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We investigate refined algebraic quantization~RAQ! with group averaging in a
constrained Hamiltonian system with unreduced phase spaceT* R4 and gauge
group SL~2, R!. The reduced phase spaceM is connected and contains four mu-
tually disconnected ‘‘regular’’ sectors with topologyR3S1, but these sectors are
connected to each other through an exceptional set, whereM is not a manifold and
where M has non-Hausdorff topology. The RAQ physical Hilbert spaceHphys

decomposes asHphys. % Hi , where the four subspacesHi naturally correspond to
the four regular sectors ofM. The RAQ observable algebraAobs, represented on
Hphys, contains natural subalgebras represented on eachHi . The group averaging
takes place in the oscillator representation of SL~2, R! on L2(R2,2), and ensuring
convergence requires a subtle choice for the test state space: the classical analog of
this choice is to excise fromM the exceptional set while nevertheless retaining
information about the connections between the regular sectors. A quantum theory
with the Hilbert spaceHphys and a finitely generated observable subalgebra ofAobs

is recovered through both Ashtekar’s algebraic quantization and Isham’s group
theoretic quantization. ©2000 American Institute of Physics.
@S0022-2488~00!01501-2#

I. INTRODUCTION

In the quantization of constrained systems, one proposal for defining an inner product
physical Hilbert space is to induce this inner product from an auxiliary Hilbert spaceHaux via
averaging over the gauge group. The construction ofHaux draws input from the kinematica
structure of the theory before imposing the constraints, and the constraints enter throu
operator representation of the gauge group onHaux. The method has emerged and been applie
various contexts; see Refs. 1–9 and the references therein.

A major open question with group averaging is the sense in which the averaging can be
to converge. One may encounter situations where the group averaging diverges merely bec
some ill-chosen piece of technical input, and modifying the input leads to a well-defined th
On the other hand, one may also encounter situations where convergence of the group av
is precluded by some physically interesting property of the system. For example, within the r
algebraic quantization framework of Ref. 8, a convergent group averaging cannot yield a
with superselection sectors, while a well-defined theory with superselection sectors may ne
less be recovered through a suitable renormalization of the averaging.9

In this paper we study group averaging in a quantum mechanical system whose cons
generate the gauge group SL~2, R!. The classical phase space isG5T* R4, and the three classica
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constraints onG are homogeneous quadratic functions of the global canonical phase space
dinates. The system was introduced by Montesinos, Rovelli, and Thiemann10 as an analog of
general relativity with two ‘‘Hamiltonian’’-type constraints, quadratic in the momenta, and
‘‘momentum’’-type constraint, linear in the momenta. The reduced phase spaceM is connected,
and it contains four mutually disconnected ‘‘regular’’ sectors with topologyR3S1, but connect-
ing these sectors there is an exceptional set whereM is not a manifold and the topology ofM is
non-Hausdorff. One thus anticipates quantization to produce a theory with four ‘‘regular’’ se
with subtleties in those aspects of quantization that try in some sense to connect these four
We shall see that this is indeed the case, and when group averaging is used in the quantiza
subtleties emerge precisely in the convergence of the group averaging.

We consider two quantization approaches. First, we recall thatG admits an explicitly known
o~2, 2! Poisson bracket algebraAclass of constants of motion~‘‘observables’’! that separates the
regular sectors ofM.10 We therefore carry through Ashtekar’s algebraic quantization program11,12

with Aclasspromoted into a quantum observable star algebraAphy
(!) . In agreement with the results o

Ref. 10, we find four distinct Hilbert spaces, each corresponding to one of the regular sec
M. We then add toAphy

(!) four new generators whose classical counterparts act on the four se
of M as aZ23Z2 permutation subgroup, and we carry through algebraic quantization with
resulting larger observable algebraAphy1

(!) . Expectedly, the emerging Hilbert spaceH1 is the
direct sum of the previous four individual Hilbert spaces. We also show thatH1 with the observ-
able algebraAphy1

(!) can be recovered by applying Isham’s group theoretic quantization13 to an
O(2,2) action onG: the infinitesimal generators of the action of the connected subgroupOc(2,2)
are precisely the classical observables inAclass.

We then consider a group averaging approach. For concreteness, and to a considerable
without loss of generality,14 we adopt the formalism of refined algebraic quantization~RAQ!.4,8,14

The structure ofG and the classical constraints suggests a natural choice forHaux and for the
representation of the gauge group SL~2, R!: this representation is isomorphic to the oscillat
representation of SL~2, R! on L2(R2,2).15 Haux also carries a representation of the algebr
quantization observable algebraAphy1

(!) , and this representation commutes with the SL~2, R! ac-
tion. With a suitable choice for the RAQ linear spaceF,Haux of test states, we find that the grou
averaging converges in absolute value and produces a nontrivial physical Hilbert spaceHphys.
Hphys is isomorphic toH1 , and the representation of the RAQ observable algebraAobs on Hphys

contains a subrepresentation isomorphic to the representation ofAphy1
(!) on H1 . ~For technical

reasons, these isomorphisms are antilinear.! In this sense, the RAQ quantum theory contains
algebraic quantization quantum theory. Further, the uniqueness theorem of Ref. 8 shows t
choices forHaux, the SL~2, R! action, andF completely determine the RAQ quantum theory ev
without group averaging: with our choices, the only freedom in the RAQ rigging map
multiplicative constant.

Now to the promised subtleties. In the algebraic quantization approach, the subtlety o
with the choice of the linear space on which the constraints are solved. The ‘‘natural’’

candidateṼ for this linear space contains a one-dimensional subspace that, by the spectra
erties ofAphy

(!) , corresponds classically to the exceptional set inM. This subspace turns, howeve
out to have zero norm, and one does not recover a Hilbert space. The remedy is simply to d

troublesome one-dimensional subspace fromṼ, with the results mentioned above.
In the RAQ approach, the subtlety occurs with the choice of the test state space. The st

of the quantum constraint operators and the SL~2, R! action suggests a natural choiceF̃, but it

turns out that the group averaging fails to converge precisely on the subspace ofF̃ where it
attempts to produce the ‘‘zero norm’’ vectors encountered in the algebraic quantization
remedy is again to ensure that the troublesome subspace does not appear in the physica
space, but now this has to be done by modifying the test state space, and as the defin
observables in RAQ is intimately related to the test state space, care must be taken in order
RAQ observable algebra remain large enough to allow a comparison with the algebraic qu
1 Feb 2009 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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tion observable algebra. Our choice,F, was found by scrutinizing the explicitly known
Aphy1

(!) -action onF̃.
The rest of the paper is as follows. In Sec. II we review and analyze the classical sys10

paying special attention to the classical observable algebraAclass, its pull-backs to the various
parts of the reduced phase space, and the associatedO(2,2) action. The algebraic quantization an
the group theoretic quantization are carried out in Sec. III. In Sec. IV we present a concise o
of RAQ with group averaging, in the specific formulation of Ref. 8, and in Sec. V we carry
RAQ in our system. Section VI contains a brief discussion. In Appendices A and B we co
some relevant facts about SL~2, R!, its covering groups, and their oscillator representation15

Certain technical calculations concerning the group averaging are given in Appendices C

II. CLASSICAL DYNAMICS

In this section we review and analyze the classical system introduced in Ref. 10.
relevant facts about the group SL~2, R! and its Lie algebrasl~2, R! are collected in Appendix A.

The phase space isGªT* R4.R8, with the global coordinate functions (u1,u2,v1,v2) for the
base and (p1,p2,p1,p2) for the cotangent fibers. The symplectic structure isV5( i(dpi`dui

1dp i`dv i). We adopt the vector notation (u1,u2)ªu, (v1,v2)ªv, (p1,p2)ªp, (p1,p2)
ªp, and we indicate a contraction in the suppressed two-dimensional indices by a dot pro

The action reads as

S5E dt~p–u̇1p–v̇2N1H12N2H22lD !, ~2.1!

whereN1, N2, andl are Lagrange multipliers, and the three constraints are

H1ª
1
2~p22v2!, ~2.2a!

H2ª
1
2~p22u2!, ~2.2b!

Dªu–p2v–p. ~2.2c!

The Poisson bracket algebra of the constraints is

$H1 ,H2%5D, ~2.3a!

$D,H1%52H1 , ~2.3b!

$D,H2%522H2 , ~2.3c!

which is isomorphic to the Lie algebrasl~2, R! in the basis~A3! of Appendix A. The system is
therefore a first class constrained system.16 The gauge group generated by the constraints is S~2,
R!, and its action onG is10

S u
pD°gS u

pD ,

~2.4!

S p

v D°gS p

v D ,

whereg is an 232 matrix in SL~2, R!.
The reduced phase spaceM is, by definition, the quotient of the constraint hypersurface un

the SL~2, R! action~2.4!. The topology ofM is induced fromG, and wherever the geometry ofM
is sufficiently regular,M inherits fromG also a differentiable structure and a real analytic str
ture.
1 Feb 2009 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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M0 decomposes naturally into six subsets, which we denote, respectively, byM0 , Mex, and
Me1 ,e2

, wheree iP$1,21%. For the points inMe1 ,e2
, unique representatives inG are

u5Ar ~1,0!,

p5Ar ~0,e1!,
~2.5!

v5Ar ~cosw,2e1e2 sinw!,

p5Ar ~sinw,1e1e2 cosw!,

wherer .0 and 0<w,2p. For the points inMex, unique representatives inG are

u5~cosu,sinu!,

p5~cosw,sinw!, ~2.6!

v5p50,

where 0<u,p and 0<w,2p. M0 contains a single point, whose unique representative inG is
u5v5p5p50.

The four subsetsMe1 ,e2
of M are disconnected. Each is open inM and has topologyR

3S1, and each is coordinatized by the pair~r, w! as shown in~2.5!, with r .0 and (r ,w)
;(r ,w12p). The pullback ofV to eachMe1 ,e2

is nondegenerate and equal to2dr`dw, thus
making eachMe1 ,e2

into a smooth symplectic manifold. We regardMe1 ,e2
as the four ‘‘regular’’

sectors ofM, and we denote their union byMreg.
Mex is a smooth two-dimensional manifold, and the pullback ofV to Mex vanishes. The

topology of M near Mex is severely non-Hausdorff: any neighborhood of any point inMex

containsM0 , and there are pairs of points inMex whose neighborhoods also overlap in eve
sector ofMreg. Finally, any neighborhood ofM0 containsMex and intersects all the sectors o
Mreg.

We therefore see thatM is connected: each of the disconnected sectors ofMreg is attached to
M0 andMex. It is clear from~2.5! that the subsetMregøM0 can be visualized as four cone
with a common tip, the tip consisting of the single point inM0 and being atr→01 in each
Me1 ,e2

.10 On the other hand, for fixede2 , the union ofM1,e2
, M21,e2

, and theu50 circle of
Mex constitutes a smooth symplectic manifold with topologyR3S1: to see this, make in~2.5! a
gauge transformation that multipliesv andp by Ar and dividesu andp by Ar , and allowr to take
all real values. The union ofM1,e2

, M21,e2
, and theu5p/2 circle of Mex constitutes also a

smooth symplectic manifold with topologyR3S1: to see this, make in~2.5! the analogous gaug
transformation with 1/Ar instead ofAr . The union ofM1,e2

, M21,e2
, and both of these circles in

Mex is a smooth symplectic non-Hausdorff manifold, with topologyR83S1, whereR8 is the real
line with a doubled origin. The structure ofM nearMex is therefore reminiscent of, but mor
involved than, the joining of the causal and noncausal sectors of Misner space,17 or the joining of
the spacelike and timelike sectors in the solution space to Witten’s 211 gravity onR3T2 ~Refs.
18 and 19! or on R3(Klein bottle).20

We now turn to the observables. Consider onG the six functions:10

O12ªu1p22p1u2, O23ªu2v12p2p1,

O13ªu1v12p1p1, O24ªu2v22p2p2, ~2.7!

O14ªu1v22p1p2, O34ªp1v22v1p2.
1 Feb 2009 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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The linear span of theOi j is closed under Poisson brackets, and the Poisson bracket alge
isomorphic to the Lie algebrao(2,2).sl(2,R)3sl(2,R). The basis~2.7! is adapted to theo~2, 2!
form of the algebra, while a basis adapted to thesl(2,R)3sl(2,R) form is

t0
h
ª

1
2~O122hO34!,

t1
h
ª

1
2~O132hO24!, ~2.8!

t2
h
ª

1
2~O231hO14!,

wherehP$1,21%: the Poisson brackets read as

$t1
h ,t2

h8%52dh,h8t0
h ,

$t2
h ,t0

h8%5dh,h8t1
h , ~2.9!

$t0
h ,t1

h8%5dh,h8t2
h .

We record for future use that thet i
h satisfy for eachh the identity

2~t0
h!21~t1

h!21~t2
h!25H1H21 1

4D
2. ~2.10!

Now, t i
h Poisson commute with the constraints and are thus, by definition, observable

denote byAclass the classical observable algebra generated by$t j
h%. The pullbacks oft i

h to M
vanish onM0 andMex, while onMreg we have

t0
h5 1

2e1~11he2!r , ~2.11a!

t1
h5 1

2~11he2!r cosw, ~2.11b!

t2
h52 1

2e1~11he2!r sinw. ~2.11c!

Aclasstherefore separatesMreg. More precisely, for givenh, thesl~2, R! subalgebra generated b
$t i

h% vanishes onM1,2h andM21,2h but separatesM1,høM21,h , and onMe1 ,h t0
h has the

definite signe1 .
We note in passing thatt i

h are real analytic functions onG. For givene1 and e18 , ~2.11!
therefore shows thatMe1,1 andMe

18 ,21 cannot both belong to a connected real analytic manif

whose analytic structure would be induced from that ofG.
By construction, exponentiating the Poisson bracket action ofAclass on G yields on G the

action of a connected groupG that is locally SL(2,R)3SL(2,R), and thisG action commutes with
the gauge group action~2.4!. ConsideringG in a polarization in which~u, p! are the ‘‘coordi-
nates’’ and~p, 2v! are the ‘‘momenta,’’ it is immediate from~2.7! that thisG action reads as

S u
pD°AS u

pD , ~2.12a!

S p
2vD°~A21!TS p

2vD , ~2.12b!

whereA is a 434 matrix in the defining representation ofO(2,2), and in the connected compo
nentOc(2,2). HenceG5Oc(2,2).@SL(2,R)3SL(2,R)#/Z2 . We use~2.12! to extend theG action
to the action ofG1ªO(2,2): theG1 action is generated by theG action and the four mapsPe1 ,e2

,
wheree iP$1,21% and
1 Feb 2009 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Pe1 ,e2
:~u1,u2,v1,v2,p1,p2,p1,p2!°~u1,e1u2,v1,e1e2v2,p1,e1p2,p1,e1e2p2!. ~2.13!

It is clear that also theG1 action onG commutes with the gauge group action~2.4!.
The inducedG action onM is trivial on M0 , mapsMex transitively to itself, and maps eac

Me1 ,e2
transitively to itself. The inducedG1 action onM is trivial on M0 , mapsMex transi-

tively to itself, and mapsMreg transitively to itself, permuting the four sectors ofMreg by a Z2

3Z2 permutation subgroup according to

Pe
18 ,e

28
:Me1 ,e2

→Me
18e1 ,e

28e2
. ~2.14!

III. ALGEBRAIC QUANTIZATION

In this section we quantize the system in the algebraic quantization framework of Ref.
this framework one first solves the quantum constraint equations on a linear space, with
inner product, and then seeks a Hermitian inner product such that the adjoint relations
chosen quantum observable algebra reflect the reality relations in the corresponding cl
observable algebra; we refer to Refs. 11, 12 for overviews and more detail. Our analysis c
follows that in Ref. 10, the main difference being that we consider two possible choices fo
classical observable algebra, arising, respectively, from the groupsG andG1 introduced in Sec. II.
The connection to Isham’s group theoretic quantization13 is made at the end of the section.

We work in a ‘‘coordinate representation,’’ starting with the linear space of smooth func
C(u,v) on R4. We shall frequently use the polar coordinates defined byu11 iu25ueia, v1

1 iv25veib, whereu>0, v>0. Note that no inner product is introduced at this stage.
To begin, we promote the classical constraints~2.2! into quantum constraint operators. Th

momentum operators are

p̂ª2 i“u , p̂ª2 i“v , ~3.1!

and we order the quantum constraints as

Ĥ1ª2 1
2~“u

21v2!, ~3.2a!

Ĥ2ª2 1
2~“v

21u2!, ~3.2b!

D̂ª2 i ~u–“u2v–“v!, ~3.2c!

where“u
2
ª]2/](u1)21]2/](u2)2, and similarly for“v

2. The commutator algebra of the quantu
constraints then closes as

@Ĥ1 ,Ĥ2#5 iD̂ , ~3.3a!

@D̂,Ĥ1#52iĤ 1 , ~3.3b!

@D̂,Ĥ2#522iĤ 2 . ~3.3c!

Next, we define a set of quantum observablesÔi j by substituting the momentum operato
~3.1! into the expressions~2.7! of the classical observablesOi j . As the resulting expression
contain no products of noncommuting operators, no issue of ordering arises. The operatoÔi j

commute with the constraints~3.2!, and their commutator algebra closes. AsOi j are real, we
introduce on this algebra a star operation byÔi j

! 5Ôi j and extending to the full algebra b
antilinearity. We denote this star-algebra of physical observables byAphy

(!) .
We define inAphy

(!) the operatorst̂ i
h by the overcareted a counterparts of~2.8!, and we write
1 Feb 2009 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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t̂6
h
ª t̂1

h6 i t̂2
h . ~3.4!

The operatorst̂0
h and t̂6

h generateAphy
(!) . The commutators are

@ t̂0
h ,t̂6

h8#56dh,h8t̂6
h , ~3.5a!

@ t̂1
h ,t̂2

h8#522dh,h8t̂0
h , ~3.5b!

and the star operation reads as

~ t̂0
h!!5 t̂0

h , ~3.6a!

~ t̂6
h !!5 t̂7

h . ~3.6b!

The explicit expressions of the operators in the polar coordinates are

t̂0
h52 1

2i ~]a1h]b!, ~3.7a!

t̂6
h 5 1

2e
6 i ~a1hb!$uv1@]u6~ i /u!]a#@]v6h~ i /v !]b#%. ~3.7b!

We now solve the quantum constraints by the separation of variables. As shown in Re
solutions that are smooth functions of~u, v! and separable in their angle dependence are multi
of the functions

Cm,eªeim~a1eb!Jm~uv !, ~3.8!

wheremPZ, eP$1,21%, andJm is the Bessel function of the first kind.21 The functionsCm,e are
linearly independent, with the exception thatC0,15C0,2 . We denote the linear span of theCm,e

by Ṽ. As

t̂0
hCm,e5dh,emCm,e , ~3.9a!

t̂6
h Cm,e5dh,emCm61,e , ~3.9b!

Ṽ carries a representation ofAphy
(!) .

One could now find the subspaces ofṼ on which the representation ofAphy
(!) is ~algebraically!

irreducible, and look on each for an inner product in which the star operation~3.6! becomes the
adjoint operation,

~ t̂0
h!†5 t̂0

h , ~3.10a!

~ t̂6
h !†5 t̂7

h . ~3.10b!

However, the only subspace on which such an inner product exists is the one-dimension
space generated byC0,1 , and the resulting theory is physically uninteresting, as every operat
Aphy

(!) then annihilates the whole Hilbert space. There are four other subspaces carrying an i
ible representation ofAphy

(!) , but each of these subspaces containsC0,1 , and the adjoint relations
~3.10! imply that C0,1 have a vanishing norm@cf. ~3.12! and ~3.13! below#.

The way to remedy the situation is to note that the troublesome vectorC0,1 is annihilated by
every operator inAphy

(!) , and this vector can therefore be dropped at the outset. Let thusV be the
linear span of$Cm,eumÞ0%. V carries a representation ofAphy

(!) , which reads as in~3.9!, except
that wheneverC0,e would occur on the right-hand side, it is replaced by the zero vectoV
decomposes into the direct sumV5 % Ve1 ,e2

, wheree iP$1,21% and
1 Feb 2009 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Ve1 ,e2
ªspan$Cm,e2

ue1m.0%. ~3.11!

EachVe1 ,e2
carries an irreducible representation ofAphy

(!) , and we therefore seek an inner produ
(•,•)e1 ,e2

individually on each. Equations~3.9a! and~3.10a! imply that theCm,e are orthogonal.
Equations~3.9b! and ~3.10b! yield the recurrence relation

~m61!2~Cm ,Cm!5~ t̂7Cm61 ,t̂7Cm61!5~Cm61 ,t̂6t̂7Cm61!5m~m61!~Cm61 ,Cm61!,
~3.12!

where we have suppressed the indexe on the vectors, the indexh5e on t̂6 , and the index on the
inner product. It follows, still suppressing the indices, that

~Cm ,Cm8!5aumudm,m8 , ~3.13!

wherea is a positive constant, independent for eachVe1 ,e2
.

It is clear that~3.13! defines on eachVe1 ,e2
an inner product satisfying the adjoint relation

~3.10!. Completion yields the four Hilbert spacesHe1 ,e2
, and it follows from the asymptotic

large-order expansion ofJm
22 that every vector in these Hilbert spaces is represented by a fun

on the original configuration spaceR45$(u,v)%. EachHe1 ,e2
carries a representation ofAphy

(!) by

densely defined operators. For givenh, the sl(2,R) subalgebra generated by$t̂ i
h% is represented

nontrivially onHe1 ,h : the representation belongs to the discrete series15,23–25and, in the notation

of Ref. 23, is known asD1
e1.

In each of these representations ofAphy
(!) on He1 ,e2

, the Casimir operators of both the trivia
and nontrivialsl(2,R) subalgebra take the value zero:

@2~ t̂0
h!21~ t̂1

h!21~ t̂2
h!2#He1 ,e2

50. ~3.14!

In this sense, the quantum theory has preserved the identities~2.10! satisfied by the classica
observables.

It is easy to extend the above analysis to the larger observable algebraAphy1
(!) , generated by

Aphy
(!) and the set$P̂e1 ,e2

%, wheree iP$1,21% and

~ P̂e1 ,e2
C!~u1,u2,v1,v2!ªC~u1,e1u2,v1,e1e2v2!. ~3.15!

Note that P̂e1 ,e2
is the operator analog of the mapPe1 ,e2

~2.13! on G. The star operation is

extended toAphy1
(!) by P̂e1 ,e2

! 5 P̂e1 ,e2
. As

P̂e1 ,e2
Cm,e5Ce1m,e2e , ~3.16!

the new operators permute the subspacesVe1 ,e2
by a Z23Z2 permutation subgroup according t

P̂e
18 ,e

28
Ve1 ,e2

5Ve
18e1 ,e

28e2
, ~3.17!

and the representation ofAphy1
(!) on V is irreducible. Proceeding as above, we arrive at the Hilb

spaceH1ª% He1 ,e2
, where the subspacesHe1 ,e2

are orthogonal and the inner product on each
given by ~3.13!, but now with the samea for all He1 ,e2

.
The quantum theories that we have obtained have a natural interpretation as quantiza

different subsets of the classical reduced phase spaceM. For givene1 ande2 , the representation
of Aphy

(!) on He1 ,e2
is the quantum analog of the pullback of the classical algebraAclassto Me1 ,e2

,
in that in each case theh52e2 sl(2,R) subalgebra is trivial, and in the nontrivialsl~2, R!
subalgebrat̂0

e2 and andt0
e2 have the same definite sign. The Hilbert spaceHe1 ,e2

with the observ-

able algebraAphy
(!) can therefore be thought of as a quantization of the sectorMe1 ,e2

. Similarly, the
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Hilbert spaceH1 with the observable algebraAphy1
(!) can be thought of as a quantization of all th

four sectors ofMreg.
One can also obtain our quantum theories via the group theoretic quantization of Isham13 As

noted in Sec. II, theG action~2.12! on G induces on eachMe1 ,e2
a transitiveG action, and also the

transitive action of a subgroup SL(2,R),G: this SL~2, R! action is obtained by exponentiating th
Poisson bracket action of the algebra~2.11!. For group-theoretic quantization on a given sec
Me1 ,e2

, we can therefore adopt this SL~2, R! as the canonical group. In order to preserve
classical identities~2.10! in the quantum theory, we consider the irreducible unitary represe
tions of SL~2, R! in which the Casimir operator vanishes. The only such representations ar
trivial representation and the discrete series representationsD1

6 .15,23–25t̂0
e2 vanishes in the trivial

representation, whereas in eachD1
6 it as a definite sign, and it is inD1

e1 that this sign agrees with

the sign of the classical functiont0
e2 ~2.11a! on Me1 ,e2

. Thus, requiring the signs oft̂0
e2 andt0

e2

to agree picks the representationD1
e1: we arrive at the Hilbert spaceHe1 ,e2

, and the observable

algebra is thesl~2, R! subalgebra ofAphy
(!) with h5e2 . A similar argument can be made for grou

theoretic quantization onMreg with the canonical groupG1.O(2,2).Oc(2,2)3s(Z2)2, arriving
at H1 with the observable algebraAphy1

(!) . As neitherMreg nor G1 is connected, it is perhaps no
clear how unique the implementation of the group-theoretic quantization in this case is, buH1

clearly does carry an irreducible unitary representation ofG1 . Further possibilities of implement
ing group-theoretic quantization onMreg and its four sectors are discussed in Ref. 26, 27.

We end the section with two remarks.
~1! One might have tried to include in the vector space of solutions to the constraints fun

that are not smooth atuv50. In this case one can replaceJm in ~3.8! by any linear combination
of Jm andNm , with m-independent coefficients, and the abstract construction of the Hilbert sp
goes through as above. However, whenNm is present, it is seen from the large-order expansion
Nm

22 that the completion introduces in the Hilbert spaces vectors that cannot be represen
functions on the original configuration space.

~2! One might have tried to include in the vector space of solutions to the constraints ve
that are not single-valued functions on the configuration space, thus allowingm in ~3.8!, or in the
analog of~3.8! with a linear combination ofJm andNm , to be a noninteger. The representation
Aphy

(!) on this larger vector space takes again the form~3.9!, and breaks thus into irreducibl
representations classified bye and the fractional part ofm. However, in this case no inner produ
satisfying the adjoint relations~3.10! exists.

IV. FORMALISM OF REFINED ALGEBRAIC QUANTIZATION WITH GROUP AVERAGING

In this section we give a brief outline of refined algebraic quantization~RAQ! with group
averaging. Our main purposes in this section are to fix the notation and to fix the particular v
of RAQ: we follow the formulation of Giulini and Marolf.8 We specialize throughout to the cas
where the gauge group is a connected unimodular Lie group.

A. Refined algebraic quantization

RAQ begins by implementing the quantum constraints as self-adjoint operators on an
iary Hilbert spaceHaux. We assume that the commutator algebra of the constraints closes as
algebra, so that the algebra exponentiates into a unitary representationU(g) of a corresponding
connected Lie groupG on Haux. We refer toG as the gauge group, and we assume that i
unimodular~that is, that the structure constants of the Lie algebra are traceless!.

Next, RAQ solves the constraints in an enlargement ofHaux. To this end, one introduces
space of test states, a dense linear subspaceF,Haux such that the operatorsU(g) mapF to itself.
The desired enlargement is the algebraic dual ofF, denoted byF* and topologized by the
topology of pointwise convergence. Forf PF* andfPF, we denote the dual action off on f by
1 Feb 2009 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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f @f#. F* carries a representationU* (g) of G defined by the dual action: forf PF* ,
„U* (g) f …@f#5 f @U(g21)f# for all fPF. Solutions to the quantum constraints are then
definition the elementsf PF* for which U* (g) f 5 f for all gPG.

The RAQ algebra of observables is completely determined by the structure specified
An operatorO on Haux is called gauge invariant if the domains ofO andO† includeF, O andO†

map F to itself, andO commutes with theG action onF: OU(g)f5U(g)Of for all gPG,
fPF. Note that ifO is gauge invariant, so isO†. The observable algebraAobs is, by definition,
the algebra of gauge-invariant operators.Aobs has onF* an antilinear representation defined b
the dual action:14 for f PF* , (Of )@f#5 f @O†f# for all fPF. Note thatAobs does not need to
be constructed or presented in any explicit sense.

The last ingredient in RAQ is a rigging map, which is, by definition, an antilinear maph from
F to F* satisfying four postulates.

~i! The image ofh solves the constraints: Each vector in the image ofh is invariant under the
G action onF* .

~ii ! h is real:h(f1)@f2#5h(f2)@f1# for all f1 , f2PF.
~iii ! h is positive:h(f)@f#>0 for all fPF.
~iv! h intertwines with the representations of the observable algebra onF andF* : O(hf)

5h(Of) for all OPAobs and allfPF.
The input required in RAQ is now complete. As the final step, RAQ introduces on the im

of h a Hermitian inner product by

„h~f1!,h~f2!…physªh~f2!@f1#, ~4.1!

and completes the image ofh in this inner product into a Hilbert spaceHphys, which is, by
definition, the physical Hilbert space of the theory.Hphys carries an antilinear representation
Aobs, and the adjoint map in this representation~with respect to the inner product onHphys! is by
construction that induced by the adjoint map onHaux. The representation ofAobs on Hphys is
known to be nontrivial provided certain technical conditions hold.14

B. Group averaging

The group averaging proposal in RAQ addresses the last ingredient above, the choice
rigging map. The proposal seeks the rigging map as a suitable interpretation of the formal e
sion

h~ uf&)ªE
G

dg^fuU~g!, ~4.2!

where we have invoked the Dirac notation for the vectoruf&PF and for its Hilbert dual vector
^fu. The measuredg is the Haar measure onG ~which is both left and right invariant by the
unimodularity ofG!.

Consider now the formula

~f2 ,f1!gaªE
G

dg„f2 ,U~g!f1…aux, ~4.3!

and suppose that the integral on the right-hand side converges in absolute value for allf1 andf2

in F. Formula~4.3! defines then onF the sesquilinear form (•,•)ga, and we interpret the group
averaging proposal~4.2! as

h~f1!@f2#ª~f1 ,f2!ga. ~4.4!
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The resulting maph clearly satisfies postulates~i!, ~ii !, and~iv!: ~i! follows from the invariance of
the Haar measure, and~ii ! from the fact thatdg5d(g21). If h further satisfies~iii !, and ifh is not
identically zero, the group averaging proposal has then produced a rigging map.

Considerable control over the space of possible rigging maps is provided by the uniqu
theorem of Giulini and Marolf.8 To state the theorem, we note8 that if h is anL1 function onG, the
expressionĥª*G dg h(g)U(g) defines a bounded operator onHaux, and the set of all such
operators forms an algebraÂG . Suppose now thatF is invariant underÂG , the integral in~4.3!
converges in absolute value for allf1 andf2 in F, and the sesquilinear form (•,•)ga on F is not
identically zero. Then, if a rigging map exists, it is unique up to an overall multiple, and give
~4.4!.8

V. REFINED ALGEBRAIC QUANTIZATION OF THE SL „2, R… SYSTEM

In this section we apply the RAQ formalism of Sec. IV to our system. To maintain a co
to the algebraic quantization of Sec. III, we shall proceed so that the RAQ observable algebAobs

will turn out to contain the algebraic quantization observable algebraAphy1
(!) .

A. Auxiliary Hilbert space and the gauge group

We take the auxiliary Hilbert spaceHaux to beL2(R4) of wave functionsC(u,v) in the inner
product,

~C1 ,C2!auxªE d2u d2v C̄1C2 . ~5.1!

We take the constraint operators to be given by~3.2!.
The constraints are essentially self-adjoint onHaux, and exponentiating2i times their algebra

yields onHaux a unitary representationU of the universal covering group of SL~2, R!. The group
elements that appear in the Iwasawa decomposition~A7! are represented by

U„exp~be2!…5exp~2 imĤ2!, ~5.2a!

U„exp~lh!…5exp~2 ilD̂ !, ~5.2b!

U„exp@u~e12e2!#…5exp„2 iu~Ĥ12Ĥ2!…. ~5.2c!

exp(2imĤ2) and exp(2ilD̂) act on the wave functionsC(u,v), respectively, as

@exp~2 imĤ2!C#~u,v!5E d2v8

2p im
expH i

2 F ~v2v8!2

m
1mu2G J C~u,v8! ~ for mÞ0!,

~5.3a!

@exp~2 ilD̂ !C#~u,v!5C~e2lu,elv!. ~5.3b!

Regarding exp„2 iu(Ĥ12Ĥ2)…, it suffices to observe that

Ĥ12Ĥ25Ĥu
sho2Ĥv

sho, ~5.4!

whereĤu
sho andĤv

sho are the two-dimensional harmonic oscillator Hamiltonians in, respectivelu
andv,

Ĥu
sho
ª

1
2~2“u

21u2!, ~5.5a!

Ĥv
sho
ª

1
2~2“v

21v2!. ~5.5b!
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It follows that exp„2 iu(Ĥ12Ĥ2)… is periodic inu with period 2p. As discussed in Appendix A
this shows thatU is a representation of SL~2, R! @and not just a representation of the univers
covering group of SL~2, R!#. In the terminology of RAQ, the gauge groupG is thus SL~2, R!.

The algebraic quantization observable algebraAphy1
(!) is represented onHaux by densely de-

fined operators, and the star operation ofAphy1
(!) is the adjoint map ofHaux. Aphy1

(!) clearly com-
mutes both with the constraint operators~3.2! and with U on the respective common domain
Aphy1

(!) exponentiates into anO(2,2) action onHaux: representing the states as functions of~u, p!
via the Fourier transform inv, O(2,2) acts on the arguments of the functions by~2.12a!. It is clear
that thisO(2,2) action commutes withU.

U is isomorphic to the oscillator representation of SL~2, R! on L2(R2,2), and ourO(2,2)
action onHaux is isomorphic to theO(2,2) action onL2(R2,2) known in this context.15 We give a
brief review of the oscillator representation in Appendix B.

B. Test states

Next, we seek a suitable linear space of test states inHaux. The decomposition~5.4! suggests
that we make use of the eigenstates of the harmonic oscillator Hamiltonians~5.5!. It is convenient
to choose the eigenstates so that they are also eigenstates of the angular momentum o
û1p̂22û2p̂152 i ]a and v̂1p̂22 v̂2p̂15 i ]b . These eigenstates are

fm,m8;n,n8ªei ~ma1m8b!uumuv um8uLn
umu~u2!Ln8

um8u
~v2!exp@2 1

2~u21v2!#, ~5.6!

where the indices are integers withn>0 andn8>0, and theL’s are the generalized Laguerr
polynomials.28,29 fm,m8;n,n8 is an eigenstate ofĤu

sho and Ĥv
sho with the respective eigenvalue

umu12n andum8u12n8, and it is an eigenstate of2 i ]a and2 i ]b with the respective eigenvalue
m andm8. The statesfm,m8;n,n8 form a linearly independent and orthogonal set inHaux satisfying

~fm,m8;n,n8 ,fm̃,m̃8;ñ,ñ8!aux5
p2~n1umu!! ~n81um8u!!

n! ~n8!!
dm,m̃dm8,m̃8dn,ñdn8,ñ8 , ~5.7!

and their linear spanF̃ is dense inHaux. F̃ consists of vectors of the formP(u,v)exp@21
2(u

2

1v2)#, whereP(u,v) is an arbitrary polynomial in the four coordinates (u1,u2,v1,v2): from this
characterization it is clear thatF̃ is mapped to itself by the quantum constraint operators~3.2!.
Similarly, recalling that the algebraic quantization observable algebraAphy1

(!) is generated by~3.15!
and the overcareted counterparts of~2.7!, it is clear thatF̃ is mapped to itself byAphy1

(!) .
F̃ itself is not suitable for our RAQ test state space. First, there is a technical issue in tF̃

is not mapped to itself by theG actionU, as is immediate, for example, from~5.3b!. The serious
problem withF̃ is, however, that the group averaging integral~4.3! is not convergent, as we show
in Appendix C: convergence fails when both angular momentum quantum numbers vanis
now show how to modifyF̃ so that the group averaging integral becomes convergent, and we
use the group algebra technique of Ref. 8 to generate a test state space that is invariantU
and large enough for the uniqueness theorem of Ref. 8 to apply.

Let F0 be the linear span of the set

B0ª$fm,m8;n,n8uumu1um8u.0%ø$~f0,0;n,n81f0,0;n11,n811!%. ~5.8!

What motivates this definition is thatF0 is mapped to itself by the algebraic quantization obse
able algebraAphy

1(!) . To see this, recall from above thatF̃ is mapped to itself byAphy1
(!) . It is

therefore sufficient to consider the situation in which an element ofAphy1
(!) acts on a vector inB0

and produces a vector whose expansion in the basis$fm,m8;n,n8% has components withm5m8
50. From ~3.15!, ~3.7!, and the angle dependence infm,m8;n,n8 ~5.6!, we see that the only
nontrivial instance of how this can happen is the action oft̂6

h on f71,7h;n,n8 , which reads by
explicit computation30
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t̂6
h f71,7h;n,n85~n11!~n811!~f0,0;n,n81f0,0;n11,n811!, ~5.9!

and this is in the linear span ofB0 . ThusF0 is mapped to itself byAphy1
(!) .

We claim thatF0 is dense inHaux. To show this, recall from above that$fm,m8;n,n8% is an
orthogonal Hilbert space basis forHaux. It is therefore sufficient to show that the linear subspa
W,F spanned by$(f0,0;n,n81f0,0;n11,n811)% is dense in the Hilbert subspaceH0,Haux spanned
by $f0,0;n,n8%. Suppose this is false. Then there exists a nonzero vectorvPH0 that is in the
orthogonal complement of the closure ofW. As vPH0 , we can writev5(n,n8bn,n8f0,0;n,n8 ,
where the coefficients satisfy(n,n8ubn,n8u

2,` by ~5.7!, and at least one coefficient is nonzer
However, the orthogonality ofv with each (f0,0;n,n81f0,0;n11,n811)PW implies bn,n8
52bn11,n811 for all n andn8, and the sum(n,n8ubn,n8u

2 therefore diverges, which is a contra
diction. ThusF0 is dense inHaux.

The crucial property ofF0 is that the group averaging integral~4.3! converges in absolute
value for allf1 andf2 in F0 . This is shown in Appendix C.

As F0 is not mapped to itself byU, F0 does not technically qualify as a test state space in
version of RAQ. A simple remedy would be to consider the spaceF08 , which is the closure ofF0

under the algebra generated by the operatorsU(g) for gPG. F08 is clearly dense inHaux and
invariant underU, and it thus satisfies the RAQ test state space conditions, and one could i
successfully complete RAQ withF08 as the test state space. However, we wish to work with a
state space to which the uniqueness theorem of Giulini and Marolf8 applies. To this end, recal
from Sec. IV that anL1 function h on G defines on Haux the bounded operatorĥ
ª*G dg h(g)U(g), and the set of all such operators forms an algebraÂG . Let now F be the
closure ofF08 under the action ofÂG . It is clear thatF is dense inHaux and invariant underU,
andF thus satisfies the RAQ test state space conditions. It is also clear thatF is mapped to itself
by ÂG , while F08 is not.

We now adoptF as the RAQ test state space. AsF0 is mapped to itself byAphy1
(!) , so isF,

and the RAQ observable algebraAobs therefore containsAphy1
(!) as a subalgebra.

As a final remark, we note thatF0 is mapped to itself by the quantum constraint operat
~3.2!,30 and thereforeF08 andF are also mapped to themselves by these operators.F0 , F08 , and
F would therefore all qualify as test state spaces in formulations of RAQ that solve the cons
in terms of the constraint operators rather than in terms of theG actionU.4,14

C. Group averaging and the physical Hilbert space

Consider now the group averaging. As mentioned above, the integral in~4.3! converges in
absolute value for allf1 andf2 in F0 . It follows from Lemma 2 in Ref. 8 that the integral i
~4.3! converges in absolute value for allf1 andf2 in F. The maph is therefore well defined by
~4.3! and~4.4!, and it satisfies the rigging map postulates with the possible exception of posit

To evaluateh, let f iPF, and lethi be L1 functions onG. We then have from~4.3! and
~4.4!,8

h~ ĥ1f1!@f2#5S E
G

dg h1~g! Dh~f1!@f2#, ~5.10a!

h~f1!@ ĥ2f2#5S E
G

dg h2~g! Dh~f1!@f2#, ~5.10b!

As further h(f1)@U(g0)f2#5h(U(g0)f1)@f2#5h(f1)@f2#, it suffices to evaluate
h(f1)@f2# for f1 andf2 in the setB0 ~5.8!.

The explicit evaluation ofh is done in Appendix D. We can represent the vectors in the im
of h as functions onR45$(u,v)%, acting on the test statesfPF by
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f @f#5E d2u d2v f ~u,v!f~u,v!. ~5.11!

We find

h~fm,m8;n,n8!52p2~21!n@sgn~m!#md umu,um8udn,n8

~n1umu!!
umun!

f m,~m8/m! , umu1um8u.0,

~5.12a!

h~f0,0;n,n81f0,0;n11,n811!50, ~5.12b!

where the functionsf m,e , with mPZ\$0% andeP$1,21%, are defined by

f m,eªJm~uv !e2 im~a1eb!. ~5.13!

The action~5.11! of f m,e on the vectors inB0 reads31 as

f m,e@fm̃,m̃8;n,n8#52p2~21!n@sgn~m!#mdm,m̃dem,m̃8dn,n8

~n1umu!!
n!

, um̃u1um̃8u.0,

~5.14a!

f m,e@f0,0;n,n81f0,0;n11,n811#50. ~5.14b!

From this it is clear that the set$ f m,eumPZ\$0%,e561% is linearly independent inF* and a basis
for the image ofh.

What remains is to evaluate the~prospective! inner product on the image ofh. From ~4.1!,
~5.12a!, and~5.14a!, we find

~ f m,e , f m8,e8!phys5umudm,m8de,e8 . ~5.15!

As ~5.15! is positive definite, all the rigging map postulates are satisfied, and~5.15! does define an
inner product on the image ofh. The physical Hilbert spaceHphys is obtained by completion. The
asymptotic large-order expansion ofJm

22 shows that every vector inHphys can be represented as
function onR45$(u,v)%.

Finally, asF is invariant underÂG , the assumptions of the uniqueness theorem of Giulini
Marolf are satisfied. It follows that every rigging map for our triple (Haux,U,F) is a multiple of
the group averaging rigging maph.

D. Observables and the relation to algebraic quantization

As we have emphasized, the RAQ observable algebraAobscontains the algebraic quantizatio
observable algebraAphy

1(!) as a subalgebra, and the star operation onAphy1
(!) is the adjoint map of

Haux. It follows that the antilinear representation ofAobs on Hphys contains an antilinear repre
sentationr1 of Aphy1

(!) , and inr1 the star operation onAphy1
(!) is the adjoint map ofHphys. r1 acts

on the basis$ f m,eumPZ\$0%,e561% of Hphys as

r1~ t̂0
h!: f m,e°dh,em fm,e , ~5.16a!

r1~ t̂6
h !: f m,e°dh,em fm61,e , ~5.16b!

r1~ P̂e1 ,e2
!: f m,e° f e1 m,e2e , ~5.16c!

where f 0,e , whenever it appears on the right-hand side, is understood to mean zero.
Comparing~5.16! to ~3.9!, and ~3.16!, and the RAQ inner product~5.15! to the algebraic

quantization inner product~3.13!, we see thatr1 is anti-isomorphic to the representation ofAphy1
(!)
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on the Hilbert spaceH1 obtained in the algebraic quantization of Sec. III, provided the in
products are normalized to agree. TheO(2,2) action onH1 found in Sec. III is anti-isomorphic to
theO(2,2) action onHphys induced by theO(2,2) action onHaux. In this sense, the RAQ quantum
theory contains the algebraic quantization quantum theory.

VI. DISCUSSION

In this paper we have compared the algebraic quantization~AQ! framework and the refined
algebraic quantization~RAQ! framework in a constrained Hamiltonian system with unredu
phase spaceG5T* R4 and gauge group SL~2, R!. In both approaches we used input motivated
the structure of the classical constraints as quadratic functions onG. In AQ, we first solved the
constraints on a suitable vector space, promoted an explicitly known classical observable a
into the quantum operator star algebraAphy1

(!) , and determined the inner product by requiring t
star operation onAphy1

(!) to coincide with the adjoint operation. In RAQ, we chose the auxili
Hilbert spaceHaux to be L2 over the unreduced configuration spaceR4, and we promoted the
classical SL~2, R! gauge transformations onG into a unitary SL~2, R! action onHaux. We took
particular care to choose the RAQ test state spaceF,Haux so that the RAQ observable algeb
Aobs containsAphy1

(!) . Considering the similarity in these inputs, it is not surprising that the R
quantum theory turned out to contain the AQ quantum theory. We also investigated theO(2,2)
group actions underlying the classical and quantum observable algebras, and we showed
AQ quantum theory can be recovered through Isham’s group theoretic quantization framew

Both AQ and RAQ encountered with the zero angular momentum states a technical diffi
whose origin is in the structure of a certain pathological subset of the classical reduced
space. The remedy was to ensure that such states do not appear in the physical Hilbert s
AQ, the problem appeared in the guise of ‘‘zero norm’’ states in the prospective Hilbert spac
the cure was simply to drop the states already from the vector space on which the constra
solved. In RAQ, on the other hand, the problem appeared as the divergence of the group
ing, and the cure now was to modify the space of test states. However, as the RAQ obse
algebra is defined in terms of the test state space, the modification needed to be quite s
order that the RAQ observable algebra could still be meaningfully compared with the AQ ob
able algebra: here we took advantage of the explicit knowledge of the operators inAphy1

(!) . This
illustrates well how neither AQ nor RAQ is aprescriptionfor quantization: they are schemes th
need input at various steps, and making successful choices in the ‘‘early’’ steps may r
hindsight from the ‘‘later’’ steps.12,14,32Also, this illustrates that although RAQ does not assu
a single observable to be explicitly constructed, the knowledge of some observables of inter
be quite useful in making good choices at the various steps of RAQ.

As discussed in Ref. 10, the constraint algebra of our system is analogous to the con
algebra of general relativity. Among the three constraints~2.2!, H1 andH2 are ‘‘Hamiltonian’’-
type, quadratic in the momenta, whileD is ‘‘momentum’’-type, linear in the momenta, and th
mixing of these two types of constraints in~2.3! is as in general relativity.33 One consequence o
this analogy is that one could introduce and investigate in our system also group averagin
Teitelboim’s ‘‘causal’’ boundary condition.34–36 In general relativity, this condition proposes th
only positive lapses contribute to the path integral that defines the quantum mechanical pr
tion amplitude. IfH1 andH2 are adopted as the analog of the Hamiltonian constraint of gen
relativity at two spatial points,10 the causal boundary condition in our system yields an aver
over the semigroup of SL~2, R! matrices whose all entries are positive: integrating first over
lapses and then over the shift, the SL~2, R! elements emerge from the amplitude folding of Re
34, 35 in the form

exp~nh!exp~n1e11n2e2!, ~6.1!

where2`,n,` andn6.0, and we have explicitly verified that the measure emerging from
1 Feb 2009 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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ghost integrations of Refs. 34, 35 is the SL~2, R! Haar measure in the parametrization~6.1!. It
might be interesting to see whether a scattering theory of the type considered in Refs. 34–3
be built on the causal boundary condition in our system.

We note in this context that allowingn andn6 to take all real values in~6.1! does not cover
all of SL~2, R!, and, in particular, it does not reach those matrices where the product o
diagonal elements is negative. In our system, the decomposition of the quantum propa
amplitude in the form given in Refs. 34, 35, first integrating over the lapses and then over the
does thus not yield an average over the whole group when the lapses and the shift are allo
take all real values. This phenomenon occurs also upon considering~6.1! in the group
PSL(2,R)5SL(2,R)/$61%.Oc(2,1). The phenomenon is therefore not a consequence of the
that the exponential map fromsl~2, R! to SL~2, R! is not onto, as is the exponential map fromsl~2,
R! to PSL~2, R!.

We saw in Sec. II that theO(2,2) action onG looks simple in the polarization in which~u, p!
are the ‘‘coordinates’’ and (p,2v) are the ‘‘momenta.’’ Similarly, we noted in Sec. V that th
O(2,2) action onHaux5L2

„$(u,v)%… looks simple when Fourier transformed toL2
„$u,p%…. At-

tempting to quantize the system in a~u, p! representation would, however, present difficultie
Adopting the~u, p! representation in algebraic quantization and proceeding as in Sec. III
finds that the constraints cannot be solved in terms of smooth functions: the constraintĤ2C50
implies that the support ofC(u,p) would need to be in some sense atp22u250. The reason
underlying this difficulty is precisely that our solutions to the constraints in the~u, v! representa-
tion are not square integrable, or even integrable, and Fourier transforming them to a~u, p!
representation isa priori not defined. In RAQ, in contrast, the Fourier transform to the~u, p!
representation is well defined inHaux, there is no obstacle to constructing in this representationF,
theG action, or the group averaging sesquilinear form~4.3!, and proving the absolute convergen
of the integral in~4.3! is, in fact, technically simpler than in the~u, v! representation. At the
abstract level, one thus recovers isomorphic RAQ quantum theories in the~u, v! representation
and the~u, p! representation. The difficulty of doing RAQ in the~u, p!-representation is a mor
practical one, namely, that the methods of Appendix D now do not yield a representation
image ofh as functions onR45$(u,p)%, and one needs some other way to prove thath is positive
and to evaluateh in some practical fashion.

The classical system admits a generalization in whichu andv in the action functional~2.1!–
~2.2! have, respectively,r and s components, for any non-negative integersr and s. The phase
space isG r ,sªT* Rr ,s, the gauge group generated by the constraints is still SL~2, R!, andG r ,s has
a naturalO(r ,s)-action that commutes with the SL~2, R! action. One expects that this generaliz
system could be quantized with our methods, and that the quantum theory would reflect pro
of the oscillator representation onL2(Rr ,s).15,37,38It is also possible to generalize the system
certain other gauge groups of interest by minor modification of the constraint structure in~2.1!–
~2.2!, such as to the (111) Poincare´ group, or to the affine group onR ~which is nonunimodular!.
We leave such generalizations subject to future work.

Note added:After this work was completed, a quantization of the system in the algeb
constraint quantization framework of Refs. 39, 40 was posted in Ref. 41. As noted in Ref. 4
quantum theory recovered therein is, in essence, identical to our algebraic quantization qu
theory.
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APPENDIX A: IWASAWA DECOMPOSITION OF SL „2, R…

In this appendix we collect some well-known properties of SL~2, R!. The notation follows
Ref. 15.

SL~2, R! consists of real 232 matrices with a unit determinant,

g5S a b

c dD , ad2bc51. ~A1!

Each element of SL~2, R! admits a unique Iwasawa decomposition,

g5S 1 0

m 1D S el 0

0 e2lD S cosu sinu

2sinu cosu D , ~A2!

wheremPR, lPR, and 0<u,2p. In terms of the parametrization~A2!, the left- and right-
invariant Haar measure reads ase2l dl dm du.

A standard basis for the Lie algebrasl~2, R! consists of three matrices:

hªS 1 0

0 21D , e1
ªS 0 1

0 0D , e2
ªS 0 0

1 0D , ~A3!

whose commutators are

@h,e1#52e1, @h,e2#522e2, @e1,e2#5h. ~A4!

A second standard basis is

g0ª
1
2~e12e2!, g1ª

1
2~e11e2!, g2ª

1
2h, ~A5!

with the commutators

@g1 ,g2#52g0 , @g2 ,g0#5g1 , @g0 ,g1#5g2 . ~A6!

Each of the three matrices in~A2! is in the image of the exponential map fromsl~2, R! to
SL~2, R!. In terms of the exponential map,~A2! reads as

g5exp~me2!exp~lh!exp@u~e12e2!#. ~A7!

The decomposition~A2! encodes the first homotopy groupZ of SL~2, R! entirely in the
rightmost factor. The quotient map from SL~2, R! to PSL(2,R)5SL(2,R)/$61%.Oc(2,1) @the
connected component ofO(2,1)# acts in the decomposition~A2! by the identification (m,l,u)
;(m,l,u1p). A unique Iwasawa decomposition of the form~A7! holds therefore also for
covering groups ofOc(2,1): for then-fold covering 0<u,np, and for the universal covering
2`,u,`.

APPENDIX B: OSCILLATOR REPRESENTATION OF THE DOUBLE COVER OF SL „2, R…

In this appendix we recall some properties of the oscillator representation of the double
of SL~2, R!.15 We denote in this appendix the double cover of SL~2, R! by SL̃~2, R!.

1. Oscillator representation on L 2
„R…

Consider onL2(R) the three essentially self-adjoint operators,

Ĥ1ª2 1
2]x

2, ~B1a!

Ĥ2ª2 1
2x

2, ~B1b!
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D̂ª2 i ~x]x1 1
2!, ~B1c!

whose commutators form thesl~2, R! algebra~3.3!. Exponentiation yields a unitary representati
v of the universal covering group of SL~2, R! on L2(R). The group elements that appear in t
Iwasawa decomposition~A7! are represented by

v„exp~me2!…5exp~2 imĤ2!, ~B2a!

v„exp~lh!…5exp~2 ilD̂ !, ~B2b!

v„exp@u~e12e2!#…5exp„2 iu~Ĥ12Ĥ2!…. ~B2c!

The two first operators in~B2! act on functionsc(x) as

@exp~2 imĤ2!c#~x!5eimx2/2c~x!, ~B3a!

@exp~2 ilD̂ !c#~x!5e2l/2c~e2lx!, ~B3b!

while exp„2 iu(Ĥ12Ĥ2)… is the unit mass and frequency harmonic oscillator evolution opera
As exp„2 iu(Ĥ12Ĥ2)… is periodic inu with period 4p, v is a representation of SL˜~2,R) but not
a representation of SL~2, R!.

It is evident thatv decomposes into a sum of two unitary representations, one acting on
and the other on odd functions. It can be shown that these two representations are irreduc15

The oscillator representation can be formally written as

@v~g!c#~x!5E dy

A2p ib
expF i ~ay21dx222xy!

2b Gc~y!, ~B4!

wherea,bandd are as shown in~A1! in the SL~2, R! representative ofg @while g itself is in SL̃~2,
R!#. The singularities and branch cuts in the integral kernel in~B4! must, however, be interprete
consistently with the unambiguously defined left-hand side. For example, wheng5exp@u(e1

2e2)#, v(g) is the harmonic oscillator evolution operator, for whicha5d5cosu andb5sinu,
and the integral kernel in~B4! is singular atu5pn.

The integral kernel in~B4! can be derived from the SL~2, R! action that the classical coun
terparts of the operators~B1! generate onT* R. Writing gPSL(2,R) as in~A1!, and denoting by
~q,p! the usual canonical chart onT* R, this action reads as

S q
pD°S q8

p8 D5S a b

c dD S q
pD . ~B5!

~B5! preserves the symplectic structuredp∧dq and is therefore a canonical transformation. F
bÞ0, one can express the old and new momenta as functions of the old and new coordinat
the canonical transformation has then a generating functionS(q,q8), satisfying

p8~q,q8!dq82p~q,q8!dq5dS~q,q8!. ~B6!

Simple algebra yields

S~q,q8!5
aq21dq8222qq8

2b
. ~B7!
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As S(q,q8) ~B7! is quadratic inq andq8, the integral kernel of the corresponding unitary tran
formation consists of the exponential exp@iS(q,q8)# and a prefactor that does not depend onq or
q8. Imposing unitarity yields the prefactor shown in~B4!.

2. Oscillator representation on L 2
„Rr ,s

…

Inverting the signs of bothe1 ande2 in the basis~A3! of sl~2, R! is an automorphism ofsl~2,
R!. Inverting the signs ofĤ1 and Ĥ2 in ~B1! and proceeding as above yields therefore a rep
sentationv* of SL̃~2, R! on L2(R). The tensor productv r ,s of r copies ofv ands copies ofv*
is naturally realized as a representation of SL˜~2,R) on L2(Rr ,s), eachv acting on one of the first
r coordinates and eachv* acting on one of the lasts coordinates.v r ,s is a representation of SL~2,
R! iff r 1s is even.

The groupO(r ,s) has a natural action onL2(Rr ,s) by c(x)°c(a21x), wherea is in the
defining matrix representation ofO(r ,s). This O(r ,s) action commutes withv r ,s , and the spec-
tral decomposition of one completely determines the spectral decomposition of the other.15,37

The representationU of SL~2, R! on Haux introduced in Sec. V, and the representation
O(2,2) onHaux generated by the observable algebraAphy1

(!) therein, are isomorphic to the abov
structure withr 5s52. The isomorphism is the Fourier transform in the last two coordinate
Haux.L2(R2,2).

APPENDIX C: CONVERGENCE OF THE GROUP AVERAGING

In this appendix we show that the integral in~4.3!,

E
G

dg„f2 ,U~g!f1…aux, ~C1!

converges in absolute value for allf1 andf2 in the spaceF0 defined in Sec. V.
It suffices to considerf1 andf2 in the setB0 ~5.8!. As the operators2 i ]a and2 i ]b ~which

belong toAobs! commute withU(g), it suffices to consider the case wheref1 andf2 have the
same angular momentum quantum numbers, for otherwise the integrand in~C1! vanishes by the
orthogonality~5.7!.

We now consider separately the case where at least one angular momentum is nonzero
case where both angular momenta are zero.

1. At least one angular momentum nonzero

We setf15fm,m8;n,n8 andf25fm,m8;ñ,ñ8 , whereumu1um8u.0.
We write g in the Iwasawa decomposition~A2!. By ~5.2!, U(g) is given by

U~g!5exp~2 imĤ2!exp~2 ilD̂ !exp„2 iu~Ĥ12Ĥ2!…. ~C2!

The Haar measure in~C1! reads asdg5e2l dl dm du, and the integration is over all real value
of l andm and over one 2p cycle in u. As f1 is an eigenstate of the rightmost operator in~C2!
with an eigenvalue of absolute value 1, it suffices to setu50 and consider the integral overl and
m in the measuree2l dl dm.

Let thusU(g) be as in~C2! with u50 andmÞ0. By ~5.3!, we have

„f2 ,U~g!f1…aux5
4p2@sgn~m8!#m8z~k82k!/2

i ~m811!m

3E du dv dv8 u2k11vk811~v8!k811Jk8~vv8/m!Lñ
k~u2!

3Lñ8
k8~v2!Ln

k~u2/z!Ln8
k8
„z~v8!2

…
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3exp$2 1
2@11~1/z!2 im#u22 1

2@12~ i /m!#v22 1
2@z2~ i /m!#~v8!2%,

~C3!

wherekªumu, k8ªum8u, zªe2l, and the integration is over positive values ofu, v, andv8. The
Bessel functionJk8(vv8/m) has emerged from performing the angular part of thed2v8 integral in
~5.3a!. Here, and from now on, the individual components ofu and v will not appear, and we
always writeu5Au2, u2

ªu2, and so on.
In ~C3!, we write out the generalized Laguerre polynomials as polynomials in their respe

arguments.Ln
k(u2/z) yields a sum of numerical coefficients timesu2rz2r , Ln8

k8
„z(v8)2

… yields

(v8)2r 8zr 8, Lñ
k(u2) yieldsu2s, andLñ8

k8(v2) yieldsv2s8, wherer, r 8, s, ands8 range over integers
satisfying 0<r<n, 0<r 8<n8, 0<s<ñ, and 0<s8<ñ8. Therefore~C3! equals a sum overr, r 8,
s, ands8 of numerical coefficients times

zr 82r 1~k82k!/2

m E du dv dv8 u2r 12s12k11v2s81k811~v8!2r 81k811Jk8~vv8/m!

3exp$2 1
2@11~1/z!2 im#u22 1

2@12~ i /m!#v22 1
2@z2~ i /m!#~v8!2%. ~C4!

In ~C4!, we perform first the elementary integral overu. We then perform the integral overv

using~6.631.10! in Ref. 21: the result involves the generalized Laguerre polynomialLs8
k8 of argu-

ment (v8)2/@2m(m2 i )#, and we expand this polynomial as a sum of numerical coefficients ti

$(v8)2/@m(m2 i )#%s9, wheres9 ranges over integers satisfying 0<s9<s8. The remaining integral
over v8 is elementary. Note that these integrals overu, v, and v8 converge in absolute value
Collecting, we find that~C3! is a sum overr, r 8, s, s8, ands9 of numerical coefficients times

ms82s9~11 im!r 82s8z11r 81s1~k81k!/2~11z1 imz!2r 82s92k821~11z2 imz!2r 2s2k21, ~C5!

where 0<s9<s8. An elementary analysis shows that~C5! is integrable in absolute value ove
$(z,m)uz.0,mPR% in the measure*dz dm, providedr 1(k1k8)/2.0. As umu1um8u.0 by as-
sumption, this condition is satisfied. Thus~C1! converges in absolute value.

We note that the assumptionumu1um8u.0 was only used in the final step, in showing th
integrability of ~C5!. We also note that this assumption is necessary. Takingf15f0,0;0,0 and
f25f0,0;n,n , ~C2! and ~C3! yield, using Ref. 31 and~6.631.4! in Ref. 21,

„f2 ,U~g!f1…aux54p2~21!n3
z@~12z!21m2z2#n

@~11z!21m2z2#n11 , ~C6!

and the integral of~C6! over the group in the Haar measure is unambiguously divergent.

2. Both angular momenta zero

We setf15f0,0;n,n81f0,0;n11,n811 andf25f0,0;ñ,ñ81f0,0;ñ11,ñ811 . As above, it suffices to
takeu50 and consider the integral overl andm in the measuree2l dl dm.

Let againU(g) be as in~C2! with u50 andmÞ0. By ~5.3!, we have

„f2 ,U~g!f1…aux5
4p2

im E du dv dv8 uvv8J0~vv8/m!@Lñ~u2!Lñ8~v2!1Lñ11~u2!Lñ811~v2!#

3@Ln~u2/z!Ln8„z~v8!2
…1Ln11~u2/z!Ln811„z~v8!2

…#

3exp$2 1
2@11~1/z!2 im#u22 1

2@12~ i /m!#v22 1
2@z2~ i /m!#~v8!2%. ~C7!

In ~C7!, we write out Ln(u2/z) and Ln11(u2/z) as polynomials in their arguments. Th
previous analysis@the integrability of~C5! for k5k850 providedr .0# shows that the noncon
stant terms give integrable contributions. Consider therefore the expression whereLn(u2/z) and
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Ln11(u2/z) in ~C7! are each replaced by their constant term 1. We perform the integrals ou
andv using ~7.414.6! and ~7.421.1! in Ref. 21, obtaining a sum of numerical constants times

z~12z2 imz!p~12 im!p8

~11z2 imz!p11~11 im!p811 E dv8 v8Lp8S ~v8!2

11m2DexpH 2
1

2 Fz1
1

~11 im!G~v8!2J
3@Ln8„z~v8!2

…1Ln811„z~v8!2
…#, ~C8!

where (p,p8)5(ñ,ñ8) or (p,p8)5(ñ11,ñ811). In ~C8!, we write outLp8 as a sum of numerica
coefficients times (v8)2s(11m2)2s, wheres ranges over integers satisfying 0<s<p8. We then
perform the remaining integral by changing the integration variable fromv8 to xªz(v8)2 and
using the formula

E
0

`

dx xs@Ln8~x!1Ln811~x!#expF2
1

2
~11a21!xG5

as11Pn8,s~a!

~11a!n81s12
, ~C9!

wherePn8,s is a polynomial~whose precise numerical coefficients will not be needed! of order
n81s. The validity of ~C9! for s50 follows from ~7.414.7! in Ref. 21, and the validity fors
.0 follows by repeated differentiation with respect toa21. It then follows by elementary analysi
that ~C8! is integrable in absolute value over$(z,m)uz.0,mPR% in the measure*dz dm. Thus
~C1! converges in absolute value.

APPENDIX D: EVALUATION OF THE RIGGING MAP

In this appendix we evaluate the maph, given by~4.3! and~4.4!, on the test function spaceF
defined in Sec. V.

It suffices to consider test statesf in the setB0 ~5.8!. We consider separately the case whe
both angular momenta are nonzero and the case where at least one angular momentum i

1. Both angular momenta nonzero

SupposemÞ0Þm8, and considerU(g)fm,m8;n,n8 as a function onG3R4, where G
5SL(2,R) is the gauge group andR45$(u,v)% is the configuration space. By the methods
Appendix C it is straightforward to show thatU(g)fm,m8;n,n8 is integrable in absolute value ove
G pointwise in~u, v!, and thatf̄U(g)fm,m8;n,n8 is integrable in absolute value overG3R4 for
everyfPF0 . It follows by Fubini’s theorem thath(fm,m8;n,n8) can be represented by a functio
on R4, acting on test statesfPF by ~5.11!: we have

h~fm,m8;n,n8!5xm,m8;n,n8, ~D1!

where

xm,m8;n,n8ªE
G

dg U~g!fm,m8;n,n8 , ~D2!

and the integral in~D2! is evaluated pointwise onR4. We shall now evaluate~D2!.
We write U(g) in the Iwasawa decomposition~C2! and writezªe2l. For mÞ0, we obtain
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U~g!fm,m8;n,n85
@sgn~m8!#m8ei ~ma1m8b!z~k82k!/2eiu~k82k12n822n!

~ i !m811m

3E
0

`

dv8uk~v8!k811Jk8~vv8/m!Ln
k~u2/z!Ln8

k8
„z~v8!2

…

3expF2
1

2 S u2

z
1z~v8!2D1

i

2 S mu21
v21~v8!2

m D G , ~D3!

wherekªumu andk8ªum8u, and, by assumption,k>1 andk8>1. As in Appendix C, the Besse
functionJk8(vv8/m) has emerged from performing the angular part of thed2v8 integral in~5.3a!.
The integral in~D3! could be performed in terms of a generalized Laguerre polynomial u
~7.421.4! in Ref. 21, but for us it will be more convenient to proceed directly with~D3!.

We now integrate~D3! in the Haar measuredg5e2l dl dm du5 1
2dz dm du. By the above

discussion, this integral converges in absolute value. We may assumeu.0 andv.0. The integral
overu yields the factor 2pdk12n,k812n8 . In the remaining expression we first change the varia
in the integral in~D3! from v8 to xªz(v8)2, and we then change the variables in the outer inte
*dz dm to yªu2/z andpªu2m. We obtain

xm,m8;n,n85
p@sgn~m8!#m8dk12n,k812n8e

i ~ma1m8b!

2~ i !m811 E
0

`

dy y~k/2!21Ln
k~y!e2y/2

3E
2`

` dp

p E
0

`

dx xk8/2Jk8S uvAxy

p D Ln8
k8~x!expF2

x

2
1

i

2 S p1
u2v21xy

p D G .
~D4!

We then interchange the order of the*dx and *dp integrals in~D4!, justified by the absolute
convergence of the double integral*dx dp. Performing the*dp integral by~the absolutely con-
vergent analytic continuation of! ~6.635.3! in Ref. 21, we obtain

xm,m8;n,n85p2dk12n,k812n8e
i ~ma1m8b!Jk8~uv !

3E
0

`

dy y~k/2!21Ln
k~y!e2y/2E

0

`

dx xk8/2Jk8~Axy!Ln8
k8~x!e2x/2

52p2~21!n8dk12n,k812n8e
i ~ma1m8b!Jk8~uv !

3E
0

`

dy y~k1k8!/221Ln
k~y!Ln8

k8~y!e2y, ~D5!

where in the last step we have evaluated the*dx integral using Ref. 31.
Consider the remaining integral in~D5!. Supposek8>k. Because of the factordk12n,k812n8 ,

it suffices to considerk85k12s andn5n81s for some non-negative integers. We thus need to
evaluate

E
0

`

dy yk1s21Ln81s
k

~y!Ln8
k12s

~y!e2y. ~D6!

ExpandingLn8
k12s(y) in ~D6! as a polynomial iny yields integrals of the form

E
0

`

dy yk1qLn81s
k

~y!e2y, ~D7!
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wheres21<q<s1n821. The orthogonality of the generalized Laguerre polynomials30 implies
that~D7! vanishes for 0<q,n81s. Whens.0, q is always in this range, and~D6! thus vanishes.
Whens50, the only value ofq not in this range isq521, which comes from the constant ter
of the expandedLn8

k (y) in ~D6!: using Ref. 42,~7.414.7! in Ref. 21, and~15.1.40! in Ref. 22, we
then find that~D6! for s50 is equal to (n81k)!/ @k(n8)! #. Finally, the casek8,k reduces to the
case already considered by interchange of the primed and unprimed indices, and we find th~D5!
vanishes.

Expressing the result in terms of the original indices, we have

xm,m8;n,n852p2~21!n@sgn~m!#md umu,um8udn,n8

~n1umu!!
umun!

Jm~uv !ei ~ma1m8b!. ~D8!

The result~5.12a! then follows from~D1! and ~5.13!.

2. At least one angular momentum zero

What remains is to evaluate the maph for f0,m8;n,n8 with m8Þ0, fm,0;n,n8 with mÞ0, and
f0,0;n,n81f0,0;n11,n811 . We shall show thath vanishes on these states.

A direct analysis along the above lines would run into a technical difficulty in that not al
analogous multiple integrals now converge in absolute value. It is, however, suggestive t
that the integrals are still conditionally convergent, and starting from the counterpart of~D2! and
formally interchanging the integrations as above yields the result zero. Forf0,m8;n,n8 and
fm,0;n,n8 , ~D2! yields the zero function and hence the zero vector inF* . For f0,0;n,n8
1f0,0;n11,n811 , the counterpart of~D2! yields a function proportional toJ0(uv), which clearly
solves the quantum constraints, but the dual action~5.11! of J0(uv) on every vector inF0

vanishes@by the extension of~5.14a! to m50#, and as an element ofF* J0(uv) is thus identical
to the zero vector. We now show that the result zero is indeed the correct one.

Consider first

h~f0,m8;p,p8!@f#5~f0,m8;p,p8 ,f!ga, ~D9!

wherem8Þ0 andfPB0 ~5.8!. As noted in Appendix C, it suffices to considerf5f0,m8;n,n8 .
Using the Iwasawa decomposition~C2! in ~4.3!, the integral overu shows that we can setum8u
52(n2n8), and a similar reasoning withU(g) in ~4.3! conjugated to act on the first argume
shows that we can set um8u52(p2p8). It therefore suffices to conside
(f0,62s;p1s,p ,f0,62s;n1s,n)ga with s>1.

Consider thus (f0,2s;p1s,p,f0,2s;n1s,n)ga with s>1. We recall that the operatorst̂6
h ~3.7! are

in Aobs and the adjoint oft̂6
h in Haux is t̂7

h . Using properties of the generalized Lague
polynomials,30 we find

t̂2
2f1,2s21;n1s21,n52~n1s!~f0,2s;n1s21,n211f0,2s;n1s,n!, ~D10a!

t̂1
2f0,2s;p1s,p52~p11!f1,2s21;p1s,p111~p12s!f1,2s21;p1s21,p , ~D10b!

wheref0,2s;n1s21,n21 for n50 is understood as the zero vector. We therefore have

~n1s!@~f0,2s;p1s,p ,f0,2s;n1s21,n21!ga1~f0,2s;p1s,p ,f0,2s;n1s,n!ga#

52~f0,2s;p1s,p ,t̂2
2f1,2s21;n1s21,n!ga

52~ t̂1
2f0,2,s;p1s,p ,f1,2s21;n1s21,n!ga

5~p11!~f1,2s21;p1s,p11 ,f1,2s21;n1s21,n!ga1~p12s!~f1,2s21;p1s21,p ,f1,2s21;n1s21,n!ga

50, ~D11!
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where the last equality follows from~5.12a! in the index range where~5.12a! has already been
verified. By induction inn, ~D11! implies (f0,2s;p1s,p ,f0,2s;n1s,n)ga50. An analogous argumen
shows (f0,22s;p1s,p ,f0,22s;n1s,n)ga50.

Thus h(f0,m8;p,p8)50 for m8Þ0. A similar argument shows thath(fm,0;p,p8)50 for m
Þ0. Finally, h(f0,0;p,p81f0,0;p11,p811)50 follows by applying an analogous reasoning to t
relations,30

t̂2
1f1,1;n,n85~n11!~n811!~f0,0;n,n81f0,0;n11,n811!, ~D12a!

t̂1
1~f0,0;p,p81f0,0;p11,p811!5f1,1;p21,p82112f1,1;p,p81f1,1;p11,p811 . ~D12b!
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