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2-Form Gravity of the Lorentzian Signature
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Abstract

We introduce a new spinorial, BF-like action for the Einstein grav-
ity. This is a first, up to our knowledge, 2-form action which describes
the real, Lorentzian gravity and uses only the self-dual connection.
In the generic case, the corresponding classical canonical theory is
equivalent to the Einstein-Ashtekar theory plus the reality conditions.
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Introduction. It is well known that, in four dimensions, a metric
tensor can be derived from a suitably normalized triad of self-dual 2-
forms [1, 2, 3, 4, 6, 5, 11]. Given a complex 4 dimensional vector space
V equipped with a complex valued metric tensor, one decomposes the
space ∧2V ⋆ of two forms into the direct, wedge-orthogonal sum

∧2V ⋆ = Ω− ⊕ Ω+

of the spaces of anti-self-dual and self-dual 2-forms, respectively. The
space Ω+ (as well as Ω−), determines the metric tensor up to a con-
formal factor. The missing information about the metric tensor can
be provided by indicating an element Σ0

0 ∈ Ω+ such that

Σ0
0 ∧ Σ0

0 = i vol,

where ‘vol’ stands for the volume 4-form defined by the metric ten-
sor. This property gave motivation to formulate Einstein’s gravity as
a theory of the 2-forms rather then the metric tensors. In the cases of
the complex gravity, and the real gravity of the Euclidean signature,
there is known an action, introduced by Capovilla, Dell and Jacobson
(CDJ), which is written purely in terms of the self-dual connection
and self-dual 2-forms. In the real Lorentzian case, however, the ac-
tions which are known, are either Plebański’s action which involves
both self-dual and anti-self-dual connections and 2-forms or one uses
the complex version of the CDJ action plus extra reality conditions
imposed on the solutions. The canonical theory based on the CDJ ac-
tion is equivalent to the Ashtekar [7, 8] theory, where again the reality
conditions are taken into account as some extra conditions. Recently,
the 2-form gravity is often viewed as a close neighbour of the so called
BF theory and is applied in the spin-foam quantization [9, 10]. There
are also attempts to use the 2-form approach of general relativity in
a construction of a holographic formulation of gravity [11].

In this letter, we focus on the Einstein gravity of the Lorentzian
signature. We introduce an action which involves only two forms and
self-dual connections and incorporates all the reality conditions. To
our knowledge this is the first action of those properties, although it
seems quite geometric and natural. The canonical theory derived from
this action [13] will be described in detail in a subsequent paper [14].
Here, we will briefly outline the results.

The action. Let M be a four dimensional real manifold. The main
variables of our theory are a 1-form A and a 2-form Σ both defined on
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M and taking values in the Lie algebra sl(2, C) of the group SL(2, C).
The group acts in a certain abstract spinor space S and preserves the
antisymmetric (symplectic) 2-form ǫ defined therein. The complex
conjugation of spinors is an anti-linear isomorphisms that carries S

into another spinor space S′

S ∋ µ 7→ µ∗ ∈ S′,

and the symplectic form ǫ into the symplectic form ǫ′ of S′.
The action is defined as follows3:

S[ΣAB, AAB, ΨABCD, ΦABC′D′ , R] =

=

∫

ΣAB ∧ FAB −
1

2
ΨABCDΣAB ∧ ΣCD −

− ΦABC′D′ΣAB ∧ Σ∗C′D′

−
1

2
R(ΣAB ∧ ΣAB + Σ∗A′B′

∧ Σ∗

A′B′) (1)

where

FAB := dAAB + AA
C ∧ ACB,

and the extra spinor fields Ψ and Φ, and the scalar field R play the
role of the Lagrange multipliers which satisfy4

ΨABCD = Ψ(ABCD), ΦABC′D′ = Φ(AB)(C′D′).

The vanishing of the variations of the action S with respect to
Ψ, Φ, R is, generically (we indicate the limitations below), equivalent
to the existence and uniqueness of the corresponding metric tensor,
real and of the Lorentzian signature ±(+ −−−). Indeed:

∂ΨS = 0 ⇒ Σ(AB ∧ ΣCD) = 0; (2)

∂ΦS = 0 ⇒ ΣAB ∧ Σ∗C′D′

= 0; (3)

∂RS = 0 ⇒ ΣAB ∧ ΣAB + Σ∗A′B′

∧ Σ∗

A′B′ = 0. (4)

3We use here the standard notation [12], expect indication of complex conjugation of
spinors — we mark it by means of ∗. The spinors are represented by their components,
with respect to basis o, ι ∈ S, and o∗, ι∗ ∈ S′, that is µ = µ0o + µ1ι ∈ S, and
ν′ = ν0′

o∗ + ν1′

ι∗ ∈ S′. The indices are lowered and raised by the symplectic forms, that

is µA = µBǫBA, µA = µBǫAB, νA′ = νB′

ǫ′B′A′ , νA′

= νB′ǫ′
A′B′

and finally ǫACǫBC =

δA
B, ǫ′

A′C′

ǫB′C′ = δA′

B′ .
4Since A and Σ take values in sl(2, C), AAB = A(AB) and ΣAB = Σ(AB).
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The first condition, generically, implies the existence of four linearly
independent complex valued 1-forms θAB′

, A,B = 0, 1 tangent to M ,
such that

ΣAB = θAA′

∧ θBB′

ǫB′A′ .

Due to the conditions (3) and (4) the metric tensor defined by the
above null frame, that is

g := θAC′

⊗ θBD′

ǫABǫC′D′

is real and its signature is (+−−−) or (−+++). The above conditions,
and the reconstruction of the metric tensor come from Plebański [1]
(see also [4]).

Given the metric tensor, the vanishing of the variation of S with
respect to A implies the metricity of A,

∂AS = 0 ⇒ dΣAB − AA
C ∧ ΣCB − AB

C ∧ ΣAC = 0. (5)

From this equation, the 1-forms AA
B are determined completely by

Σ and set the spin connection corresponding to the spin structure
defined locally by

S ⊗ S′ ∋ µ ⊗ ν ′ 7→ µAνB′θAB′

.

At this point, the meaning of the spinors Ψ and Φ and the scalar
R becomes clear after taking the variation of S with respect to Σ,
namely5:

∂ΣS = 0 ⇒ FAB = ΨABCDΣCD + ΦABC′D′Σ∗C′D′

+ RΣAB.

This is exactly the familiar spin decomposition of the spinorial curva-
ture, where Ψ is the Weyl spinor, Φ represents the traceless part of
the Ricci tensor and 12R is the Ricci scalar.

The vacuum Einstein equations (imposed on the derived metric)
follow from the vanishing of the variation with respect to Σ∗, namely

∂Σ∗S = 0 ⇒ ΦABC′D′ΣAB + RΣ∗

C′D′ = 0. (6)

Since in the generic case, the six 2-forms Σ(AB), Σ∗

(C′D′) form a basis
of the complexified space of 2-forms, the above equation implies

ΦABC′D′ = 0 = R.

5This is a holomorphic variation, that is ∂ΣΣ∗ = 0.
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As emphasized, the above reconstruction of Einstein’s theory ap-
plies to the generic case. The genericity condition is

Σ00 ∧ Σ11 6= 0. (7)

Otherwise, for every values of A,B,C,D

ΣAB ∧ ΣCD = 0.

Every degenerate triad of 2-forms ΣAB is generated by the wedge
product and the linear combinations from certain triad of 1-forms.
Farther degeneracy takes place if the triad of 1-forms is not linearly
independent, the most degenerate case being just

Σ = 0.

Given degenerate Σ, the equations (5, 6) do not determine A, Φ and
R. The freedom depends on the degeneracy. For example, in the
most degenerate case, the general solution is: a flat connection A and
arbitrary Φ, Ψ and R.

Hamiltonian and the constraints. For the construction of the
canonical theory corresponding to the action (1) let us introduce a
variable t and a coordinates system (x0 = t, xi). Then, the configu-
ration variables qr and the corresponding canonically conjugate mo-
menta ∼

pr are

{qr} = {AαAB , ΣAB
0i , ΣAB

ij , Σ∗A′B′

0i , Σ∗A′B′

ij , ΨABCD, ΦABC′D′ , R},

{∼

pr} = {∼

pαAB ,
∼

p0i
AB,

∼

p
ij
AB ,

∼

p∗0i
A′B′ ,

∼

p
∗ij
A′B′ ,

∼

pABCD,
∼

pABC′D′

,
∼

pR},

where we take into account only independent components ((A,B) =
(0, 0), (0, 1), (1, 1) in AαAB , etc.). Obviously, the Legendre trans-
form (qr, ∂tq

r) 7→ (qr,
∼

pr) is not invertible and gives the primary
constraints:

{

∼

φiAB := ∼

piAB − ∼

σiAB = 0
∼

φr := ∼

pr = 0 otherwise,
(8)

where6

∼

σiAB := ∼

ǫ ijkΣAB
jk ; ∼

ǫ ijk := ∼

ǫ0ijk

6∼

ǫαβγδ is the Levi-Civita density of weight 1 on M.
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Therefore, the Hamiltonian is defined up to an additive term, a com-
bination of the constraints and Lagrange multipliers, that is

H(q, ∼

p, u) =

∫

S

Tr[ ∼

σiDiA0 − 2Σ0i
∼

ǫ ijkFjk + 2Σ0iΨ
∼

σi +

+ 2Σ0iΦ
∼

σ∗i + 2 ∼

σiΦΣ∗

0i + 2R(Σ0i
∼

σi + Σ∗

0i
∼

σ∗i) ] +

∫

S

ur ∼

φr (9)

where:

DiA0AB := ∂iAAB + AiA
CA0CB + AiB

CA0AC

and the Lagrange multipliers ur are tensors on S which have the same
(anti)symmetries in the indices as the corresponding primary con-
straint functions

∼

φr.
Demanding that the primary constraints

∼

φ are preserved during
the time evolution, that is:

{...{{
∼

φ,H},H}, ...,H} = 0, (10)

one gets secondary constraints and restrictions on the Lagrange mul-
tipliers. The complete set of the constraints for the Hamiltonian (9) is
known in the case, when the triad (∼

σi00,
∼

σi01,
∼

σi11) of the vector densi-
ties is linearly independent, that is, when the 2-forms ΣAB give rise to
a Lorentzian metric tensor in the space-time M and the three-metric
induced on the t = const surfaces is not degenerate (the signature of
the induced three-metric is ±(+ + +) or ±(− + +)). Then the set of
the constraints consists of the primary ones (8) and of the following
secondary constraints:

Σ
(AB
0i

∼

σiCD) = 0; ΦABC′D′ = 0; R = 0

Di
∼

σiAB = 0; ǫijkFjkAB − ΨABCD
∼

σiCD = 0

ΣAB
0i

∼

σ∗iC′D′

+ Σ∗C′D′

0i
∼

σiAB = 0 (11)

ΣAB
0i

∼

σi
AB + Σ∗A′B′

0i
∼

σ∗i
A′B′ = 0

Dk(∼

σkCA∼

σ(iB
C)∼

σj)
AB + [Dk(∼

σkCA∼

σ(iB
C)∼

σj)
AB]∗ = 0

Finally, the conditions on the Lagrange multipliers u implied by
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(10) are:

A0C
(A∼

σiB)C + Dj(
∼

ǫ ijkΣAB
0k ) − ∼

ǫ ijkuAB
jk = 0

DkA0AB + 2ΨABCDΣCD
0k − ukAB = 0

∼

ǫ ijk(DjukAB − 2ΨABCDuCD
jk ) − uABCD

∼

σiCD = 0

uR = 0; uABC′D′ = 0; u
(AB
0i

∼

σiCD) + 2Σ
(AB
0i

∼

ǫ ijku
CD)
jk = 0

uAB
0i

∼

σ∗iC′D′

+ 2ΣAB
0i

∼

ǫ ijku∗C′D′

jk + u∗C′D′

0i
∼

σiAB + 2Σ∗C′D′

0i
∼

ǫ ijkuAB
jk = 0

uAB
0i

∼

σi
AB + 2ΣAB

0i
∼

ǫ ijkujkAB + u∗A′B′

0i
∼

σ∗i
A′B′ + 2Σ∗A′B′

0i
∼

ǫ ijku∗

jkA′B′ = 0

Concluding, the classical theory given by our action is equiva-
lent to the real section of the Ashtekar theory as long as the triads
(∼

σi00,
∼

σi01,
∼

σi11) are linearly independent. In the degenerate case,
however, the theories are different [13, 14]. Our formulation provides
a new starting point for the quantization. Then, the differences in the
degenerate sector may become relevant, because the quantum geome-
try [15] is degenerate in most of the space points.
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