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2-form gravity of the Lorentzian signature
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Abstract. We introduce a new spinorial, BF-like canonical theory for the Einstein gravity. This is
the first, to the best of our knowledge, 2-form canonical approach which describes real, Lorentzian
gravity and uses only the self-dual connection. In the generic case, the classical theory is equivalent
to the Einstein–Ashtekar theory plus reality conditions.

PACS number: 0460

Introduction

It is well known that, in four dimensions, a metric tensor can be derived from a suitably
normalized triad of self-dual 2-forms [1–6, 11]. Given a complex four-dimensional vector
spaceV equipped with a complex-valued metric tensor, one decomposes the space∧2V ? of
two forms into the direct, wedge-orthogonal sum

∧2V ? = �− ⊕�+

of the spaces of anti-self-dual and self-dual 2-forms, respectively. The space�+ (as well as
�−), determines the metric tensor up to a conformal factor. The missing information about
the metric tensor can be provided by indicating an element60

0 ∈ �+ such that

60
0 ∧60

0 = i vol,

where ‘vol’ stands for the volume 4-form defined by the metric tensor. This property gave
motivation to formulate Einstein’s gravity as a theory of 2-forms rather than metric tensors.
In the cases of complex gravity and real gravity of Euclidean signature, an action is known,
introduced by Capovilla, Dell and Jacobson (CDJ), which is written purely in terms of the
self-dual connection and self-dual 2-forms. In the real Lorentzian case, however, the actions
which were studied, are either Plebański’s action which involves both self-dual and anti-self-
dual connections and 2-forms or one uses the complex version of the CDJ action plus extra
reality conditions imposed on the solutions. The canonical theory based on the CDJ action is
equivalent to Ashtekar’s [7, 8] theory, where again the reality conditions are taken into account
as some extra conditions. Recently, 2-form gravity has often been viewed as a close neighbour
of the so-called BF theory and is applied in the spin-foam quantization [9, 10]. There have also
been attempts to use the 2-form approach of general relativity in a construction of a holographic
formulation of gravity [11].

In this letter, we focus on Einstein’s gravity of Lorentzian signature. Using Robinson’s
action [12] we introduce a canonical theory which involves only two forms and self-dual

0264-9381/00/030047+05$30.00 © 2000 IOP Publishing Ltd L47



L48 Letter to the Editor

connections and incorporates all the reality conditions. To our knowledge this is the first
canonical approach with those properties, although it seems quite geometric and natural. The
details will be described in subsequent papers [14, 15]. Here, we will outline the results.

The action

LetM be a four-dimensional real manifold. The main variables of our theory are a 1-formA

and a 2-form6 both defined onM and taking values in the Lie algebrasl(2,C) of the group
SL(2,C). The group acts in a certain abstract spinor spaceS and preserves the antisymmetric
(symplectic) 2-formε defined therein. The complex conjugation of spinors is an anti-linear
isomorphism that carriesS into another spinor spaceS ′

S 3 µ 7→ µ∗ ∈ S ′,
and the symplectic formε into the symplectic formε′ of S ′.

The action is defined as follows†:

S[6AB,AAB,9ABCD,8ABC ′D′ , R]

=
∫
6AB ∧ FAB − 1

29ABCD6
AB ∧6CD

−8ABC ′D′6
AB ∧6∗C ′D′ − 1

2R(6
AB ∧6AB +6∗A

′B ′ ∧6∗A′B ′) (1)

where

FAB := dAAB +AA
C ∧ ACB,

and the extra spinor fields9 and8 and the scalar fieldR play the role of the Lagrange
multipliers which satisfy‡

9ABCD = 9(ABCD), 8ABC ′D′ = 8(AB)(C ′D′).

The vanishing of the variations of the actionS with respect to9,8,R is, generically (we
indicate the limitations below), equivalent to the existence and uniqueness of the corresponding
metric tensor, real and of the Lorentzian signature±(+−−−). Indeed,

∂9S = 0 ⇒ 6(AB ∧6CD) = 0; (2)

∂8S = 0 ⇒ 6AB ∧6∗C ′D′ = 0; (3)

∂RS = 0 ⇒ 6AB ∧6AB +6∗A
′B ′ ∧6∗A′B ′ = 0. (4)

The first condition, generically, implies the existence of four linearly independent complex
valued 1-formsθAB

′
, A, B = 0, 1 tangent toM, such that

6AB = θAA′ ∧ θBB ′εB ′A′ .
Due to the conditions (3) and (4) the metric tensor defined by the above null frame, that is

g := θAC ′ ⊗ θBD′εABεC ′D′
is real and its signature is(+−−−) or (−+++). The above conditions, and the reconstruction
of the metric tensor come from Plebański [1] (see also [4]).

† Here we use the standard notation [13], except for the indication of complex conjugation of spinors—we mark it
by means of∗. The spinors are represented by their components, with respect to the basiso, ι ∈ S ando∗, ι∗ ∈ S′,
that isµ = µ0o +µ1ι ∈ S andν′ = ν0′o∗ + ν1′ ι∗ ∈ S′. The indices are lowered and raised by the symplectic forms,

that isµA = µBεBA,µA = µBεAB, νA′ = νB ′ε′B ′A′ , νA′ = νB ′ε′A
′B ′ and finallyεACεBC = δAB , ε′A

′C′
εB ′C′ = δA′B ′ .

‡ SinceA and6 take values insl(2,C), AAB = A(AB) and6AB = 6(AB).
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Given the metric tensor, the vanishing of the variation ofS with respect toA implies the
metricity ofA,

∂AS = 0 ⇒ d6AB − AAC ∧6CB − ABC ∧6AC = 0. (5)

From this equation, the 1-formsAAB are determined completely by6 and set the spin
connection corresponding to the spin structure defined locally by

S ⊗ S ′ 3 µ⊗ ν ′ 7→ µAνB ′θ
AB ′ .

At this point, the meaning of the spinors9 and8 and the scalarR becomes clear after taking
the variation ofS with respect to6, namely†

∂6S = 0 ⇒ FAB = 9ABCD6CD +8ABC ′D′6
∗C ′D′ +R6AB.

This is exactly the familiar spin decomposition of the spinorial curvature, where9 is the Weyl
spinor,8 represents the traceless part of the Ricci tensor and 12R is the Ricci scalar.

The vacuum Einstein equations (imposed on the derived metric) follow from the vanishing
of the variation with respect to6∗, namely

∂6∗S = 0 ⇒ 8ABC ′D′6
AB +R6∗C ′D′ = 0. (6)

Since in the generic case, the six 2-forms6(AB),6∗(C ′D′) form a basis of the complexified space
of 2-forms, the above equation implies

8ABC ′D′ = 0= R.
As emphasized, the above reconstruction of Einstein’s theory applies to the generic case.

The genericity condition is

600∧611 6= 0. (7)

Otherwise, for every values ofA,B,C,D

6AB ∧6CD = 0.

Every degenerate triad of 2-forms6AB is generated by the wedge product and the linear
combinations from certain triad of 1-forms. Further degeneracy takes place if the triad of
1-forms is not linearly independent, the most degenerate case being just

6 = 0.

Given degenerate6, equations (5) and (6) do not determineA,8 andR. The freedom depends
on the degeneracy. For example, in the most degenerate case, the general solution is a flat
connectionA and arbitrary8,9 andR.

Hamiltonian and the constraints

For the construction of the canonical theory corresponding to the action (1) let us introduce a
variablet and a coordinates system(x0 = t, xi). Then, the configuration variablesqr and the
corresponding canonically conjugate momentap̃r are

{qr} = {AαAB,6AB
0i , 6

AB
ij , 6

∗A′B ′
0i , 6∗A

′B ′
ij , 9ABCD,8ABC ′D′ , R},

{p̃r} = {p̃αAB, p̃0i
AB, p̃

ij

AB, p̃
∗0i
A′B ′ , p̃

∗ij
A′B ′ , p̃

ABCD, p̃ABC
′D′ , p̃R},

† This is a holomorphic variation, that is∂66∗ = 0.
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where we take into account only independent components ((A,B) = (0, 0), (0, 1), (1, 1) in
AαAB , etc). Obviously, the Legendre transform(qr , ∂tqr) 7→ (qr , p̃r ) is not invertible and
gives the primary constraints{

φ̃iAB := p̃iAB − σ̃ iAB = 0

φ̃r := p̃r = 0 otherwise,
(8)

where†

σ̃ iAB := ε̃ijk6AB
jk ; ε̃ijk := ε̃0ijk.

Therefore, the Hamiltonian is defined up to an additive term, a combination of the constraints
and Lagrange multipliers, that is

H(q, p̃, u) =
∫
S

Tr[σ̃ iDiA0 − 260i ε̃
ijkFjk + 260i9 σ̃

i

+260i8 σ̃
∗i + 2 σ̃ i86∗0i + 2R(60i σ̃

i +6∗0i σ̃
∗i )] +

∫
S

ur φ̃r (9)

where

DiA0AB := ∂iAAB +AiA
CA0CB +AiB

CA0AC

and the Lagrange multipliersur are tensors onS which have the same (anti)symmetries in the
indices as the corresponding primary constraint functionsφ̃r .

Demanding that the primary constraintsφ̃ are preserved during the time evolution, that is:

{. . . {{φ̃, H }, H }, . . . , H } = 0, (10)

one finds secondary constraints and restrictions on the Lagrange multipliers. The complete
set of constraints for the Hamiltonian (9) is known in the case when the triad(σ̃ i00, σ̃ i01, σ̃ i11)

of the vector densities is linearly independent, that is, when the 2-forms6AB give rise to a
Lorentzian metric tensor in the spacetimeM and the 3-metric induced on thet = constant
surfaces is not degenerate (the signature of the induced 3-metric is±(+++) or±(−++)). Then
the set of the constraints consists of the primary ones (8) and of the following secondary
constraints:

6
(AB
0i σ̃ iCD) = 0; 8ABC ′D′ = 0; R = 0

Diσ̃
iAB = 0; εijkFjkAB −9ABCDσ̃ iCD = 0

6AB
0i σ̃

∗iC ′D′ +6∗C
′D′

0i σ̃ iAB = 0

6AB
0i σ̃

i
AB +6∗A

′B ′
0i σ̃ ∗iA′B ′ = 0

Dk(σ̃
kCAσ̃ (iBC)σ̃

j)
AB + [Dk(σ̃

kCAσ̃ (iBC)σ̃
j)
AB ]∗ = 0.

(11)

Finally, the conditions on the Lagrange multipliersu implied by (10) are

A0C
(Aσ̃ iB)C +Dj(ε̃

ijk6AB
0k )− ε̃ijkuABjk = 0

DkA0AB + 29ABCD6
CD
0k − ukAB = 0

ε̃ijk(DjukAB − 29ABCDu
CD
jk )− uABCDσ̃ iCD = 0

uR = 0; uABC ′D′ = 0; u
(AB
0i σ̃

iCD) + 26(AB
0i ε̃ijku

CD)
jk = 0

uAB0i σ̃
∗iC ′D′ + 26AB

0i ε̃
ijku∗C

′D′
jk + u∗C

′D′
0i σ̃ iAB + 26∗C

′D′
0i ε̃ijkuABjk = 0

uAB0i σ̃
i
AB + 26AB

0i ε̃
ijkujkAB + u∗A

′B ′
0i σ̃ ∗iA′B ′ + 26∗A

′B ′
0i ε̃ijku∗jkA′B ′ = 0.

† ε̃αβγ δ is the Levi-Civita density of weight 1 onM.
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In conclusion, the classical theory given by our action is equivalent to the real section
of the Ashtekar theory as long as the triads(σ̃ i00, σ̃ i01, σ̃ i11) are linearly independent. In the
degenerate case, however, the theories are different [14, 15]. Our formulation provides a new
starting point for the quantization. Then, the differences in the degenerate sector may become
relevant, because the quantum geometry [16] is degenerate in most of the space points.
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