Q c and summing over b ,b 0

we find
X ˆ1 ˆ1 u t Iyk c ,Q Q c syi c , Q Pe g E Q Pe g E M cŽ .Ž .Ž .ž /0 b b 0 0 g gb u a a b s st 0

s4 c , E M I M I E cŽ .0 u ut st s 0

s2 c , M I M I E E qM I E E c s2 c , M I M I c .Ž . Ž .Ž .0 ut st u s uÕ Õ t 0 0 ut ut 0

In the step before last we relabeled indices in half the expression; in the last one we used
ˆ1 ˆ1 X XŽ . Ž .44 . Using Q Q sys r2 we obtain s r2 k s2P2PC, i.e. k s8Crs , where Cb b d d d
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Ž . Ž . Ž .is the Casimir in the representation 30 . The above values of C 44 ds9 and of
Ž . Ž . Ž .C 5 ds5 yield again 41 .
Ž . yy 2 r2 yy 2 r2iii Using de rdysyye we get

E
1 1 1 1 12y c sy y y c sy y y c y P2 dy1 c , 45Ž . Ž .Ž .ÝsB 0 sB sB 0 sB 0 02 2 2 2 4E ysB sB

where the sum, consisting of second Hermite functions, is annihilated by P .0
Ž . Ž .iv The last term in 38 , when acting on c , is similarly annihilated by P .0 0

Ž .Collecting terms 39, 41, 45 we find

°6 , ds9 ,Ž .
X 1 ~y1,y1,y1,3 , ds5 ,Ž .ks1qk y dy1 sŽ .2 ¢0,0 , ds3 .Ž .
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Appendix A

Ž .To prove 13 we shall compute the partial derivatives in

E E r E E e E E E E E y EB s sB
s q q q . A.1Ž .

E q E q E r E q E e E q E E E q E yt A t A t A B t A s t A sB

2 2 Ž .We regard r,e, E, y as functions of q defined by e sÝ E s1 and 9, 10 and solves s

for their differentials by taking different contractions of
1 y3r2 y1r2dq s e E y r y drqrE de qre dE qr dy .Ž .t A A t t A t A A t t A2

Using that

e dy qy de s0, E dy qy dE s0, e de s0, E dE s0,A t A t A A t t A t A t A A t t

the contractions are

e E dq sdr ,A t t A

d ye e E dq srde yry1r2 y dE , A.2Ž . Ž .B A B A t t A B t A t

e d yE E dq srdE yry1r2 y de , A.3Ž . Ž .A st s t t A s s A A

1 y3r2 y1r2d ye e d yE E dq sy r y drqr dy qe y deŽ . Ž . ŽB A B A st s t t A sB sB B s A A2

qE y dE ..s tB t
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Ž . Ž .We solve A.2 , A.3 for de , dE :B s

drse E dq ,A t t A

de s my1 ry1 d ye e E qry5r2 y e dqŽ . Ž .Ž .BCB C A C A t tC A t A

s ry1 d ye e E qO ry5r2 dq ,Ž . Ž .Ž .B A B A t t A

dE s My1 ry1 d yE E e qry5r2 y E dqŽ . Ž .Ž .sus ut u t A s A t t A

s ry1 d yE E e qO ry5r2 dq ,Ž . Ž .Ž .st s t A t A

11r2 y1dy s r d ye e d yE E q r e E y dq ye y deŽ . Ž .sB B A B A st s t A t sB t A B s A A2

yE y dE ,s tB t

where m, M are the matrices

m sd yry3 y y , M sd yry3 y y .A B A B t A tB st st s A t A

Ž .We can now read off the partial derivatives appearing in A.1 and obtain

E E E E
11r2 y1sr d yE E d ye e qr e E r q yŽ . Ž .st s t A B A B A t sB2ž /E q E y E r E yt A sB sB

E E
y1qr d ye e E d ye yŽ .AC A C t C B B sCž /E e E yB sB

E E
y1 y5r2qr d yE E e d yE y qO r , A.4Ž . Ž . Ž .ut u t A u s s u Bž /E E E ys sB

with the remainder not containing derivatives with respect to r. Finally, we insert this
expression into

E E
i L sq yqB A sB s AE q E qs A sB

E E E
s d ye e y y d ye e y qe d ye yŽ . Ž .AC A C sB BC B C s A B AC C s Až /E y E e E ysC C sC

E E
ye d ye y ,A BC C sBž /E e E yC sC

Ž Ž 0..with no higher order corrections, as L is of exact order O r and then intoA B

E E
y1 y1i r e E L sr d ye e E d ye y .Ž .B t B A AC A C t C B B sCž /E e E yB sB

Similarly, we have

E E
y1 y1i r e E L sr d yE E e d yE y .Ž .A s st ut u t A u s s u Bž /E E E ys sB

Ž . Ž .Together with A.4 , this proves 13 .



( )J. Frohlich et al.rNuclear Physics B 567 2000 231–248¨246

Appendix B

Consider

x yy2 2 2 2Hs yE yE qx y 1q , B.1Ž .Ž .x y ž /yy yx

which is the square of

E E qxyx y
Qs i .

E yxy yEž /y x

Ž . Ž 2 2 .Just as in 8 , the bosonic potential V sx y is non-negative, but vanishing in regions
Žof the configuration space that extend to infinity causing the classical partition function

. Ž .to diverge . Quantum mechanically, just as in 8 , the bosonic system is stabilized by the
zero point energy of fluctuations transverse to the flat directions; the fermionic matrix

Ž .part in B.1 exactly cancels this effect, causing the spectrum to cover the whole positive
w x Žreal axis 8 . As simple as it is, it has remained an open question for now more than ten

. Ž .years whether B.1 admits a normalizable zero energy solution, or not. The argument,
derived in a few lines below, gives ‘no’ as an answer and provides the simplest
illustration of our method: as x™q`, QCs0 has two approximate solutions,

1 12 20 1y x y q x y2 2C se and C se , B.2Ž .q yž / ž /1 0

the first of which should be chosen for C in the asymptotic expansions0

Csxyk C qC q . . . . B.3Ž . Ž .0 1

In this simple example, the sum QsÝ` QŽn. terminates after the first two terms, andns0

0 E qxy E 0! y x yk0 s QCs q x C qC q . . . ,Ž .Ž .0 1ž /E yxy 0 0 yEž /ž /y x

Ž Ž ..yields as already anticipated, cf. B.2

0 E qxyy
C s00E yxy 0ž /y

and

0 E qxy E 0y xk ykC qx x C s0, ns1,2, . . . B.4Ž .n ny1ž /E yxy 0 0 yEž /y x

Ž . †Multiplying B.4 by C and integrating over y one sees that0

q` 1 2y x y k yk2e x 0,yE x C dyŽ .H x ny1
y`

has to vanish, implying in particular

q`
2y k 2yx y0s q e dy ,H ž /2 xy`

1
ksy ,4

Ž . Ž .which proves that B.1 does not admit any square-integrable solution of the form B.3 .
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w xA different approach has recently been undertaken by Avramidi 28 . Finally note that,
Ž .calculating the C from B.4 , yields the asymptotic expansion, x™q`,n) 0

y
2` 3n f xyŽ .1 1 2 ny x y y4 2 4 xC x , y sx e x ,Ž . 2Ý

2� 0ns0 g xyŽ .n

Ž . Ž . Ž .where f s1sg , f s0sg , and the f s , g s are the unique polynomial0 0 1 1 n n

solutions
n n

i if s s f s , g s s g sŽ . Ž .Ý Ýn n , i n n , i
is0 is0

of

2 sf X q 1y2 s f s 1y2 sy6n g q4 sgX ,Ž . Ž .n n n n

s 3n
X X38 g s q q f ysf .nq2 n n4ž /2 2
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