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Abstract

We relate Bondi systems near space-like infinity to another type of gauge conditions. While
the former are based on null infinity, the latter are defined in terms of Einstein propagation,
the conformal structure, and data on some Cauchy hypersurface. For a certain class of time
symmetric space-times we study an expansion which allows us to determine the behavior of
various fields arising in Bondi systems in the region of space-time where null infinity touches
space-like infinity. The coefficients of these expansions can be read off from the initial data.
We obtain in particular expressions for the constants discovered by Newman and Penrose
(NP-constants) in terms of the initial data. For this purpose we calculate a certain expansion
introduced in [E] up to 3rd order.
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1 Introduction

Most studies of gravitational fields near null infinity are based on the use of “Bondi-type” coordi-
nates. In the first investigations of the behavior of the field near null infinity (cf. [f], (L], [R2))
Bondi-type coordinates played a crucial role in the specification of the fall-off behavior of the field.
The characterization of the asymptotic behavior of gravitational fields near null infinity in terms of
the conformal geometry subsequently suggested by Penrose ([E], [E]) does not require the use of
such a specific class of coordinates. Nevertheless, Bondi-type coordinates are usually also employed
in this context because they allow us to exploit in a convenient way certain features of the null cone
structure. If the gravitational field is, however, to be analyzed in detail in the region where future
and past null infinity J+ “touch” space-like infinity, and if this is to be done such that 7~ and J+
are treated on an equal footing, Bondi-type coordinates are not particularly helpful. Already in
the simplest non-trivial case, that of the Schwarzschild solution, the use of double null coordinates
leads to difficulties.

In [[] an initial value problem for the conformal vacuum field equations has been formulated
which is designed to analyze near space-like and null infinity the Einstein propagation of asymptot-
ically flat data on a Cauchy hypersurface S in a finite picture. In this setting, which is based on cer-
tain conformally invariant structures, space-like infinity is represented by a cylinder I ~]—1,1[xS?
such that the sets 7% ~ R x S2, representing future resp. past null infinity, “touch” the cylinder
at its two boundary component I* = {£1} x S2. Though the underlying facts about the evolution
equations which have been used here hold for much more general situations, the picture has been
analyzed so far under certain simplifying assumptions on the initial data. The data are assumed to
be time-symmetric and the conformal structure, which then represents the free datum, is assumed
to extend smoothly through space-like infinity such that the latter is represented by a point ¢ in an
extended manifold S = S U {i}. The cylinder I is obtained by blowing up the point i to a sphere
I° ~ {0} x S? and by smoothly extending the solution in a particular geometric gauge.

It can be seen already under these assumptions on the data that the new picture allows us to
relate near I+ properties of the data on S, which touches I at I°, to properties of the field on null
infinity by solving a hierarchy of differential equations on I. These equations have been used in [E]
to derive certain “asymptotic regularity conditions” for the initial data whose imposition prevents
a certain class of logarithmic singularities of the field at the sets I* from arising. However, it
still has to be shown that the asymptotic regularity conditions ensure a time evolution of the data
which extends near space-like infinity smoothly to null infinity.

In the present article we analyze the consistency of the early investigations of fields near null
infinity with the picture developed in [ and we demonstrate to some extent the efficiency of the
latter in calculating near space-like infinity quantities on null infinity from the given data. For this
purpose we make two different types of assumptions. On the one hand we shall consider space-
times arising from time symmetric vacuum data as described above which satisfy the asymptotic
regularity conditions. Our calculations of fields on the cylinder I rely only on these assumptions.
On the other hand we shall assume that these data develop into solutions which admit a smooth
conformal structure at null infinity and that the gauge conditions proposed in [ extend in a
smooth and regular way to J+. We expect that our analysis will contribute information on the
solution process which in the end will allow us to remove the second type of assumptions and to
show that the existence of the smooth evolution can be derived solely from assumptions on the
initial data.

The present article can be divided into three different, though related, parts.

—In [E] an expansion of the field near space-like infinity in terms of a “radial” coordinate p, which
vanishes on the cylinder I representing space-like infinity, has been introduced. We calculate the
coefficients of this expansion to third order. This calculation is not only of interest because it
allows us to study the NP-constants, which will be discussed below, but also because it provides
some information on the smoothness of the evolution near null infinity for fields arising from
data subject only to our first type of assumptions. Though the asymptotic regularity conditions
referred to above exclude certain types of logarithmic singularities in the evolution near I, there
exists another potential source of singularities. To show that in fact no further singularities can
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arise at any order, it is clearly of interest to understand the situation for the first few orders of
the expansion. The potential singularities should show up for the first time at the order of our
calculation. Our calculations show that at this order they are in fact excluded by the asymptotic
regularity conditions.

We note that our expansion of the field near space-like and null infinity, which we carry out

in terms of the conformally rescaled fields and associated gauge conditions, can be translated
into an expansion of the field near space-like infinity in terms of the “physical” field and suitable
coordinates. We shall not carry out such a translation because the main point of our consideration
is the fact that we can relate quantities on null infinity to the data on S,
— Bondi-type coordinates and certain related frame fields (cf. the definition of the “NP-gauge”
below) are based on the structure of null infinity. The gauge conditions in [[] (cf. the definition
of the “F-gauge” below) are based on Cauchy data, the Einstein equations, and certain properties
of conformal structures. We discuss in general terms how to construct near null infinity the
transformation from the F-gauge into the NP-gauge. Using the expansion referred to above we then
obtain expansions near I'" of various quantities given in the NP-gauge in terms of the coordinates
arising in the F-gauge and coefficients which are given directly in terms of the initial data on S.
We note that these expansions imply expansions of quantities of physical interest on null infinity
such as the Bondi-energy-momentum, the angular momentum (cf. for various suggestions),
the radiation field, etc. in terms of the coordinate p on null infinity, which vanishes at I, and
coefficients derived from the initial data.

Since we need for our considerations quite detailed information on the structure of the initial

data near space-like infinity, our explicit calculation are done only for time-symmetric data. How-
ever, many of our considerations apply also to more general situations and as soon as sufficient
information on data with non-vanishing extrinsic curvature becomes available (cf. [B]), we shall be
able to derive by similar calculations relations between fields on 7~ and Jt. These relations will
contain non-trivial information on the evolution process.
— As a specific application of this discussion we reconsider the constants which have been associated
by Newman and Penrose with asymptotically simple space-times (cf. , [@]) The NP-constants
are given by certain integrals over spherical cuts of null infinity and have been shown to be ab-
solutely conserved in the sense of being independent of the choice of cut. We derive for them
expressions in terms of the initial data on S. Such expressions have been given already in the
static case in [@] We derive analogous expressions for a much more general class of space-times
arising from time-symmetric initial data. For these data the time evolution of the field is in general
not known explicitly as it is the case in the presence of a time-like Killing vector field. The fact
that we can nevertheless obtain expressions in terms of the data illustrates to some extent the
efficiency of the new picture. Though various authors (cf. [H|, [2d], [2]]) discuss these constants
from different points of view, no consensus has been found concerning their geometrical/physical
significance. Whether our discussion will help clarify the meaning of the NP-constants remains to
be seen. One of our main reasons for looking at them is the expectation that they may play a role
in the construction of space-times. In numerical calculations they may certainly provide a check
on the numerical accuracy.

2 Relating different gauge conditions near null infinity

We begin by giving an outline of the finite, regular initial value problem near space-like infinity.
This has been introduced in the article [EL to which we refer for more details. It involves a gauge
which we refer to as the F-gauge. We then recall the NP-gauge, employed in [E], to discuss the
gravitational field near null infinity. Finally, we discuss how the NP-gauge is related to the F-gauge.

2.1 The regular finite initial value problem near space-like infinity

We want to discuss asymptotically flat solutions (M,g) to Einstein’s field equations R;w =0
in a neighborhood M, of space-like infinity which covers parts of future and past null infinity.
The solutions arise from asymptotically flat data on a smooth space-like Cauchy hypersurface
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S C M which are such that the intrinsic conformal structure on S admits an extension with
a certain smoothness to a smooth compact manifold S obtained from S by adjoining a point ¢
which represents space-like infinity, S = SuU {i}. We assume that the solution, i.e. the evolution
in time of these data, possesses a smooth conformal extension (M, g,©) such that we can write
M=MUJ UJT, where 7% ~ R x 52 represent future respectively past null infinity and ©
denotes a smooth “conformal factor” on M such that © > 0 and g = ©2§ on M while © = 0,
dO® #0on J*.

To analyze in detail the consequences of the field equations in a neighborhood of space-like
infinity which covers parts of J*, the situation above has been discussed in the |[f| in terms of a
certain principal fiber bundle M/ — M, with projection 7, 4—dimensional base space M,, and
bundle space M/ which is a 5—dimensional manifold with boundary and edges. To describe this
setting further we need to introduce some notation.

We employ the two-components spinor and space-spinor formalisms as used 1n [H] where €ab,
€ are the antisymmetric spinors with ey, = 1, €1 = 1. We set 7@ a’ — = €0 % €y a4 €1%€1*. By
SU(2) will be denoted the group of 2 x 2 matrices t = (¢t*}) satisfying

€act®vtqa = €vd, Tact®pt®a = Tod,

and by U(1) its subgroup of diagonal matrices. A basis of the Lie-algebra of SU(2) is then given
by the 2 x 2 matrices

1/0 i 1/0 -1 1/i 0
u1_§(i 0)’“2_5(1 0 )’“3_§<0 —i)’ (2.1)

of which ug generates U(1).

In the following will be described in detail the regular finite initial value problem at space-like
infinity formulated in [E] Though we shall remark in passing on the construction of the manifold
M and the underlying gauge conditions, we refer for the full details to the original article. The
manifold M/ is given by

w

b

M:z:{(ﬂpvt)ERXRxSU@ﬂO§p<a,_%§7<

where a is a positive real number and w = w(p,t) a smooth non-negative function, given below,
such that % extends to a smooth positive function with % — 1 as p — 0. By p and 7 will also
be denoted the projections of M, onto the first respectively second component of R x R x SU(2).
Then any coordinate system on SU (2) will define together with the functions p and 7 a coordinate
system on M!. There will, however, arise no need for us to introduce coordinates on SU(2). We
denote the projection onto the third component of R x R x SU(2) by ¢ and regard the SU(2)-valued
function ¢ as a “coordinate” on M.

The natural action on the right of U(1) on SU(2) induces a smooth action of U(1) on M. The
quotient M/ /U (1) under this action will be denoted by M, and the induced projection of M/ onto
M, by m. We shall write N = w(N') for any subset N’ of M. The following subsets of M/ will
be important for us:

j[:{7'::|:%,p>0}2}R><S?’,

I'={r|<1,p=0}~Rx S I*T={r=41,p=0}~5

C'={r=0}, I°={r=0,p=0}=C"NI~S5

Because they cover only a part of null infinity close to space-like infinity, we should have denoted
the first sets more precisely by J, '+ but we dropped the subscript a for convenience. By definition
the part of the physical manifold M which is covered by M, is given by M, = M, \(J-uUJtulu
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I~ UIY), the sets J* represent future resp. past null infinity while the set I represents space-like
infinity for M, and the metric induced on it by g. Thus M, covers a neighborhood of space-like
and null infinity in M. The edges I* ~ S2 of M, at which future resp. past null infinity touches
space-like infinity will play an important role in the following. We shall refer to the set C' as the
initial hypersurface since by definition C N M, = C \ IV = SN M,. There exists a neighborhood
B, of i in S and smooth surjective map 7’ : C' — B, which is injective on C'\ I° and which maps
I° onto 1.

As described in [E], the manifold M is obtained essentially by lifting M, into the bundle of
normalized (with respect to €4) spin frames. The set I'© ~ SU(2) corresponds to the set of
normalized (with respect to €, and 745) spin frames at the point i. With each such spin frame we
associate a unit tangent vector of S at . With this vector we associate in turn a curve through ¢
in B, and extend the spin frame along this curve by a certain transport process. Thus we obtain
spin frames at each point of B, \ {i}. These frames are transported off B, \ {i} ~ C'\ I° into the
space-time M, by a certain propagation law along conformal geodesics orthogonal to C. The latter
are given in our description of M/ by the curves p = const., t = const. with T a natural parameter
along them. Since for given unit tangent vector at ¢ the spin frame defining it is determined up to
a phase factor, the spin frames at points of M, \ (IUI~ UI7T) are also given up to multiplications
by phase factors, which corresponds to the action of the group U(1). The transport laws as well as
further details of the gauge conditions are encoded in the form of the data and certain properties
of the unknowns for the reduced equations.

Since it turns out to be most convenient, we will carry out all our calculations on the manifold
M and use for the subsets of M/ introduced above the same names as for their images under 7.

We denote by Z,, the vector field generated by u; and the obvious action of SU(2) on M/
and define complex vector fields X, = —(Z,, +iZy,), X— = —(Zu, — iZy,), X = —214 Z,, which
satisfy the commutation relations

X, X, ]=2X,, [X,X_]=-2X_, [Xy, X_]=-X. (2.2)

The conformal field equations, in the form used in |E], are given in a particular (conformal,
coordinate, and frame) gauge which is explained, together with the equations, most naturally in
the context of normal conformal Cartan connections (cf. [E]) Again, we shall not go through
the complete argument but just describe the unknowns and equations. To obtain the equations
on M/, we use the fact that the solder and the connection forms on the bundle of spin frames
induce corresponding forms ¢, w®, on M/’ \ I’ which extend smoothly to M/. The metric
€ab €a’b’ 09’ g on M is degenerate because < 0““/,X >= 0 (the angle brackets denoting the
dual pairing), but it descends to the Lorentz metric g on w(M/, \ I').

The equations are written as equations for the “vector’-valued unknown

0 1 + g
U= (c"abs € abs € aby X(ab)eds Eabeds fabs O(abyeds O, ups Pabed),

whose components have the following meaning. We consider the smooth vector fields
Caa’ = CO aa’ 87' + Cl aa’ap + C+ aa’ X+ + ¢ aa X_

which satisfy < o ey >= e, %% @ on M)\ I'. All fields are written in space spinor notation
based on the vector field /29, = 7% c4qr. Since 79% ¢,y is invariant under the action of U(1) it
descends to a vector field on 7w(M/\ I') which is time-like, has norm 7,4/ 7** = 2, and is orthogonal

to S. We have

1
Caa/ = —#—=
V2

. / — . .
with cap = 74 b Coypr = Ao 07 + ' a0, + T X+ + ¢ X _. The connection defines connection

Taa’ 6-,— - Tb a’ Cab (23)

. 7 ’ . .
coefficients T'ypeq = 75 @ Taared = T ¢ < Wed, Caar > Which can be decomposed in the form

1 1 1
Fabcd = % (gabcd - Xabcd) = 75 (gabcd - X(ab)cd) - 5 €ab fcdv
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with fields satisfying Xabea = Xab(cd)> Sabed = E(ab)(cd)s fab = f(ab)- The curvature is represented
by the rescaled conformal Weyl spinor field ¢apcd = P(abea) and by a spinor field Oupea = Oup(cq)
which is the Ricci spinor field of a certain Weyl connection for g.

The pull back 7* O, again referred to as the conformal factor and denoted by ©, extends
smoothly to M/ and is known in our gauge explicitly. It is given by

QO 2
o="(1-22), (2.4)

p w?
and appears, together with the 1-form

U:Eab - pDabU - P2 DabW

da :2 9
b ep U +pW)®

(with x4 as given in appendix [@]) which characterizes in a certain way the difference between
the Levi-Civita connection of g and the Weyl connection referred to above, as coefficient in the
conformal field equations. We have set here

2
_ p
= WrowyE

w=2Q(=Du QD" Q)% = p(U+pW){U? +2pUa" Dyl = p? DU Doyl (2:5)
+2 92U 29 Dy W — 2 g DU Dy W — pt DWW Doy W}~ %,

Q

where the smooth functions U = U(p,t), W = W(p, t), which satisfy U =1 and W = %mADM on
I, are given as part of the initial data on the initial hypersurface C’, on which Dy, is the intrinsic
covariant derivative. Note that the fields €, w, d,, do not depend on 7. The conformal factor
satisfies the relations (cf. |f])

©>0 on M, {©@=0y=J ul-ururtuJgt,

ot , 2.6
Caa (©) #0 and €® e ¢,/ (O) ey (©) =0 on J*. (2:6)

In the following we shall refer to the coordinates 7, p, t, the frame {c,q }, and the conformal gauge
defined by (@) as the F-gauge.
2.1.1 The conformal evolution equations

We recall here a few general features of the conformal field equations and refer again to [E] for
more details. The conformal field equations imply on M/ evolution equations of the form

{A°0, + A9, + AT X + A~ X_}u=Cu, (2.7)

where A%, A', A* C denote matrix-valued functions which depend on u and the coordinates. The
system is, for u close to the data given below and for the coordinates taking values on M, near
C’, symmetric hyperbolic. Writing u = (v, ¢) with

v = (CO ab Cl ab Ci abs X(ab)cdu gabcdu fab7 6(ab)cdu Gggab)u ¢ = (¢abcd)7 (28)

the evolution equations for v are obtained, with our assumptions on the gauge, from the structural
equations of the normal conformal Cartan connection associated with g. They read explicitly

87'00 ab = —X(ab) of d ef — fab; (29)

O0rc™ ap = —X(ab) of efsy &= L+, -, (210)

1
argabcd = —X(ab) of gefcd + E (eac X(bd)ef + €bd X(ac)ef) fef (211)
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1 3 )
_\/§X(ab)(ce fd)e - 5 (eac ®f ! bd T €bd ®f ! ac) - ZG/140,bcd7

e 1
8‘rfab = _X(ab) f fef + ﬁ ®f ! ab (212)
Or X(abyed = —X(ab) ! Xefed — O (edyab + © Naveds (2.13)
8T®(ab)cd = ~X(cd) o e(ab)ef - 0,0 Nabed + % ﬁde (aMb)cdes (214)
a7'®ggab = _X(ab) ef Gggef + \/§d€f Nabef (215)
_ 1 + _ ) + : a' b dz
where Nabed = B (¢abcd + ¢abcd) and Habed = -3 (¢abcd - ¢abcd)7 with Ta Tb Te Td d)a/b/c/d’

= (b;rbcd, denote the electric and the magnetic part of ¢qpcq respectively. These equations are of
the form

0. v =K({) +Quv,v) + L(¢), (2.16)

with a linear function K and a quadratic function () of v, both with constant coefficients, and a
linear function L of ¢ with coefficients which depend on the coordinates. We have L = 0 on I'.
The evolution equations for ¢, derived from the Bianchi identities, are genuine partial differential
equations. They will be considered in more detail below.

2.1.2 The initial data

Consequences of the finite regular initial value problem have been worked out so far for Cauchy
data which are time symmetric and admit a smooth extension through space-like infinity. In fact,
it has been assumed in [@], as will be done in the following, that the conformal structure is analytic
near space-like infinity. We note that this condition is imposed only for convenience and could be
relaxed. The free Cauchy data on S are then given by the conformal structure of a smooth metric
h on S which is analytic in some h—normal coordinates near 3.

We assume h to be given near i in a certain conformal gauge, the cn-gauge (cf. [E]) This reduces
the freedom of performing conformal rescalings h — 62 h to the choice of the 4 real parameters (i),
6 (1), the value of 6 in a neighborhood of i then being determined by the conformal gauge. We
assume that B, is a convex h—normal neighborhood of ¢ and that p descends to a radial normal
coordinate on B,.

The metric h induced by g on S is related to h by a rescaling h=Q"2 h, where the conformal
factor €2 satisfies pQ_% — 1 as p — 0 and the Lichnerowicz (Yamabe) equation

(DD — ér)(sr%) =0. (2.17)
Here D denotes the covariant derivative and r the Ricci scalar of h. The form (R.5) of Q in terms
of the functions U and W is a consequence of this equation and the required asymptotic behavior
of Q, which ensures that h is asymptotically flat.

The initial data on C’ for the conformal field equations are derived from h and . They are
given by

ap = 0, clap= P Lab, ctab = zap + péJr aby € ab = Yab+ PC ab,
X(ab)cd = 07 é.abcd = \/Qp;}/abcd; fab = Zgb, (218)
2 3
@abcd = _% D(ab l)cd)Q + % P2 r habcdv ¢abcd = % (D(ab l)cd)Q +Q Sabcd)v
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with Tap, Yab, Zab, and the expression hgpeq of the metric h in space spinor notation as given in
appendix , and Sabed = S(abed) the trace free part of the Ricci tensor of h.

In chapter [@] we shall discuss how the coefficients ¢+ ., Fapeq defining the frame and the
connection coefficients are determined on C’ by the (3—dimensional) structure equations from r
and Sgpeq. The observation (cf. [E]) that the data above extend smoothly to I'0 ¢ ¢ is most
important for our construction.

2.1.3 The transport equations on [

At first sight it may appear that the initial data on 5'7 thus in particular on C’, should be com-
plemented by boundary data on I’ for the solutions of equations (@) to be uniquely determined.
However, it turns out that for any smooth solution to the evolution equations on M/ which coincides
on C’ with the initial data above, we have the important relation

A'=0 on TI. (2.19)

As a consequence, equations (@) reduce to a symmetric hyperbolic system of the form {A4°9, +
AT X, + A~ X_}u = Cu on I’ which allows us to determine the unknown u on I’ uniquely in
terms of the value of u on I'°. Thus we find, as was to be expected, that any smooth solution of
(@) on M taking on C’ our initial data is determined uniquely by its data on S,

More generally, by applying repeatedly the derivative operator 0, to the evolution equations,
restricting to I’, and observing () we obtain symmetric hyperbolic transport equations

{A°0, + AT X, + A~ X _JuP =CpuP +g, on I', p=0,1,2,..., (2.20)

for the quantities u? = (0% u)|r. Here the matrix-valued function C), and the vector valued function
gp depend on p and the quantities u°,... ,uP~!, but the matrices A°, A* are universal in the sense
that they depend neither on p nor on the initial data. We shall employ the notation above more
generally, such that applying it to the fields Sgpcq and r on the Cauchy hypersurface we have
Soped = (08 Sabed)|pro and 77 = (95 1)| 10, respectively.

To integrate the transport equations (P.2(]) on I, we expand all fields in terms of the matrix
elements of unitary representations of SU(2) which are given, in terms of the matrix elements
(t"b)a,b=0,1 of the 2—dimensional standard representation of ¢ € SU(2), by the complex-valued
functions

SU(2,C) 5t — T g(t) = (M) (T)F 401, . ) To00(t) = 1,

J
73, k=0,...,m;, m=1,23,...

awn)k’

(2.21)

Here, as in the following, setting a string of indices into brackets with a lower index k is meant
to indicate that the indices are symmetrized and then k of them are set equal to 1 while the
remaining ones are set equal to 0. The functions v/m + 17T, x(t) form a complete orthonormal
set in the Hilbert space L?(u, SU(2)) where u denotes the normalized Haar-measure on SU(2).
Under complex conjugation we have

T 1 (t) = (=1)FF T, ™0 1 (t), teSU?2),
and, for 0 <k, <m, m=0,1,2,..., we have with ﬁm)jz{j(m—j—i—l)}%
Xkaj = (m_ 2j)kaj7 XJrkaj = ﬁm,j kajfla X_ kaj = _6m,j+1 kaj+1. (2.22)

A function f satisfying a relation X f = 2sf with an integer or half integer number s, is said to
have spin weight s. We note the spin raising (lowering) property of the action of X4 on such
functions implied by (R.9), i.e. X X4 f =2(s+ 1) X4 f. By construction of the manifold M/ any
function occuring in our formalism has a well defined spin weight. This leads to a simplification
of the expansion in terms of the functions kaj. The general form of these expansions has been
discussed in detail in [E] and will be assumed here without further explanation.
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The quantities u°, u!, u2 have been determined in [[f. They are given here (with a correction

and a useful change of notation) at the beginning of chapter [@] The functions u® will be
calculated in chapter [ The quantities u?, p = 2,3,... have been shown (cf. [E]) to develop a
certain type of logarithmic singularity on the sets I'T unless the free datum h on S satisfies the
asymptotic reqularity condition

D(aqbq - Days, babcd) (Z) =0, (2.23)

for ¢ = 0,1,2,..., where the spinor field bapea = b(apcay represents the Cotton tensor of h. The
values of the functions u?, p < 3, which will be given below, have been calculated on I’ under the
assumption that () is satisfied for ¢ < 1. The analysis of the quantities u?, to the extent to
which it has been carried out in [E], indicates another potential source for a singular behavior of
the fields u?, p > 3, at I'#. This will be discussed further in chapter [

2.2 The NP-gauge

For simplicity we restrict our discussions now to the future of S in M, we refer to future null infinity
simply as to null infinity and we denote it by 7. In the following we shall describe a certain class of
gauge conditions on (M, g) near null infinity, referred to as the NP-gauge, which comprise certain
requirements on the conformal gauge, certain coordinates, and a certain orthonormal frame field.
Though this gauge is known, our description will be quite detailed, because we will have to refer
to it later. The Levi-Civita connection induced by the conformal metric g will be denoted by V.

Suppose {E2,,} is a smooth frame field, satisfying g(E2,,, Ef/) = €ab €vpr, which is defined
in a neighborhood of null infinity. We call it an “adapted frame”, if it satisfies the following
conditions. The vector field £7;, is tangent to and parallel propagated along null infinity. On the
neighborhood on which the frame is given there is exists a smooth function «° which induces an
affine parameter on the null generators of J such that EY,, (u°) = 1, which is constant on null
hypersurfaces transverse to J, and which satisfies Eg5 = gaﬁvﬁm. Thus Ej is tangent to the
hypersurfaces {u® = const.} and geodesic. The fields EY,,, Ef, as well as the fields Eg,,, E{y,
which are necessarily tangent to the slices {u® = const.} N J, are parallelly propagated in the
direction of £, .

In terms of its NP-spin-coefficients (note the slight difference of our notation with that of [[L1]])

o 1 o« o} o o« o o
Downe = 5 {Eaa, N W By + BSOS ESLV 0 By ﬁ} , (2.24)

an adapted frame is characterized by the properties

FO ’ = 0, FO ’ = 0 on j,
10’11 11711 (225)

o i o o — o o o — —
000 = Toroos oo = Fovorr + 1601 Tooan =05 a,0=0,1, near J.

The first of these conditions tells us that J is shear free. This well known fact follows from the
equation for the trace free part s, of the Ricci tensor of the conformal vacuum metric g,

1
@ Saﬁ = §ga5V7V’Y® — QVQVQG (226)

Transvection with Efo‘?‘ETO? and restriction to J gives I'{y;; E§y (©) = 0, while E§, (©) # 0 on J.
We shall combine now the construction of an adapted frame with the freedom to perform rescalings

g—g =0, ©—-0"=00 (2.27)

with some positive function 6, to obtain another adapted frame {E? ,} for which we get further
simplifications besides (R.25). We start with an adapted frame {E? ,} as described above. For
arbitrary 6 > 0 and for arbitrary function p > 0 which is constant on the generators of 7 we set

o

B, =0"2pEy, and u®(u®) = / 0*(u)p~t(uv')du' +ul on T, (2.28)

o
*
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where the integration is performed along the generators of 7. Then E};, will be parallelly propa-
gated and E7;, (u®) = 1 will hold. We assume that «° = u{ and u®* = u$ on C and set

Eo.o/ = p_l E80/7 El.l/ = 9_2pE§)1/, E(;l/ = 9_1E81/ on C. (229)

Since C is diffeomorphic to S? and thus carries (up to diffeomorphisms) precisely one Rie-
mannian conformal structure, we can fix coordinates x> = 9, 2* = ¢ as well as the func-
tion § on C such that the metric h* induced by g* on C is given by the standard S?—metric
h* = dv¥? + sin® 9 d?. Using the transformation laws IS0 = Pt [F?O/OO — E§y (log 9)] and
L8 =p0~2 [F81/11 + E3,, (log 9)} on C, we can achieve, by suitable choice of d 8 and p,

Iy =0, T9111=0, E§y(©*)=const. 20 on C. (2.30)

The transformation s7, 5 = =2 {(VaVal — 2V o0V 30) — 2905(V V70 — 2V.,0V76)} + 505 of the
trace free part s,g of the Ricci tensor under the rescaling (@) implies a transformation of
Byy = Lsap By By into @3, = Ls7,E82 Eyf, which yields, with the assumption that &%, = 0
on J, on the generators of 7 the ODE

B3 (B (6)) — 2 (F31,(6)" — 6 @2 = 0. 231)

This equation can be rewritten as a linear ODE for #~! which can be solved on the generators of
J with 6 > 0. Using the initial data 8, E{,,(6) on C determined above, we solve for 6 to obtain

®5, =0, T§11=0 on J. (2.32)

Here the second equation is a consequence of the first, the field equations, and () We assume
in the following () We observe that the induced metric on the sections {u® = const.} is given
as a consequence everywhere on 7 by the S2-standard metric.

Once 6 and EY,, have been fixed on J, the vector field EJ,, (whence Ef; ) tangent to {u® =
const.} is determined up to rotations. We choose some smooth field EJ;, on 7, solve the equation

B}y (c) = —i EYg By V5 Egy,, (2.33)
for the function ¢ with initial value ¢ = 0 on C, and replace E;, by e'© E3;, to achieve
11 =0 on J. (2.34)

Observing the simplifications above, we contract the analogue of (.26 for g* with E(}f,‘El'O[f to
conclude that V¥ V**©* =0 on J. A further contraction with E(;O‘}E;lﬁ, gives

E} (E§y (©%) =0, ie. Eg(©%)=const. on J, (2.35)
while a contraction with E(;O?‘Eglﬁ, yields now Eg, (Egy (0%)) = T'}y,00Egy (©*), which implies
oo =0 on J. (2.36)

To fix also d@ on J, we use the conformal transformation law for the Ricci scalar, i.e.

1 12 6
Rlg*] = =R — V5OV >0 — VLIV 0. 2.37
9] = 55 Rlg + 55 V% SV, (2:37)
If we require that R[¢g*] = 0 along J, this equation takes on the generators of the null hypersurface
J the form

B3 (B (6)) ~ 2Bty (6) By (6) = F*, (2.38)
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of a linear ODE for the unknown E, (), where the right hand side

L] L] L] [ ) 2 ° L] 1
P = 9te { B3y (Bl (0) - 25000 Bty (0) — 5 B (OB (0) + 1357
is given in terms of quantities which have been determined already on J. Using the initial value
ESo (8) = p~10T0,00lc, fixed on C by (.30), we can integrate the equation to achieve

R[g*] =0, T$p00=0 on J, (2.39)

where the second equation follows again from our previous results and the field equations.

We do not require conditions of higher order on the conformal gauge. Assuming a conformal
gauge as described here, we shall refer to an adapted frame {E? ,} satisfying the conditions above
as to an NP-frame, and to a normalized spin frame €24 = {0*4,:*4} which implies a NP-frame
as to a NP-spin-frame.

We extend the coordinates 22, 2% to J such that they are constant on the null generators
of J. As described above, we define null hypersurfaces {u® = const.} transverse to J and we
denote by r® the affine parameter on the null generators of these hypersurfaces which satisfies
E3y (r*) =1 and, on J, r* = 0. The coordinates z*, 2% are extended such that they are constant
on the null generators of {u® = const.}. Thus we get a Bondi-type system (u®,r®, 2%, 2*) in some
neighborhood of null infinity. Occasionally we shall change from the coordinates 9, ¢, to a complex
stereo-graphical coordinate given by ¢ = ewctg%. We write the volume element and the volume
form alternatively

ds® = —(d¥* + sin®*9 dp?) = —P(¢)"2d¢d(, e =sinddd Adyp = [2P(¢)]72d¢ A dC,

where we set P(¢) = 3(1 + ¢{). We shall refer to the conditions on the conformal scaling, the
frame field, and the coordinates as to the NP-gauge.

2.3 Relating the NP-gauge to the F-gauge

While the NP-gauge is hinged on null infinity, the F-gauge is based on a Cauchy hypersurface
and these gauge conditions are in general completely different. In the following we will study the
transformation which relates one to the other. It is important for this that the conformal factor
O, whence 7, is known explicitly in the F-gauge.

The vector fields {cqq } tangent to the 5-dimensional bundle space M/ are not directly related
to the NP-gauge on the subset M, \ I of M. Let S> D U 3 p > s(p) € SU(2) be a smooth local
section, defined on some open subset U of S?, of the Hopf fibration SU(2) — SU(2)/U(1) ~ S2.

It induces a smooth section U x R x R 3 (p, 7, p) 5 (s(p),T,p) € M.. We denote the image of
S by M}. The vector fields tangent to s(U) which have projection identical to that of X are of
the form X, + ay X with some smooth functions at on s(U), satisfying a_ = —a4. Because of
(B-2) a+ cannot vanish on open subsets of s(U). Consequently, the tangent vector fields ¢, of
M satisfying m,(ck,/) = m«(caq’) are given on M} by

C:a/ = Cqa’ + (0’+ C+ aa’ ta_c- aa’) Xv

with functions ay which are independent of 7 and p. The connection coefficients defined on M}
by the connection form w® . and the vector fields ¢}, are given by

:;a/bc = Paa’bc+ (a+c+aa’ +a_c aa’) (€0b600 - 6lbecl)-

In the remaining part of this section we shall work on 7(M]) and denote the projection of the
vector fields ¢ ., which define a smooth orthonormal frame field on 7(M )\ I’), and the pull-back
of T, %, by S again by ¢, and I'},, ® .. Similarly, the projections of J’ N M} and I'tn My will

aa’

be denoted by J and I7.
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The frame field {c} }, which is in general not adapted to null infinity, will now be related close
to I'" to an adapted frame {EZ, }. On J the vector field EY;, must be of the form

EYf = fVv@e, (2.40)

where V and © denote the Levi- C1v1ta connection and the conformal factor associated with the
F-gauge. The requirement 0 = E;V3E2S = f VPOV, VO + V5 (1 V,0V0) that B2
be parallelly propagated, gives after contraction with a vector field Z transverse to J the ODE

Z(3v0V°e)

va@va(log f) = - Z(@)

(2.41)
for f on the generators of J. To fix f, we set f = fo = const. > 0 on some section C of J. The

function u°® satisfying EY%(u°) =1 on J and u® = ug on C can be now be determined.
Let A%, € SL(2,C) satisty

00 =N e (2.42)

Rewriting (R.40) in the form Ef;, = f ¢ty (©)e®e’? ¢, we find the relations

aa’

A01X0l1/ = fca'jl’(e)v A015\111/ = _fCTO/(('—))a Allxl,l/ = fcgo/((a)- (243)

From () we obtain A% B, = A EY,, — el 1o — /_\1/1,01*1,. Applying this to the function u°,
we get

)\OO == 5\0 1/C>{01 (uo) + 5\1 l,Cfll(uo). (244)

Together with the condition det(A*,) = 1 the relations (), (2.44) allow us to determine the
matrix elements A%, on J up to replacements A% — A% n°, with (n®,) = diag(e'*,e™**) € U(1).
After making here an arbitrary choice, the adapted frame {E? ,} is determined uniquely near 7.
To determine an NP-frame {E? ,} near J, we need to find an appropriate rescaling () and

a scaling factor p. We set
cry=0"1ch = A AY e (2.45)

with A%, € SL(2,C). Assuming (2-2§), we have B} = f* V**©* with

f*:% and El(0%) = - on J. (2.46)

f*

We choose now 6, d6, and coordinates x>, 2* such that the induced metric on C is given by the
S2-standard metric and, with p chosen such that p = § on C, conditions (2.3(]) are satisfied with
Egy (0%) = fi!

Following the procedure of the previous section, we can determine the conformal factor 6 on
J such that () is satisfied. The transformation A%, can be determined in the same way as
A%, Imposing condition (R.34)), we determine A% up to U(1)—transformations on C. Conditions
(B-39), (2-36) will now be satisfied as well and we can determine d¢ on J such that (£.39) holds.
Extending the tetrad to a neighborhood of 7 such that it is parallelly propagated in the direction
of Ej, , we get the desired NP-frame.

In our later calculations we will need the quantities Eg, (A%,). Using our gauge condition
I'00/ap = 0 and the transformation laws for the connection coefficients,

* 1 * *
Faa’bc = 5 {Faa’bc + 6a(bcc)a’ (log 9)} )

Eaa/ (Ab C) = —Aj a Ajl a’ Ah c F;f/ b h + Ab d F;a/ d
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where I'* ;. denotes the connection coefficients with respect to V* and {c,, }, we find
o (pb Af AR b
Ego (AP o) = =AT g AF o A" T 0. (2.47)

In the considerations above we had to fix various quantities by prescribing data on the section
C. When we shall determine later the expansion of a NP-frame near IT, it will be natural to try
pushing C to I'". A priori it is not clear, however, whether this can be done in a continuous way.
We shall see, that for certain quantities the limits to I™ do exist, while others quantities can only
described in terms of their growth behavior near 1.

3 The NP-constants

In 1965 Newman and Penrose discovered certain non-trivial quantities, defined by certain integrals
over a 2-dimensional cross-section of J T, which are absolutely conserved in the sense that their
values do not depend on the choice of the section (cf. [[[J, [[4]). The interpretation of these ten
real NP-constants is still open. In the case where the space-time admits a smooth conformal
extension containing a point 7 (“future time-like infinity”) whose past light cone represents J 7,
these constants are essentially given by the five complex components of the rescaled conformal
Weyl spinor (cf. [@, ) However, these quantities do not allow us a simple interpretation either.
More interesting is the case of stationary vacuum space-times. In this case the constants have been
calculated and have been given in the form (mass) x (quadrupole moment) — (dipole moment)?
(. [, ).

If the evolution of the field in time is not given explicitly as in the presence of a time-like
Killing vector field, there appears to be no obvious way to calculate the NP-constants. It turns
out, however, that under suitable assumptions on the asymptotic behavior of the field near space-
like infinity the constants can be calculated by integrating the transport equations on I’ to a
sufficiently high order. In the following we shall derive a formula for the constants in terms of
quantities which can be determined by solving the transport equations.

To explain the original formula (cf. [[[4]), which is given in the Bondi-Sachs-Newman-Penrose
framework, let (u, 7,4, ¢) denote Bondi-coordinates on the physical space-time, where  denotes an
affine parameter along the generators of the null hypersurfaces {u = const.} and the generators are
labeled by the standard coordinates (¢, ¢) on the two-sphere. The null frame {E,w/} as well as a
corresponding spinor dyad {64,74}, both defined on the physical space-time, are normalized with
respect to the physical metric g. They are adapted to the Bondi-coordinates such that Eoy = 0.

We assume that the conformal space-time with metric g* := r~2§ admits a smooth extension as
r — oo to a smooth Lorentz space with boundary J+ = {r®* = 0} and that the functions u® := u,
r® :=r~ !, ¥, and ¢ extend such as to define a smooth system of Bondi-type coordinates near J 7.
Furthermore, we assume that the frame {E®_,} and the spinor dyad {o®#,:*4}, defined by

e _ . 2—a—d [
Eaa/ =T Eaa/

o‘A:réA, L.A:ZA,

(3.1)

such that they are normalized with respect to ¢g*, extend to smooth frame resp. dyad near JT.

The results of Newman and Unti (cf. [L5]) then imply that {E®2,,} defines in fact a NP-frame.
Under our assumptions the component 1y = ¢ABCD6A63606D of the conformal Weyl spinor

has an expansion 1o = ¥3r=° + ¢{r=% + O(r~7) with coefficients ¥§ which are independent of r.

In terms of the physical space-time the NP-constants are given with this notation by the integrals

Gy = j{zyzmﬂbé sind d dp, (3.2)
which are calculated for fixed value of u. The functions 2Y5 ,,,, m = —2,—1,0, 1,2, denote spin-2
spherical harmonics (cf. [[J|) which are obtained from the standard spherical harmonics by

1 1
Yo = —=EeS Eyf10a05Yo,m = —=0"Ya . 3.3
2Yom = oo Bor o 0adYom = 5 o507Y2, (3.3)
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Here 6 and 0 denote the standard covariant differential operator on the unit 2-sphere and the
“edth”-operator, respectively. In evaluating (@) it will be important that the operator 0 is
defined with respect to the complex null vector field Eg;, (cf. [iLd)).

We reexpress the constants in terms of the fields g*, E®,,, 0*4, 1*4 satisfying the NP-gauge, in
particular () Using the component ¢g = 7 apcpo®20*Bo®“o* P of the rescaled conformal
Weyl spinor, and performing the obvious lift to M’, we obtain for the NP-constants the formula

1 _
G =~ 5=  2Vaum By (o) dS da (3.4)

Here dS = sind d dp denotes the surface element on the cross-section {r®, u® = const.} C J+ and
a denotes a parameter on the fibers of the principal fiber bundle M’ — M. The second integration
can be performed without changing the result because the integrand is independent of the variable
a.

The values of these integrals are independent of the value of the constant defining the cross-
section as well as of the choice of the Bondi-coordinate u® itself. Thus they are invariant under
supertranslations (cf. [[[4]).

We shall determine the NP-constants by integrating the transport equations on I’. Since these
equations and their unknowns are given in the F-gauge, we express (@) in this gauge. Using
(), we obtain in the notation of the previous chapter

L[ 1 y
G, = f{ Vo gz {A? A" AL A [A A%, €5 (Gree) — B Bneac By (0)]
FAOAY JAT GAL GBS (A ) ¢bcde} S da.

This is the expression for the NP-constants which will be used in the calculations of section @]

4 Time symmetric space-times

In this section we will use the assumptions of the regular finite initial value problem near space-like
infinity and thus restrict our considerations to time symmetric space-times. We begin by solving
the third order transport equations on I’. This calculation is of interest for two quite different
reasons. First of all, it will give us a first insight into the potential source of singular behavior of
the quantities uP pointed out in section ] Further, besides giving information on this question
of principle, the calculation will allow us to analyze the relation between the NP-constants and the
initial data for asymptotically flat solutions. Under our assumptions, we will be able to evaluate
the integral (E) in terms of quantities derived from the initial data.

4.1 Solving the third-order transport equation

The solutions u? of equations (P.20)) have been given in [H] for p < 2. Since they will be used in the
following calculations we reproduce them here, in a notation, though, which is more convenient for
a systematic discussion of the higher order expansion coefficients. We also take the opportunity to
correct a misprint in [E]

The solution u° of the transport equations () has the form

(%) = =Txap, (c')? =0, ()’ = 2ab,  (€3)° = Yabs  Eyeq =0, (4.1)
X?ab)cd =0, fab = Tab, (@ggab)o =0, G?ab)cd =0, Pabea = —6MERpeq;

where m = mypps denotes the ADM-mass of the initial data set. The spinors appearing on the
right hand side of these and the following formulae are listed in () of appendix [@] The
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solution u! is given by

()t = H(T) zap, () = Tab, (Ctb)l = ¢F(T) Zab,
(Cjzb)l = cil (T)yllb7 abcd = Sl( )(Eac.’I]bd + de.’I]ac), X%ab) K ( ) abcd7 (4 2)
;b = Fl(T)Ialh (quab) = tl(T)Ial” 61(ab)cd = Tl (T)Eabcd’

(bzlzbcd = ¢%(T)X+W16abcd+ [p5(T )+¢3( yWile? Eabed (b%(_T)X*WlEgbcd’
while u2 takes the form

() = [3%(7) + (M) Wilwap + &5 (7) [ X-Wiyap + X Wiz,
12

(Clab)2 =c *(T)Tap,
(ct,)? = [c7°(7) + &2 (T)Whlzay + 372 (1) X_ Wiz ap,
(C_ab)2 [cF2(7) + 2 (T)WAyap + €52 (7) Xy Wizap,
abcd [512 (T + S; (T)Wl](eacxbd + €pdTac) + 532 (T) (€aclba + €bdyac)X— Wy

+ 7') (€aczbd + €bdZac) X+ W1 + Sz (1) (Elllbch+W1 + Eibchf Wh),
X%ab)cd = [Kvl2 (1) + Kv22 (T)Wl]gibcd + K?? (T)habed + Kzf (7)(€acYbd + €baYac) X—Wh
- KE(T) (€ac?bd + €bdzac) X+ W1 + K52 (1) (Etllbch"FWl - Eibch— W), (4.3)

f3 = [FE(1) + F3(n)Wilzay + F5 (1) (X-Wiyas + X+ Wizap),
(©7,)7 = [E1(7) + t3(T)Whap + 15(7)(X-Wiyas + X4 Wizap),
Oupyea = TP () + T35 (T)Whlelpeq + T5 (T havea + T3 (T) (€acyba + €batac) X - Wi

- T42(T) (Eaczbd + ebdZaC)XJrWl + T52( )( abch+W1 abch Wl)
Doped = O1(T) X4 Xy Waegpeq + [65(T) X4 Wi + 63 (7) X4 Walegpeq
+ [¢421(T) + (bg (T)Wl + (bg (T) ] Eabed — [¢2( )X— Wl + (bg( )X W2] €abed
+ 3 (—7)X_X_Waek, ..
The 7-dependent functions in these expressions are polynomials which are given in appendix %}

The calculation of u? is facilitated by the following properties of the transport equations ( ).
For p > 1 they are of the form

0P = Ly, vP +1,, B®0a¢P = Mp¢P, (4.4)
where, using the notation (R.§), we set v? = (OB)|r, @7 = (8p¢)|p and denote by L, and [, a
matrix- resp. vector-valued function of the quantities u?, . up !, while M,, denotes a matrix-
valued function which depends on the variables u?, ..., up’l, vp. The matrices B® neither depend

on p nor on the initial data. Thus, given the quantities u?, ¢ < p — 1, we can integrate the first of
equations (Q) which is an ODE. To integrate the second equation, we expand the quantities u?
in terms of the functions 7} *, ; given in (B-21)) and use (P-22) to reduce the integration to that of a
system of ODE'’s.

To determine the initial data for 43 on I'°, we have to expand the unknowns (P.18) in terms
of p. Instead of prescribing the conformal metric i on the initial slice, which represents the free
datum, we shall prescribe, in a fashion consistent with the 3-dimensional Bianchi identities, certain
curvature quantities and use the 3-dimensional structure equations and the Yamabe equation to
determine the remaining quantities.

The conformal factor, which appears in the expressions () is given in (E) in terms of the
functions U and W. The function U, which is determined locally by h near space-like infinity, is
given, by a procedure explained in [E], in the form

U=3 Upp™, (45)
=0
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with p-dependent coefficients U,. As shown in [E] the Taylor expansion of U in terms of p has in
our gauge the form

(4.6)

?‘|}—n

For our calculations we shall need the coefficient Uy, which will be determined later in this chapter.

The function W, which contains global information on the free initial data, is determined by
solving the Yamabe equation on the initial hypersurface. We shall consider here a larger class of
functions which are subject to the Yamabe equation only in a small neighborhood of space—like
infinity. The coefficients in the Taylor expansion W = Wy + W, pt+3 L, p? + 35 W3 P>+ O(p ) have
expansion (cf. [.

2t m
W; = Z Z Wik Tploom

m=0 k=0

They are restricted by the requirement that the Yamabe equation (h*’ Do Dg — r1,)[W] = 0 holds
near {p = 0}, which implies the simplification

2
Wi=> WiaisThlt, i<3. (4.7)
k=0

We get for the conformal factor and the trace-free part of its second covariant derivative
Q=p>—mp>+ [Em? —2W1] p* + [-4m3 + 3m Wy — W3] p°

+[2mt = 3mPWy + 3WE + Em W, — W5 — £U4] p° + O(p7),

DayDeayt = [—6meZy.q]p+ [(12m* = 36 W1)edpeq — 12 (Sgpea X+ — EhpeaX—)W1]p?
+[(—=15m3 + 96 m W1 — 36 Wa)e2, 4 + (eLpea Xt — €5peaX ) (24m Wy — 8 Wa)
— (0 X X o+ edy y XX )W) p® + [(156 W — 150 m®Wy + 15m* +81m W, (4.8)
—20W3 —4Us + 5 X X _Us — 6 Xy Wi X_Wh)e2,
(el poaX s — €23, 0 X )(BOWE — 30m>Wy + 15m Wa — VW5 — 20)
5 (E0ea X4 Xy + b XX )BWE + 3m Wy — $Ws — 04) — 32a75.%) 1 0*
+0(p°).
From this we obtain as initial data for u3 on I'°
(%)% =0, ()* =0, (Ctb)g =0, (C;b)g =0,
Eobea= 0, X?ab)cd =0, fa =0, (@qgab) =0,
Olupyed = B X+ X Waegy ey + (=72m Xy W1 + 48 X Wa)eg, g
+(27m3 — 288 m Wy + 216 Wa)e2, .,
+H(72m X_Wy — 48 X_Wo)ed,  + 3 X_X_Wael, . (4.9)
oped = (EopeaX+ Xt + EnpeaX-X)OWE — SmWy — W — iUzl)
(L pea Xt — E2peg X ) (OWE — 3mWy — 5Ws — 3Uy)
1622, J(12W2 — 3m Wy — 20W3 — 4Us + 5 X4 X_Uy — 6X Wi X_W1)

—4%e (@7}, a T 382 peds
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where Yapea = (2 p) " (€acTbd + €baTac) + Yabea denote the connection coefficients on .

We determine now how the functions 04, '72bcd= and sgbcd are related to the free data on the
initial hypersurface C’. As shown in [@], the structure equations on C’, which relate the connection
coefficients to the curvature, read

% {0p¥00ab + % [¥0000Zab — Y0011 Yab + \%%Oab} } = ¥0000711ab — F0011Y00ab — % Saboo — ﬁ T Yab,

%{@fhmh + % [¥1100Yab — F1111Yab + \%%mb} } = ¥110011ab — F1111Y00ab + 5 Sab11 — ﬁ T Zabs

and the components of J,,.4 have Taylor expansions

3 3 1. 3 1.
Yotab = 0, Fooab = =Fooas £° + O(p"),  F11ab = =Fi1a P° + O(p").

3! 3!
From this we get
o001 = — 775 500015 Fio1 = 175501115 Y6000 =~ 575 500005
F00 = 57550 — 95" Yoo = —gusston T oot Y = oSt
and obtain thus for the quantity Fopeq = —4 er(aW?Lced) + 3 52,4 the concise expressions
Fo=2s%, Fi=3s}, Fo=4s3—Lr? Fy=3s3 Fy=2s} (4.10)

where we set F; = Fgpeay,, 5i = S(abed),» USING the notation introduced in ()

In the cn-gauge the curvature vanishes at zeroth and first order at space-like infinity. At second
order this is in general not true and the prescription of the free data on S in terms of curvature
quantities has to be consistent with the cn-gauge, the Bianchi identity, and the regularity condition
() for ¢ = 1. The content of the cn-gauge is expressed in second order in the curvature by the

conditions

)
DabDab r=20, DabDab Scdef = _Z D.q Def T, D(ab Dq Sefgh) = 0 at .

It follows that the spinor

taved efgh = Dab Ded Sefgh — = Pabed Db Sefghs

3
where Aj denotes the Laplacian corresponding to the metric h, is symmetric in the first and the
last four indices separately. Using the Bianchi identity

1
Dab Sabed = 6 Dcd T,

we thus get

1 1 1
6 Dab Dch - g Ah Sabed = tef abedef — tae bf cdef — DaeDbf Scdef + 6 Ah Sabed)
whence
19
DaeDbfscdef = ﬂDachdr-

No further conditions are implied at ¢ on the Ricci scalar r at this order. Finally, we get from

(R-23) for g =1
Dh (a Dbc Sdef)h =0 at .

The relations above imply that the expansion of t4pcq efgn in terms of symmetric spinors and €4’s
can be expressed completely in terms of symmetrized twofold contractions of this spinor, which in
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turn can all be expressed in terms of the symmetric spinor Dy, D.qr. Working out this expansion
we get

5
DY D sepgp = h® (op DD gy 1 — = hd Do Dy at i, (4.11)

in our gauge. Going through the procedure described in section (3.5) of [E] we get S(abed); =
52 p2+ 0(p?) and r = 72 p? + O(p?) with

4 4

\2 gl

2: . Z 2T4J7 2:%2 T427 (412)
k=0 k=0

1
where we set R} = % (i) * Dap Deay, v*, with the star indicating that the quantities are given in
our gauge at ¢. The 5 real numbers R; contain precisely the information on the metric A which

can at this order be freely specified in the cn-gauge.
We note that the Cotton spinor is then given at i by

5
Dap bedes = -3 {€a(s Dea Degyr + €p(a Dea Degyr}

and the deviation of h from conformal flatness at 4 is encoded at this order in the symmetric spinor

Dab Dcd ’I“(Z)
From ({.10), (.19) we obtain
4 4 4
Fo=3>"RiTh, =3 RiTh, F= QWEZRk T,
k=0 k=0 k=0
4 4
ks = %ZRZT&,, Fy = %ZRZT44
k=0 k=0

Finally, we will calculate the coefficient Uy in the Taylor series (@) Only the coefficients Uy,
U; and U; of the expansion (@) contribute to Uy. These functions have the following expansions
(cf. [[] for the defining integrals).

1 2 dp
Uozexp{z/ (A ! —|—6) }—1—1— [\/_’71100];) +0(p%), (4.13)
0 r'
where we used the expansion
2V/2
Ap? = —6+ T”Y?mo pt+0(p°).

Further we have, with L denoting the Yamabe operator,

Uh=5 | ——dp = 36 — V1100 — 18 2| p* +0(p%). (4.14)

Uo P L[UO] ’ l 7\/— 1

Finally, observing ([t.19), we obtain

Uo pL[Ul]Pd/

U =
2 2p Uo

= O(p).
Collecting results, we arrive at the expansion

W2 1,

3 ”Y1100 47”

1
U1+~ pt+0(p°) = T

i pA+0(p%). (4.15)

3
_10\/—ZRkT42
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19

Since the initial datum for the conformal Weyl spinor is a non-linear function of the basic
quantities and the transport equations are quadratic in the unknowns, we have to make use of the
Clebsch-Gordan expansions of products like T,% T, . These are readily calculated by using the

definition ) For the quantities relevant in our calculation we thus obtain

4 4
X WX Wy ==Y ap T/ + 2, W =Y "axT/} +0,
k=0 k=0
4 4
WAX_ Wy =8N "a, Ty, WX = B> a )k,
k=0 k=0
4 4
(X W2 = VB mTf, (W) = VBY. aTh,
k=0 k=0
with coefficients
ag = %Wﬁgo, a; = %W1;2,0W1;2,1, az = %(W1;2,0W1;2,2 + W12;2)1);
az = %W1;2,2W1;2,1, aq = %Wﬁzgv b= =3(Wi20Wi22 = 3Wia 1)

It was shown in [E] that the quantity ¢? has an expansion of the form

q m
3 _ 3 k
(bi - Z Z d)i;m,kTm =2+
m=|4—2i| k=0

Using the results above in the last equation of (@)7 this expansion reduces to

G =0, for i={0,...,4} and m >8,

Do6p = —2V30 Wasg ., G360 =—10VBWagk, B3, = —20 Wasg k,
60 = —10V3Waeir, O = —2V30 Wi 1,

B = 18V6ay —3V6mWaus + 3R, o8, = 9vV6ar — 3V/6m Wauy + 3Ry,
O3ak = 180k —3mWa + 55 Ry, $ap = IVO6ar — 5V6mMm Wau s + R;,
¢i;4,k = 18v6ar — 3v6m Way + %RZ,

Gop =0 for i={1,2,3}, $3.0.0 = 0.

(4.16)

(4.17)

(4.18)

(4.19)

Given these data on I,O, we are in the position to solve the transport equations on I’. The first of
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the systems (Q) can be integrated step by step with the result
(%) = [ (1) + ()W + 3 (T)Walzap + [ (T) X Wi + 5 (7) X Walzap
+ [ (M) X_W1 + (1) X-Walyas,
(clp)® = [e*(7) + (M) Whwap + 3 () [X4 Wi zap + X-Wiyas],

(ctb)3 = [ ( VX Wy + 3 (1) X Walzap + [cgig(r) + cffg(T)W1 + C?S(T)Wg]zab
+ c6 (T)X,X,Wanb,
() =lei ( VX1 Wi+ 652 (1) Xy Walzan + [c37°(7) + ¢ (1) W + 637 (7) Wy

+ 66 3 X4 X Woza,
Eavea = 51 (1) X4 X1 Waegyeq + [S5 (1) X4 Wi + S3(1) X4 Walegpeq
+ [SS(T) X W + S3(T) X _Walely.q — ST (1) X X_Waegyg
+ [S3(7) + SHT)W1 + S(T) W (€acba + €paac)
+ [SH(1) X Wi + S3(1) X1 W] (€aczbd + ebdzac)
+ [S2(T)X W1 + S3(1) X_Wa](€acybad + €baYac),
X?ab)cd = K} (1) X1 X Waegpoq + [K5 (1) Xy Wi + K3 (1) X4 Wale gpea
+ [K3(7) + KS(T)Wh + Kg (1) Waleiyeq — [K5 (1) X Wi + K3 (1) X_Walegy.q  (4.20)
+ K7 (1) X X Waegpeq + [K7(7) + KZ(T)Wilhaped
+ [KS(T) X W + K7y (1) X - W] (€acyba + €baYac)
— [K§ (1) X4 Wi + K3o(7) X s Wa (€acba + €baZac),
o = [F7 (1) + E3(T)Wh + F3 (1) Walaay, + [F (1) X- W1 + F5 (1) X - Wa]ya
+ [FY (1) X W1 + F2 (1) X Wa)2a,
V3= [E3(1) + (1)W1 + t5(T)Walzap + [t(T) X W1 + t2(7) X_Walyas
+ [L(T) X W+ 83(7) X Walzap,
63(ab)cd = TP (1) X Xy Waelpeq + [T5 (1) Xy Wi + T3 (1) X Walegpea
[T () + T3 (T)Wh + T (1) Waletyeq — [T3(T) X - Wi + T3 (1) X - Walegyeq
+ T (1) X=X Wacgpeq + [T (1) + T3 (1) Wi habed
+ [TS(T) X_ W1 + TP (1) X Wa)(€aclba + €baYac)
— [T (1) X4 W1 + T (1) X4 Wa)(€aczbd + €bdZac)-

The 7-dependent functions in these expressions are given in appendix [@]

We now turn to the second of the transport equations (@) which is a partial differential
equation. The system for the expansion coefficients ¢3 of the rescaled conformal Weyl spinor on
I’ has the form

(1+7)0-¢5 + X467 — ¢35 = Ro,
079 + 5 X0 + 5 X485 + & = Ri,
O + $X ¢+ 1 X103 = Ry, (4.21)
0-¢3 + §X,¢>2 + §X+¢4 ¢3 = Ras,

(1=7)0:05 + X_¢3 + ¢ = Ru,
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where the right hand sides are given by
RQ = Al (T)X+X+W2 + A2(T)(X+W1)2,
R, = Bl(T)X+W1 + BQ(T)W1X+W1 + Bg(T)X+W2,
Ry = Ci(1) + Co(T)W7 + Cs(1)(W- ) + Cy(r)Wo + Cs5 (1) X W1 X_W7, (4.22)
R3 = Bl(—r)X,Wl + BQ(—T)W1X7W1 + Bg(—T)X7W2,
R4 = —Al(—T)X_X_Wg - Az(—T)(X_W1)2,
with 7-dependent functions A;(7), B;(7), Ck(r) which are listed in appendix . These func-
tions have been calculated from the lower order expansion coefficients (f£.1))-([.3) and from (f£.2d).
The symmetry inherent in these expressions reflects the time-symmetry of the underlying space-
time.
Using the expansion (4.1§) and corresponding expansions of the terms above, we decompose

(B.21) into the following equations. For m > 6 the coefficients ¢§’;m1k, k =0,...,m, satisfy the
homogeneous system

(L +7)0r B e — Pome + /(B = D(Z +2)6%,, .= 0,
6T¢ mk+¢1mk %\/(%_—""2%7711@"‘ VEG A 1D63,, =0,
)i + 3V E(F + 13, =0, (4.23)
T¢3;m,k - ¢3;m,k -3V (7 + 1) 5 + VG +2)(F - D3 = 0,
(1—- T)a‘r(b?l;m,k + (b?l;m,k - \/W(bg;m,k =0

The coefficients ¢§’;41k, k=0,...,4, solve

—_

m
2mk 7+

(L+7)07 5.4 — Pooag + 2000y = 2V6 A1 (1) Waa i + V6 Aa(7) ax,
T¢1 4,k + ¢1 4,k ¢8;4,k + %\/6¢§;4,k = %\/632(7) ag + \/EBS(T) Waa ks
Or 3.4 s — 3V60%, ) +5V605, . = [Ca(1) = Cs(7)] ag + Ca(T)Waya, (4.24)
Or s g+ g + Bag — 5V6 08, = —3V6 Ba(—7) ax — V6 Ba(—7) Woyu,
(1= 7)07 345 + Phag — 2054y = —2V6 Ay (—7) Wk — V6 Az (—7) ax,

with the coefficients ay, defined in () The functions ¢§;27k, k=0,1,2, satisfy

0r gk + B0 + \/_ B30k = V2B1(T) Wik,
Or 301, — \/—¢?2k + \/_¢32k Co(7) Wik, (4.25)
T¢32k 32k f¢22k ~V2Bi(~7) Wiz,

while ¢3. , is subject to
Or 300 = Ci(7) + [Cs(7) +2C5(1)] b, (4.26)
with b as defined in ([t.17).

These ordinary differential systems have to be integrated for the initial data (J.19) at 7 = 0.
Since the equations are already quite complicated, we used the program MapleV .4 for this purpose.
Synthesizing the result of these integrations according to (, we obtain the following concise
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expressions for (;513 on I'.

(1471 =7 X X Ws + & fo(r) m X X Ws
+% o(T) (X4 W1)2 + Jho(T) Xy X 72,
=51+ 7)2(1 = 7)* X3 Wa + £ f1(1) m Xy Wa
+2 91 ()WL X Wy + Sha(7)Xor? + k(1) m? X W,
¢3 =—20(1+71)*(1 = 7)° Wy + fo(T) m Wo
+92(7)(W1)? + 3 ha(T)r? + ka(1) m* Wy (4.27)
+p(1) m* + [q(7) — g2(7)] b,
o3 =5(1+7)* (1 —7)’X_W3 — L fi(—7)mX_W>
WX Wy — Ly (=) X 12 — Lk (—7) m2X_ W7,
+ 7)1 -7 XX Wi+ L fo(-m)mX_X_W,
+590(—T)(X_W1)? + Jho(—7)X_X 12,

¢} =

591(~
01 =—(1+

with 7-dependent functions which can be found in appendix [@] All the functions ¢? have
polynomial dependence on 7.

The most interesting feature of this solution is its smoothness at 7 = 41, which, in view of
the singular behavior of equations ([£.23), (J.24) at these points, was not to be expected from the
beginning. To explain its significance we indicate the argument which led to the asymptotic regu-
larity condition () The Bianchi equations, which were used to obtain the evolution equations
for the rescaled conformal Weyl spinor and, consequently, the second of the transport equations
({.4), form an overdetermined system. Thus there are further equations, to which we refer as to
the constraints. In the present case the constraints take the form

T0-¢% + 5(X 485 — X_7) — 367 = S,
T0- 3 + 5(X 485 — X_ %) — 3¢5 = S, (4.28)
70- 93 + 5(X 108 — X_¢3) — 393 = 53,
where
S1 = Fy (1) X Wi + Fa(r)WiXe Wi + Fy(r) X4 Wa,
S2 =G1(7) + Ga(T)Wi + G5(1)(W1)? + Ga(T)Wa + G5 (1) X_ W1 X W, (4.29)
Sy = —Fy (=) X_W1 — Fy(—m) Wi X_ Wi — Fy(—7)X_Ws,

with functions which are given in appendix [|A.J]. As before, we obtain equations for the coefficients
in the expansion ([.1§). Together with ({.23), ([.24) these equations imply the systems

1+7)(67%+ 3)84;58;67,C +(Bm—-512+57+ 7)¢g;67k —5(r— 1)3¢2;6,k =0,

(4.30)
(1—-7)57%+ 3)6@2;67,@ + (B +572+57 — 7)¢g;67,€ —5(1+ 1)3¢2;67,€ =0,

and

4(3+72)(1+7)87¢?6;4,k -2(1- ) ¢04k+2( ) ¢44k = Ti(7) ay + T2(7) Waia,k,

=A@+ 7)1 = 7)07 0%y — 20+ 7)°0%4 4 + 20+ 7)2G04 . = T1(=7) ar, + To(—=7) Waa i,
(4.31)

with functions 77 and T3 (given in appendix [@]) derived from the functions R; and S;.
It turns out that once these equations have been solved, the remaining expansion coefficients in
() can be obtained either by purely algebraic operations or by solving ODE’s which are regular
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for 7 € [—1,1]. This situation is the same for all orders p > 3 in (4.4). The solutions y(7), with
y denoting in the case above the column vector with entries given by the two unknowns of ()
resp. of ([t.31)), can then be given for p > 3 in the form (suppressing here all indices)

y(r) = X(7) X(0) L yo + X (1) /07' X ()7 o(r) dr, (4.32)

with X (7) denoting a fundamental matrix of the system of ODE’s under study. The vector-valued
function b(7) is built from solutions which are obtained by solving the equations of lower order.
In [E] the equations (written there in a slightly different form) have been discussed in general
and the fundamental matrices X (7) have been derived. As in the case of ({.30), (1.31), there
occur homogeneous as well as inhomogeneous systems for general p > 3. Thus for certain values
of the indices (i.e. p and the indices which arise from expanding u? in terms of the functions
T, " ;) the functions b(7) vanish and the solutions are of the form y(7) = X (7) X (0) ™! yo. In these
cases some of the entries of X (7) have logarithmic singularities. The latter drop out of the final
expression precisely if the asymptotic regularity conditions () are satisfied. In the remaining
cases the entries of the matrices X (1) are polynomials in 7 but det(X) = ¢ f(7) (1 — 7%)P=2 with
some constant ¢ # 0 and some polynomial f(7) satistying |f(7)] > 1 for |7| < 1. Furthermore,
the column vector b(7) has poles. However, it has no logarithmic singularities if the solutions
of the equations of lower order have no logarithmic singularities. Assuming condition (), the
remaining potential source of singularities of u?, p > 3, at |7| = +1 are the integrals on the right
hand sides of the expressions () These have not been analyzed yet. To understand the general
situation, it is clearly of interest to study the problem for the first few values of p. Remarkably,
in the present case, p = 3, we find that the integrand in () has poles at |7| = 1 and also
outside the interval [—1, 1], that the integral has poles and no logarithmic terms, but that the final
solution is a polynomial in 7.

4.2 The detailed transformation formulae

In this section we will determine expansions for the conformal scale factor 6 and the SL(2, C)-valued
function A%, which define the transformation from the F-gauge into the NP-gauge as described
in section @] To calculate the NP-constants in terms of the initial data we shall determine the
values of the integrals defining these quantities by taking their limits as p — 0. The gauge in which
these integrals are given is based on a section C of the generators of J+. We shall try to push this
section to IT. The usefulness of this procedure depends, of course, on the resulting form of the
ODE’s on J*+ which were used in @] to fix the F-gauge.

Near It the hypersurface J* can be given as the graph {7 = 7%, p > 0} of the function
75 = 7%(p,t* ) which is given by

= @[—DabQDabm-%. (4.33)
p

Substituting the expansions (@) of Q and those of the frame vectors into the expression above,
we get the expansion

1
TP =14 5mp—|—2W1p2—|—0(p3). (4.34)

Setting in () Z = 0,, we obtain for the right hand side of this equation the expansion

Z(%vﬁ®vﬁ®)_§m o (229 , 2
Z(0) 3P

4
—m? — —Wi | p® +O(p*). 4.35
oo = 2w ) g+ 0(') (4.35)
Suppose T =T°9, + T8, + TT X1 + T~ X_ is a vector field defined near and tangent to J .
Denote by T* the vector field which is induced by it on JT. If p and t%;, are used as coordinates on
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J T, one finds for T* the expression T* =T1 9, + T+ X + T~ X_. Applying this to the gradient
of © on J*, we find that the left hand side of (R.41)) is given by

({ 2p? —|—19mp +0(p")}9, —|—{36X Wi p3+0O(p }X++{36X+W1p +0(p")}X_ >logf).

Thus, dividing () on both sides by p?, we get a differential equation of the form T*(log f) = g
on J7T with a vector field T* and a function g which extend smoothly to IT such that T% =
—20, + O(p) near I't. For given datum fo on I this equation has a unique smooth solution
which can be expanded in terms of p. As shown in our general discussion the value of fj has to
be constant on C to fulfill the NP-gauge conditions. We choose fo = — on It and find for the

2\/_
solution of (2.41)) the expansion
1 5 191 6
f 2\/_{ + - p+<252m + = W>p +O(p )} (4.36)

To obtain the matrix elements A%, of (R.49) by using (R.43) we have to calculate the derivatives
¢t/ (©) of the conformal factor. Using the expansion coefficients derived in [EI], we get

¢ (©) = 0(p"),
¢h1(0) = V2{ X, Wi + 0() |, i (©) = V2{X_Wip® + O(ph)}, (4.37)
¢11:(0) = V3{=2p+ 8mp? + (8 W1 = 3m2)p* + O(p") }.

Substituting these expressions into the formulae (2:43) the matrix elements \°, and \'; can be
calculated explicitly up to a U(1) phase transformation. Since the choice of the latter is not
important for the following we choose it suitably to obtain

5

Xy = o= dmp+ (< IW + m2)? + 0GP}, Ay =3 {EX W 0G0}, (439)
which allows us to determine also the expansion

E3y =\/_{ mp® + (—5m?* +2W1)p* + O(p )}8
+va{$p* - gmfﬁ + (Fm? — LWi)pt + 0(p%) 0, (4:39)
+\/§{—%X—W1P3 + O(P4)}X+ + ﬁ{_%X+Wlp3 + O(P4)}X—-
To solve the differential equation for the affine parameter on the generators of J 1, we observe that
already in the case of Minkowski space-time this parameter is a singular function of p, given by

u® = —v/2p~ ' +u°. The inspection of the expansion ( suggests to search for a solution of the
form

1 7
u® _w+\/§<—; + gmlogp) . (4.40)

This ansatz does indeed lead to a smooth regular equation for w near I7. It allows us to calculate
the expansion

17 09 62
uo_ﬁ{—;+ ~mlogp + ul +<126 m? + 5W)p+0( )} (4.41)

where 42 denotes an arbitrary constant initial datum on I't. As described in chapter [R.J], the
matrix elements A% and A, can now be determined. We obtain the expansions

N0y = %{ LX_Wi+0(p )}, Alozp’%{—l—%mp—l—O(pQ)}. (4.42)
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Knowing the matrix A%, on null infinity, we can calculate the limits of the NP-spin-coefficients
I8y/q; and 'S0 at I as p — 0. Substituting our expansions into the formula for the connection
coefficients

Doupe = N A NI N TS 1 — AT B (A1), (4.43)

we arrive at the expressions

11
—m
6v/2

The next step is to calculate the conformal scale factor 6 by solving equation (P.31). To

o BT o o o T o _
F01/11|I+ = lim FOl/ll = O7 F10/00|I+ = lim Flo/oo = (444)
p—0 p—0

determine the Ricci spinor component ®55 = %RagEfl‘i‘Eflﬁ,, we have to determine the Ricci
tensor R, of the metric g. The components of the tensor

1. 1
Oap := 5 Rap) — gaﬁR+ 4R[aﬁ] (4.45)

in the frame {c},, }, where Rag resp. R denote the Ricci tensor and the curvature scalar induced by
the Weyl connection V with coefficients I‘ ﬁ =T/ y+ S2f,+ 5ﬁfa Gory [P (cf. [E] are among the
variables of the conformal field equations. Thus they are known to 3"%order in the p-coordinate.
From the general transformation law

Raﬁ = Rap — 2v(afﬁ) +2fafs — gaﬁ(v'vf’y + 2f'yf'y) + 4V[af6]a (4-46)

we get, the relation

1 1 1
Oup = = (Rag - ggagR> = Vgfat+ fafs— Egaﬁf'yf’y- (4.47)

From this we derive the expression
22 = Oug YT ELY + Eiy (EYf: fa) — (BT fa)®. (4.48)
Substituting here ({.39) and the expansion of the one-form f obtained from the solution of the

field equations we get the expansion

5, 167
= — 4.4
Do 5P —i—( ™ +5W)p +0(p°) (4.49)

on JT.
On It is induced in our gauge the standard S2-metric. Therefore we solve equation (R.31)) with
the initial condition

lim 6 = 1. (4.50)

p—0

For the conformal scale factor we obtain then the expansion

) 6 191
9:1+6mp—|— < Wl—l—ﬁm )p2—|—0(p3). (4.51)

By the choice of the initial value for the conformal factor the scale function p appearing in the
gauge transformations is also fixed with

p=1 on JT. (4.52)

In the conformal gauge characterized by the conformal factor ©* := 6 © the generators of null
infinity are expansion free. Proceeding as indicated before, we construct the NP-frame {E? ,}.
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Observing the expansions (2.42) and (R.45) of the null vectors E?, resp. E7,, and taking into
account the properties of the conformal rescaling we get the relations

A0 = 0300 efc, Al =0 2\ et (4.53)

with function ¢, characterizing the phase freedom, which will be fixed later. Using ({.38) and ([£.51))
we get, the expansions

A0, :p%{1— Smp+ (L m2—2W,) p2 +0(p )}eic, Al = { X, Wi +0(p )} i (4.54)
from which we derive in turn the expansion
E, :ﬁ{%mpz + (—=m? 4+ 2Wh)p® + O(p4)}BT
V{102 = 2mpt + (B2m? - LWt + 0" 9, (4.55)
+v2

{30
(22X Wip + 00"} Xs +VE{-2X Wp? + 00" } X

of the vector field EY,, tangent to the null generators of 7. Furthermore the new affine parameter
has the form

1 195 74
u'=\/§{—5+4m10gp+u +(28 +€Wl>p+0(p2)}, (4.56)

with a free constant u. Using the formula analogous to () we derive

1

Aoozpf{ 0L X Wyp+ O(p )} —ie, Alozp—%{ 1-3mp+0(p )} —ie, (4.57)

To determine of the phase factor e**¢ we solve equation () along the generators of null infinity.
Expanding the right hand side, we get

° A f e A * A ° A A ° A
Bt (c) = 2T0m {Af AT AT AT, — A% B (AY) + AloEll,(Aol)}, (4.58)

where A“b has been obtained from the matrix A% above by setting ¢ = 0. Substituting the
known data into the equation above, the solution ¢ which is needed to satisfy the gauge condition
I'?1/01l7 = 0, is found to have an expansion

¢=0(p), (4.59)
which entails the expansions
e =14 0(p?), Ep.(e) =0(p®), E3. (€)= 0(p?). (4.60)

The matrix elements A%, are now determined on null infinity to the precision needed in our
later calculations, but in the definition (@) of the NP-constants appear some of the transversal
derivatives E3, (A%) of the matrix elements as well. Using the general formulae (P.47) we get the
expansions

g (%) = V2 {IBX Wi+ 0(0)},  Ey(Ah) = V2o 3 {1+ £mp+ 0()},

(4.61)
E§y (A9) = fﬂ‘f{i+i—§mp+0(p2)}a E§y (M) = \fm{ X+W1+0(p)}7

where we have taken the expressions ([t.60)) for the phase factor into account.
The transversal derivative of the conformal scale factor E3, (6) is fixed on null infinity by the
requirement R[g*]| 7+ = 0. Thus it has to satisfy equation (ﬁ) with initial datum

ESy (0)]+ = lim 0p'T9000 = lim I5gr00- (4.62)
p—0 p—0
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Given the matrix A% and the conformal scale factor 6, all the terms appearing in equation (R.3§)
can be calculated in a straightforward way, with the exception of the curvature scalar R[g], whose
calculation requires some explanation. Contracting equation (}t.47) we get the identity

R[g] =6 (®aa/bb’ + Vaa’fbb’ + faa/fbb’)fabga/b/, (463)
where

Vaar fbb’ = c:a’ (fbb’) - (I‘:;a’cbgb’cl + f‘Za’c’b’ebC)fcc

Expanding these quantities we get

Rlg) = (B m? = 18W,)p? + 0(p%),

(4.64)
= (% m? — AW, + Sa_ X, W, — ga+X,W1)p2 + O,
which entail with (P-3§) the expansion
11 13 6 6
ESy(0) = V2 {E m+ (F m? — 4w, + ga,X+W1 - ga+XW1) p+ O(p2)} . (4.65)

Given the expansion above, we can calculate expansions of various quantities of physical interest,
such as the Bondi energy momentum, the angular momentum, and the radiation field on J . Since
the coefficients in these expansions are given directly in terms of the initial data on the Cauchy
hypersurface S, the expansions contain information about the evolution of the field over an infinite
range. As an example we will calculate below the NP-constants.

We close this section with a remark on the BMS group, the group of transformation between
different Bondi-type systems. It was shown in [@] that for solutions for which the the condition

lim T} 0100 = 0 could be realized at space-like infinity, where the subscript “¢” is to denote

u®——0o0

the electric part of the considered spin-coefficient, one can single out the inhomogeneous Lorentz
group as the group of transformations preserving this condition. It turns out that under our
assumptions, which include in particular the time-symmetry of the solution, the even stronger

condition lim I'(;/, = 0 is satisfied. This means that for our solutions there is a natural way
u®——00

to single out the inhomogeneous Lorentz group as asymptotic symmetry group.

4.3 The NP-constants in time symmetric space-times

Using the formulae of the previous chapters we can express the NP-constants in terms of the initial
data for the corresponding time symmetric solutions. All the quantities appearing in the integral
(@) are known in terms of the initial data to the precision needed to perform the limit p — 0.

We have to express the spin-2 spherical harmonics 21727,” in terms of the functions T, 7 . By
(B-3) the definition of the d-operator is based on the choice of the complex null vector field Egy.
In appendix [@] we have applied the standard choice and derived the relations between the
operators X and 0 and between the spin-2 spherical harmonics Y5, and the functions 7,7 ,.
By this choice we should have E§;, = \/L§X+ on I'". However, calculating the vector E§;, in the
conventions used above, we get

1
E. ’ = _X_. 466
01 |I+ \/5 ( )

There are two causes of the difference. We fixed the phase factor such as to simplify the calculations
and the conventions used in the F-gauge and the NP-gauge are such that one has to swap the two

spinors of the dyad to get from one to the other convention. The form ({.66) of ES;, corresponds
to —iy/2m, if m denotes the standard complex null vector used in appendix [[A.1]. This means that
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(.66) corresponds to the operator —id instead of & discussed in the appendix. Observing this and
(A.9) in (B:4) we obtain the formula

Gm = izfm(fnr)% %Tf_ngo, (po)pp for m=-2,...,2, (4.67)

where ;1 = 72ydSda is the Haar-measure on SU(2).

To calculate () we expand the integrand in terms of p and take the limit as p — 0. For
this we have to determine for Ey, (¢o) only the terms of order O(1). In the limit only these terms
give a contribution while the terms of order p~—! cancel each other. Using the explicit results of the
previous chapters we arrive after some lengthy but straightforward calculations at the expression

G|, = lim G, = 2™ (107)2
=0 (4.68)
— 5 635 1905 16 :
T2-m (——X,X,r2 F 22 X X Wy — — (X_W)? + —X,X,Wg)u.
32 8 2 3

Expanding the functions in the brackets in terms of the functions kaj and using the orthogonality
relations satisfied by these functions we can perform the integration. All terms expect the last one
give some contributions. Using the formulae (f.7), (f.12) and (t.16) we get the final expression

,L'27m

1 1 *

Gl = T(157T)2 {127 (M Wago m —6az_m) — NG Rg_m} , (4.69)
where the coefficients as_,,, which are quadratic in Wy.5 1, are given by () We note that the
structure of this more general expression is essentially the same as that of the expression obtained
by Newman and Penrose in the case of static and stationary solutions.

5 Concluding remarks

We have seen that, under the assumptions explained above, certain fields which are given near
space-like infinity in terms of Bondi-type systems can be expressed in a straightforward way in
terms of the gauge conditions used in [E] and can thus be related directly to the structure of the
Cauchy data which give rise to the space-times by Einstein evolution. The calculations involved
are quite lengthy but taking into account that we relate quantities which are obtained by a non-
linear evolution over an infinite domain of space-time to the data from which they arise, the overall
structure of the argument is surprisingly simple.
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A  Appendix

A.1 X, and the d-operator

In this section we describe the relation between the operators d, d introduced in [B] and the
operators X, X_, X used in [@]

Consider on the group SU(2), which is diffeomorphic to S2, coordinates {x, y, a} such that
outside a set of measure zero the general group element t*, € SU(2) is given by

a_ L (e e
tb - \/TCC_ (iewzc el ) ’ (A]')
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with ( = z+14y. Then « is a parameter and z and y are constant on the orbits of the the subgroup
U(1). The tangent vectors J, 0y, respectively J, at the unit element coincide with the generators
u1, uz, and uz of the Lie algebra of SU(2). Writing P = £ (1 + ¢(), we get for the corresponding
left invariant vector fields the expressions

Zu, = P cos(20)0, + Psin(2a)dy, + [z sin(2a) — y cos(2a)]da,
Zuy = —Psin(20)8, + P cos(2a)0y + 3|y sin(2a) + z cos(2a)]0a, (A.2)
Zuy = 20a,
whence
Xy = —~Zyy — 2y, = ¥ —i/2(m — ﬁg’aa}, X = —2iZ,, = —i0a,

. A3
X = —Zy, +iZy, = e 2i/2(m + 575C0a}, (4.3)
where the vectors m = \/§P8< and m = \/§P85 define a complex dyad tangent to the surfaces
{a = const.} which is null with respect to the standard S2-metric ds> = P~2d(d{ on these
surfaces.

We may identify SU(2) with the spin frame bundle over the base manifold S? with struc-
ture group U(1). The section {a = 0} can be identified with the base manifold (with a point
omitted). Here we take the complex null frame {m,m} defined above, where a group element
ul = diag(e'™, e™") € U(1) acts as u({m,m}) = {***m,e~**m}. A function 1 on S? is said to
have spin weight N, if it can be decomposed as n|¢.o = €2V, where the function 7 is indepen-
dent of the parameter « along the fibers. The d-operator is defined by the complex null vector m
and acts on a spin-N function as

. 1 _ .
Mlc.o = V2{m(no) + Nnom mP sgm., }> VT = /2 Llm(ng) + ﬁNéno}ez(N“)“", (A4)

where § denotes the Levi-Civita differential operator induced by the standard S?-metric. This
means that d7 has spin weight N + 1. (This treatment of the functions with spin weight and the 8
operator is a bit different from the one which can be found in the literature (cf. [B, E, E]), where
the expressions are evaluated on some cross-section of S3.)

The horizontal lift of the vector m defined with respect to the Levi-Civita connection § is given
by

PN

This means that the d-operator on S? is given by

e = V2 X my. (A.6)
Comparing the formulae (A.3), (A.) and (A.6) we get the relations
X, =-id, X_=1id, X=-[3,0] (A.7)

The spherical harmonics Y} ,,, are defined as an orthogonal function system on the sphere S2.
They can be extended to S3 as functions with zero spin weight, i.e. they became independent on
the parameter along the fibers. This means that they can be expanded as Y} ,,, = chjTQk]k in

k,j

terms of the functions T ’ x- The spherical harmonics satisfy the equation 66Yl7m =—I(l+1)Ym,

m
so using the relations (A.7) and (P.22) we arrive at the relation

Yim =3 Ty, (A.8)
J
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Taking into account the explicit coordinate expressions of the group elements one could determine
the expansion coefficients ¢;. Using the definition of the spin harmonics Y} ,, (cf. [B]) and equations
(R:29), (A7) and (A.d) one can also derive the relation between the functions sY1,m and the

functions 7,7 . We shall only need the transformation formulae

N

Yom= (_Z‘)Alim(%) T4272ma
2}/2,771: (_i)2im( )

A.2 Some useful spinor identities

(A.9)

Nl=

1
T70", —oYam = (i)™ ()2 T7 ™

Sler

Here we describe irreducible decompositions of spinors with four unprimed indices in terms of the
“primary spinors” €, .. habed, Tab, Yab; Zap and €43, Where

0 1
Tap = \/ie(a €y s Yab = _\%ealebla Zab = %eaoebo, )
. h ‘ )
Ejzbcd = 6(a(e&bftgcg&d) ) s habed = —€a(ctd)b-
It is well known that a spinor Agpeq satisfying Asped = A(ap)(cd) = —Acdab can be decomposed in

the form Agpeq = €acApg + €pgAae With Ay = %Aafbf = A(qp) and that a spinor Sypeq satisfying
Sabed = S(ab)(cd) = Scdap can be written in the form Sgpeq = S(abcd) + %habcds with S := Sefef.
It follows from this that an arbitrary four index spinor with symmetries Xapca = X (ap)(ca) can be

expanded in terms of €}, 4, €acTbd + €bdTac, €acYpd + €bdlacs €acZbd + €bdZac and Rgpeq-
The following relations were frequently used in the calculations:

1 1
YabTed = —Sibcd - F(eacybd + €baYac)s ZabTed = E,llbcd + 2—\/§(€aczbd + €pdZac);

2
b __ b __ b __ b __ b __ 1 b_ .
Tapr® = =1, zapy®” =0, za2® =0, yapy™ =0, Yaz® =—3, zapz” =0;
1 g 1 1
vy = Sean, Y mpp = /3 Yabs Zo woy = — g %abs
g _ _ 1._1,.0 g — -
Yol Yoy =0, Yol 2op = —5€a €, za'zep =0
0 cd __ 0 cd __ 0 cd __ 1 cd __ 1
€abed® = 07 EabedY = TRaby  Egped® T 07 €abedX T T3%ab
1 cd _ 1 1 cd _ 2 cd _ 1 2 cd _ 1
Eabea¥™ = —qTabs  Eqpea?” =0, €abedT = —3Tabs Egpedy = GYabs
2 d __ 1 3 d __ 1 3 d __ 3 d__ 1
‘gabcdzc - EZGb? Eabcd‘rc - §yab7 Eabcdyc - 07 ‘gabcdzc - Zwab?
4 cd __ 4 cd __ 4 cd __ _ .
€abedl ™ = 07 Cabed¥Y = 07 €abed? = T Yab;
=9 2 _ _ 3 _ 1
x(abxcd) = 2E€pcd> I(abycd) = —E€abed> I(abzcd) = Eubed?
_ 1.4 _ 1.2 _ 1.0 .
y(abycd) — §Eabcd’ y(abzcd) - _§€abcd7 Z(abzcd) - §€abcd7
) _ 1.0 [ _ 1 f2 _ 1
(" Eyedt = VaCabedr o Chjedr = 3y57abTeds T(o Ehpeay = 13(CacTod + €raac),
.3 _ 1 fa __ 1 _4 f 1 .
‘T(a Eb)cdf = 2\/§yabxcdu x(a Eb)cdf - _Egabcw hab(c La)yf = 5(6acxbd + 6bdmac)v
Fea L8 1 + epalac), 2z, €% o=—-tel 4+ L(eizpa+ €pazac);
Y €cyaby = 2v3%abed T 24 aclYbd bdYac), (d €abf = T 3/z2Cabed T 21 \Cacbd bd?ac);
2 ef1 __ 1.1 1 2 ef3 1.3 1 .
€ab  Cedef = T 12%abed + &_@(eaczbd + 6bdza0)7 €ab  Cedef = ~12%abed + m(eacybd + ebdyac)7
2 2 abed _ 1 2ef 2 _ _ 1.2 1
Eabed€ — 6 Eab Ecdef — T 6abcd + 1_8h‘1b0d'
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A.3 The detailed expressions for u?, p=0,...,3
The 7-dependent functions occuring in ({.9).
Cry=m(E -1, A (r)=m (-1, SUr)=v2m(3r* -1,
KYr)=m(-127+47%), FY(r)=1m7" tH(r) =v2471m,
TH7) =6m (1 —72), o (r)=—12(1—1)2, $(7) =—-m? (18 72 — 374),
®3 (1) =—36+ 3672
The 7-dependent functions occuring in ({.3).
A2(r) =m? (=273 -37° + %7‘7 - %7’9), A% (1) =1673 — 256 70 +z 817,
cg2(7)2873—%75—%77, (1) =m(—472 +—T )
cf2(7')=m2 (—2T2+3T4—%T6+1—14T8), 02i2(7)212 — 37 +
cé‘c2(7'):—67'2 5T —|—%76 ‘5'12(7):\/57712(%7"1 576—21—87'8),
S3(r) = VE(672 — 370 + 5 9) S3(r) = VA(=37 4372~ §7°),
S2(1) = —3672+ 1174 + §7'6 K1) =m? (247 - 873 +47° — 2;4177),
K3(r) =—-1447+ 7273 — 18 75 K3(r)=m? (-3 + 875 - 877,
K2(1) = —v2273, K2(t) = 487—1—356 5
FE (1) =m?( 2T2+%T4—%T6+%T8), F22(7'):2T4—g7'6,
F32(T):37'4—|-%T6, (1) =v2m? (—127 - 873 + )
t2(7) = V2 (487 — 16 73), t3(r) = V2 (247 +873),
TE(r) =m? (=124 1272 —=107* 4 2 79), T3(t) =72 —1272 4+ 36 7%,
T3 (1) =m? (4712 — %7’44—%76), T2(1) = —/26 72,
TE(r) =24 — 1274, Pi(1) = —(=1+7)%,
(;5%(7'):4171(%7'6—%75 T+ 46T —187’) H3(1) =16 (1+71) (-1 +7)3,
Pi(r) =6 (g5 8+ B 70 =157 +67)m P3(1) =6m (=270 + 627" —7272),
d2(1) = -T2(1+7)% (=1 +7)2.

31



A APPENDIX

The 7-dependent functions occuring in (4.2().

) = (37_3 + 187’5 + %7’7 __ 1510 7.9 + 2972 7_11 74 7_13) WLB7

(1) 189 2079 T 693
cgg(r):(—4473—%7’54—@77—%794—%711)#@
P(r) =4873 - Lrd 4 22,7 1249
cgg(r):(—2073—6754—%77—%79—%711)771,
cg3(r):167'3—47'5—%7'7+%7'9,
cB3(r) = (1272 +157% — 1—3?176 + %7'8)1712,
eB(r)=-7272 +187% — %TG,

e (1) =—-3672+3714 + %TG,
3 (r) = (1872 + 1274 — 376 4 378 _ 3710y,
czi?’(r) =127+ %76 — %7’8,
c3i3(7):(%72—§T4+%76—%78—#3—?710—%712)1713,
cjfg(r) = (—487% +1057% — 41—503 76 % 8- %7’10) m,
c5i3(r):367'2—127'44—25—476—%7'8,
cétB(T):—372—2T4+%Tﬁ+ﬁ7'8,
S?(T):—972—2T4+%76+ﬁ78,
S3(r) = (10872 — 1687 + 8676 — L 78 — 5 710)m,
Sg(r):—7272+4874—§76—$78,
SE(T):(—%7’2—%7‘44-%7'6—%TS—F%TlO—%Tu)ﬁmS,
Sg’(T):(672+%74—%76+%78+§710)\/§m,
Sg(r)=(1 7'2—67'44—%7'6—%78)\/5,
S?(T):(—37‘2—%7'4-‘1-12—7077'6—%T8+%T10)\/§m3,
Sg(r):(672—27'4+%78)\/§m,
K}(r)=—67—-873 418 7% 4 147,
K23(T):(1447'—}—127’3—3—;’175—1—2—:5"77'7—%Tg)m,
Kg(T):—967+16T3+%T5—%T7,
KE(T):(—54T+12T3—216T5+L$67'7—%7'9+%711)m3,
Kg(T):(5767’—2167’34‘%7'5—%T7+%T9)m,
K§(r) = —4327 428873 — 881 75 4 288 ;7
K?(T):(407’3—167’54‘%7'7—%7'94'%7'11)7”3,
K3(1) = (—24073 + 5%275 - % T4+ %379) m,
K93(T):(973—3—375—%77—1—%#’)\/5771,
Kiy(r) = (=47 + £7°) V2,
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F13(T)=(97'2+2T4—§76+$T8 g? 10+6Z)43 12y m3,
F23(T):(—6OT2+3674—12T6+%78—ngo)m,
F3(r) = — 254 T6+12 8

F(r)=(-127%2 - 671 +%T6+%T8+%Tlo)m,
F53(7')247'4—%7'6—%7'8,

(1) = (367 +207% + 4675 — 2077 4 22 79) \am?,
t3(7) = (=3127 — 2473 275—4707'7)\/_771,

t3(7) = (1447 - 96 7° + 12 7°) V2,

t3(7) = (=967 — 1273 —|—294 5 §2T7)\/§m,
B(r) = (457 — £ V3,

T3r)=3+972-37* - 75,

T3(1) = (=72 = 3672 + 8174 — 423 76 4 33 78)
T3(1) =48 — 2472 41675,

T3(r) = (27— 1872 + 18074 — 13476 20 78 _ 16710y 3,
T3(7) = (—288 4+ 216 72 — 558 74 + 1326 76 — 28 78y
T3(7) = 216 — 21672 + 216 74 — 727,

T3(r)=(-24712+ 1674 20 6—1—3278—64—37'10)7713,
T3(r) = (14472 — 10274 + 178 76 — 57 TS)m,
Tg(r) = (2772 = 8L 71 — 5(1)7’ + & 7%)vV2m,

TH(r) = (—1272+ 67 )\/5

The 7-dependent functions occuring in ()

Al(T):(36T—78T2+82T 97 4+6 5+169 6 _ 208 7+54 8),],n7

As(r) = —6487—1—172872—16927 +4327% 4 259275 _ 2286 76 4 T56 7 _ 162 48

T

5

Bi(7) = (108 7 — 23472 — 396 73 + 1503 74 — 579 7° — 14939 76

11682 4041 21 1
+68 7+038 59 7

(1)
(1)
(1)
02(7.) — (5047, — 3492 7.3 4 17607 7_5 41289 7,’7 + 16559 9)
(1)
(1)
(1) =

20

2
560 7 +8OT)m’

= —6487 + 140472 — 54073 — 810 7% 4 140 75 4 1438 76 _ 108 77 4 108 78,
= (=727 +1687% + 2473 — 27474 +1207° + 30 76 — 3277 4 S 7%)m
= (=277 +3427% — 696 7° 4 238 77 — 4355 79 1 WD 711yt

63 231 Tt

’

35 140 T

= —1296 7 + 2376 73 — 2152 75 4 21677,
= (—4327+ 792713 — 3%£7'5 + &7’7)m,
—2167 + 10873 + 58 75 4 324 77,

)

33
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The 7-dependent functions occuring in (4.27).

fo(r)=—18 421672 — 24073 + 18 7% — 48 7° + 20476 — 14477 + 30 78,

fi(r) =—9—21672+ 69673 — 198 74 — 281 75 4 984 76 4 936 ;7 _ 4L 78
fa(r) =—=3—2167%+ 37274 — 936 76 4 219 8

go(T) =108 — 1944 72 + 475273 — 5724 74 4 19908 75 _ 0204 76 4 804 77 _ 138 78
91(7) =54 — 97272 + 1620 7° 4 378 74 — L1148 75 4 STI8 76 4 108 ;7 _ 108 78,
g2(7) =18 — 54072 + 97274 — 2808 76 4 108 78

ho(T) = 5, m(r)= %, ha(7)= 1,

kl(T) 0872—27673—129744—@75—%76 9;29 7""33283 8+463 9 2278201 710,
kQ(T) 252 72 — 942 4+ 3614 76 6§§1 8+99 O7

p(T) 27 72 4 171 — 11676 4 1329 8 — %{13 710 + %g;g 7

q(t) = 216 78 526 76 4+ 648 7% — 864 2.

The 7-dependent functions occuring in (4.29).

ja (7,) — (72 2 _ %74 + @75 _ % 6 _ 1838578 7 + 115362087 8 4 1389 1389 9 _ 128%7 10) m2,
Fy(r) = —8647% 4+ 158475 — 81074 — 1296 75 4 882 76 4 432 7 108 78,

F3(1) = (=367% —407° + 156 74 — 828 75 4 122 760 ¢ @77 198 78)m,

Gl(T) _ 22 24 171 348T6+@ 8 9_8 10 4 1300789 12)m4,

G2(7_) ( 144 12 — 1071 74 + 3679 76 222088037 8 + 2421239 7_10) m2,

Gs(r) =11167* — 468 76 + 538 78,

Ga(r) =174m7* — B2 m 76 4 By 78

Gs(1) =43272 — 23474 4 336 76 4 216 78

The 7-dependent functions occuring in ({:31)).
Ty() =—46656 T + 124416 72 — 138240 7° + 51840 7% + 31104 7° — 133056 76
+1209677 — 202 78 4 10368 79,
To(7) = (51847 — 3456 72 — 5088 m 73 — 6048 74 + 12288 7° 4 384 76 — 4128 77
+1824 78 — 1344 7° + 384 719 m
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