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We investigate refined algebraic quantizati®®AQ) with group averaging in a
constrained Hamiltonian system with unreduced phase spad¥ and gauge
group SL2, R). The reduced phase spagdé is connected and contains four mu-
tually disconnected “regular” sectors with topolodyx S*, but these sectors are
connected to each other through an exceptional set, wherg not a manifold and
where M has non-Hausdorff topology. The RAQ physical Hilbert spa¢g,
decomposes aK = ®H;, where the four subspaceg naturally correspond to

the four regular sectors o#1. The RAQ observable algebréd,,s, represented on
Hpnys, CONtains natural subalgebras represented on BaciThe group averaging
takes place in the oscillator representation of BIR) on L2(R??), and ensuring
convergence requires a subtle choice for the test state space: the classical analog of
this choice is to excise fromM the exceptional set while nevertheless retaining
information about the connections between the regular sectors. A quantum theory
with the Hilbert spacé,,,sand a finitely generated observable subalgebrd gf

is recovered through both Ashtekar’'s algebraic quantization and Isham’s group
theoretic quantization. €000 American Institute of Physics.
[S0022-24880)01501-3

[. INTRODUCTION

In the quantization of constrained systems, one proposal for defining an inner product on the
physical Hilbert space is to induce this inner product from an auxiliary Hilbert spaggevia
averaging over the gauge group. The constructiorHgf, draws input from the kinematical
structure of the theory before imposing the constraints, and the constraints enter through an
operator representation of the gauge grougp,. The method has emerged and been applied in
various contexts; see Refs. 1-9 and the references therein.

A major open question with group averaging is the sense in which the averaging can be made
to converge. One may encounter situations where the group averaging diverges merely because of
some ill-chosen piece of technical input, and modifying the input leads to a well-defined theory.
On the other hand, one may also encounter situations where convergence of the group averaging
is precluded by some physically interesting property of the system. For example, within the refined
algebraic quantization framework of Ref. 8, a convergent group averaging cannot yield a theory
with superselection sectors, while a well-defined theory with superselection sectors may neverthe-
less be recovered through a suitable renormalization of the averaging.

In this paper we study group averaging in a quantum mechanical system whose constraints
generate the gauge group (@LR). The classical phase spacdis T* R*, and the three classical
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constraints orfl” are homogeneous quadratic functions of the global canonical phase space coor-
dinates. The system was introduced by Montesinos, Rovelli, and Thié¢fthasran analog of
general relativity with two “Hamiltonian”-type constraints, quadratic in the momenta, and one
“momentum”-type constraint, linear in the momenta. The reduced phase sphaiseconnected,
and it contains four mutually disconnected “regular” sectors with topolBgyS!, but connect-
ing these sectors there is an exceptional set wiidris not a manifold and the topology o1 is
non-Hausdorff. One thus anticipates quantization to produce a theory with four “regular” sectors,
with subtleties in those aspects of quantization that try in some sense to connect these four sectors.
We shall see that this is indeed the case, and when group averaging is used in the quantization, the
subtleties emerge precisely in the convergence of the group averaging.

We consider two quantization approaches. First, we recallltramits an explicitly known
0(2, 2 Poisson bracket algebrd,ss 0f constants of motiorf“observables’ that separates the
regular sectors aM.1° We therefore carry through Ashtekar’s algebraic quantization progrem
with A.sspromoted into a quantum observable star algeﬁlé;’@. In agreement with the results of
Ref. 10, we find four distinct Hilbert spaces, each corresponding to one of the regular sectors of
M. We then add to4§,?,)y four new generators whose classical counterparts act on the four sectors
of M as aZ,X7, permutation subgroup, and we carry through algebraic quantization with the
resulting larger observable alge ?1)y+- Expectedly, the emerging Hilbert spagge, is the
direct sum of the previous four individual Hilbert spaces. We also showHhawith the observ-
able algebra,étl(o;)y+ can be recovered by applying Isham’s group theoretic quantiZattonan
0(2,2) action orl': the infinitesimal generators of the action of the connected subdb(p,2)
are precisely the classical observablesdifss.

We then consider a group averaging approach. For concreteness, and to a considerable degree
without loss of generality* we adopt the formalism of refined algebraic quantizatRAQ).*814
The structure ofl” and the classical constraints suggests a natural choicgfgrand for the
representation of the gauge group(8LR): this representation is isomorphic to the oscillator
representation of S, R) on L2(R??).%° M, also carries a representation of the algebraic
gquantization observable alge ’,?y +» and this representation commutes with thg5IR) ac-
tion. With a suitable choice for the RAQ linear spake H,, Of test states, we find that the group
averaging converges in absolute value and produces a nontrivial physical Hilbert7$pgee
Hopnys IS isomorphic toF , , and the representation of the RAQ observable algebyaon Hppys
contains a subrepresentation isomorphic to the representatioﬂfé;bi on H. . (For technical
reasons, these isomorphisms are antilindarthis sense, the RAQ quantum theory contains the
algebraic quantization quantum theory. Further, the uniqueness theorem of Ref. 8 shows that our
choices forH,,y, the SL2, R) action, andP completely determine the RAQ quantum theory even
without group averaging: with our choices, the only freedom in the RAQ rigging map is a
multiplicative constant.

Now to the promised subtleties. In the algebraic quantization approach, the subtlety occurs

with the choice of the linear space on which the constraints are solved. The “natural” first
candidateV for this linear space contains a one-dimensional subspace that, by the spectral prop-
erties ofAf);)y, corresponds classically to the exceptional setin This subspace turns, however,

out to have zero norm, and one does not recover a Hilbert space. The remedy is simply to drop the
troublesome one-dimensional subspace f\opwith the results mentioned above.

In the RAQ approach, the subtlety occurs with the choice of the test state space. The structure
of the quantum constraint operators and thé2S[R) action suggests a natural choide but it
turns out that the group averaging fails to converge precisely on the subspazenbire it
attempts to produce the “zero norm” vectors encountered in the algebraic quantization. The
remedy is again to ensure that the troublesome subspace does not appear in the physical Hilbert
space, but now this has to be done by modifying the test state space, and as the definition of
observables in RAQ is intimately related to the test state space, care must be taken in order that the
RAQ observable algebra remain large enough to allow a comparison with the algebraic quantiza-
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tion observable algebra. Our choicd, was found by scrutinizing the explicitly known

AL, -action ond.

The rest of the paper is as follows. In Sec. Il we review and analyze the classical $§stem,
paying special attention to the classical observable algehia,, its pull-backs to the various
parts of the reduced phase space, and the asso€@d&d) action. The algebraic quantization and
the group theoretic quantization are carried out in Sec. IIl. In Sec. IV we present a concise outline
of RAQ with group averaging, in the specific formulation of Ref. 8, and in Sec. V we carry out
RAQ in our system. Section VI contains a brief discussion. In Appendices A and B we collect
some relevant facts about &, R), its covering groups, and their oscillator representations.

Certain technical calculations concerning the group averaging are given in Appendices C and D.

II. CLASSICAL DYNAMICS

In this section we review and analyze the classical system introduced in Ref. 10. Some
relevant facts about the group &, R) and its Lie algebral(2, R) are collected in Appendix A.
The phase space I&=T* R*=IR8, with the global coordinate functionsit,u?,v*,v?) for the
base and j§*,p?,7*, ) for the cotangent fibers. The symplectic structuréis =;(dp'/A\du'
+d#' Adv'). We adopt the vector notationut,u?):=u, (vi,v?):=v, (p,p?):=p, (7!, 72
:=47, and we indicate a contraction in the suppressed two-dimensional indices by a dot product.
The action reads as

s:f dt(p-u+ -v—NH;—N?H,— D), (2.1

whereN?, N2, and\ are Lagrange multipliers, and the three constraints are

Hys=3(p"— V), (2.29
Hy=3(7"—u?), (2.2h
D:=u-p—v-m. (2.209

The Poisson bracket algebra of the constraints is

{H1,H}=D, (2.39
{D,H1}=2H,, (2.3b
{D,Ha}=—2H,, (2.30

which is isomorphic to the Lie algebrd(2, R) in the basigA3) of Appendix A. The system is
therefore a first class constrained systéfihe gauge group generated by the constraints {2 SL
R), and its action of” is*®

(2.4)

—g

whereg is an 2<2 matrix in SL2, R).

The reduced phase spat¢ is, by definition, the quotient of the constraint hypersurface under
the SL(2, R) action(2.4). The topology ofM is induced froml", and wherever the geometry 8
is sufficiently regular,M inherits fromI” also a differentiable structure and a real analytic struc-
ture.
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M decomposes naturally into six subsets, which we denote, respectivelghyM,,, and

M, e, Whereg e{1,—1}. For the points inM, ., unique representatives Inare
u=1r(1,0,
p=\r(0,e1),
(2.9
V= \/F(cos<p, —€1€,SiNP),
= \/F(Sin(p, + €16, COSQP),
wherer >0 and 0= ¢<27. For the points inM,,, unique representatives Inare
u=(cos#b,sinf),
7= (C0S¢p,Sing), (2.6

V= p:O,

where 0< <7 and 0= ¢<2. M, contains a single point, whose unique representativeis
u=v=p=m=0.

The four subsets\/lel,62 of M are disconnected. Each is openAid and has topologyk
x St, and each is coordinatized by the p&it ¢) as shown in(2.5), with r>0 and ,¢)
~(r,¢+2m). The pullback off} to eachM,, ., is nondegenerate and equal-tar/\de, thus
making each/\/lélye2 into a smooth symplectic manifold. We rega/kdelﬁ as the four “regular”
sectors ofM, and we denote their union by/cg.

My is @ smooth two-dimensional manifold, and the pullback(bfo M., vanishes. The
topology of M near M., is severely non-Hausdorff: any neighborhood of any pointAit,
contains M, and there are pairs of points i, whose neighborhoods also overlap in every
sector of M¢4. Finally, any neighborhood aM,, contains M, and intersects all the sectors of
Mieg-

\3Ve therefore see thatt is connected: each of the disconnected sectorstgf; is attached to
My and M. Itis clear from(2.9) that the subset,.JU M, can be visualized as four cones
with a common tip, the tip consisting of the single point., and being ar—0, in each
M51,62.1° On the other hand, for fixed,, the union ofM;_, M_;_, and the¢=0 circle of
M,y constitutes a smooth symplectic manifold with topoldijy S: to see this, make if2.5) a
gauge transformation that multiplieandp by r and dividesu and# by \/r, and allowr to take
all real values. The union aM; ., M_;, and thed=m/2 circle of M, constitutes also a

smooth symplectic manifold with topologyx S*: to see this, make if2.5) the analogous gauge
transformation with (r instead ofr. The union ofM, ., M_; ., and both of these circles in
M,y is @ smooth symplectic non-Hausdorff manifold, with topoldtjy< St, whereR’ is the real
line with a doubled origin. The structure @1 near M., is therefore reminiscent of, but more
involved than, the joining of the causal and noncausal sectors of Misner Spacthe joining of
the spacelike and timelike sectors in the solution space to Wittea’s gravity onRx T? (Refs.
18 and 19 or on Rx(Klein bottle) 2°
We now turn to the observables. Considerldthe six functions?

Op=Up?—plu?, Opy=uvi—p2xl,
Oyg=ulvi—plal, Oyp=u?v?—p2n2, (2.7

014::U1V2_p17T2, 03412 7T1V2_V1772.
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The linear span of th®;; is closed under Poisson brackets, and the Poisson bracket algebra is
isomorphic to the Lie algebra(2,2)=s((2,R) X s[(2,R). The basig2.7) is adapted to the(2, 2
form of the algebra, while a basis adapted to 4H&,R) X s[(2,R) form is
70:=3(012— 703s),
77:=3(013— 17024), (2.9
74:=3(0p3t+ 7014),
wherepe {1,—1}: the Poisson brackets read as
(g t=—om'ag,
{7378 }=0"7'11, 2.9
(7,77 y=677"7].
We record for future use that the/ satisfy for eachy the identity
— (12 + ()4 (19)*=HH,+ D% (2.10
Now, 77 Poisson commute with the constraints and are thus, by definition, observables. We

denote byA,ssthe classical observable algebra generated#fy. The pullbacks ofr to M
vanish onM, and Mg, while on M., we have

0= 3e1(1+ neyr, (2.113
77=3(1+ ne,)r cose, (2.11p
7= —3%€e1(1+ ney)r sineg. (2.110

Aqasstherefore separate$t 4. More precisely, for givem, thesl(2, R) subalgebra generated by
{7} vanishes onM; _, and M_, _, but separateg\, ,UM_, ,, and onM 7J has the
definite signe; .

We note in passing that” are real analytic functions oh. For givene; and e;, (2.11)
therefore shows thaMEl,l andMei __1 cannot both belong to a connected real analytic manifold

whose analytic structure would be induced from that of

By construction, exponentiating the Poisson bracket actiovdgfs on I' yields onT the
action of a connected groupthat is locally SL(2R) X SL(2,R), and thisG action commutes with
the gauge group actiof2.4). Consideringl’ in a polarization in whichu, ) are the “coordi-
nates” and(p, —v) are the “momenta,” it is immediate fron2.7) that thisG action reads as

€1.7m

o)

, (2.12b

p
-V

(_'OV)H(A—HT

whereA is a 4x4 matrix in the defining representation ©{2,2), and in the connected compo-
nentO.(2,2). Hencej=0.(2,2)=[ SL(2R) X SL(2,R)]/Z,. We use(2.12) to extend th&j action

to the action oG, :=0(2,2): theG, action is generated by thgaction and the four ma@elvsz,
wheree; e {1,—1} and
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Pel ,62: (Ul,u2,V1,V2, pl, pz, ’771, WZ)H(U:L, €1u2,Vl, 61€2V2, pl, Elpz, 7Tl, 6162772) . (213)
It is clear that also thg, action onI" commutes with the gauge group acti¢h4).

The induced7 action onM s trivial on M, mapsM,, transitively to itself, and maps each
Me, e, transitively to itself. The induced. action onM is trivial on My, mapsM,, transi-
tively to itself, and maps\ 4 transitively to itself, permuting the four sectors M, by a7,

X 7, permutation subgroup according to

Pe e':Mel,ezg’Meiel,eéez' (214)

1%
lll. ALGEBRAIC QUANTIZATION

In this section we quantize the system in the algebraic quantization framework of Ref. 11. In
this framework one first solves the quantum constraint equations on a linear space, without an
inner product, and then seeks a Hermitian inner product such that the adjoint relations in the
chosen quantum observable algebra reflect the reality relations in the corresponding classical
observable algebra; we refer to Refs. 11, 12 for overviews and more detail. Our analysis closely
follows that in Ref. 10, the main difference being that we consider two possible choices for the
classical observable algebra, arising, respectively, from the g@apslG, introduced in Sec. Il.

The connection to Isham’s group theoretic quantizafiés made at the end of the section.

We work in a “coordinate representation,” starting with the linear space of smooth functions
W¥(u,v) on R* We shall frequently use the polar coordinates definedubyiu’=ue?®, v!
+iv?=ve'’, whereu=0, v=0. Note that no inner product is introduced at this stage.

To begin, we promote the classical constraiff®) into quantum constraint operators. The
momentum operators are

p:==—iV,, m=—iV,, (3.1

and we order the quantum constraints as

A== L(V2+2), (3.2a
Ho=—3(Vi+ud), (3.2b
Di=—i(u-V,~Vv-V,), (3.20

whereV?2:=42/9(ut)?+ %/ 9(u?)?, and similarly forV2. The commutator algebra of the quantum
constraints then closes as

[I:|1,I:|2]=ilﬁ, (3.39
[f),ﬂ1]=2i|:|l, (33b)
[D,H,]=—2iH,. (3.39

Next, we define a set of quantum observatﬁl¢§ by substituting the momentum operators
(3.1) into the expression§2.7) of the classical observableS;;. As the resulting expressions
contain no products of noncommuting operators, no issue of ordering arises. The op@{ptors
commute with the constraints3.2), and their commutator algebra closes. @g are real, we
introduce on this algebra a star operation @}?:CA)” and extending to the full algebra by
antilinearity. We denote this star-algebra of physical observabled{f.

We define inA,()L)y the operator$” by the overcareted a counterparts(28), and we write
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T=7]%i7]. (3.9
The operatorg] and 77 generateAE);)y. The commutators are
[79,77 1= 67771, (3.58
[#7 57 ]:_2577717-0, (3.5b
and the star operation reads as
() =7f, (3.6a
(1) =71. (3.6b

The explicit expressions of the operators in the polar coordinates are

7= —31(d,+ ndp), (3.73

77 = 3@ uy + [, (i/u)d, [0y = n(i/v)dpl}. (3.7b

We now solve the quantum constraints by the separation of variables. As shown in Ref. 10,
solutions that are smooth functions(of, v) and separable in their angle dependence are multiples
of the functions

U, c=eMat B (uy), (3.9

whereme Z, ee{1,—1}, andJ,, is the Bessel function of the first kirfd.The functions¥',, . are
linearly independent, with the exception thiag , =¥, _ . We denote the linear span of tg,, .

by V. As
FIW =0T M (3.93
IV =67 MY .y, (3.9

V carries a representation al‘phy

One could now find the subspaces\bbn which the representation atf;])y is (algebraically
irreducible, and look on each for an inner product in which the star operéiénbecomes the

adjoint operation,
() '=74, (3.108
(71)T=72. (3.10b

However, the only subspace on which such an inner product exists is the one-dimensional sub-
space generated bY, ;. , and the resulting theory is physically uninteresting, as every operator in
A,();{, then annihilates the whole Hilbert space. There are four other subspaces carrying an irreduc-
ible representation of({}) phys DUt each of these subspaces contalis, , and the adjoint relations
(3.10 imply that¥_, have a vanishing norifcf. (3.12) and(3.13 below].

The way to remedy the situation is to note that the troublesome véggoris annihilated by
every operator inAm, and this vector can therefore be dropped at the outset. Letvhesthe
linear span of ¥, /m#0}. V carries a representation (zf(hy, which reads as i163.9), except
that whenever¥ . would occur on the right-hand side, it is replaced by the zero vettor.

decomposes into the direct swi=®V, ., wheree e{1,~1} and
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Ve, e, =spaf ¥y, . | €;m>0}. (3.11

Eachv, ., carries an irreducible representation@ﬁ})y, and we therefore seek an inner product
(*1)¢, ¢, individually on each. Equation®.93 and(3.103 imply that the¥, . are orthogonal.
Equations(3.9b and(3.10b yield the recurrence relation

(MED? (W, W) = (72 Va1, 7= W) = (Vg 7o 72 W) =m(m= 1)(‘1’m¢1.‘1’m(¢1),2)
3.1

where we have suppressed the inden the vectors, the index= € on 7., and the index on the
inner product. It follows, still suppressing the indices, that

(¥, ) =2alm|Spm (3.13

wherea is a positive constant, independent for eath _ .

It is clear that(3.13 defines on eachlelve2 an inner product satisfying the adjoint relations
(3.10. Completion yields the four Hilbert spaced. ., and it follows from the asymptotic
large-order expansion df,?? that every vector in these Hilbert spaces is represented by a function
on the original configuration spad¥={(u,v)}. Each?—lel,e2 carries a representation (zl(phy
densely defined operators. For giventhesl(2,R) subalgebra generated %"} is represented
nontrivially on, ,,,: the representation belongs to the discrete serfés*®and, in the notation
of Ref. 23, is known a®;*.

In each of these representationsA)ﬁ’fRy onHe, e, the Casimir operators of both the trivial
and nontrivials[(2,R) subalgebra take the value zero:

[~ G2+ D2+ (7P 1He, =0, (3.14

€1:€2
In this sense, the quantum theory has preserved the idenii#® satisfied by the classical
observables.
It is easy to extend the above analysis to the larger observable al@éﬁ;@, generated by
AG), and the sefP, .}, wheree e{1,~1} and

(P e, W) (U U2V V) =W (Ut €% V1 €1 65v7). (3.15

Note that|5E 52 is the operator analog of the map, ., (2.13 onI'. The star operation is

extended ta4t) . by PX _=P_ _. As

phy+ €165 €1,€

IS \I,m,EZ\Pelm,ezs! (31@

€1.€5

the new operators permute the subspa‘\ct_eﬁe2 by aZ,x 7, permutation subgroup according to

P, oV

:V ! !
1€ " €1,€ €1€1,€5€p

(3.17

and the representation atf);)w onV is irreducible. Proceeding as above, we arrive at the Hilbert
spaceH =S He, e, where the subspacé*Sel,E2 are orthogonal and the inner product on each is
given by (3.13, but now with the sama for all ..

The quantum theories that we have obtained have a natural interpretation as quantizations of
different subsets of the classical reduced phase spécEor givene; ande,, the representation
of Aphy onH ., is the quantum analog of the pullback of the classical algghrasto MEI,EZ,
in that in each case the=—e¢€, sl(2,R) subalgebra is trivial, and in the nontrivial(2, R)
subalgebrar; &2 and andrg2 have the same definite sign. The Hilbert spm(la,EZ with the observ-

able aIgebraAé;)y can therefore be thought of as a quantization of the seletor .. Similarly, the
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Hilbert spaceH , with the observable algebn«faf);)y+ can be thought of as a quantization of all the
four sectors ofM .

One can also obtain our quantum theories via the group theoretic quantization of'fsham.
noted in Sec. Il, thg action(2.12 onI" induces on eaclMel,62 a transitiveg action, and also the
transitive action of a subgroup SLE),C g: this SL(2, R) action is obtained by exponentiating the
Poisson bracket action of the algelifall). For group-theoretic quantization on a given sector
Me, e,y We can therefore adopt this &, R) as the canonical group. In order to preserve the
classical identitieg2.10 in the quantum theory, we consider the irreducible unitary representa-
tions of SL(2, R) in which the Casimir operator vanishes. The only such representations are the
trivial representation and the discrete series representdlign$>?*~>*3°2 vanishes in the trivial
representation, whereas in eddfi it as a definite sign, and it is iD;* that this sign agrees with
the sign of the classical functior? (2.118 on M., ... Thus, requiring the signs Gf;> and ¢’
to agree picks the representatim)jl: we arrive at the Hilbert SPacH,, e, and the observable

algebra is thel(2, R) subalgebra otélé*h)y with »=€,. A similar argument can be made for group
theoretic quantization oM,q With the canonical groug , =0(2,2)=0(2,2)X «(7,)?, arriving
at’H . with the observable algebmif);)er . As neitherM g nor G, is connected, it is perhaps not
clear how unique the implementation of the group-theoretic quantization in this case 4, but
clearly does carry an irreducible unitary representatio@.of Further possibilities of implement-
ing group-theoretic quantization ok, and its four sectors are discussed in Ref. 26, 27.

We end the section with two remarks.

(1) One might have tried to include in the vector space of solutions to the constraints functions
that are not smooth atv=0. In this case one can repladg in (3.8 by any linear combination
of J,, andN,,, with m-independent coefficients, and the abstract construction of the Hilbert spaces
goes through as above. However, wipis present, it is seen from the large-order expansion of
N,22 that the completion introduces in the Hilbert spaces vectors that cannot be represented by
functions on the original configuration space.

(2) One might have tried to include in the vector space of solutions to the constraints vectors
that are not single-valued functions on the configuration space, thus allowimg3.8), or in the
analog of(3.8) with a linear combination of,,, andN,,, to be a noninteger. The representation of
Aéﬁ)y on this larger vector space takes again the f@B19), and breaks thus into irreducible
representations classified leyand the fractional part ah. However, in this case no inner product
satisfying the adjoint relation@.10 exists.

IV. FORMALISM OF REFINED ALGEBRAIC QUANTIZATION WITH GROUP AVERAGING

In this section we give a brief outline of refined algebraic quantizatRAQ) with group
averaging. Our main purposes in this section are to fix the notation and to fix the particular version
of RAQ: we follow the formulation of Giulini and Maroft.We specialize throughout to the case
where the gauge group is a connected unimodular Lie group.

A. Refined algebraic quantization

RAQ begins by implementing the quantum constraints as self-adjoint operators on an auxil-
iary Hilbert spaceH, . We assume that the commutator algebra of the constraints closes as a Lie
algebra, so that the algebra exponentiates into a unitary representdtiprof a corresponding
connected Lie groufs on H,,. We refer toG as the gauge group, and we assume that it is
unimodular(that is, that the structure constants of the Lie algebra are trageless

Next, RAQ solves the constraints in an enlargement(gf,. To this end, one introduces a
space of test states, a dense linear subsfpacéi,,, such that the operatot$(g) map® to itself.

The desired enlargement is the algebraic dualbofdenoted byd®* and topologized by the
topology of pointwise convergence. Foe ®* and¢ e ®, we denote the dual action 6bn ¢ by
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f[$]. ®* carries a representatiob*(g) of G defined by the dual action: fof e ®*,
(U* (@) p]=f[U(g Y ¢] for all peP. Solutions to the quantum constraints are then by
definition the element§e ®* for which U*(g)f=f for all ge G.

The RAQ algebra of observables is completely determined by the structure specified above.
An operator® on H,,is called gauge invariant if the domains@fand©" include®, © and O’
map & to itself, and©® commutes with thes action on®d: OU(g) p=U(g)O¢ for all ge G,
¢ e ®. Note that if© is gauge invariant, so i©®'. The observable algebrd,,is, by definition,
the algebra of gauge-invariant operatas,, has ond* an antilinear representation defined by
the dual actiort for f e ®*, (Of )[$]=F[ O] for all e P. Note thatA,,sdoes not need to
be constructed or presented in any explicit sense.

The last ingredient in RAQ is a rigging map, which is, by definition, an antilinear si@pm
® to d* satisfying four postulates.

(i) The image ofy solves the constraints: Each vector in the image & invariant under the
G action on®*.

(it) nis real: n( 1) p21= n(P2)[ #1] for all ¢1, pred.

(iii) 7 is positive: p(@)[ $]=0 for all p D.

(iv) » intertwines with the representations of the observable algebra and ®*: O(7¢)
=7(0O¢) for all Oe Aypsand allpe ®.

The input required in RAQ is now complete. As the final step, RAQ introduces on the image
of » a Hermitian inner product by

(7(1), 7(b2))phys=n(P2)[ ¢1], 4.1

and completes the image of in this inner product into a Hilbert spack,s, which is, by
definition, the physical Hilbert space of the theoty,,s carries an antilinear representation of
Aqps, @nd the adjoint map in this representatianith respect to the inner product Gy, is by
construction that induced by the adjoint map Hj,x. The representation afl,,s ON Hppys is
known to be nontrivial provided certain technical conditions H8ld.

B. Group averaging

The group averaging proposal in RAQ addresses the last ingredient above, the choice of the
rigging map. The proposal seeks the rigging map as a suitable interpretation of the formal expres-
sion

w6)=_dotaluo). @2

where we have invoked the Dirac notation for the ve¢thre ® and for its Hilbert dual vector
(#|. The measurelg is the Haar measure o (which is both left and right invariant by the
unimodularity ofG).

Consider now the formula

(¢21¢1)ga:= fG dg(¢2,U(9) d1)aux 4.3

and suppose that the integral on the right-hand side converges in absolute valuesfoaiad ¢,
in ®. Formula(4.3) defines then o the sesquilinear form-(-)4,, and we interpret the group
averaging proposa#.2) as

(P P2]:=(d1,02)ga- (4.9
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The resulting mapy clearly satisfies postulatés, (ii), and(iv): (i) follows from the invariance of
the Haar measure, arii) from the fact thatlg=d(g~1). If » further satisfiesiii ), and if 7 is not
identically zero, the group averaging proposal has then produced a rigging map.

Considerable control over the space of possible rigging maps is provided by the uniqueness
theorem of Giulini and Marolf. To state the theorem, we nthat if his anL* function onG, the
expressionh:=[ s dg h(g)U(g) defines a bounded operator Gy, and the set of all such
operators forms an algebﬁae. Suppose now thab is invariant undebzle, the integral in(4.3)
converges in absolute value for @ and¢, in ®, and the sesquilinear form ()4, 0n @ is not
identhaIIy zero. Then, if a rigging map exists, it is unique up to an overall multiple, and given by
(4.4).

V. REFINED ALGEBRAIC QUANTIZATION OF THE SL (2, R) SYSTEM

In this section we apply the RAQ formalism of Sec. IV to our system. To maintain a contact
to the algebraic quantization of Sec. Ill, we shall proceed so that the RAQ observable alggbra
will turn out to contain the algebraic quantization observable alggtét@ .

A. Auxiliary Hilbert space and the gauge group

We take the auxiliary Hilbert spadé,,, to beL?(R*) of wave functions¥ (u,v) in the inner
product,

(‘I’ly‘yz)aux:f d2ud?v W, W, (5.1

We take the constraint operators to be given(®y?).

The constraints are essentially self-adjoint/éy,,, and exponentiating-i times their algebra
yields onH,,, a unitary representatiod of the universal covering group of &, R). The group
elements that appear in the lwasawa decomposi#ah) are represented by

U(exp(Be™))=exp(—iuH,), (5.28
U(exp(\h))=exp(—irD), (5.2b
U(exd 0(et —e ) )=exp(—i8(H,—H,)). (5.20

exp(—iuH,) and expEiaD) act on the wave function® (u,v), respectively, as

. d?v’ i [(v—v')? ) ,
[exp(—l,qu)‘P](u,v)=f 27Twex > +upu|  W(u,v') (for u#0),
(5.39
[exp(—iND)¥](u,v) =T (e u,ev). (5.3
Regarding exp-i8(H,—H,)), it suffices to observe that
Ay A=A pse, (5.4
whereH " andHS™ are the two-dimensional harmonic oscillator Hamiltonians in, respectively,
andyv,
AEe=3(-Vi+u?), (5.59
H=3( = Vi+v2). (5.5b
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It follows that exg—i 6(H,—H,)) is periodic in6# with period 2. As discussed in Appendix A,
this shows thatJ is a representation of $2, R) [and not just a representation of the universal
covering group of SI2, R)]. In the terminology of RAQ, the gauge gro@is thus SI2, R).

The algebraic quantization observable alge_iélt,{a,)er is represented omaux by densely de-
fined operators, and the star operation,étgffy is the adjoint map of 4. Aphy+ clearly com-
mutes both with the constraint operat@B2) and with U on the respective common domains.
Aphy+ exponentiates into a®(2,2) action orfH,,,: representing the states as functiongwgfx)
via the Fourier transform in, O(2,2) acts on the arguments of the functiong®y123. It is clear
that thisO(2,2) action commutes withl.

U is isomorphic to the oscillator representation of(SLR) on L?(R%?, and ourO(2,2)
action onH 4, is isomorphic to the(2,2) action on?(R??) known in this context® We give a
brief review of the oscillator representation in Appendix B.

B. Test states

Next, we seek a suitable linear space of test statés,jp. The decompositiof5.4) suggests
that we make use of the eigenstates of the harmonic oscillator Hamiltofaislt is convenient
to choose the eigenstates so that they are also eigenstates of the angular momentum operators

0'p?—-0%pt=—id, andV'#?— 0?71 =id,. These eigenstates are

¢m,m’;n,n' ==ei(ma+mlﬁ)ulmlv‘m/‘LLm‘(UZ)LLT/l(VZ)eXF[ _ %(UZ‘FVZ)], (56)

where the indices are integers witt=0 andn’=0, and thelL’s are the generalized Laguerre
polynomials?®?® ¢ ..o is an eigenstate ofiS™ and HS™ with the respective eigenvalues
|m[+2n and|m’[+2n’, and itis an eigenstate ofiJ, and—id, with the respective eigenvalues
mandm’. The statesp,, .n - form a linearly independent and orthogonal setdg,, satisfying

m2(n+|mp!(n’+|m’|)!
(¢m,m’;n,n’ a‘j’?n,ﬁ’;ﬁ,ﬁ’)aux: n'(n’)! 5m,ﬁw£m’ﬁ’5n,?15n’,ﬁ’ ) (57)

and their linear spa® is dense inH,,. @ consists of vectors of the formR(u,v)exy — 3(u?
+v?)], whereP(u,v) is an arbitrary polynomial in the four coordinatas'(u?,v*,v?): from this
characterization it is clear tha is mapped to itself by the quantum constraint operat8rd.
Similarly, recalling that the algebraic quantization observable algé% is generated by3.15

and the overcareted counterparts(®f), it is clear that® is mapped to itself by4phy v

@ itself is not suitable for our RAQ test state space. First, there is a technical issue @ that
is not mapped to itself by th& actionU, as is immediate, for example, fro(d.3b). The serious
problem with® is, however, that the group averaging integ¥aB) is not convergent, as we show
in Appendix C: convergence fails when both angular momentum quantum numbers vanish. We
now show how to modifyb so that the group averaging integral becomes convergent, and we then
use the group algebra technique of Ref. 8 to generate a test state space that is invariadt under
and large enough for the uniqueness theorem of Ref. 8 to apply.

Let @, be the linear span of the set

BO:={¢m,m/;n,n’| |m| + | m’ | >O}U{( ¢0,0;n,n’ + ¢0,0;n+1,n'+1)}- (58)

What motivates this definition is thdi, is mapped to itself by the algebraic quantization observ-

able algebra4;{*). To see this, recall from above thdt is mapped to itself byA(}), . It is
therefore sufficient to consider the situation in which an elemempm+ acts on a vector B,
and produces a vector whose expansion in the Hasis, ., ./} has components witm=m’
=0. From (3.19, (3.7), and the angle dependence @}, n.nn (5.6), we see that the only
nontrivial instance of how this can happen is the actlorrfbfon é+15pnn» Which reads by

explicit computatior’
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ATZ ¢$1,I 7nn’ = (I'H‘ 1)(n, + 1)(¢O,O;n,n’ + ¢0,0;n+l,n’ +l)v (5-9)

and this is in the linear span &,. Thus®, is mapped to itself by4{;),, .

We claim that® is dense irnH,,. To show this, recall from above th@éy, n.nn )} IS an
orthogonal Hilbert space basis f&f,,,. It is therefore sufficient to show that the linear subspace
WC @ spanned by (o onn+ Poon+1n+1)} IS dense in the Hilbert subspatg C H,,, Spanned
by {¢00nn}. Suppose this is false. Then there exists a nonzero veoctdk, that is in the
orthogonal complement of the closure bf As veH,, we can writev=2 /by 1 doonn’
where the coefficients satisﬁln,ny|bn,n,|2<oo by (5.7), and at least one coefficient is nonzero.
However, the orthogonality ofv with each (bgonn+ doon+1n+1) €W implies by
=—Dbpy1p 41 for all nandn’, and the sumEn,nflbn,n,|2 therefore diverges, which is a contra-
diction. Thus® is dense inH .

The crucial property ofb, is that the group averaging integr@.3) converges in absolute
value for all 1 and ¢, in ®,. This is shown in Appendix C.

As @ is not mapped to itself by, &, does not technically qualify as a test state space in our
version of RAQ. A simple remedy would be to consider the sphge which is the closure ob
under the algebra generated by the operaltbfg) for ge G. @ is clearly dense i, and
invariant undeiU, and it thus satisfies the RAQ test state space conditions, and one could indeed
successfully complete RAQ witlp | as the test state space. However, we wish to work with a test
state space to which the uniqueness theorem of Giulini and Maaplilies. To this end, recall
from Sec. IV that anL! function h on G defines onH,, the bounded operatoh
:=[sdg h(g)U(g), and the set of all such operators forms an algelga Let now @ be the
closure of® under the action oﬁle. It is clear thatd is dense inH 4, and invariant undet,
and® thus satisfies the RAQ test state space conditions. It is also cleab fisahapped to itself
by Ag, while ® is not.

We now adopt® as the RAQ test state space. &g is mapped to itself byAf[,?])y+ , SO is®,
and the RAQ observable algehrh, therefore containsAé,?&,+ as a subalgebra.

As a final remark, we note thab, is mapped to itself by the quantum constraint operators
(3.2,*° and thereforeb| and® are also mapped to themselves by these operatgys®/, and
@ would therefore all qualify as test state spaces in formulations of RAQ that solve the constraints
in terms of the constraint operators rather than in terms oXlaetionU.**

C. Group averaging and the physical Hilbert space

Consider now the group averaging. As mentioned above, the integfdl3nconverges in
absolute value for allp; and ¢, in ®. It follows from Lemma 2 in Ref. 8 that the integral in
(4.3 converges in absolute value for @l and ¢, in ®. The mapy is therefore well defined by
(4.3 and(4.4), and it satisfies the rigging map postulates with the possible exception of positivity.

Tgo evaluatey, let ¢, e ®, and leth; be L! functions onG. We then have froni4.3) and
(4.9,

o= [ danio) | eton] (5.108

woolhen=| [ danio) | oion] (5100

As further 7(#1)[U(do) p21= 7(U(do) 1)l 21= n(h1)[ 2], it suffices to evaluate

7(P1)[ p»] for ¢, and ¢, in the setB; (5.8).
The explicit evaluation of; is done in Appendix D. We can represent the vectors in the image

of 5 as functions oR*={(u,v)}, acting on the test statese ® by
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f[¢]=J d?ud?v f(u,v)é(u,v). (5.12)
We find
5 . " (n+|m|)! )
77(¢m,m’;n,n’):277 (—1) [Sgr(m)] 5|m|,\m’\5n,n’me,(m’/m)r |m|+|m |>0,
(5.123
77(¢O,O;n,n’+¢O,O;n+1,n’+1):0, (5.12b
where the function$,, ., with me Z\{0} andee {1,— 1}, are defined by
fme=Im(uv)e Mmeateh), (5.13
The action(5.11) of f, . on the vectors irB, reads! as
2 n m (n+|m|)l . =N
fm,e[¢ﬁw,ﬁq’;n,n’]:277 (_1) [sgr(m)] 5m,ﬁ155m,ﬁ1’5n,n’Tv |m|+|m |>01
(5.143
f el @o,onn' + doon+1nr+1]=0. (5.14b

From this it is clear that the sétf, /me 7Z\{0},e= =1} is linearly independent i®* and a basis
for the image ofy.

What remains is to evaluate tliprospective inner product on the image of. From (4.1),
(5.129, and(5.144, we find

(fm,eyfm’,e’)phys:|m|5m,m'5e,e’ . (5.19

As (5.15 is positive definite, all the rigging map postulates are satisfied(2148) does define an
inner product on the image of. The physical Hilbert spack,sis obtained by completion. The
asymptotic large-order expansionbf?? shows that every vector N pnyscan be represented as a
function onR*={(u,v)}.

Finally, as® is invariant undetd , the assumptions of the uniqueness theorem of Giulini and
Marolf are satisfied. It follows that every rigging map for our triple{,,U,®) is a multiple of
the group averaging rigging map

D. Observables and the relation to algebraic quantization

As we have emphasized, the RAQ observable algghjacontains the algebraic quantization
observable algebraﬁ;h(y*) as a subalgebra, and the star operationA(gﬁﬁ is the adjoint map of
Haux- It follows that the antilinear representation df,,s on s contains an antilinear repre-
sentatiorp ;. of AG.+ . and inp .. the star operation od(}) . is the adjoint map oHnys. p., acts
on the basidf,, Jme 70}, e= = 1} of Hyysas

p(78):fm > 67 mfy, ., (5.163
p(T1)ifme>87 Mg, (5.160
p+(|561,ez):fm,e'_>felm,525y (5160

wheref, ., whenever it appears on the right-hand side, is understood to mean zero.
Comparing(5.16 to (3.9), and (3.16, and the RAQ inner produdb.15 to the algebraic
quantization inner produgB.13), we see thap . is anti-isomorphic to the representation.A)ﬁT&,+
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on the Hilbert spacé{, obtained in the algebraic quantization of Sec. Ill, provided the inner
products are normalized to agree. TDE2,2) action ort{, found in Sec. Il is anti-isomorphic to
the O(2,2) action or#, sinduced by thed(2,2) action orf,,. In this sense, the RAQ quantum
theory contains the algebraic quantization quantum theory.

VI. DISCUSSION

In this paper we have compared the algebraic quantizaA@) framework and the refined
algebraic quantizatiofRAQ) framework in a constrained Hamiltonian system with unreduced
phase spacE=T*R* and gauge group 32, R). In both approaches we used input motivated by
the structure of the classical constraints as quadratic functiorls ém AQ, we first solved the
constraints on a suitable vector space, promoted an explicitly known classical observable algebra
into the quantum operator star algebditﬁt;)y+ , and determined the inner product by requiring the
star operation on4§,;)y+ to coincide with the adjoint operation. In RAQ, we chose the auxiliary
Hilbert spaceH,,, to be L2 over the unreduced configuration spat® and we promoted the
classical SK2, R) gauge transformations dninto a unitary SI2, R) action onH,. We took
particular care to choose the RAQ test state sphceH,,, so that the RAQ observable algebra
Aqps containsAS) . . Considering the similarity in these inputs, it is not surprising that the RAQ
guantum theory turned out to contain the AQ quantum theory. We also investigat€x{ 2t&)
group actions underlying the classical and quantum observable algebras, and we showed that the
AQ quantum theory can be recovered through Isham’s group theoretic quantization framework.

Both AQ and RAQ encountered with the zero angular momentum states a technical difficulty
whose origin is in the structure of a certain pathological subset of the classical reduced phase
space. The remedy was to ensure that such states do not appear in the physical Hilbert space. In
AQ, the problem appeared in the guise of “zero norm” states in the prospective Hilbert space, and
the cure was simply to drop the states already from the vector space on which the constraints are
solved. In RAQ, on the other hand, the problem appeared as the divergence of the group averag-
ing, and the cure now was to modify the space of test states. However, as the RAQ observable
algebra is defined in terms of the test state space, the modification needed to be quite subtle in
order that the RAQ observable algebra could still be meaningfully compared with the AQ observ-
able algebra: here we took advantage of the explicit knowledge of the operatat,ﬁ)),m. This
illustrates well how neither AQ nor RAQ isgescriptionfor quantization: they are schemes that
need input at various steps, and making successful choices in the “early” steps may require
hindsight from the “later” stepd?1432Also, this illustrates that although RAQ does not assume
a single observable to be explicitly constructed, the knowledge of some observables of interest can
be quite useful in making good choices at the various steps of RAQ.

As discussed in Ref. 10, the constraint algebra of our system is analogous to the constraint
algebra of general relativity. Among the three constrai@t®), H, andH, are “Hamiltonian”-
type, quadratic in the momenta, whilz is “momentum”-type, linear in the momenta, and the
mixing of these two types of constraints (R.3) is as in general relativity® One consequence of
this analogy is that one could introduce and investigate in our system also group averaging with
Teitelboim’s “causal” boundary conditiof*~3¢In general relativity, this condition proposes that
only positive lapses contribute to the path integral that defines the quantum mechanical propaga-
tion amplitude. IfH; andH, are adopted as the analog of the Hamiltonian constraint of general
relativity at two spatial points® the causal boundary condition in our system yields an average
over the semigroup of SR, R) matrices whose all entries are positive: integrating first over the
lapses and then over the shift, the(3LR) elements emerge from the amplitude folding of Refs.

34, 35 in the form

exp(vh)expv,et+v_e"), (6.2

where—o<p<ow andv. >0, and we have explicitly verified that the measure emerging from the
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ghost integrations of Refs. 34, 35 is the(38LR) Haar measure in the parametrizati@l). It
might be interesting to see whether a scattering theory of the type considered in Refs. 34—-36 could
be built on the causal boundary condition in our system.

We note in this context that allowingand v-. to take all real values if6.1) does not cover
all of SL(2, R), and, in particular, it does not reach those matrices where the product of the
diagonal elements is negative. In our system, the decomposition of the quantum propagation
amplitude in the form given in Refs. 34, 35, first integrating over the lapses and then over the shift,
does thus not yield an average over the whole group when the lapses and the shift are allowed to
take all real values. This phenomenon occurs also upon considésiiy in the group
PSL(2R)=SL(2,R)/{*=1}=0,(2,1). The phenomenon is therefore not a consequence of the fact
that the exponential map frosi(2, R) to SL(2, R) is not onto, as is the exponential map fret,

R) to PSL(2, R).

We saw in Sec. Il that th®(2,2) action orl” looks simple in the polarization in whid, )
are the “coordinates” andp,—Vv) are the “momenta.” Similarly, we noted in Sec. V that the
0(2,2) action onH,,,=L2({(u,v)}) looks simple when Fourier transformed t8({u,#}). At-
tempting to quantize the system in(a ) representation would, however, present difficulties.
Adopting the(u, =) representation in algebraic quantization and proceeding as in Sec. lll, one
finds that the constraints cannot be solved in terms of smooth functions: the cori@lt;ﬂimo
implies that the support o¥ (u,7) would need to be in some sensezt—u?=0. The reason
underlying this difficulty is precisely that our solutions to the constraints inihe) representa-
tion are not square integrable, or even integrable, and Fourier transforming therfutoma
representation is priori not defined. In RAQ, in contrast, the Fourier transform to the)
representation is well defined #,,, there is no obstacle to constructing in this representabion
the G action, or the group averaging sesquilinear f¢f3), and proving the absolute convergence
of the integral in(4.3) is, in fact, technically simpler than in th@, v) representation. At the
abstract level, one thus recovers isomorphic RAQ quantum theories i tve representation
and the(u, #r) representation. The difficulty of doing RAQ in tlie, 7r)-representation is a more
practical one, namely, that the methods of Appendix D now do not yield a representation of the
image ofy as functions ofk*={(u, )}, and one needs some other way to prove #histpositive
and to evaluatey in some practical fashion.

The classical system admits a generalization in whi@ndv in the action functiona(2.1)—

(2.2 have, respectively; and s components, for any non-negative integerands. The phase
space id’, ¢:=T*IR"*, the gauge group generated by the constraints is st{® St), andI’,  has

a naturalO(r,s)-action that commutes with the &, R) action. One expects that this generalized
system could be quantized with our methods, and that the quantum theory would reflect properties
of the oscillator representation drf(R"%).1>3738|t is also possible to generalize the system to
certain other gauge groups of interest by minor modification of the constraint struct(@d)n

(2.2), such as to the (1) Poincaregroup, or to the affine group d (which is nonunimodular

We leave such generalizations subject to future work.

Note added:After this work was completed, a quantization of the system in the algebraic
constraint quantization framework of Refs. 39, 40 was posted in Ref. 41. As noted in Ref. 41, the
guantum theory recovered therein is, in essence, identical to our algebraic quantization quantum
theory.
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APPENDIX A: IWASAWA DECOMPOSITION OF SL (2, R)

In this appendix we collect some well-known properties of BIR). The notation follows
Ref. 15.
SL(2, R) consists of real X2 matrices with a unit determinant,

a b

g= c dl ad—bc=1. (A1)

Each element of S12, R) admits a unique lwasawa decomposition,

1 0\/et © cosfd siné o
9= w 1/10 e\ —sing cosh’ (A2)
whereu e R, A eR, and 0<6<2w. In terms of the parametrizatiofpA2), the left- and right-

invariant Haar measure readsefd d\ du dé.
A standard basis for the Lie algebs#2, R) consists of three matrices:

(1 0) . (0 1) - (0 0)
h=lg 1) ¢ =lo o/ € =l1 o) (A3)

whose commutators are
[h,et]=2e", [he ]=—-2e, [e',e ]=h. (A4)
A second standard basis is
yor=3(e"—e7), yi=3e"teT), yu=3h, (A5)
with the commutators

[y1:v2]=—v0, [Y2,%]=71, [Y0,v1]=72- (A6)

Each of the three matrices (#2) is in the image of the exponential map frarf{2, R) to
SL(2, R). In terms of the exponential mapA2) reads as

g=exp ue )expAh)exd o(e* —e™)]. (A7)

The decompositiorfA2) encodes the first homotopy grodpof SL(2, R) entirely in the
rightmost factor. The quotient map from &, R) to PSL(2R) =SL(2R)/{*£1}=0.(2,1) [the
connected component @(2,1)] acts in the decompositiofA2) by the identification f,\,0)
~(u,\,0+7). A unique lwasawa decomposition of the forfA7) holds therefore also for
covering groups of0.(2,1): for then-fold covering O<#<ns, and for the universal covering
—oo< <o,

APPENDIX B: OSCILLATOR REPRESENTATION OF THE DOUBLE COVER OF SL (2, R)

In this appendix we recall some properties of the oscillator representation of the double cover
of SL(2, R).1® We denote in this appendix the double cover of BIR) by SL(2, R).

1. Oscillator representation on  L2(RR)

Consider orL?(R) the three essentially self-adjoint operators,
Hy=—307, (Bla

Hye=—3x2, (B1b)
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Di=—i(xdy+3), (B1o)

whose commutators form th&(2, R) algebra(3.3). Exponentiation yields a unitary representation
o of the universal covering group of &, R) on L?(R). The group elements that appear in the
Iwasawa decompositio(A7) are represented by

w(exppe”))=exp(—iuH,), (B2a)
w(exp(\h))=exp —i\D), (B2b)
w(exg 0(et —e ) =exp(—if6(H,—H)y)). (B20)

The two first operators iB2) act on functions/(x) as
[expt —i uF2) ] (x) = €572y (x), (B3
[exp(—iAD)y](x)=e M2y(e *x), (B3b)

while expg(—i 0(I:|1— I:|2)) is the unit mass and frequency harmonic oscillator evolution operator.
As exp(—i6(H;—H.)) is periodic in6 with period 4, w is a representation of $2,R) but not
a representation of 32, R).
It is evident thatw decomposes into a sum of two unitary representations, one acting on even
and the other on odd functions. It can be shown that these two representations are irréducible.
The oscillator representation can be formally written as

d i(ay’+dx®—2
o(@ul00= | ﬁyibexp['(ay 2D iy, (84)

wherea,bandd are as shown i6A1) in the SL(2, R) representative of [while g itself is in SL(2,
R)]. The singularities and branch cuts in the integral kernéBi) must, however, be interpreted
consistently with the unambiguously defined left-hand side. For example, ke 6(e*
—e)], w(g) is the harmonic oscillator evolution operator, for whigk- d=cosé andb=sin 6,
and the integral kernel i(B4) is singular atd= mn.

The integral kernel iB4) can be derived from the $2, R) action that the classical coun-
terparts of the operatof81) generate oM * R. Writing g e SL(2,R) as in(Al), and denoting by
(g,p the usual canonical chart o R, this action reads as

d !
p p c d/\p
(B5) preserves the symplectic structudelddq and is therefore a canonical transformation. For

b+ 0, one can express the old and new momenta as functions of the old and new coordinates, and
the canonical transformation has then a generating fun&fgng’), satisfying

. (B5)

p'(0,9")dq"—p(dq.q9")dg=dS(q.,q"). (B6)
Simple algebra yields

2 12 ’
,._ag +dg’“—2qq
S(q,9")= b : (B7)
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As S(q,9’) (B7) is quadratic inq andq’, the integral kernel of the corresponding unitary trans-
formation consists of the exponential €¥§{q,q’)] and a prefactor that does not dependcpor
g’. Imposing unitarity yields the prefactor shown (iB4).

2. Oscillator representation on ~ L2(R"*)

Inverting the signs of bote* ande™ in the basigA3) of sl(2, R) is an automorphism aofl(2,
R). Inverting the signs ofi; andH, in (B1) and proceeding as above vyields therefore a repre-
sentationw* of SL(2, R) on L?(R). The tensor produab, ¢ of r copies ofw ands copies ofw™

is naturally realized as a representation of 3R) on L%(R"%), eachw acting on one of the first
r coordinates and eaab* acting on one of the lastcoordinatesw s is a representation of $2,
R) iff r+sis even.

The groupO(r,s) has a natural action ob?(R"S) by ¥(x)—(a 1x), wherea is in the
defining matrix representation @i(r,s). This O(r,s) action commutes witlw, ¢, and the spec-
tral decomposition of one completely determines the spectral decomposition of thé>dther.

The representatiot) of SL(2, R) on H,,, introduced in Sec. V, and the representation of
0(2,2) on'H,,y generated by the observable algebt(gi,)y+ therein, are isomorphic to the above
structure withr =s=2. The isomorphism is the Fourier transform in the last two coordinates in
Haue LZ(RZYZ) .

APPENDIX C: CONVERGENCE OF THE GROUP AVERAGING
In this appendix we show that the integral (#h3),

JG dg(d’Z’U(g)(bl)aux- (Cl)

converges in absolute value for @ and ¢, in the spaceb, defined in Sec. V.

It suffices to considet; and ¢, in the setB (5.8). As the operators-id, and—id, (which
belong toA,,9 commute withU(g), it suffices to consider the case whepe and ¢, have the
same angular momentum quantum numbers, for otherwise the integr&@d)imanishes by the
orthogonality(5.7).

We now consider separately the case where at least one angular momentum is nonzero and the
case where both angular momenta are zero.

1. At least one angular momentum nonzero

We seté= ¢m mi:nn @Nd ¢2=dm m 75, wherelm|+|m’|>0.
We write g in the Iwasawa decompositigi\2). By (5.2), U(Qg) is given by

U(g)=exp(—iuHy)exp—ixD)exp(—i6(H;—H>)). (C2)

The Haar measure ifC1) reads asig=e®* d\ du d6, and the integration is over all real values
of N and i and over one & cycle in 6. As ¢, is an eigenstate of the rightmost operatof@®)
with an eigenvalue of absolute value 1, it suffices toseD and consider the integral overand
w in the measur@® d\ du.

Let thusU(g) be as in(C2) with 6=0 andx+#0. By (5.3), we have

4W2[Sgr(mr)]m’z(k’7k)/2
(¢2!U(g) d)l)auxz i<m’+1)

o
Xf du dv dv’ uZF K Ty KL (v ) LE(U?)

X LE (VALK U 2)LY (z(v")?)

Downloaded 11 Feb 2009 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 41, No. 1, January 2000 Refined algebraic quantization in the . . . 151

Xexp[— g1+ (1/z2) =i uJu?— 1= (i/w) V2= z— (i/ w)1(v")?},
(C3

wherek:=|m|, k’:=|m’|, z:=e?", and the integration is over positive valuesupf/, andv’. The
Bessel function,,(vv'/ ) has emerged from performing the angular part ofdhe integral in
(5.339. Here, and from now on, the individual componentsuoand v will not appear, and we
always writeu= \u?, u?:=u?, and so on.

In (C3), we write out the generalized Laguerre polynomials as polynomials in their respective

argumentsLX(u?/z) yields a sum of numerical coefficients timed'z ', Lﬁ’,(z(v’)z) yields
(v)Z'Z", LX) yieldsu®, andLX,(v?) yieldsv?', wherer, 1’, s, ands’ range over integers
satisfying O<r=<n, O<r'=<n’, 0<s<M, and O<s’<T’. Therefore(C3) equals a sum over r’,

s, ands’ of numerical coefficients times

Zr’—r+(k'—k)/2
f du dv dv’ u2r+2$+2k+lv23'+k'+1(Vr)2r'+k’+l\]k/(vvr/lu)
)%
Xexp{ =3[ 1+ (1Uz) =i pJu?— 5[ 1= (i/ w) Iv? =3[ 2= (i/w)](v")?}. (C4

In (C4), we perform first the elementary integral oweiWe then perform the integral over

using(6.631.10 in Ref. 21: the result involves the generalized Laguerre polynohﬁ;abf argu-
ment (v')?/[2u(x—1)], and we expand this polynomial as a sum of numerical coefficients times
{(v)[ w(—1)]}°, wheres” ranges over integers satisfyingsg”<s'. The remaining integral
overv' is elementary. Note that these integrals ouer, andv’ converge in absolute value.
Collecting, we find thatC3) is a sum over, r’, s, s’, ands” of numerical coefficients times

Ms’fs”(l_,_iIu)r’7s’zl+r’+s+(k’+k)/2(l+z+iMZ)fr’fs”fk’fl(l_FZ_iﬂz)frfsfkfll (C5)

where 0ss"<s’. An elementary analysis shows th@5) is integrable in absolute value over
{(z,)|z>0,u € R} in the measurgdz du, providedr +(k+k’)/2>0. As |m|+|m’|>0 by as-
sumption, this condition is satisfied. Th(81) converges in absolute value.

We note that the assumptidm|+|m’|>0 was only used in the final step, in showing the
integrability of (C5). We also note that this assumption is necessary. Talifg ¢ 0.0 and
®2=boonn. (C2) and(C3) yield, using Ref. 31 and6.631.4 in Ref. 21,

Z[(1-2)%+ p®2%]"
[(1+Z)2+M222]n+17

(¢21U(g)¢1)aux=4772(_1)n>< (Co)

and the integral ofC6) over the group in the Haar measure is unambiguously divergent.

2. Both angular momenta zero

We set1=doonn+ Poon+1n+1 aNdPor= g oni7is T Poom+ 17 +1- AS above, it suffices to
take #=0 and consider the integral ovkrand u in the measure* d\ du.
Let againU(g) be as in(C2) with 6=0 andu#0. By (5.3), we have

4772 2 2 2 2
(¢21U(g)¢1)aux:Vf dudvdv’ uvv'Jo(vv'/w)[La(u?)La (V) + Lasa(U9)La 4 (VF)]

X[Ln(U?2)Ln (2(v')?) + Lny 1 (UH2) Ly 1 (2(V)P)]

xexp{— f 1+ (1z) =i pJu? = 1= (i/w) V2= Hz— (i/w)](v)?}.  (CD

In (C7), we write outL,(u®/z) andL,.,(u?/z) as polynomials in their arguments. The
previous analysi§the integrability of(C5) for k=k’=0 providedr >0] shows that the noncon-
stant terms give integrable contributions. Consider therefore the expression lwiteféz) and
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L,.1(u?/z) in (C7) are each replaced by their constant term 1. We perform the integralsiover
andv using(7.414.6 and(7.421.) in Ref. 21, obtaining a sum of numerical constants times

2(1-z—iuz)P(1—ip)® o (v')? p{_} 1 , 2]
(1+z—i,uz)p”(1+m)p'*1fdv Vol 152 o0 T 2|2 |V
X[Lp(z(v")?) + Lo 41 (2(v)P)], (CY

where @,p’)=(1,n") or (p,p’)=(fi+ 1" +1). In(C8), we write outL ,, as a sum of numerical
coefficients times{')?5(1+ «?) ~S, wheres ranges over integers satisfyings@<p’. We then
perform the remaining integral by changing the integration variable fvéno x:=z(v')? and
using the formula

_ as+lpn’,s(a) c9
S rar e (C9

Jm dx X Ly (x)+ Lnurl(x)]exr{ - %(1+a‘1)x
0

whereP,, ¢ is a polynomial(whose precise numerical coefficients will not be negdsdorder
n’+s. The validity of (C9) for s=0 follows from (7.414.7 in Ref. 21, and the validity fos
>0 follows by repeated differentiation with respectto’. It then follows by elementary analysis
that (C8) is integrable in absolute value ovfiz, u)|z>0,u € R} in the measurgdz du. Thus
(C1) converges in absolute value.

APPENDIX D: EVALUATION OF THE RIGGING MAP

In this appendix we evaluate the mapgiven by(4.3) and(4.4), on the test function spack
defined in Sec. V.

It suffices to consider test statgsin the setB, (5.8). We consider separately the case where
both angular momenta are nonzero and the case where at least one angular momentum is zero.

1. Both angular momenta nonzero

Supposem#0#m’, and considerU(g) ¢mm.nn as a function onGx R4, where G
=SL(2R) is the gauge group anB*={(u,v)} is the configuration space. By the methods of
Appendix C it is straightforward to show that(g) ¢, m.n s iS integrable in absolute value over

G pointwise in(u, v), and thatEU(g)¢m,m,;n,n, is integrable in absolute value ovérx R* for
every¢ e ®,. It follows by Fubini’'s theorem thai(ém m.n.n') can be represented by a function
on R?, acting on test stateg e ® by (5.11): we have

77(¢m,m’;n,n’):Xm,m’;n,n’y (D1)

where

Xm,m’;n,n’ *= J’G dg U(g)¢m,m’;n,n' , (DZ)

and the integral inD2) is evaluated pointwise oR*. We shall now evaluatéD?2).
We write U(g) in the Iwasawa decompositidi©2) and writez:=e*. For u+# 0, we obtain
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[sgr(m’)]™ el(ma+m’B)7(k ~ki2gié(k’ ~k+2n’~2n)
U(9) bmminn =

(l)m +1M

xf dV,Uk(V,)k,Jrler(VV’/,LL)LE(UZ/Z)LI:],,(Z(V’)z)
0

y 1
ex z

wherek:=|m| andk’:=|m’|, and, by assumptiork=1 andk’=1. As in Appendix C, the Bessel
functionJ,(vv'/ ) has emerged from performing the angular part ofdhe integral in(5.33.

The integral in(D3) could be performed in terms of a generalized Laguerre polynomial using
(7.421.9 in Ref. 21, but for us it will be more convenient to proceed directly wid3).

We now integratgD3) in the Haar measurdg=e®* d\ du d=3dz du d6. By the above
discussion, this integral converges in absolute value. We may assuidendv>0. The integral
over @ yields the factor 2rdy. o, k' + 20’ - IN the remaining expression we first change the variable
in the integral i(D3) from v’ to x:=z(v')?, and we then change the variables in the outer integral
fdz du to y:=u?/z andp:=u?u. We obtain

Ll2

?"—Z(V,)z MU+

v2+(v’)2>
)%

5 , ©3)

m{sgnm’ )]m Ok+2n, k’+2n’e|(mMJrm 2
2(|)m +1

(e d o0 , B
XJ ?pJ' dXXk/ZJk( v
% 0

j dyy(k/2) 1L (y)e yi2

Xmm’;n,n’ =

i
2

uv2+xy
p

X
L (x)ex —§+
(D4)

We then interchange the order of tiiedx and fdp integrals in(D4), justified by the absolute
convergence of the double integradx dp. Performing thefdp integral by(the absolutely con-
vergent analytic continuation pf6.635.3 in Ref. 21, we obtain

Xm,m’;n,n’:’”'25k+2n,k’+2n'ei(ma+m/ﬁ)~]k’(uv)
Xf dyy(k/2)*1|_ﬁ(y)e*y/2j dX)é(’lka/(\/X—y)Lll,(]l,(X)87XI2
0 0
=27%(= )" Scs ani +20€ ™™ Ay (uv)
0 , B k’ _
x [ Cayyrom g e (D5)

where in the last step we have evaluated fde integral using Ref. 31.
Consider the remaining integral (I5) Suppose&’ =k. Because of the facta® o, k/+2n'

it suffices to considek’ =k+2s andn=n’+s for some non-negative integerWe thus need to
evaluate

f dy y<rsTILE, L (YLK (y)e V. (D6)

k+2s

ExpandingL,, “*(y) in (D6) as a polynomial iry yields integrals of the form

fo dy oLy, L (y)e Y, (D7)
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wheres—1<q=s+n’—1. The orthogonality of the generalized Laguerre polynorffiataplies
that(D7) vanishes for &sg<n’+s. Whens>0, q is always in this range, an@6) thus vanishes.
Whens=0, the only value ofy not in this range igj= — 1, which comes from the constant term
of the expandediﬁ,(y) in (D6): using Ref. 42(7.414.7 in Ref. 21, and15.1.40 in Ref. 22, we
then find thatD6) for s=0 is equal to i’ +k)!/[k(n")!]. Finally, the casé’ <k reduces to the
case already considered by interchange of the primed and unprimed indices, and we fiD&)that
vanishes.

Expressing the result in terms of the original indices, we have

(n+|m)!

i(ma+m’p)
—|m|n! Jm(uv)e . (D8)

Xm,m’:n,n’ = 2772( - 1)n[Sgr(m)]m5\m\,|m’|5n,n’

The result(5.129 then follows from(D1) and (5.13.

2. At least one angular momentum zero

What remains is to evaluate the magor ¢qq.n o With m’#0, ¢ o0 e With m#0, and
bo.0nn't Poon+tin +1- We shall show thaiy vanishes on these states.

A direct analysis along the above lines would run into a technical difficulty in that not all the
analogous multiple integrals now converge in absolute value. It is, however, suggestive to note
that the integrals are still conditionally convergent, and starting from the counterp@gpénd
formally interchanging the integrations as above yields the result zero.¢g@y., . and
bmonn» (D2) yields the zero function and hence the zero vectorditi. For ¢gon s
+ ¢oon+1n+1, the counterpart ofD2) yields a function proportional tdy(uv), which clearly
solves the quantum constraints, but the dual act@dl of Jy(uv) on every vector indg
vanishegby the extension of5.148 to m=0], and as an element di* Jy(uv) is thus identical
to the zero vector. We now show that the result zero is indeed the correct one.

Consider first

7](¢0,m’;p,p’)[¢]:((lso,m’:pvp’ ’¢)gai (D9)

wherem’#0 and ¢ € By (5.8). As noted in Appendix C, it suffices to considér= ¢gm:.nn’ -
Using the Iwasawa decompositi¢@?2) in (4.3), the integral ovem shows that we can sém’|
=2(n—n"), and a similar reasoning witb(g) in (4.3) conjugated to act on the first argument
shows that we can set|m’|=2(p—p’). It therefore suffices to consider

(b0.+25:p+5.p190+25n+sn)ga With s= 1.

Consider thus ¢g os.p+s.p, P0,25:n+5,n) ga With $=1. We recall that the operatotd (3.7) are
in Aops and the adjoint of7? in Hy is 72. Using properties of the generalized Laguerre
polynomials® we find

T d’l,?sfl;nJrsfl,n: —(n+ s)(¢0,25;n+sfl,nfl+ ¢0,25;n+s,n)r (D103

3’1 ¢O,%;p+s,p: _(p+ 1)¢1,$71;p+s,p+1+ (p+ 23)¢1,$71:p+571,p ) (D]-Ob)

where ¢ x:n+s-1n-1 for n=0 is understood as the zero vector. We therefore have

(n+s)[(¢0,z;p+s,p ' ¢O,$;n+s—l,n—1)ga+(¢O,$;p+s,p r¢0,$;n+s,n)ga]

( ¢0,Zs;p+s,p 1}: ¢l,$71;n+sf 1,n)ga
= (3'1 ¢O,2,s;p+s,p ,¢1,2371;n+37 1,n)ga
=(P+1)(P1 1prspt1:P1xs1n+s—1n)gat (PT29)(P1 s 1:pts—1p:PLs-1:n+s-1n)ga

=0, (D11)
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where the last equality follows frortb.123 in the index range wherés.123 has already been
verified. By induction inn, (D11) implies (¢o x:p+s,p» Po,2:n+sn)ga= 0- An analogous argument

shows @O,—Zs;p-%—s,p v¢0,—25;n+s,n)ga= 0.
Thus 7(bom:.p,pr) =0 for m"'#0. A similar argument shows thap(dmo.p /) =0 for m

#0. Finally, 7(¢0,0p,p'+ b0.0p+1p7+1) =0 follows by applying an analogous reasoning to the

relations>®

72110 =(N+1)(N"+1)(boonn + Poon+ 10 +1)s (D129
a'I(@Z"O,O;p,p’ + ¢0,0;p+ 1p’ +1) = ¢1,1;p71,p’ 71+ 2¢1,1;p,p’ + ¢1,l;p+ 1p’'+1- (D]-Zb)
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