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LETTER TO THE EDITOR

2-form gravity of the Lorentzian signature
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Abstract. We introduce a new spinorial, BF-like canonical theory for the Einstein gravity. Thisis
the first, to the best of our knowledge, 2-form canonical approach which describes real, Lorentzian
gravity and uses only the self-dual connection. In the generic case, the classical theory is equivalent
to the Einstein—Ashtekar theory plus reality conditions.

PACS number: 0460

Introduction

It is well known that, in four dimensions, a metric tensor can be derived from a suitably
normalized triad of self-dual 2-forms [1-6, 11]. Given a complex four-dimensional vector
spaceV equipped with a complex-valued metric tensor, one decomposes the/spatef

two forms into the direct, wedge-orthogonal sum

ANV =Q Q"

of the spaces of anti-self-dual and self-dual 2-forms, respectively. The §pa@s well as
Q7), determines the metric tensor up to a conformal factor. The missing information about
the metric tensor can be provided by indicating an eleri®gte * such that

2% A 2% =i vol,

where ‘vol’ stands for the volume 4-form defined by the metric tensor. This property gave
motivation to formulate Einstein’s gravity as a theory of 2-forms rather than metric tensors.
In the cases of complex gravity and real gravity of Euclidean signature, an action is known,
introduced by Capovilla, Dell and Jacobson (CDJ), which is written purely in terms of the
self-dual connection and self-dual 2-forms. In the real Lorentzian case, however, the actions
which were studied, are either Pléis&i’s action which involves both self-dual and anti-self-
dual connections and 2-forms or one uses the complex version of the CDJ action plus extra
reality conditions imposed on the solutions. The canonical theory based on the CDJ action is
equivalent to Ashtekar’s [7, 8] theory, where again the reality conditions are taken into account
as some extra conditions. Recently, 2-form gravity has often been viewed as a close neighbour
of the so-called BF theory and is applied in the spin-foam quantization [9, 10]. There have also
been attempts to use the 2-form approach of general relativity in a construction of a holographic
formulation of gravity [11].

In this letter, we focus on Einstein’s gravity of Lorentzian signature. Using Robinson’s
action [12] we introduce a canonical theory which involves only two forms and self-dual
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connections and incorporates all the reality conditions. To our knowledge this is the first
canonical approach with those properties, although it seems quite geometric and natural. The
details will be described in subsequent papers [14, 15]. Here, we will outline the results.

The action

Let M be a four-dimensional real manifold. The main variables of our theory are a 14orm
and a 2-formx both defined on and taking values in the Lie algeht&2, C) of the group
SL(2,C). The group acts in a certain abstract spinor sgaaed preserves the antisymmetric
(symplectic) 2-forme defined therein. The complex conjugation of spinors is an anti-linear
isomorphism that carrie$ into another spinor spacg

Sosur>pu*es,

and the symplectic forra into the symplectic forna’ of S’.
The action is defined as followsT:

S[=48, Aup, Wapcp, Pancrors R]

= f sAB A Fap — %\IJABCDEAB AN ECD

—®apep B AT —IRE AT+ T AT ) (1)
where
Fap '=0dAap + A,C A Acs,

and the extra spinor field¥ and ® and the scalar fiel® play the role of the Lagrange
multipliers which satisfy+

Wagcp = YaBcn), Dapcp = Pusycp)-

The vanishing of the variations of the actiSnwith respect tol, ®, R is, generically (we
indicate the limitations below), equivalent to the existence and uniqueness of the corresponding

metric tensor, real and of the Lorentzian signatti(eé ———). Indeed,
WwS=0 = TABARD 2)
3pS=0 = ABATCD =0 (3)
RS=0 = T AT+TME AT =0 (4)

The first condition, generically, implies the existence of four linearly independent complex
valued 1-form®4%’ A, B = 0, 1 tangent taV, such that

$AB _ gAA QBB/GB,A,_
Due to the conditions (3) and (4) the metric tensor defined by the above null frame, that is
g =0 @08 ¢ pecp
is real and its signature {3———) or (—+++). The above conditions, and the reconstruction
of the metric tensor come from Pldlski [1] (see also [4]).

T Here we use the standard notation [13], except for the indication of complex conjugation of spinors—we mark it
by means of«. The spinors are represented by their components, with respect to the hasis ando*, * € §’,
thatispu = ulo + i € S andv’ =19 0* +11'1* € §'. The indices are lowered and raised by the symplectic forms,
that iS;LA = ;,LBEBA, ;LA = ,bLBGAB, vy = UB,E/B/A/, VA/ = UBIE,A/B/ and finaIIyeACeBc = 5?, G,A/C,GB/Cf = 53,,

1 SinceA and¥ take values inl(2, C), Ayp = Aap) andz48 = 245,
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Given the metric tensor, the vanishing of the variatior$ efith respect tad implies the
metricity of A,

uS=0 = dZ?P A AZB_AB . ATAC=0. (5)

From this equation, the 1-forma“; are determined completely by and set the spin
connection corresponding to the spin structure defined locally by

’

SRS 5u®v > uavgit

At this point, the meaning of the spinoisand® and the scalaR becomes clear after taking
the variation ofS with respect taz, namelyt

0sS=0 = Fup=WapcpEP+®upcp TP + R 5.

This is exactly the familiar spin decomposition of the spinorial curvature, whasghe Wey!|
spinor,® represents the traceless part of the Ricci tensor aidid the Ricci scalar.

The vacuum Einstein equations (imposed on the derived metric) follow from the vanishing
of the variation with respect t&*, namely

0s«sS=0 = q)ABC/DfEAB"'REz/D, =0. (6)

Since in the generic case, the six 2-forgig ?, (e py formabasis of the complexified space
of 2-forms, the above equation implies

@ pcp =0=R.

As emphasized, the above reconstruction of Einstein’s theory applies to the generic case.
The genericity condition is

20 Ax2£o0. 7
Otherwise, for every values of, B, C, D
4B A 2P =0,

Every degenerate triad of 2-forn4? is generated by the wedge product and the linear
combinations from certain triad of 1-forms. Further degeneracy takes place if the triad of
1-forms is not linearly independent, the most degenerate case being just

¥ =0.

Given degeneratg, equations (5) and (6) do not determitied andR. The freedom depends
on the degeneracy. For example, in the most degenerate case, the general solution is a flat
connectionA and arbitrary®, ¥ andR.

Hamiltonian and the constraints

For the construction of the canonical theory corresponding to the action (1) let us introduce a
variabler and a coordinates syste® = ¢, x'). Then, the configuration variablg$ and the
corresponding canonically conjugate momepitare

{q"} = {Awan, 2§, 2{33, DI E;‘jA’B,, Wupcp, Pascp, R,

~ 1\ _ (zaAB =0i =ij ~x0i ~*ij ~ABCD ~ABC'D' =
{Pr} =1{P""", DAp> Pap> Darp> Paip» P . P s DR}

’

T This is a holomorphic variation, thatidg ©* = 0.
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where we take into account only independent componéntsg) = (0, 0), (0, 1), (1,1) in
Ay ap, €tc). Obviously, the Legendre transfokigT, d;,4") + (¢, p,) is not invertible and
gives the primary constraints

éiAB - ﬁiAB _&iAB =0
~ _ (8)
{¢, =p, =0 otherwise,
wheret
&iAB - ~ljkEAkB gijk — gOijk
: [ : .

Therefore, the Hamiltonian is defined up to an additive term, a combination of the constraints
and Lagrange multipliers, that is

H(q, p,u) = /Tr[&iD,»Ao — 2%0ié N Fyp + 2800 6
S

+2%5: PG + 26 OTE + 2R(Zoi &"+23i5*")]+/ur¢3, (9)
S

where
D;Aoap i= 3 Aap + Aia€Aocs + Aip© Aoac

and the Lagrange multipliers’ are tensors of which have the same (anti)symmetries in the
indices as the corresponding primary constraint functigns
Demanding that the primary constraigtsire preserved during the time evolution, that is:

{...{{¢,H}, H},...,H} =0, (10)

one finds secondary constraints and restrictions on the Lagrange multipliers. The complete
set of constraints for the Hamiltonian (9) is known in the case when the(@&id8] 5702, 511)

of the vector densities is linearly independent, that is, when the 2-farfifsgive rise to a
Lorentzian metric tensor in the spacetimeand the 3-metric induced on the= constant
surfaces is not degenerate (the signature of the induced 3-metri¢ist) or +(—++)). Then

the set of the constraints consists of the primary ones (8) and of the following secondary
constraints:

E(?B&iCD) =0 Dupep =0; R=0
D;64F = 0 Giij'kAB — W,upcp6iP? =0
E B *C'D' +Z*CD/~1AB 0 (11)

z:(?zB‘Tl,axB + EOiAB&j{B’ =0
D (G*A5 B )G pp + [Dr(6* 4GB )67 4p]* = 0.
Finally, the conditions on the Lagrange multipliergmplied by (10) are
AOC(AE_iB)C + Dj(gijkzélkB) . gijku;lkB -0
DyAoap + 2%apcpB5E — urap =0
EN(Djurap — Z‘PABCDMJCkD) —uppcpc' P =0
ug =0; uspcp = 0; ) jCkD) 0
uéB *iC'D’ +22 AB~ Uk *IgD +M8CD ~iAB +22*CD ~ijk AkB 0

AB ~i ~ijk . *A'B’ ~ % *AB"‘ljk
Uy O AB+2201' € UjkAB +u0i o A /"‘22 ]kA’B =0.

t &*$r? is the Levi-Civita density of weight 1 oM.
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In conclusion, the classical theory given by our action is equivalent to the real section
of the Ashtekar theory as long as the triaé€’°, 592, 5'11) are linearly independent. In the
degenerate case, however, the theories are different [14, 15]. Our formulation provides a new
starting point for the quantization. Then, the differences in the degenerate sector may become
relevant, because the quantum geometry [16] is degenerate in most of the space points.
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