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Bondi-type systems near spa
e-like in�nity and the
al
ulation of the NP-
onstantsHelmut Friedri
hAlbert-Einstein-InstitutMax-Plan
k-Institut für GravitationsphysikAm Mühlenberg 514476 Golm, GermanyJános KánnárMTA KFKIRésze
ske és Mag�zikai KutatóintézetBudapest, Pf. 49,1525, HungaryAbstra
tWe relate Bondi systems near spa
e-like in�nity to another type of gauge 
onditions. Whilethe former are based on null in�nity, the latter are de�ned in terms of Einstein propagation,the 
onformal stru
ture, and data on some Cau
hy hypersurfa
e. For a 
ertain 
lass of timesymmetri
 spa
e-times we study an expansion whi
h allows us to determine the behavior ofvarious �elds arising in Bondi systems in the region of spa
e-time where null in�nity tou
hesspa
e-like in�nity. The 
oe�
ients of these expansions 
an be read o� from the initial data.We obtain in parti
ular expressions for the 
onstants dis
overed by Newman and Penrose(NP-
onstants) in terms of the initial data. For this purpose we 
al
ulate a 
ertain expansionintrodu
ed in [4℄ up to 3rd order.
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1 INTRODUCTION 21 Introdu
tionMost studies of gravitational �elds near null in�nity are based on the use of �Bondi-type� 
oordi-nates. In the �rst investigations of the behavior of the �eld near null in�nity (
f. [1℄, [11℄, [22℄)Bondi-type 
oordinates played a 
ru
ial role in the spe
i�
ation of the fall-o� behavior of the �eld.The 
hara
terization of the asymptoti
 behavior of gravitational �elds near null in�nity in terms ofthe 
onformal geometry subsequently suggested by Penrose ([16℄, [17℄) does not require the use ofsu
h a spe
i�
 
lass of 
oordinates. Nevertheless, Bondi-type 
oordinates are usually also employedin this 
ontext be
ause they allow us to exploit in a 
onvenient way 
ertain features of the null 
onestru
ture. If the gravitational �eld is, however, to be analyzed in detail in the region where futureand past null in�nity J ± �tou
h� spa
e-like in�nity, and if this is to be done su
h that J − and J+are treated on an equal footing, Bondi-type 
oordinates are not parti
ularly helpful. Already inthe simplest non-trivial 
ase, that of the S
hwarzs
hild solution, the use of double null 
oordinatesleads to di�
ulties.In [4℄ an initial value problem for the 
onformal va
uum �eld equations has been formulatedwhi
h is designed to analyze near spa
e-like and null in�nity the Einstein propagation of asymptot-i
ally �at data on a Cau
hy hypersurfa
e S̃ in a �nite pi
ture. In this setting, whi
h is based on 
er-tain 
onformally invariant stru
tures, spa
e-like in�nity is represented by a 
ylinder I ≃]−1, 1[×S2su
h that the sets J± ≃ R × S2, representing future resp. past null in�nity, �tou
h� the 
ylinderat its two boundary 
omponent I± = {±1}×S2. Though the underlying fa
ts about the evolutionequations whi
h have been used here hold for mu
h more general situations, the pi
ture has beenanalyzed so far under 
ertain simplifying assumptions on the initial data. The data are assumed tobe time-symmetri
 and the 
onformal stru
ture, whi
h then represents the free datum, is assumedto extend smoothly through spa
e-like in�nity su
h that the latter is represented by a point i in anextended manifold S = S̃ ∪ {i}. The 
ylinder I is obtained by blowing up the point i to a sphere
I0 ≃ {0} × S2 and by smoothly extending the solution in a parti
ular geometri
 gauge.It 
an be seen already under these assumptions on the data that the new pi
ture allows us torelate near I± properties of the data on S̃, whi
h tou
hes I at I0, to properties of the �eld on nullin�nity by solving a hierar
hy of di�erential equations on I. These equations have been used in [4℄to derive 
ertain �asymptoti
 regularity 
onditions� for the initial data whose imposition preventsa 
ertain 
lass of logarithmi
 singularities of the �eld at the sets I± from arising. However, itstill has to be shown that the asymptoti
 regularity 
onditions ensure a time evolution of the datawhi
h extends near spa
e-like in�nity smoothly to null in�nity.In the present arti
le we analyze the 
onsisten
y of the early investigations of �elds near nullin�nity with the pi
ture developed in [4℄ and we demonstrate to some extent the e�
ien
y of thelatter in 
al
ulating near spa
e-like in�nity quantities on null in�nity from the given data. For thispurpose we make two di�erent types of assumptions. On the one hand we shall 
onsider spa
e-times arising from time symmetri
 va
uum data as des
ribed above whi
h satisfy the asymptoti
regularity 
onditions. Our 
al
ulations of �elds on the 
ylinder I rely only on these assumptions.On the other hand we shall assume that these data develop into solutions whi
h admit a smooth
onformal stru
ture at null in�nity and that the gauge 
onditions proposed in [4℄ extend in asmooth and regular way to J ±. We expe
t that our analysis will 
ontribute information on thesolution pro
ess whi
h in the end will allow us to remove the se
ond type of assumptions and toshow that the existen
e of the smooth evolution 
an be derived solely from assumptions on theinitial data.The present arti
le 
an be divided into three di�erent, though related, parts.
− In [4℄ an expansion of the �eld near spa
e-like in�nity in terms of a �radial� 
oordinate ρ, whi
hvanishes on the 
ylinder I representing spa
e-like in�nity, has been introdu
ed. We 
al
ulate the
oe�
ients of this expansion to third order. This 
al
ulation is not only of interest be
ause itallows us to study the NP-
onstants, whi
h will be dis
ussed below, but also be
ause it providessome information on the smoothness of the evolution near null in�nity for �elds arising fromdata subje
t only to our �rst type of assumptions. Though the asymptoti
 regularity 
onditionsreferred to above ex
lude 
ertain types of logarithmi
 singularities in the evolution near I, thereexists another potential sour
e of singularities. To show that in fa
t no further singularities 
an



2 RELATING DIFFERENT GAUGE CONDITIONS NEAR NULL INFINITY 3arise at any order, it is 
learly of interest to understand the situation for the �rst few orders ofthe expansion. The potential singularities should show up for the �rst time at the order of our
al
ulation. Our 
al
ulations show that at this order they are in fa
t ex
luded by the asymptoti
regularity 
onditions.We note that our expansion of the �eld near spa
e-like and null in�nity, whi
h we 
arry outin terms of the 
onformally res
aled �elds and asso
iated gauge 
onditions, 
an be translatedinto an expansion of the �eld near spa
e-like in�nity in terms of the �physi
al� �eld and suitable
oordinates. We shall not 
arry out su
h a translation be
ause the main point of our 
onsiderationis the fa
t that we 
an relate quantities on null in�nity to the data on S̃.
− Bondi-type 
oordinates and 
ertain related frame �elds (
f. the de�nition of the �NP-gauge�below) are based on the stru
ture of null in�nity. The gauge 
onditions in [4℄ (
f. the de�nitionof the �F-gauge� below) are based on Cau
hy data, the Einstein equations, and 
ertain propertiesof 
onformal stru
tures. We dis
uss in general terms how to 
onstru
t near null in�nity thetransformation from the F-gauge into the NP-gauge. Using the expansion referred to above we thenobtain expansions near I+ of various quantities given in the NP-gauge in terms of the 
oordinatesarising in the F-gauge and 
oe�
ients whi
h are given dire
tly in terms of the initial data on S.We note that these expansions imply expansions of quantities of physi
al interest on null in�nitysu
h as the Bondi-energy-momentum, the angular momentum (
f. [19℄ for various suggestions),the radiation �eld, et
. in terms of the 
oordinate ρ on null in�nity, whi
h vanishes at I+, and
oe�
ients derived from the initial data.Sin
e we need for our 
onsiderations quite detailed information on the stru
ture of the initialdata near spa
e-like in�nity, our expli
it 
al
ulation are done only for time-symmetri
 data. How-ever, many of our 
onsiderations apply also to more general situations and as soon as su�
ientinformation on data with non-vanishing extrinsi
 
urvature be
omes available (
f. [2℄), we shall beable to derive by similar 
al
ulations relations between �elds on J− and J +. These relations will
ontain non-trivial information on the evolution pro
ess.
− As a spe
i�
 appli
ation of this dis
ussion we re
onsider the 
onstants whi
h have been asso
iatedby Newman and Penrose with asymptoti
ally simple spa
e-times (
f. [12℄, [14℄). The NP-
onstantsare given by 
ertain integrals over spheri
al 
uts of null in�nity and have been shown to be ab-solutely 
onserved in the sense of being independent of the 
hoi
e of 
ut. We derive for themexpressions in terms of the initial data on S̃. Su
h expressions have been given already in thestati
 
ase in [14℄. We derive analogous expressions for a mu
h more general 
lass of spa
e-timesarising from time-symmetri
 initial data. For these data the time evolution of the �eld is in generalnot known expli
itly as it is the 
ase in the presen
e of a time-like Killing ve
tor �eld. The fa
tthat we 
an nevertheless obtain expressions in terms of the data illustrates to some extent thee�
ien
y of the new pi
ture. Though various authors (
f. [8℄, [20℄, [21℄) dis
uss these 
onstantsfrom di�erent points of view, no 
onsensus has been found 
on
erning their geometri
al/physi
alsigni�
an
e. Whether our dis
ussion will help 
larify the meaning of the NP-
onstants remains tobe seen. One of our main reasons for looking at them is the expe
tation that they may play a rolein the 
onstru
tion of spa
e-times. In numeri
al 
al
ulations they may 
ertainly provide a 
he
kon the numeri
al a

ura
y.2 Relating di�erent gauge 
onditions near null in�nityWe begin by giving an outline of the �nite, regular initial value problem near spa
e-like in�nity.This has been introdu
ed in the arti
le [4℄, to whi
h we refer for more details. It involves a gaugewhi
h we refer to as the F-gauge. We then re
all the NP-gauge, employed in [14℄, to dis
uss thegravitational �eld near null in�nity. Finally, we dis
uss how the NP-gauge is related to the F-gauge.2.1 The regular �nite initial value problem near spa
e-like in�nityWe want to dis
uss asymptoti
ally �at solutions (M̃, g̃) to Einstein's �eld equations R̃µν = 0in a neighborhood M̃a of spa
e-like in�nity whi
h 
overs parts of future and past null in�nity.The solutions arise from asymptoti
ally �at data on a smooth spa
e-like Cau
hy hypersurfa
e



2 RELATING DIFFERENT GAUGE CONDITIONS NEAR NULL INFINITY 4
S̃ ⊂ M̃ whi
h are su
h that the intrinsi
 
onformal stru
ture on S̃ admits an extension witha 
ertain smoothness to a smooth 
ompa
t manifold S obtained from S̃ by adjoining a point iwhi
h represents spa
e-like in�nity, S = S̃ ∪ {i}. We assume that the solution, i.e. the evolutionin time of these data, possesses a smooth 
onformal extension (M, g,Θ) su
h that we 
an write
M = M̃ ∪ J − ∪ J +, where J ± ≃ R × S2 represent future respe
tively past null in�nity and Θdenotes a smooth �
onformal fa
tor� on M su
h that Θ > 0 and g = Θ2 g̃ on M̃ while Θ = 0,
dΘ 6= 0 on J ±.To analyze in detail the 
onsequen
es of the �eld equations in a neighborhood of spa
e-likein�nity whi
h 
overs parts of J±, the situation above has been dis
ussed in the [4℄ in terms of a
ertain prin
ipal �ber bundle M ′

a → Ma with proje
tion π, 4−dimensional base spa
e Ma, andbundle spa
e M ′
a whi
h is a 5−dimensional manifold with boundary and edges. To des
ribe thissetting further we need to introdu
e some notation.We employ the two-
omponents spinor and spa
e-spinor formalisms as used in [4℄ where ǫab,

ǫab are the antisymmetri
 spinors with ǫ01 = 1, ǫ01 = 1. We set τaa′

= ǫ0
a ǭ0′

a′

+ ǫ1
a ǭ1′

a′ . By
SU(2) will be denoted the group of 2 × 2 matri
es t = (ta b) satisfying

ǫac t
a

b t
c

d = ǫbd, τac t
a

b t
c

d = τbd,and by U(1) its subgroup of diagonal matri
es. A basis of the Lie-algebra of SU(2) is then givenby the 2 × 2 matri
es
u1 =

1

2

(

0 i
i 0

)

, u2 =
1

2

(

0 −1
1 0

)

, u3 =
1

2

(

i 0
0 −i

)

, (2.1)of whi
h u3 generates U(1).In the following will be des
ribed in detail the regular �nite initial value problem at spa
e-likein�nity formulated in [4℄. Though we shall remark in passing on the 
onstru
tion of the manifold
M ′

a and the underlying gauge 
onditions, we refer for the full details to the original arti
le. Themanifold M ′
a is given by

M ′
a = {(τ, ρ, t) ∈ R × R × SU(2)| 0 ≤ ρ < a, −ω

ρ
≤ τ ≤ ω

ρ
},where a is a positive real number and ω = ω(ρ, t) a smooth non-negative fun
tion, given below,su
h that ω

ρ
extends to a smooth positive fun
tion with ω

ρ
→ 1 as ρ → 0. By ρ and τ will alsobe denoted the proje
tions of M ′

a onto the �rst respe
tively se
ond 
omponent of R × R × SU(2).Then any 
oordinate system on SU(2) will de�ne together with the fun
tions ρ and τ a 
oordinatesystem on M ′
a. There will, however, arise no need for us to introdu
e 
oordinates on SU(2). Wedenote the proje
tion onto the third 
omponent of R×R×SU(2) by t and regard the SU(2)-valuedfun
tion t as a �
oordinate� on M ′

a.The natural a
tion on the right of U(1) on SU(2) indu
es a smooth a
tion of U(1) onM ′
a. Thequotient M ′

a/U(1) under this a
tion will be denoted byMa and the indu
ed proje
tion ofM ′
a onto

Ma by π. We shall write N = π(N ′) for any subset N ′ of M ′
a. The following subsets of M ′

a willbe important for us:
J ′± = {τ = ± ω

ρ
, ρ > 0} ≃ R × S3,

I ′ = {|τ | < 1, ρ = 0} ≃ R × S3, I
′± = {τ = ± 1, ρ = 0} ≃ S3,

C′ = {τ = 0}, I
′0 = {τ = 0, ρ = 0} = C′ ∩ I ′ ≃ S3.Be
ause they 
over only a part of null in�nity 
lose to spa
e-like in�nity, we should have denotedthe �rst sets more pre
isely by J ′±

a but we dropped the subs
ript a for 
onvenien
e. By de�nitionthe part of the physi
al manifold M̃ whi
h is 
overed byMa is given by M̃a = Ma \ (J−∪J +∪I ∪
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I− ∪ I+), the sets J± represent future resp. past null in�nity while the set I represents spa
e-likein�nity for M̃a and the metri
 indu
ed on it by g̃. Thus M̃a 
overs a neighborhood of spa
e-likeand null in�nity in M̃ . The edges I± ≃ S2 of Ma at whi
h future resp. past null in�nity tou
hesspa
e-like in�nity will play an important role in the following. We shall refer to the set C as theinitial hypersurfa
e sin
e by de�nition C ∩ M̃a = C \ I0 = S̃ ∩ M̃a. There exists a neighborhood
Ba of i in S and smooth surje
tive map π′ : C → Ba whi
h is inje
tive on C \ I0 and whi
h maps
I0 onto i.As des
ribed in [4℄, the manifold M ′

a is obtained essentially by lifting Ma into the bundle ofnormalized (with respe
t to ǫab) spin frames. The set I ′0 ≃ SU(2) 
orresponds to the set ofnormalized (with respe
t to ǫab and τab) spin frames at the point i. With ea
h su
h spin frame weasso
iate a unit tangent ve
tor of S at i. With this ve
tor we asso
iate in turn a 
urve through iin Ba and extend the spin frame along this 
urve by a 
ertain transport pro
ess. Thus we obtainspin frames at ea
h point of Ba \ {i}. These frames are transported o� Ba \ {i} ≃ C \ I0 into thespa
e-timeMa by a 
ertain propagation law along 
onformal geodesi
s orthogonal to C. The latterare given in our des
ription of M ′
a by the 
urves ρ = const., t = const. with τ a natural parameteralong them. Sin
e for given unit tangent ve
tor at i the spin frame de�ning it is determined up toa phase fa
tor, the spin frames at points of Ma \ (I ∪ I− ∪ I+) are also given up to multipli
ationsby phase fa
tors, whi
h 
orresponds to the a
tion of the group U(1). The transport laws as well asfurther details of the gauge 
onditions are en
oded in the form of the data and 
ertain propertiesof the unknowns for the redu
ed equations.Sin
e it turns out to be most 
onvenient, we will 
arry out all our 
al
ulations on the manifold

M ′
a and use for the subsets of M ′

a introdu
ed above the same names as for their images under π.We denote by Zui
the ve
tor �eld generated by ui and the obvious a
tion of SU(2) on M ′

aand de�ne 
omplex ve
tor �elds X+ = −(Zu2
+ iZu1

), X− = −(Zu2
− iZu1

), X = −2 i Zu3
whi
hsatisfy the 
ommutation relations

[X, X+] = 2X+, [X, X−] = −2X−, [X+, X−] = −X. (2.2)The 
onformal �eld equations, in the form used in [4℄, are given in a parti
ular (
onformal,
oordinate, and frame) gauge whi
h is explained, together with the equations, most naturally inthe 
ontext of normal 
onformal Cartan 
onne
tions (
f. [3℄). Again, we shall not go throughthe 
omplete argument but just des
ribe the unknowns and equations. To obtain the equationson M ′
a, we use the fa
t that the solder and the 
onne
tion forms on the bundle of spin framesindu
e 
orresponding forms σaa′ , ωa

b on M ′
a \ I ′ whi
h extend smoothly to M ′

a. The metri

ǫab ǭa′b′ σ

aa′

σbb′ on M ′
a is degenerate be
ause < σaa′

, X >= 0 (the angle bra
kets denoting thedual pairing), but it des
ends to the Lorentz metri
 g on π(M ′
a \ I ′).The equations are written as equations for the �ve
tor�-valued unknown

u = (c0 ab, c
1

ab, c
±

ab, χ(ab)cd, ξabcd, fab, Θ(ab)cd, Θ g
g ab, φabcd),whose 
omponents have the following meaning. We 
onsider the smooth ve
tor �elds

caa′ = c0 aa′ ∂τ + c1 aa′∂ρ + c+ aa′ X+ + c− aa′ X−whi
h satisfy < σaa′

, cbb′ >= ǫb
a ǭb′

a′ on M ′
a \ I ′. All �elds are written in spa
e spinor notationbased on the ve
tor �eld √

2 ∂τ = τaa′

caa′ . Sin
e τaa′

caa′ is invariant under the a
tion of U(1) itdes
ends to a ve
tor �eld on π(M ′
a\I ′) whi
h is time-like, has norm τaa′ τaa′

= 2, and is orthogonalto S̃. We have
caa′ =

1√
2
τaa′ ∂τ − τb

a′ cab (2.3)with cab ≡ τ(a
b′ cb)b′ = c0 ab ∂τ + c1 ab∂ρ + c+ abX+ + c− abX−. The 
onne
tion de�nes 
onne
tion
oe�
ients Γabcd = τb

a′

Γaa′cd = τb
a′

< ωcd, caa′ > whi
h 
an be de
omposed in the form
Γabcd =

1√
2

(ξabcd − χabcd) =
1√
2

(ξabcd − χ(ab)cd) −
1

2
ǫab fcd,



2 RELATING DIFFERENT GAUGE CONDITIONS NEAR NULL INFINITY 6with �elds satisfying χabcd = χab(cd), ξabcd = ξ(ab)(cd), fab = f(ab). The 
urvature is representedby the res
aled 
onformal Weyl spinor �eld φabcd = φ(abcd) and by a spinor �eld Θabcd = Θab(cd)whi
h is the Ri

i spinor �eld of a 
ertain Weyl 
onne
tion for g̃.The pull ba
k π∗ Θ, again referred to as the 
onformal fa
tor and denoted by Θ, extendssmoothly to M ′
a and is known in our gauge expli
itly. It is given by

Θ =
Ω

ρ

(

1 − τ2 ρ
2

ω2

)

, (2.4)and appears, together with the 1-form
dab = 2 ρ

U xab − ρDabU − ρ2DabW

(U + ρW )3
,(with xab as given in appendix [A.2℄) whi
h 
hara
terizes in a 
ertain way the di�eren
e betweenthe Levi-Civita 
onne
tion of g and the Weyl 
onne
tion referred to above, as 
oe�
ient in the
onformal �eld equations. We have set here

Ω = ρ2

(U+ρ W )2 ,

ω ≡ 2 Ω (−Dab ΩDab Ω)−
1
2 = ρ (U + ρW )

{

U2 + 2 ρU xabDabU − ρ2DabU DabU

+2 ρ2U xabDabW − 2 ρ3DabU DabW − ρ4DabW DabW
}− 1

2 ,

(2.5)where the smooth fun
tions U = U(ρ, t), W = W (ρ, t), whi
h satisfy U = 1 and W = 1
2mADM on

I0, are given as part of the initial data on the initial hypersurfa
e C′, on whi
h Dab is the intrinsi

ovariant derivative. Note that the �elds Ω, ω, dab do not depend on τ . The 
onformal fa
torsatis�es the relations (
f. [3℄)
Θ > 0 on M ′

a, {Θ = 0} = J ′− ∪ I ′− ∪ I ′ ∪ I ′+ ∪ J ′+,

caa′(Θ) 6= 0 and ǫab ǭa
′b′ caa′(Θ) cbb′(Θ) = 0 on J ′±.

(2.6)In the following we shall refer to the 
oordinates τ , ρ, t, the frame {caa′}, and the 
onformal gaugede�ned by (2.4) as the F-gauge.2.1.1 The 
onformal evolution equationsWe re
all here a few general features of the 
onformal �eld equations and refer again to [4℄ formore details. The 
onformal �eld equations imply on M ′
a evolution equations of the form

{A0 ∂τ +A1 ∂ρ +A+X+ +A−X−} u = C u, (2.7)where A0, A1, A±, C denote matrix-valued fun
tions whi
h depend on u and the 
oordinates. Thesystem is, for u 
lose to the data given below and for the 
oordinates taking values on M ′
a near

C′, symmetri
 hyperboli
. Writing u = (v, φ) with
v = (c0 ab, c

1
ab, c

±
ab, χ(ab)cd, ξabcd, fab, Θ(ab)cd, Θ g

g ab), φ = (φabcd), (2.8)the evolution equations for v are obtained, with our assumptions on the gauge, from the stru
turalequations of the normal 
onformal Cartan 
onne
tion asso
iated with g. They read expli
itly
∂τc

0
ab = −χ(ab)

ef c0 ef − fab, (2.9)
∂τ c

α
ab = −χ(ab)

ef cα ef , α = 1,+,−, (2.10)
∂τξabcd = −χ(ab)

ef ξefcd +
1√
2

(ǫac χ(bd)ef + ǫbd χ(ac)ef ) fef (2.11)
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−
√

2χ(ab)(c
e fd)e −

1

2
(ǫac Θf

f
bd + ǫbd Θf

f
ac) − iΘµabcd,

∂τfab = −χ(ab)
ef fef +

1√
2

Θf
f

ab, (2.12)
∂τχ(ab)cd = −χ(ab)

ef χefcd − Θ(cd)ab + Θ ηabcd, (2.13)
∂τΘ(ab)cd = −χ(cd)

ef Θ(ab)ef − ∂τΘ ηabcd + i
√

2 de
(aµb)cde, (2.14)

∂τΘg
g

ab = −χ(ab)
ef Θg

g
ef +

√
2 def ηabef , (2.15)where ηabcd = 1

2 (φabcd + φ+
abcd) and µabcd = − i

2 (φabcd − φ+
abcd), with τa

a′

τb
b′τc

c′τd
d′

φ̄a′b′c′d′

= φ+
abcd, denote the ele
tri
 and the magneti
 part of φabcd respe
tively. These equations are ofthe form

∂τ v = K(v) +Q(v, v) + L(φ), (2.16)with a linear fun
tion K and a quadrati
 fun
tion Q of v, both with 
onstant 
oe�
ients, and alinear fun
tion L of φ with 
oe�
ients whi
h depend on the 
oordinates. We have L = 0 on I ′.The evolution equations for φ, derived from the Bian
hi identities, are genuine partial di�erentialequations. They will be 
onsidered in more detail below.2.1.2 The initial dataConsequen
es of the �nite regular initial value problem have been worked out so far for Cau
hydata whi
h are time symmetri
 and admit a smooth extension through spa
e-like in�nity. In fa
t,it has been assumed in [4℄, as will be done in the following, that the 
onformal stru
ture is analyti
near spa
e-like in�nity. We note that this 
ondition is imposed only for 
onvenien
e and 
ould berelaxed. The free Cau
hy data on S̃ are then given by the 
onformal stru
ture of a smooth metri

h on S whi
h is analyti
 in some h−normal 
oordinates near i.We assume h to be given near i in a 
ertain 
onformal gauge, the 
n-gauge (
f. [4℄). This redu
esthe freedom of performing 
onformal res
alings h→ θ2 h to the 
hoi
e of the 4 real parameters θ(i),
θ,a(i), the value of θ in a neighborhood of i then being determined by the 
onformal gauge. Weassume that Ba is a 
onvex h−normal neighborhood of i and that ρ des
ends to a radial normal
oordinate on Ba.The metri
 h̃ indu
ed by g̃ on S̃ is related to h by a res
aling h̃ = Ω−2 h, where the 
onformalfa
tor Ω satis�es ρΩ− 1

2 → 1 as ρ→ 0 and the Li
hnerowi
z (Yamabe) equation
(DαD

α − 1

8
r)(Ω− 1

2 ) = 0. (2.17)Here D denotes the 
ovariant derivative and r the Ri

i s
alar of h. The form (2.5) of Ω in termsof the fun
tions U and W is a 
onsequen
e of this equation and the required asymptoti
 behaviorof Ω, whi
h ensures that h̃ is asymptoti
ally �at.The initial data on C′ for the 
onformal �eld equations are derived from h and Ω. They aregiven by
c0 ab = 0, c1 ab = ρ xab, c+ ab = zab + ρ č+ ab, c− ab = yab + ρ č− ab,

χ(ab)cd = 0, ξabcd =
√

2 ρ γ̌abcd, fab = xab,

Θabcd = − ρ2

Ω D(abDcd)Ω + 1
12 ρ

2 r habcd, φabcd = ρ3

Ω2 (D(abDcd)Ω + Ω sabcd),

(2.18)



2 RELATING DIFFERENT GAUGE CONDITIONS NEAR NULL INFINITY 8with xab, yab, zab, and the expression habcd of the metri
 h in spa
e spinor notation as given inappendix [A.2℄, and sabcd = s(abcd) the tra
e free part of the Ri

i tensor of h.In 
hapter [4.1℄ we shall dis
uss how the 
oe�
ients č± ab, γ̌abcd de�ning the frame and the
onne
tion 
oe�
ients are determined on C′ by the (3−dimensional) stru
ture equations from rand sabcd. The observation (
f. [4℄) that the data above extend smoothly to I ′0 ⊂ C′ is mostimportant for our 
onstru
tion.2.1.3 The transport equations on IAt �rst sight it may appear that the initial data on S̃, thus in parti
ular on C′, should be 
om-plemented by boundary data on I ′ for the solutions of equations (2.7) to be uniquely determined.However, it turns out that for any smooth solution to the evolution equations onM ′
a whi
h 
oin
ideson C′ with the initial data above, we have the important relation

A1 = 0 on I ′. (2.19)As a 
onsequen
e, equations (2.7) redu
e to a symmetri
 hyperboli
 system of the form {A0 ∂τ +
A+X+ + A−X−} u = C u on I ′ whi
h allows us to determine the unknown u on I ′ uniquely interms of the value of u on I ′0. Thus we �nd, as was to be expe
ted, that any smooth solution of(2.7) on M ′

a taking on C′ our initial data is determined uniquely by its data on S̃.More generally, by applying repeatedly the derivative operator ∂ρ to the evolution equations,restri
ting to I ′, and observing (2.19), we obtain symmetri
 hyperboli
 transport equations
{A0 ∂τ +A+X+ +A−X−} up = Cp u

p + gp on I ′, p = 0, 1, 2, . . . , (2.20)for the quantities up = (∂p
ρ u)|I′ . Here the matrix-valued fun
tion Cp and the ve
tor valued fun
tion

gp depend on p and the quantities u0, . . . , up−1, but the matri
es A0, A± are universal in the sensethat they depend neither on p nor on the initial data. We shall employ the notation above moregenerally, su
h that applying it to the �elds sabcd and r on the Cau
hy hypersurfa
e we have
sp

abcd = (∂p
ρ sabcd)|I′0 and rp = (∂p

ρ r)|I′0 , respe
tively.To integrate the transport equations (2.20) on I ′, we expand all �elds in terms of the matrixelements of unitary representations of SU(2) whi
h are given, in terms of the matrix elements
(ta b)a,b=0,1 of the 2−dimensional standard representation of t ∈ SU(2), by the 
omplex-valuedfun
tions

SU(2, C) ∋ t→ Tm
j

k(t) =
(

m
j

)
1
2

(

m
k

)
1
2 t(b1 (a1

. . . tbm)j
am)k

, T0
0

0(t) = 1,

j, k = 0, . . . ,m, m = 1, 2, 3, . . .
(2.21)Here, as in the following, setting a string of indi
es into bra
kets with a lower index k is meantto indi
ate that the indi
es are symmetrized and then k of them are set equal to 1 while theremaining ones are set equal to 0. The fun
tions √

m+ 1Tm
j

k(t) form a 
omplete orthonormalset in the Hilbert spa
e L2(µ, SU(2)) where µ denotes the normalized Haar-measure on SU(2).Under 
omplex 
onjugation we have
Tm

j
k(t) = (−1)j+k Tm

m−j
m−k(t), t ∈ SU(2),and, for 0 ≤ k, j ≤ m, m = 0, 1, 2, . . . , we have with βm,j = {j (m− j + 1)} 1

2

X Tm
k

j = (m− 2j)Tm
k

j , X+ Tm
k

j = βm,j Tm
k

j−1, X− Tm
k

j = −βm,j+1 Tm
k

j+1. (2.22)A fun
tion f satisfying a relation Xf = 2sf with an integer or half integer number s, is said tohave spin weight s. We note the spin raising (lowering) property of the a
tion of X± on su
hfun
tions implied by (2.2), i.e. XX± f = 2 (s± 1)X± f . By 
onstru
tion of the manifold M ′
a anyfun
tion o

uring in our formalism has a well de�ned spin weight. This leads to a simpli�
ationof the expansion in terms of the fun
tions T k

m j . The general form of these expansions has beendis
ussed in detail in [4℄ and will be assumed here without further explanation.



2 RELATING DIFFERENT GAUGE CONDITIONS NEAR NULL INFINITY 9The quantities u0, u1, u2 have been determined in [4℄. They are given here (with a 
orre
tionand a useful 
hange of notation) at the beginning of 
hapter [4.1℄. The fun
tions u3 will be
al
ulated in 
hapter [4.1℄. The quantities up, p = 2, 3, . . . have been shown (
f. [4℄) to develop a
ertain type of logarithmi
 singularity on the sets I ′± unless the free datum h on S satis�es theasymptoti
 regularity 
ondition
D(aqbq

. . . Da1b1 babcd)(i) = 0, (2.23)for q = 0, 1, 2, . . . , where the spinor �eld babcd = b(abcd) represents the Cotton tensor of h. Thevalues of the fun
tions up, p ≤ 3, whi
h will be given below, have been 
al
ulated on I ′ under theassumption that (2.23) is satis�ed for q ≤ 1. The analysis of the quantities up, to the extent towhi
h it has been 
arried out in [4℄, indi
ates another potential sour
e for a singular behavior ofthe �elds up, p ≥ 3, at I ′±. This will be dis
ussed further in 
hapter [4.1℄.2.2 The NP-gaugeFor simpli
ity we restri
t our dis
ussions now to the future of S̃ inM , we refer to future null in�nitysimply as to null in�nity and we denote it by J . In the following we shall des
ribe a 
ertain 
lass ofgauge 
onditions on (M, g) near null in�nity, referred to as the NP-gauge, whi
h 
omprise 
ertainrequirements on the 
onformal gauge, 
ertain 
oordinates, and a 
ertain orthonormal frame �eld.Though this gauge is known, our des
ription will be quite detailed, be
ause we will have to referto it later. The Levi-Civita 
onne
tion indu
ed by the 
onformal metri
 g will be denoted by ∇.Suppose {E◦
aa′} is a smooth frame �eld, satisfying g(E◦

aa′ , E◦
bb′ ) = ǫab ǭa′b′ , whi
h is de�nedin a neighborhood of null in�nity. We 
all it an �adapted frame�, if it satis�es the following
onditions. The ve
tor �eld E◦

11′ is tangent to and parallel propagated along null in�nity. On theneighborhood on whi
h the frame is given there is exists a smooth fun
tion u◦ whi
h indu
es ana�ne parameter on the null generators of J su
h that E◦
11′ (u◦) = 1, whi
h is 
onstant on nullhypersurfa
es transverse to J , and whi
h satis�es E◦α

00′ = gαβ∇βu
◦. Thus E◦

00′ is tangent to thehypersurfa
es {u◦ = const.} and geodesi
. The �elds E◦
11′ , E◦

00′ as well as the �elds E◦
01′ , E◦

10′ ,whi
h are ne
essarily tangent to the sli
es {u◦ = const.} ∩ J , are parallelly propagated in thedire
tion of E◦
00′ .In terms of its NP-spin-
oe�
ients (note the slight di�eren
e of our notation with that of [11℄)

Γ◦
aa′bc =

1

2

{

E◦α
aa′E

◦β
b1′∇αE

◦
c0′β + E◦α

aa′E
◦β
c1′∇αE

◦
b0′β

}

, (2.24)an adapted frame is 
hara
terized by the properties
Γ◦

10′11 = 0, Γ◦
11′11 = 0 on J ,

Γ◦
10′00 = Γ̄◦

01′0′0′ , Γ◦
11′00 = Γ̄◦

01′0′1′ + Γ◦
01′01, Γ◦

00′ab = 0, a, b = 0, 1, near J .
(2.25)The �rst of these 
onditions tells us that J is shear free. This well known fa
t follows from theequation for the tra
e free part sαβ of the Ri

i tensor of the 
onformal va
uum metri
 g,

Θ sαβ =
1

2
gαβ∇γ∇γΘ − 2∇α∇βΘ. (2.26)Transve
tion with E◦ α

10′ E
◦ β
10′ and restri
tion to J gives Γ◦

10′11 E
◦
00′(Θ) = 0, while E◦

00′ (Θ) 6= 0 on J .We shall 
ombine now the 
onstru
tion of an adapted frame with the freedom to perform res
alings
g → g⋆ = θ2g, Θ → Θ⋆ = θΘ (2.27)with some positive fun
tion θ, to obtain another adapted frame {E•

aa′} for whi
h we get furthersimpli�
ations besides (2.25). We start with an adapted frame {E◦
aa′} as des
ribed above. Forarbitrary θ > 0 and for arbitrary fun
tion p > 0 whi
h is 
onstant on the generators of J we set

E•
11′ = θ−2 pE◦

11′ and u•(u◦) =

∫ u◦

u◦
∗

θ2(u′) p−1(u′) du′ + u•∗ on J , (2.28)



2 RELATING DIFFERENT GAUGE CONDITIONS NEAR NULL INFINITY 10where the integration is performed along the generators of J . Then E•
11′ will be parallelly propa-gated and E•

11′(u•) = 1 will hold. We assume that u◦ = u◦∗ and u• = u•∗ on C and set
E•

00′ = p−1E◦
00′ , E•

11′ = θ−2 pE◦
11′ , E•

01′ = θ−1E◦
01′ on C. (2.29)Sin
e C is di�eomorphi
 to S2 and thus 
arries (up to di�eomorphisms) pre
isely one Rie-mannian 
onformal stru
ture, we 
an �x 
oordinates x3 = ϑ, x4 = ϕ as well as the fun
-tion θ on C su
h that the metri
 h⋆ indu
ed by g⋆ on C is given by the standard S2−metri


h⋆ = dϑ2 + sin2 ϑ dϕ2. Using the transformation laws Γ•
10′00 = p−1

[

Γ◦
10′00 − E◦

00′(log θ)
] and

Γ•
01′11 = p θ−2

[

Γ◦
01′11 + E◦

11′(log θ)
] on C, we 
an a
hieve, by suitable 
hoi
e of d θ and p,

Γ•
10′00 = 0, Γ•

01′11 = 0, E•
00′(Θ⋆) = const. 6= 0 on C. (2.30)The transformation s⋆

αβ = − 2
θ

{

(∇α∇βθ − 2
θ
∇αθ∇βθ) − 1

4gαβ(∇γ∇γθ − 2
θ
∇γθ∇γθ)

}

+ sαβ of thetra
e free part sαβ of the Ri

i tensor under the res
aling (2.27) implies a transformation of
Φ22 = 1

2sαβE
◦α
11′ E

◦β
11′ into Φ⋆

22 = 1
2s

⋆
αβE

•α
11′ E

• β
11′ , whi
h yields, with the assumption that Φ⋆

22 = 0on J , on the generators of J the ODE
E◦

11′

(

E◦
11′(θ)

)

− 2

θ

(

E◦
11′(θ)

)2 − θΦ22 = 0. (2.31)This equation 
an be rewritten as a linear ODE for θ−1 whi
h 
an be solved on the generators of
J with θ > 0. Using the initial data θ, E◦

11′(θ) on C determined above, we solve for θ to obtain
Φ⋆

22 = 0, Γ•
01′11 = 0 on J . (2.32)Here the se
ond equation is a 
onsequen
e of the �rst, the �eld equations, and (2.30). We assumein the following (2.28). We observe that the indu
ed metri
 on the se
tions {u• = const.} is givenas a 
onsequen
e everywhere on J by the S2-standard metri
.On
e θ and E•

11′ have been �xed on J , the ve
tor �eld E•
01′ (when
e E•

10′) tangent to {u• =
const.} is determined up to rotations. We 
hoose some smooth �eld E•

01′ on J , solve the equation
E•

11′(c) = −i E•α
10′ E

•β
11′ ∇⋆

β E
•
01′α (2.33)for the fun
tion c with initial value c = 0 on C, and repla
e E•
01′ by ei cE•

01′ to a
hieve
Γ•

11′01 = 0 on J . (2.34)Observing the simpli�
ations above, we 
ontra
t the analogue of (2.26) for g⋆ with E•α
01′E

•β
10′ to
on
lude that ∇⋆

α∇⋆ αΘ⋆ = 0 on J . A further 
ontra
tion with E•α
00′E

•β
11′ gives

E•
11′

(

E•
00′(Θ⋆)

)

= 0, i.e. E•
00′(Θ⋆) = const. on J , (2.35)while a 
ontra
tion with E•α

00′E
•β
01′ yields now E•

01′

(

E•
00′(Θ⋆)

)

= Γ•
11′00E

•
00′(Θ⋆), whi
h implies

Γ•
11′00 = 0 on J . (2.36)To �x also d θ on J , we use the 
onformal transformation law for the Ri

i s
alar, i.e.

R[g⋆] =
1

θ2
R[g] +

12

θ2
∇⋆

α θ∇⋆ α θ − 6

θ
∇⋆

α∇⋆ α θ. (2.37)If we require that R[g⋆] = 0 along J , this equation takes on the generators of the null hypersurfa
e
J the form

E•
11′

(

E•
00′(θ)

)

− 2

θ
E•

11′(θ)E•
00′ (θ) = F ⋆, (2.38)



2 RELATING DIFFERENT GAUGE CONDITIONS NEAR NULL INFINITY 11of a linear ODE for the unknown E•
00′(θ), where the right hand side

F ⋆ = Re

{

E•
01′(E•

10′ (θ)) − 2 Γ•
01′01E

•
10′(θ) − 2

θ
E•

01′(θ)E•
10′ (θ) +

1

12 θ
R[g]

}is given in terms of quantities whi
h have been determined already on J . Using the initial value
E•

00′(θ) = p−1θ Γ◦
10′00|C , �xed on C by (2.30), we 
an integrate the equation to a
hieve

R[g⋆] = 0, Γ•
10′00 = 0 on J , (2.39)where the se
ond equation follows again from our previous results and the �eld equations.We do not require 
onditions of higher order on the 
onformal gauge. Assuming a 
onformalgauge as des
ribed here, we shall refer to an adapted frame {E•

aa′} satisfying the 
onditions aboveas to an NP-frame, and to a normalized spin frame ε•A
a ≡ {o•A, ι•A} whi
h implies a NP-frameas to a NP-spin-frame.We extend the 
oordinates x3, x4 to J su
h that they are 
onstant on the null generatorsof J . As des
ribed above, we de�ne null hypersurfa
es {u• = const.} transverse to J and wedenote by r• the a�ne parameter on the null generators of these hypersurfa
es whi
h satis�es

E•
00′(r•) = 1 and, on J , r• = 0. The 
oordinates x3, x4 are extended su
h that they are 
onstanton the null generators of {u• = const.}. Thus we get a Bondi-type system (u•, r•, x3, x4) in someneighborhood of null in�nity. O

asionally we shall 
hange from the 
oordinates ϑ, ϕ, to a 
omplexstereo-graphi
al 
oordinate given by ζ = eiϕctg ϑ

2 . We write the volume element and the volumeform alternatively
ds2 = −(dϑ2 + sin2ϑ dϕ2) = −P (ζ)−2dζ dζ̄, ǫ = sinϑ dϑ ∧ dϕ = [2P (ζ)]−2dζ ∧ dζ̄,where we set P (ζ) = 1

2 (1 + ζζ̄). We shall refer to the 
onditions on the 
onformal s
aling, theframe �eld, and the 
oordinates as to the NP-gauge.2.3 Relating the NP-gauge to the F-gaugeWhile the NP-gauge is hinged on null in�nity, the F-gauge is based on a Cau
hy hypersurfa
eand these gauge 
onditions are in general 
ompletely di�erent. In the following we will study thetransformation whi
h relates one to the other. It is important for this that the 
onformal fa
tor
Θ, when
e J , is known expli
itly in the F-gauge.The ve
tor �elds {caa′} tangent to the 5-dimensional bundle spa
e M ′

a are not dire
tly relatedto the NP-gauge on the subset Ma \ I of M . Let S2 ⊃ U ∋ p
s→ s(p) ∈ SU(2) be a smooth lo
alse
tion, de�ned on some open subset U of S2, of the Hopf �bration SU(2) → SU(2)/U(1) ≃ S2.It indu
es a smooth se
tion U × R × R ∋ (p, τ, ρ)

S→ (s(p), τ, ρ) ∈ M ′
a. We denote the image of

S by M∗
a . The ve
tor �elds tangent to s(U) whi
h have proje
tion identi
al to that of X± are ofthe form X± + a±X with some smooth fun
tions a± on s(U), satisfying a− = −ā+. Be
ause of(2.2) a± 
annot vanish on open subsets of s(U). Consequently, the tangent ve
tor �elds c∗aa′ of

M∗
a satisfying π∗(c∗aa′) = π∗(caa′) are given on M∗

a by
c∗aa′ = caa′ + (a+ c

+
aa′ + a− c

−
aa′)X,with fun
tions a± whi
h are independent of τ and ρ. The 
onne
tion 
oe�
ients de�ned on M∗

aby the 
onne
tion form ωb
c and the ve
tor �elds c∗aa′ are given by

Γ∗
aa′

b
c = Γaa′

b
c + (a+ c

+
aa′ + a− c

−
aa′) (ǫ0

b ǫc
0 − ǫ1

b ǫc
1).In the remaining part of this se
tion we shall work on π(M ′

a) and denote the proje
tion of theve
tor �elds c∗aa′ , whi
h de�ne a smooth orthonormal frame �eld on π(M∗
a \ I ′), and the pull-ba
kof Γ∗

aa′
b

c by S again by c∗aa′ and Γ∗
aa′

b
c. Similarly, the proje
tions of J ′ ∩M∗

a and I ′+ ∩M∗
a willbe denoted by J and I+.



2 RELATING DIFFERENT GAUGE CONDITIONS NEAR NULL INFINITY 12The frame �eld {c∗aa′}, whi
h is in general not adapted to null in�nity, will now be related 
loseto I+ to an adapted frame {E◦
aa′}. On J the ve
tor �eld E◦

11′ must be of the form
E◦α

11′ = f∇αΘ, (2.40)where ∇ and Θ denote the Levi-Civita 
onne
tion and the 
onformal fa
tor asso
iated with theF-gauge. The requirement 0 = E◦ β
11′∇βE

◦α
11′ = f ∇β Θ∇β f ∇αΘ + f2∇β (1

2 ∇αΘ∇αΘ) that E◦α
11′be parallelly propagated, gives after 
ontra
tion with a ve
tor �eld Z transverse to J the ODE

∇αΘ∇α(log f) = −Z(1
2∇βΘ∇βΘ)

Z(Θ)
(2.41)for f on the generators of J . To �x f , we set f = f0 = const. > 0 on some se
tion C of J . Thefun
tion u◦ satisfying E◦α

11′ (u◦) = 1 on J and u◦ = u◦∗ on C 
an be now be determined.Let λa
b ∈ SL(2, C) satisfy

E◦
aa′ = λb

aλ̄
b′

a′ c
∗
bb′ . (2.42)Rewriting (2.40) in the form E◦

11′ = f c∗bb′(Θ)ǫabǭa
′b′c∗aa′ , we �nd the relations

λ0
1λ̄

0′

1′ = f c∗11′(Θ), λ0
1λ̄

1′

1′ = −f c∗10′(Θ), λ1
1λ̄

1′

1′ = f c∗00′(Θ). (2.43)From (2.42) we obtain λ0
1E

◦
01′ = λ0

0E
◦
11′ − λ̄0′

1′c
∗
10′ − λ̄1′

1′c
∗
11′ . Applying this to the fun
tion u◦,we get

λ0
0 = λ̄0′

1′c
∗
10′(u◦) + λ̄1′

1′c
∗
11′(u◦). (2.44)Together with the 
ondition det(λa

b) = 1 the relations (2.43), (2.44) allow us to determine thematrix elements λa
b on J up to repla
ements λa

b → λa
b η

b
c with (ηa

b) = diag(ei α, e−i α) ∈ U(1).After making here an arbitrary 
hoi
e, the adapted frame {E◦
aa′} is determined uniquely near J .To determine an NP-frame {E•

aa′} near J , we need to �nd an appropriate res
aling (2.27) anda s
aling fa
tor p. We set
c⋆aa′ = θ−1 c∗aa′ , E•

aa′ = Λb
aΛ̄b′

a′ c
⋆
bb′ (2.45)with Λa

b ∈ SL(2, C). Assuming (2.28), we have E•α
11′ = f⋆ ∇⋆ αΘ⋆ with

f⋆ =
f p

θ
and E•

00′ (Θ⋆) =
1

f⋆
on J . (2.46)We 
hoose now θ, d θ, and 
oordinates x3, x4 su
h that the indu
ed metri
 on C is given by the

S2-standard metri
 and, with p 
hosen su
h that p = θ on C, 
onditions (2.30) are satis�ed with
E•

00′(Θ⋆) = f−1
0 .Following the pro
edure of the previous se
tion, we 
an determine the 
onformal fa
tor θ on

J su
h that (2.32) is satis�ed. The transformation Λa
b 
an be determined in the same way as

λa
b. Imposing 
ondition (2.34), we determine Λa

b up to U(1)−transformations on C. Conditions(2.35), (2.36) will now be satis�ed as well and we 
an determine d θ on J su
h that (2.39) holds.Extending the tetrad to a neighborhood of J su
h that it is parallelly propagated in the dire
tionof E•
00′ , we get the desired NP-frame.In our later 
al
ulations we will need the quantities E•

00′(Λa
b). Using our gauge 
ondition

Γ•
00′ab = 0 and the transformation laws for the 
onne
tion 
oe�
ients,

Γ⋆
aa′bc =

1

θ

{

Γ∗
aa′bc + ǫa(bc

∗
c)a′(log θ)

}

,

E•
aa′(Λb

c) = −Λf
a Λ̄f ′

a′ Λh
c Γ⋆

ff ′
b

h + Λb
d Γ•

aa′
d

c,



3 THE NP-CONSTANTS 13where Γ⋆
aa′bc denotes the 
onne
tion 
oe�
ients with respe
t to ∇⋆ and {c⋆aa′}, we �nd

E•
00′(Λb

c) = −Λf
0 Λ̄f ′

0′ Λh
c Γ⋆

ff ′
b

h. (2.47)In the 
onsiderations above we had to �x various quantities by pres
ribing data on the se
tion
C. When we shall determine later the expansion of a NP-frame near I+, it will be natural to trypushing C to I+. A priori it is not 
lear, however, whether this 
an be done in a 
ontinuous way.We shall see, that for 
ertain quantities the limits to I+ do exist, while others quantities 
an onlydes
ribed in terms of their growth behavior near I+.3 The NP-
onstantsIn 1965 Newman and Penrose dis
overed 
ertain non-trivial quantities, de�ned by 
ertain integralsover a 2-dimensional 
ross-se
tion of J +, whi
h are absolutely 
onserved in the sense that theirvalues do not depend on the 
hoi
e of the se
tion (
f. [12, 14℄). The interpretation of these tenreal NP-
onstants is still open. In the 
ase where the spa
e-time admits a smooth 
onformalextension 
ontaining a point i+ (�future time-like in�nity�) whose past light 
one represents J+,these 
onstants are essentially given by the �ve 
omplex 
omponents of the res
aled 
onformalWeyl spinor (
f. [14, 7℄). However, these quantities do not allow us a simple interpretation either.More interesting is the 
ase of stationary va
uum spa
e-times. In this 
ase the 
onstants have been
al
ulated and have been given in the form (mass) × (quadrupole moment) − (dipole moment)2(
f. [14, 18℄).If the evolution of the �eld in time is not given expli
itly as in the presen
e of a time-likeKilling ve
tor �eld, there appears to be no obvious way to 
al
ulate the NP-
onstants. It turnsout, however, that under suitable assumptions on the asymptoti
 behavior of the �eld near spa
e-like in�nity the 
onstants 
an be 
al
ulated by integrating the transport equations on I ′ to asu�
iently high order. In the following we shall derive a formula for the 
onstants in terms ofquantities whi
h 
an be determined by solving the transport equations.To explain the original formula (
f. [14℄), whi
h is given in the Bondi-Sa
hs-Newman-Penroseframework, let (u, r, ϑ, ϕ) denote Bondi-
oordinates on the physi
al spa
e-time, where r denotes ana�ne parameter along the generators of the null hypersurfa
es {u = const.} and the generators arelabeled by the standard 
oordinates (ϑ, ϕ) on the two-sphere. The null frame {Ẽaa′} as well as a
orresponding spinor dyad {õA, ι̃A}, both de�ned on the physi
al spa
e-time, are normalized withrespe
t to the physi
al metri
 g̃. They are adapted to the Bondi-
oordinates su
h that Ẽ00′ = ∂r.We assume that the 
onformal spa
e-time with metri
 g⋆ := r−2g̃ admits a smooth extension as
r → ∞ to a smooth Lorentz spa
e with boundary J + = {r• = 0} and that the fun
tions u• := u,
r• := r−1, ϑ, and ϕ extend su
h as to de�ne a smooth system of Bondi-type 
oordinates near J+.Furthermore, we assume that the frame {E•

aa′} and the spinor dyad {o•A, ι•A}, de�ned by
E•

aa′ = r2−a−a′

Ẽaa′

o•A = r õA, ι•A = ι̃A,
(3.1)su
h that they are normalized with respe
t to g⋆, extend to smooth frame resp. dyad near J+.The results of Newman and Unti (
f. [15℄) then imply that {E•

aa′} de�nes in fa
t a NP-frame.Under our assumptions the 
omponent ψ0 = ψABCDõ
AõB õC õD of the 
onformal Weyl spinorhas an expansion ψ0 = ψ0

0r
−5 + ψ1

0r
−6 + O(r−7) with 
oe�
ients ψp

0 whi
h are independent of r.In terms of the physi
al spa
e-time the NP-
onstants are given with this notation by the integrals
Gm =

∮

2Ȳ2,mψ
1
0 sinϑ dϑ dϕ, (3.2)whi
h are 
al
ulated for �xed value of u. The fun
tions 2Y2,m, m = −2,−1, 0, 1, 2, denote spin-2spheri
al harmoni
s (
f. [9℄) whi
h are obtained from the standard spheri
al harmoni
s by

2Y2,m =
1

2
√

6
E•α

01′E
•β
01′δαδβY2,m =

1

2
√

6
ð2Y2,m. (3.3)



4 TIME SYMMETRIC SPACE-TIMES 14Here δ and ð denote the standard 
ovariant di�erential operator on the unit 2-sphere and the�edth�-operator, respe
tively. In evaluating (3.2), it will be important that the operator ð isde�ned with respe
t to the 
omplex null ve
tor �eld E•
01′ (
f. [10℄).We reexpress the 
onstants in terms of the �elds g⋆, E•

aa′ , o•A, ι•A satisfying the NP-gauge, inparti
ular (2.39). Using the 
omponent φ0 = r ψABCDo
•Ao•Bo•Co•D of the res
aled 
onformalWeyl spinor, and performing the obvious lift to M ′, we obtain for the NP-
onstants the formula

Gm = − 1

2 π

∮

2Ȳ2,mE•
00′(φ0) dS dα. (3.4)Here dS = sinϑ dϑ dϕ denotes the surfa
e element on the 
ross-se
tion {r•, u• = const.} ⊂ J+ and

α denotes a parameter on the �bers of the prin
ipal �ber bundleM ′ →M . The se
ond integration
an be performed without 
hanging the result be
ause the integrand is independent of the variable
α. The values of these integrals are independent of the value of the 
onstant de�ning the 
ross-se
tion as well as of the 
hoi
e of the Bondi-
oordinate u• itself. Thus they are invariant undersupertranslations (
f. [14℄).We shall determine the NP-
onstants by integrating the transport equations on I ′. Sin
e theseequations and their unknowns are given in the F-gauge, we express (3.4) in this gauge. Using(2.45), we obtain in the notation of the previous 
hapter

Gm = − 1

2 π

∮

2Ȳ2,m

1

θ4

{

Λb
0Λ

c
0Λ

d
0Λ

e
0

[

Λa
0Λ̄

a′

0′ c∗aa′(φbcde) − 3φbcdeE
•
00′(θ)

]

+ 4 θΛb
0Λ

c
0Λ

d
0E

•
00′(Λe

0)φbcde

}

dS dα.
(3.5)This is the expression for the NP-
onstants whi
h will be used in the 
al
ulations of se
tion [4.3℄.4 Time symmetri
 spa
e-timesIn this se
tion we will use the assumptions of the regular �nite initial value problem near spa
e-likein�nity and thus restri
t our 
onsiderations to time symmetri
 spa
e-times. We begin by solvingthe third order transport equations on I ′. This 
al
ulation is of interest for two quite di�erentreasons. First of all, it will give us a �rst insight into the potential sour
e of singular behavior ofthe quantities up pointed out in se
tion [2.1.3℄. Further, besides giving information on this questionof prin
iple, the 
al
ulation will allow us to analyze the relation between the NP-
onstants and theinitial data for asymptoti
ally �at solutions. Under our assumptions, we will be able to evaluatethe integral (3.5) in terms of quantities derived from the initial data.4.1 Solving the third-order transport equationThe solutions up of equations (2.20) have been given in [4℄ for p ≤ 2. Sin
e they will be used in thefollowing 
al
ulations we reprodu
e them here, in a notation, though, whi
h is more 
onvenient fora systemati
 dis
ussion of the higher order expansion 
oe�
ients. We also take the opportunity to
orre
t a misprint in [4℄.The solution u0 of the transport equations (2.20) has the form

(c0ab)
0 = −τxab, (c1ab)

0 = 0, (c+ab)
0 = zab, (c−ab)

0 = yab, ξ0abcd = 0,

χ0
(ab)cd

= 0, f0
ab = xab, (Θ g

g ab)
0 = 0, Θ0

(ab)cd
= 0, φ0

abcd = −6mε2abcd,
(4.1)where m = mADM denotes the ADM-mass of the initial data set. The spinors appearing on theright hand side of these and the following formulae are listed in (A.10) of appendix [A.3℄. The



4 TIME SYMMETRIC SPACE-TIMES 15solution u1 is given by
(c0ab)

1 = c01(τ)xab, (c1ab)
1 = xab, (c+ab)

1 = c±1(τ)zab,

(c−ab)
1 = c±1(τ)yab, ξ1abcd = S1(τ)(ǫacxbd + ǫbdxac), χ1

(ab)cd
= K1(τ)ε2abcd,

f1
ab = F 1(τ)xab, (Θ g

g ab)
1 = t1(τ)xab, Θ1

(ab)cd
= T 1(τ)ε2abcd,

φ1
abcd = φ1

1(τ)X+W1ε
1
abcd + [φ1

2(τ) + φ1
3(τ)W1]ε

2
abcd − φ1

1(−τ)X−W1ε
3
abcd,

(4.2)while u2 takes the form
(c0ab)

2 = [c021 (τ) + c022 (τ)W1]xab + c023 (τ)[X−W1yab +X+W1zab],

(c1ab)
2 = c12(τ)xab,

(c+ab)
2 = [c±2

1 (τ) + c±2
2 (τ)W1]zab + c±2

3 (τ)X−W1xab,

(c−ab)
2 = [c±2

1 (τ) + c±2
2 (τ)W1]yab + c±2

3 (τ)X+W1xab,

ξ2abcd = [S2
1(τ) + S2

2(τ)W1](ǫacxbd + ǫbdxac) + S2
3(τ)(ǫacybd + ǫbdyac)X−W1

+ S2
3(τ)(ǫaczbd + ǫbdzac)X+W1 + S2

4(τ)(ε1abcdX+W1 + ε3abcdX−W1),

χ2
(ab)cd = [K2

1 (τ) +K2
2(τ)W1]ε

2
abcd +K2

3 (τ)habcd +K2
4 (τ)(ǫacybd + ǫbdyac)X−W1

−K2
4(τ)(ǫaczbd + ǫbdzac)X+W1 +K2

5 (τ)(ε1abcdX+W1 − ε3abcdX−W1),

f2
ab = [F 2

1 (τ) + F 2
2 (τ)W1]xab + F 2

3 (τ)(X−W1yab +X+W1zab),

(Θ g
g ab)

2 = [t21(τ) + t22(τ)W1]xab + t23(τ)(X−W1yab +X+W1zab),

Θ2
(ab)cd = [T 2

1 (τ) + T 2
2 (τ)W1]ε

2
abcd + T 2

3 (τ)habcd + T 2
4 (τ)(ǫacybd + ǫbdyac)X−W1

− T 2
4 (τ)(ǫaczbd + ǫbdzac)X+W1 + T 2

5 (τ)(ε1abcdX+W1 − ε3abcdX−W1),

φ2
abcd = φ2

1(τ)X+X+W2ε
0
abcd + [φ2

2(τ)X+W1 + φ2
3(τ)X+W2]ε

1
abcd

+ [φ2
4(τ) + φ2

5(τ)W1 + φ2
6(τ)W2]ε

2
abcd − [φ2

2(−τ)X−W1 + φ2
3(−τ)X−W2]ε

3
abcd

+ φ2
1(−τ)X−X−W2ε

4
abcd.

(4.3)
The τ -dependent fun
tions in these expressions are polynomials whi
h are given in appendix [A.3℄.The 
al
ulation of u3 is fa
ilitated by the following properties of the transport equations (2.20).For p ≥ 1 they are of the form

∂τv
p = Lp v

p + lp, Bα∂αφ
p = Mpφ

p, (4.4)where, using the notation (2.8), we set vp = (∂p
ρv)|I′ , φp = (∂p

ρφ)|I′ and denote by Lp and lp amatrix- resp. ve
tor-valued fun
tion of the quantities u0, . . . , up−1, while Mp denotes a matrix-valued fun
tion whi
h depends on the variables u0, . . . , up−1, vp. The matri
es Bα neither dependon p nor on the initial data. Thus, given the quantities uq, q ≤ p− 1, we 
an integrate the �rst ofequations (4.4), whi
h is an ODE. To integrate the se
ond equation, we expand the quantities upin terms of the fun
tions T k
m j given in (2.21) and use (2.22) to redu
e the integration to that of asystem of ODE's.To determine the initial data for u3 on I ′0, we have to expand the unknowns (2.18) in termsof ρ. Instead of pres
ribing the 
onformal metri
 h on the initial sli
e, whi
h represents the freedatum, we shall pres
ribe, in a fashion 
onsistent with the 3-dimensional Bian
hi identities, 
ertain
urvature quantities and use the 3-dimensional stru
ture equations and the Yamabe equation todetermine the remaining quantities.The 
onformal fa
tor, whi
h appears in the expressions (2.18), is given in (2.5) in terms of thefun
tions U and W . The fun
tion U , whi
h is determined lo
ally by h near spa
e-like in�nity, isgiven, by a pro
edure explained in [4℄, in the form

U =
∞
∑

p=0

Up ρ
2p, (4.5)
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oe�
ients Up. As shown in [4℄, the Taylor expansion of U in terms of ρ has inour gauge the form
U = 1 +

∞
∑

k=4

1

k!
Ûkρ

k. (4.6)For our 
al
ulations we shall need the 
oe�
ient Û4, whi
h will be determined later in this 
hapter.The fun
tion W , whi
h 
ontains global information on the free initial data, is determined bysolving the Yamabe equation on the initial hypersurfa
e. We shall 
onsider here a larger 
lass offun
tions whi
h are subje
t to the Yamabe equation only in a small neighborhood of spa
e-likein�nity. The 
oe�
ients in the Taylor expansionW = W0 +W1 ρ+ 1
2W2 ρ

2 + 1
3!W3 ρ

3 +O(ρ4) haveexpansion (
f. [4℄)
Wi =

2i
∑

m=0

m
∑

k=0

Wi;m,k T
k

m m
2
.They are restri
ted by the requirement that the Yamabe equation (hαβDαDβ − 1

8rh)[W ] = 0 holdsnear {ρ = 0}, whi
h implies the simpli�
ation
Wi =

2
∑

k=0

Wi;2i,k T
k

2i i, i ≤ 3. (4.7)We get for the 
onformal fa
tor and the tra
e-free part of its se
ond 
ovariant derivative
Ω = ρ2 −mρ3 +

[

3
4 m

2 − 2W1

]

ρ4 +
[

− 1
2m

3 + 3mW1 −W2

]

ρ5

+
[

5
16 m

4 − 3m2W1 + 3W 2
1 + 3

2 mW2 − 1
3W3 − 1

12 Û4

]

ρ6 +O(ρ7),

D(abDcd)Ω =
[

−6mε2abcd

]

ρ+
[

(12m2 − 36W1)ε
2
abcd − 12 (ε1abcdX+ − ε3abcdX−)W1

]

ρ2

+
[

(−15m3 + 96mW1 − 36W2)ε
2
abcd + (ε1abcdX+ − ε3abcdX−)(24mW1 − 8W2)

− 1
2 (ε0abcdX+X+ + ε4abcdX−X−)W2

]

ρ3 +
[

(156W 2
1 − 150m2W1 + 15m4 + 81mW2

−20W3 − 4 Û4 + 1
12X+X−Û4 − 6X+W1X−W1)ε

2
abcd

+(ε1abcdX+ − ε3abcdX−)(30W 2
1 − 30m2W1 + 15mW2 − 10

3 W3 − 5
6 Û4)

+ 1
2 (ε0abcdX+X+ + ε4abcdX−X−)(3W 2

1 + 3
2mW2 − 1

3W3 − 1
12 Û4) − 2

3xe(aγ
3 e
bc d)

]

ρ4

+O(ρ5).

(4.8)
From this we obtain as initial data for u3 on I ′0

(c0ab)
3 = 0, (c1ab)

3 = 0, (c+ab)
3 = 0, (c−ab)

3 = 0,

ξ3abcd = 0, χ3
(ab)cd

= 0, f3
ab = 0, (Θ g

g ab)
3 = 0,

Θ3
(ab)cd

= 3X+X+W2ε
0
abcd + (−72mX+W1 + 48X+W2)ε

1
abcd

+(27m3 − 288mW1 + 216W2)ε
2
abcd

+(72mX−W1 − 48X−W2)ε
3
abcd + 3X−X−W2ε

4
abcd,

φ3
abcd = (ε0abcdX+X+ + ε4abcdX−X−)(9W 2

1 − 3
2mW2 −W3 − 1

4 Û4)

+4(ε1abcdX+ − ε3abcdX−)(9W 2
1 − 3

2mW2 − 5W3 − 5
4 Û4)

+6 ε2abcd(12W 2
1 − 3mW2 − 20W3 − 4Û4 + 1

12X+X−Û4 − 6X+W1X−W1)

−4xe(aγ
3 e
bc d) + 3s2abcd,

(4.9)



4 TIME SYMMETRIC SPACE-TIMES 17where γabcd = (2 ρ)−1(ǫacxbd + ǫbdxac) + γ̌abcd denote the 
onne
tion 
oe�
ients on C′.We determine now how the fun
tions Û4, γ3
abcd, and s2abcd are related to the free data on theinitial hypersurfa
e C′. As shown in [4℄, the stru
ture equations on C′, whi
h relate the 
onne
tion
oe�
ients to the 
urvature, read

1√
2

{

∂ργ̌00ab +
√

2
ρ

[

γ̌0000zab − γ̌0011yab + 1√
2
γ̌00ab

]}

= γ̌0000γ̌11ab − γ̌0011γ̌00ab − 1
2sab00 − 1

6
√

2
r yab,

1√
2

{

∂ργ̌11ab +
√

2
ρ

[

γ̌1100yab − γ̌1111yab + 1√
2
γ̌11ab

]}

= γ̌1100γ̌11ab − γ̌1111γ̌00ab + 1
2sab11 − 1

6
√

2
r zab,and the 
omponents of γ̌abcd have Taylor expansions

γ̌01ab = 0, γ̌00ab =
1

3!
γ̌3
00ab ρ

3 +O(ρ4), γ̌11ab =
1

3!
γ̌3
11ab ρ

3 + O(ρ4).From this we get
γ̌3
0001 =− 3

4
√

2
s20001, γ̌3

1101 = 3
4
√

2
s20111, γ̌3

0000 =− 3
5
√

2
s20000,

γ̌3
1100 = 3

5
√

2
s20011 − 1

10
√

2
r2, γ̌3

0011 =− 3
5
√

2
s20011 + 1

10
√

2
r2, γ̌3

1111 = 3
5
√

2
s21111,and obtain thus for the quantity Fabcd = −4 xe(aγ

3 e
bc d) + 3 s2abcd the 
on
ise expressions

F0 = 9
5 s

2
0, F1 = 3 s21, F2 = 17

5 s22 − 1
15r

2, F3 = 3 s23, F4 = 9
5 s

2
4, (4.10)where we set Fi = F(abcd)i

, si = s(abcd)
i
, using the notation introdu
ed in (2.21).In the 
n-gauge the 
urvature vanishes at zeroth and �rst order at spa
e-like in�nity. At se
ondorder this is in general not true and the pres
ription of the free data on S in terms of 
urvaturequantities has to be 
onsistent with the 
n-gauge, the Bian
hi identity, and the regularity 
ondition(2.23) for q = 1. The 
ontent of the 
n-gauge is expressed in se
ond order in the 
urvature by the
onditions

DabD
ab r = 0, DabD

ab scdef = −5

4
DcdDef r, D(abDcd sefgh) = 0 at i.It follows that the spinor

tabcd efgh = DabDcd sefgh − 1

3
habcd ∆h sefgh,where ∆h denotes the Lapla
ian 
orresponding to the metri
 h, is symmetri
 in the �rst and thelast four indi
es separately. Using the Bian
hi identity

Dab sabcd =
1

6
Dcd r,we thus get

1

6
DabDcd r −

1

3
∆h sabcd = tef

ab cdef = ta
e

b
f

cdef = Da
e Db

f scdef +
1

6
∆h sabcd,when
e

Da
eDb

f scdef =
19

24
DabDcd r.No further 
onditions are implied at i on the Ri

i s
alar r at this order. Finally, we get from(2.23) for q = 1

Dh
(aDbc sdef)h = 0 at i.The relations above imply that the expansion of tabcd efgh in terms of symmetri
 spinors and ǫab's
an be expressed 
ompletely in terms of symmetrized twofold 
ontra
tions of this spinor, whi
h in
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an all be expressed in terms of the symmetri
 spinor DabDcd r. Working out this expansionwe get
DabDcd sefgh = h(ab

(ef D
cd)

gh) r −
5

15
habcdDef Dgh r at i, (4.11)in our gauge. Going through the pro
edure des
ribed in se
tion (3.5) of [4℄ we get s(abcd)j

=
s2j ρ

2 +O(ρ3) and r = r2 ρ2 +O(ρ3) with
s2j = 3|2−j|

12

4
∑

k=0

R∗
k

(

4
j

)− 1
2 T k

4 j , r2 = 2√
6

4
∑

k=0

R∗
k T

k
4 2, (4.12)where we set R∗

k = 1
2

(

4
k

)

1
2 D(abDcd)k

r∗, with the star indi
ating that the quantities are given inour gauge at i. The 5 real numbers R∗
k 
ontain pre
isely the information on the metri
 h whi
h
an at this order be freely spe
i�ed in the 
n-gauge.We note that the Cotton spinor is then given at i by

Dab bcdef = −5

8

{

ǫa(bDcdDef) r + ǫb(aDcdDef) r
}

,and the deviation of h from 
onformal �atness at i is en
oded at this order in the symmetri
 spinor
DabDcd r(i).From (4.10), (4.12) we obtain

F0 = 27
20

4
∑

k=0

R∗
k T

k
4 0, F1 = 3

8

4
∑

k=0

R∗
k T

k
4 1, F2 = 3

20
√

6

4
∑

k=0

R∗
k T

k
4 2,

F3 = 3
8

4
∑

k=0

R∗
k T

k
4 3, F4 = 27

20

4
∑

k=0

R∗
k T

k
4 4.Finally, we will 
al
ulate the 
oe�
ient Û4 in the Taylor series (4.6). Only the 
oe�
ients U0,

U1 and U2 of the expansion (4.5) 
ontribute to Û4. These fun
tions have the following expansions(
f. [4℄ for the de�ning integrals).
U0 = exp

{

1

4

∫ ρ

0

(

∆ρ′
2

+ 6
) dρ′

ρ′

}

= 1 +
1

4!

[
√

2 γ3
1100

]

ρ4 +O(ρ5), (4.13)where we used the expansion
∆ρ2 = − 6 +

2
√

2

3
γ3
1100 ρ

4 +O(ρ5).Further we have, with L denoting the Yamabe operator,
U1 =

U0

2 ρ

∫ ρ

0

L[U0]

U0
dρ′ =

1

2

[

−7
√

2

36
γ3
1100 −

1

48
r2

]

ρ2 +O(ρ3). (4.14)Finally, observing (4.12), we obtain
U2 = − U0

2 ρ2

∫ ρ

0

L[U1] ρ
′

U0
dρ′ = O(ρ).Colle
ting results, we arrive at the expansion

U = 1 +
1

4!

[

−4
√

2

3
γ3
1100 −

1

4
r2

]

ρ4 +O(ρ5) = 1 +
1

4!

[

− 3

10
√

6

4
∑

k=0

R∗
k T

k
4 2

]

ρ4 +O(ρ5). (4.15)
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e the initial datum for the 
onformal Weyl spinor is a non-linear fun
tion of the basi
quantities and the transport equations are quadrati
 in the unknowns, we have to make use of theClebs
h-Gordan expansions of produ
ts like T k
2 mT

l
2 n. These are readily 
al
ulated by using thede�nition (2.21). For the quantities relevant in our 
al
ulation we thus obtain

X−W1X+W1 = −
4

∑

k=0

akT
k

4 2 + 2 b, W 2
1 =

4
∑

k=0

akT
k

4 2 + b,

W1X−W1 = −
√

6
2

4
∑

k=0

akT
k

4 3, W1X+W1 =
√

6
2

4
∑

k=0

akT
k

4 1,

(X−W1)
2 =

√
6

4
∑

k=0

akT
k

4 4, (X+W1)
2 =

√
6

4
∑

k=0

akT
k

4 0,

(4.16)
with 
oe�
ients

a0 = 2√
6
W 2

1;2,0, a1 = 2√
3
W1;2,0W1;2,1, a2 = 2

3 (W1;2,0W1;2,2 +W 2
1;2,1),

a3 = 2√
3
W1;2,2W1;2,1, a4 = 2√

6
W 2

1;2,2, b = − 2
3 (W1;2,0W1;2,2 − 1

2W
2
1;2,1).

(4.17)It was shown in [4℄ that the quantity φ3
i has an expansion of the form

φ3
i =

q
∑

m=|4−2i|

m
∑

k=0

φ3
i;m,kT

k
m m

2
−2+i. (4.18)Using the results above in the last equation of (4.9), this expansion redu
es to

φ3
i;m,k = 0, for i = {0, . . . , 4} and m ≥ 8,

φ3
0;6,k =−2

√
30W3;6,k, φ3

1;6,k =−10
√

3W3;6,k, φ3
2;6,k =−20W3;6,k,

φ3
3;6,k =−10

√
3W3;6,k, φ3

4;6,k =−2
√

30W3;6,k,

φ3
0;4,k = 18

√
6 ak − 3

√
6mW2;4,k + 3

2R
∗
k, φ3

1;4,k = 9
√

6 ak − 3
2

√
6mW2;4,k + 3

4R
∗
k,

φ3
2;4,k = 18 ak − 3mW2;4,k + 3

2
√

6
R∗

k, φ3
3;4,k = 9

√
6 ak − 3

2

√
6mW2;4,k + 3

4R
∗
k,

φ3
4;4,k = 18

√
6 ak − 3

√
6mW2;4,k + 3

2R
∗
k,

φ3
i;2,k = 0 for i = {1, 2, 3}, φ3

2;0,0 = 0.

(4.19)
Given these data on I ′0, we are in the position to solve the transport equations on I ′. The �rst of
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an be integrated step by step with the result
(c0ab)

3 = [c031 (τ) + c032 (τ)W1 + c033 (τ)W2]xab + [c034 (τ)X+W1 + c035 (τ)X+W2]zab

+ [c034 (τ)X−W1 + c035 (τ)X−W2]yab,

(c1ab)
3 = [c131 (τ) + c132 (τ)W1]xab + c133 (τ)[X+W1zab +X−W1yab],

(c+ab)
3 = [c±3

1 (τ)X−W1 + c±3
2 (τ)X−W2]xab + [c±3

3 (τ) + c±3
4 (τ)W1 + c±3

5 (τ)W2]zab

+ c±3
6 (τ)X−X−W2yab,

(c−ab)
3 = [c±3

1 (τ)X+W1 + c±3
2 (τ)X+W2]xab + [c±3

3 (τ) + c±3
4 (τ)W1 + c±3

5 (τ)W2]yab

+ c±3
6 (τ)X+X+W2zab,

ξ3abcd = S3
1(τ)X+X+W2ε

0
abcd + [S3

2(τ)X+W1 + S3
3(τ)X+W2]ε

1
abcd

+ [S3
2(τ)X−W1 + S3

3(τ)X−W2]ε
3
abcd − S3

1(τ)X−X−W2ε
4
abcd

+ [S3
4(τ) + S3

5(τ)W1 + S3
6(τ)W2](ǫacxbd + ǫbdxac)

+ [S3
7(τ)X+W1 + S3

8(τ)X+W2](ǫaczbd + ǫbdzac)

+ [S3
7(τ)X−W1 + S3

8(τ)X−W2](ǫacybd + ǫbdyac),

χ3
(ab)cd = K3

1(τ)X+X+W2ε
0
abcd + [K3

2 (τ)X+W1 +K3
3 (τ)X+W2]ε

1
abcd

+ [K3
4 (τ) +K3

5(τ)W1 +K3
6(τ)W2]ε

2
abcd − [K3

2 (τ)X−W1 +K3
3 (τ)X−W2]ε

3
abcd

+K3
1 (τ)X−X−W2ε

4
abcd + [K3

7 (τ) +K3
8(τ)W1]habcd

+ [K3
9 (τ)X−W1 +K3

10(τ)X−W2](ǫacybd + ǫbdyac)

− [K3
9 (τ)X+W1 +K3

10(τ)X+W2](ǫaczbd + ǫbdzac),

f3
ab = [F 3

1 (τ) + F 3
2 (τ)W1 + F 3

3 (τ)W2]xab + [F 3
4 (τ)X−W1 + F 3

5 (τ)X−W2]yab

+ [F 3
4 (τ)X+W1 + F 3

5 (τ)X+W2]zab,

(Θ g
g ab)

3 = [t31(τ) + t32(τ)W1 + t33(τ)W2]xab + [t34(τ)X−W1 + t35(τ)X−W2]yab

+ [t34(τ)X+W1 + t35(τ)X+W2]zab,

Θ3
(ab)cd = T 3

1 (τ)X+X+W2ε
0
abcd + [T 3

2 (τ)X+W1 + T 3
3 (τ)X+W2]ε

1
abcd

+ [T 3
4 (τ) + T 3

5 (τ)W1 + T 3
6 (τ)W2]ε

2
abcd − [T 3

2 (τ)X−W1 + T 3
3 (τ)X−W2]ε

3
abcd

+ T 3
1 (τ)X−X−W2ε

4
abcd + [T 3

7 (τ) + T 3
8 (τ)W1]habcd

+ [T 3
9 (τ)X−W1 + T 3

10(τ)X−W2](ǫacybd + ǫbdyac)

− [T 3
9 (τ)X+W1 + T 3

10(τ)X+W2](ǫaczbd + ǫbdzac).

(4.20)

The τ -dependent fun
tions in these expressions are given in appendix [A.3℄.We now turn to the se
ond of the transport equations (4.4), whi
h is a partial di�erentialequation. The system for the expansion 
oe�
ients φ3
i of the res
aled 
onformal Weyl spinor on

I ′ has the form
(1 + τ)∂τφ

3
0 +X+φ

3
1 − φ3

0 = R0,

∂τφ
3
1 + 1

2X−φ3
0 + 1

2X+φ
3
2 + φ3

1 = R1,

∂τφ
3
2 + 1

2X−φ3
1 + 1

2X+φ
3
3 = R2,

∂τφ
3
3 + 1

2X−φ3
2 + 1

2X+φ
3
4 − φ3

3 = R3,

(1 − τ)∂τφ
3
4 +X−φ3

3 + φ3
4 = R4,

(4.21)



4 TIME SYMMETRIC SPACE-TIMES 21where the right hand sides are given by
R0 = A1(τ)X+X+W2 +A2(τ)(X+W1)

2,

R1 = B1(τ)X+W1 +B2(τ)W1X+W1 +B3(τ)X+W2,

R2 = C1(τ) + C2(τ)W1 + C3(τ)(W1)
2 + C4(τ)W2 + C5(τ)X+W1X−W1,

R3 = B1(−τ)X−W1 +B2(−τ)W1X−W1 +B3(−τ)X−W2,

R4 = −A1(−τ)X−X−W2 −A2(−τ)(X−W1)
2,

(4.22)with τ -dependent fun
tions Ai(τ), Bj(τ), Ck(τ) whi
h are listed in appendix [A.3℄. These fun
-tions have been 
al
ulated from the lower order expansion 
oe�
ients (4.1)-(4.3) and from (4.20).The symmetry inherent in these expressions re�e
ts the time-symmetry of the underlying spa
e-time.Using the expansion (4.18) and 
orresponding expansions of the terms above, we de
ompose(4.21) into the following equations. For m ≥ 6 the 
oe�
ients φ3
i;m,k, k = 0, . . . ,m, satisfy thehomogeneous system

(1 + τ)∂τφ
3
0;m,k − φ3

0;m,k +
√

(m
2 − 1)(m

2 + 2)φ3
1;m,k = 0,

∂τφ
3
1;m,k + φ3

1;m,k − 1
2

√

(m
2 − 1)(m

2 + 2)φ3
0;m,k + 1

2

√

m
2 (m

2 + 1)φ3
2;m,k = 0,

∂τφ
3
2;m,k − 1

2

√

m
2 (m

2 + 1)φ3
1;m,k + 1

2

√

m
2 (m

2 + 1)φ3
3;m,k = 0,

∂τφ
3
3;m,k − φ3

3;m,k − 1
2

√

(m
2 + 1)m

2 φ
3
2;m,k + 1

2

√

(m
2 + 2)(m

2 − 1)φ3
4;m,k = 0,

(1 − τ)∂τφ
3
4;m,k + φ3

4;m,k −
√

(m
2 + 2)(m

2 − 1)φ3
3;m,k = 0.

(4.23)The 
oe�
ients φ3
i;4,k, k = 0, . . . , 4, solve

(1 + τ)∂τφ
3
0;4,k − φ3

0;4,k + 2φ3
1;4,k = 2

√
6A1(τ)W2;4,k +

√
6A2(τ) ak,

∂τφ
3
1;4,k + φ3

1;4,k − φ3
0;4,k + 1

2

√
6φ3

2;4,k = 1
2

√
6B2(τ) ak +

√
6B3(τ)W2;4,k,

∂τφ
3
2;4,k − 1

2

√
6φ3

1;4,k + 1
2

√
6φ3

3;4,k = [C3(τ) − C5(τ)] ak + C4(τ)W2;4,k,

∂τφ
3
3;4,k + φ3

3;4,k + φ3
4;4,k − 1

2

√
6φ3

2;4,k = − 1
2

√
6B2(−τ) ak −

√
6B3(−τ)W2;4,k,

(1 − τ)∂τφ
3
4;4,k + φ3

4;4,k − 2φ3
3;4,k = −2

√
6A1(−τ)W2;4,k −

√
6A2(−τ) ak,

(4.24)
with the 
oe�
ients ak de�ned in (4.17). The fun
tions φ3

i;2,k, k = 0, 1, 2, satisfy
∂τφ

3
1;2,k + φ3

1;2,k + 1√
2
φ3

2;2,k =
√

2B1(τ)W1;2,k,

∂τφ
3
2;2,k − 1√

2
φ3

1;2,k + 1√
2
φ3

3;2,k = C2(τ)W1;2,k,

∂τφ
3
3;2,k − φ3

3;2,k − 1√
2
φ3

2;2,k = −
√

2B1(−τ)W1;2,k,

(4.25)while φ3
2;0,0 is subje
t to

∂τφ
3
2;0,0 = C1(τ) + [C3(τ) + 2C5(τ)] b, (4.26)with b as de�ned in (4.17).These ordinary di�erential systems have to be integrated for the initial data (4.19) at τ = 0.Sin
e the equations are already quite 
ompli
ated, we used the program MapleV.4 for this purpose.Synthesizing the result of these integrations a

ording to (4.18), we obtain the following 
on
ise
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i on I ′.
φ3

0 =−(1 + τ)(1 − τ)5X+X+W3 + 1
12f0(τ)mX+X+W2

+ 1
6g0(τ)(X+W1)

2 + 1
4h0(τ)X+X+r

2,

φ3
1 =−5 (1 + τ)2(1 − τ)4X+W3 + 1

6f1(τ)mX+W2

+ 1
3g1(τ)W1X+W1 + 1

2h1(τ)X+r
2 + 1

2k1(τ)m
2X+W1,

φ3
2 =−20 (1 + τ)3(1 − τ)3W3 + f2(τ)mW2

+g2(τ)(W1)
2 + 3 h2(τ)r

2 + k2(τ)m
2W1

+p(τ)m4 + [q(τ) − g2(τ)] b,

φ3
3 =5 (1 + τ)4(1 − τ)2X−W3 − 1

6f1(−τ)mX−W2

− 1
3g1(−τ)W1X−W1 − 1

2h1(−τ)X−r2 − 1
2k1(−τ)m2X−W1,

φ3
4 =−(1 + τ)5(1 − τ)X−X−W3 + 1

12f0(−τ)mX−X−W2

+ 1
6g0(−τ)(X−W1)

2 + 1
4h0(−τ)X−X−r2,

(4.27)
with τ -dependent fun
tions whi
h 
an be found in appendix [A.3℄. All the fun
tions φ3

i havepolynomial dependen
e on τ .The most interesting feature of this solution is its smoothness at τ = ±1, whi
h, in view ofthe singular behavior of equations (4.23), (4.24) at these points, was not to be expe
ted from thebeginning. To explain its signi�
an
e we indi
ate the argument whi
h led to the asymptoti
 regu-larity 
ondition (2.23). The Bian
hi equations, whi
h were used to obtain the evolution equationsfor the res
aled 
onformal Weyl spinor and, 
onsequently, the se
ond of the transport equations(4.4), form an overdetermined system. Thus there are further equations, to whi
h we refer as tothe 
onstraints. In the present 
ase the 
onstraints take the form
τ∂τφ

3
1 + 1

2 (X+φ
3
2 −X−φ3

0) − 3φ3
1 =S1,

τ∂τφ
3
2 + 1

2 (X+φ
3
3 −X−φ3

1) − 3φ3
2 =S2,

τ∂τφ
3
3 + 1

2 (X+φ
3
4 −X−φ3

2) − 3φ3
3 =S3,

(4.28)where
S1 =F1(τ)X+W1 + F2(τ)W1X+W1 + F3(τ)X+W2,

S2 =G1(τ) +G2(τ)W1 +G3(τ)(W1)
2 +G4(τ)W2 +G5(τ)X−W1X+W1,

S3 =−F1(−τ)X−W1 − F2(−τ)W1X−W1 − F3(−τ)X−W2,

(4.29)with fun
tions whi
h are given in appendix [A.3℄. As before, we obtain equations for the 
oe�
ientsin the expansion (4.18). Together with (4.23), (4.24) these equations imply the systems
(1 + τ)(5 τ2 + 3)∂τφ

3
0;6,k + (5 τ3 − 5 τ2 + 5 τ + 7)φ3

0;6,k − 5 (τ − 1)3φ3
4;6,k = 0,

(1 − τ)(5 τ2 + 3)∂τφ
3
4;6,k + (5 τ3 + 5 τ2 + 5 τ − 7)φ3

0;6,k − 5 (τ + 1)3φ3
4;6,k = 0,

(4.30)and
4(3 + τ2)(1 + τ)∂τφ

3
0;4,k − 2(1 − τ)3φ3

0;4,k + 2(1 − τ)3φ3
4;4,k = T1(τ) ak + T2(τ)W2;4,k,

−4(3 + τ2)(1 − τ)∂τφ
3
4;4,k − 2(1 + τ)3φ3

4;4,k + 2(1 + τ)3φ3
0;4,k = T1(−τ) ak + T2(−τ)W2;4,k,(4.31)with fun
tions T1 and T2 (given in appendix [A.3℄) derived from the fun
tions Ri and Sj .It turns out that on
e these equations have been solved, the remaining expansion 
oe�
ients in(4.18) 
an be obtained either by purely algebrai
 operations or by solving ODE's whi
h are regular



4 TIME SYMMETRIC SPACE-TIMES 23for τ ∈ [−1, 1]. This situation is the same for all orders p ≥ 3 in (4.4). The solutions y(τ), with
y denoting in the 
ase above the 
olumn ve
tor with entries given by the two unknowns of (4.30)resp. of (4.31), 
an then be given for p ≥ 3 in the form (suppressing here all indi
es)

y(τ) = X(τ)X(0)−1 y0 +X(τ)

∫ τ

0

X(τ ′)−1 b(τ ′) dτ ′, (4.32)with X(τ) denoting a fundamental matrix of the system of ODE's under study. The ve
tor-valuedfun
tion b(τ) is built from solutions whi
h are obtained by solving the equations of lower order.In [4℄ the equations (written there in a slightly di�erent form) have been dis
ussed in generaland the fundamental matri
es X(τ) have been derived. As in the 
ase of (4.30), (4.31), thereo

ur homogeneous as well as inhomogeneous systems for general p ≥ 3. Thus for 
ertain valuesof the indi
es (i.e. p and the indi
es whi
h arise from expanding up in terms of the fun
tions
Tm

i
j) the fun
tions b(τ) vanish and the solutions are of the form y(τ) = X(τ)X(0)−1 y0. In these
ases some of the entries of X(τ) have logarithmi
 singularities. The latter drop out of the �nalexpression pre
isely if the asymptoti
 regularity 
onditions (2.23) are satis�ed. In the remaining
ases the entries of the matri
es X(τ) are polynomials in τ but det(X) = c f(τ) (1 − τ2)p−2 withsome 
onstant c 6= 0 and some polynomial f(τ) satisfying |f(τ)| ≥ 1 for |τ | ≤ 1. Furthermore,the 
olumn ve
tor b(τ) has poles. However, it has no logarithmi
 singularities if the solutionsof the equations of lower order have no logarithmi
 singularities. Assuming 
ondition (2.23), theremaining potential sour
e of singularities of up, p ≥ 3, at |τ | = ±1 are the integrals on the righthand sides of the expressions (4.32). These have not been analyzed yet. To understand the generalsituation, it is 
learly of interest to study the problem for the �rst few values of p. Remarkably,in the present 
ase, p = 3, we �nd that the integrand in (4.32) has poles at |τ | = ±1 and alsooutside the interval [−1, 1], that the integral has poles and no logarithmi
 terms, but that the �nalsolution is a polynomial in τ .4.2 The detailed transformation formulaeIn this se
tion we will determine expansions for the 
onformal s
ale fa
tor θ and the SL(2, C)-valuedfun
tion Λa

b whi
h de�ne the transformation from the F-gauge into the NP-gauge as des
ribedin se
tion [2.3℄. To 
al
ulate the NP-
onstants in terms of the initial data we shall determine thevalues of the integrals de�ning these quantities by taking their limits as ρ→ 0. The gauge in whi
hthese integrals are given is based on a se
tion C of the generators of J +. We shall try to push thisse
tion to I+. The usefulness of this pro
edure depends, of 
ourse, on the resulting form of theODE's on J + whi
h were used in [2.3℄ to �x the F-gauge.Near I+ the hypersurfa
e J ± 
an be given as the graph {τ = τs, ρ > 0} of the fun
tion
τs = τs(ρ, ta b) whi
h is given by

τs =
2 Ω

ρ
[−DabΩD

abΩ]−
1
2 . (4.33)Substituting the expansions (4.8) of Ω and those of the frame ve
tors into the expression above,we get the expansion

τs = 1 +
1

2
mρ+ 2W1ρ

2 +O(ρ3). (4.34)Setting in (2.41) Z = ∂τ , we obtain for the right hand side of this equation the expansion
Z(1

2∇βΘ∇βΘ)

Z(Θ)
=

5

3
mρ2 −

(

229

63
m2 − 24

5
W1

)

ρ3 +O(ρ4). (4.35)Suppose T = T 0 ∂τ + T 1 ∂ρ + T+X+ + T−X− is a ve
tor �eld de�ned near and tangent to J+.Denote by T ∗ the ve
tor �eld whi
h is indu
ed by it on J+. If ρ and ta b are used as 
oordinates on
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J +, one �nds for T ∗ the expression T ∗ = T 1 ∂ρ + T+X+ + T−X−. Applying this to the gradientof Θ on J +, we �nd that the left hand side of (2.41) is given by
(

{

−2ρ2 + 19
3 mρ3 +O(ρ4)

}

∂ρ +
{

36
5 X−W1 ρ

3 +O(ρ4)
}

X+ +
{

36
5 X+W1 ρ

3 +O(ρ4)
}

X−
)

(log f).Thus, dividing (2.41) on both sides by ρ2, we get a di�erential equation of the form T ∗(log f) = gon J + with a ve
tor �eld T ∗ and a fun
tion g whi
h extend smoothly to I+ su
h that T ∗ =
−2 ∂ρ + O(ρ) near I+. For given datum f0 on I+ this equation has a unique smooth solutionwhi
h 
an be expanded in terms of ρ. As shown in our general dis
ussion, the value of f0 has tobe 
onstant on C to ful�ll the NP-gauge 
onditions. We 
hoose f0 = − 1

2
√

2
on I+ and �nd for thesolution of (2.41) the expansion

f = − 1

2
√

2

{

1 +
5

6
mρ+

(

191

252
m2 +

6

5
W1

)

ρ2 +O(ρ3)

}

. (4.36)To obtain the matrix elements λa
b of (2.42) by using (2.43) we have to 
al
ulate the derivatives

c∗aa′(Θ) of the 
onformal fa
tor. Using the expansion 
oe�
ients derived in [4.1℄, we get
c∗00′(Θ) = O(ρ4),

c∗01′(Θ) =
√

2
{

X+W1ρ
3 +O(ρ4)

}

, c∗10′(Θ) =
√

2
{

X−W1ρ
3 +O(ρ4)

}

,

c∗11′(Θ) =
√

2
{

−2 ρ+ 3mρ2 + (8W1 − 3m2)ρ3 +O(ρ4)
}

.

(4.37)Substituting these expressions into the formulae (2.43) the matrix elements λ0
1 and λ1

1 
an be
al
ulated expli
itly up to a U(1) phase transformation. Sin
e the 
hoi
e of the latter is notimportant for the following we 
hoose it suitably to obtain
λ0

1 = ρ
1
2

{

1 − 1
3mρ+ (− 7

5W1 + 113
252m

2)ρ2 +O(ρ3)
}

, λ1
1 = ρ

5
2

{

1
2X+W1 +O(ρ)

}

, (4.38)whi
h allows us to determine also the expansion
E◦

11′ =
√

2
{

1
4mρ

2 + (− 7
12m

2 + 2W1)ρ
3 +O(ρ4)

}

∂τ

+
√

2
{

1
2ρ

2 − 7
6mρ

3 + (577
252m

2 − 31
5 W1)ρ

4 +O(ρ5)
}

∂ρ

+
√

2
{

− 9
5X−W1ρ

3 +O(ρ4)
}

X+ +
√

2
{

− 9
5X+W1ρ

3 +O(ρ4)
}

X−.

(4.39)To solve the di�erential equation for the a�ne parameter on the generators of J +, we observe thatalready in the 
ase of Minkowski spa
e-time this parameter is a singular fun
tion of ρ, given by
u◦ = −

√
2ρ−1 + u◦∗. The inspe
tion of the expansion (4.39) suggests to sear
h for a solution of theform

u◦ = w +
√

2

(

−1

ρ
+

7

3
m log ρ

)

. (4.40)This ansatz does indeed lead to a smooth regular equation for w near I+. It allows us to 
al
ulatethe expansion
u◦ =

√
2

{

−1

ρ
+

7

3
m log ρ+ u◦∗ +

(

109

126
m2 +

62

5
W1

)

ρ+O(ρ2)

}

, (4.41)where u◦∗ denotes an arbitrary 
onstant initial datum on I+. As des
ribed in 
hapter [2.3℄, thematrix elements λ0
0 and λ1

0 
an now be determined. We obtain the expansions
λ0

0 = ρ
3
2

{

77
10X−W1 +O(ρ)

}

, λ1
0 = ρ−

1
2

{

−1 − 1
3mρ+O(ρ2)

}

. (4.42)
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b on null in�nity, we 
an 
al
ulate the limits of the NP-spin-
oe�
ients

Γ◦
01′11 and Γ◦

10′00 at I+ as ρ→ 0. Substituting our expansions into the formula for the 
onne
tion
oe�
ients
Γ◦

aa′bc = λf
aλ̄

f ′

a′λ
g
bλ

h
cΓ

∗
ff ′gh − ǫghλ

g
bE

◦
aa′(λh

c), (4.43)we arrive at the expressions
Γ◦

01′11|I+ = lim
ρ→0

Γ◦
01′11 = 0, Γ◦

10′00|I+ = lim
ρ→0

Γ◦
10′00 =

11

6
√

2
m. (4.44)The next step is to 
al
ulate the 
onformal s
ale fa
tor θ by solving equation (2.31). Todetermine the Ri

i spinor 
omponent Φ22 = 1

2RαβE
◦α
11′E

◦ β
11′ , we have to determine the Ri

itensor Rαβ of the metri
 g. The 
omponents of the tensor

Θαβ :=
1

2
R̂(αβ) −

1

12
gαβR̂+

1

4
R̂[αβ] (4.45)in the frame {c∗aa′}, where R̂αβ resp. R̂ denote the Ri

i tensor and the 
urvature s
alar indu
ed bythe Weyl 
onne
tion ∇̂ with 
oe�
ients Γ̂ β

α γ = Γ β
α γ +δβ

αfγ +δβ
γ fα−gαγf

β (
f. [3℄), are among thevariables of the 
onformal �eld equations. Thus they are known to 3rd-order in the ρ-
oordinate.From the general transformation law
R̂αβ = Rαβ − 2∇(αfβ) + 2fαfβ − gαβ(∇γf

γ + 2fγf
γ) + 4∇[αfβ], (4.46)we get the relation

Θαβ =
1

2

(

Rαβ − 1

6
gαβR

)

−∇βfα + fαfβ − 1

2
gαβfγf

γ . (4.47)From this we derive the expression
Φ22 = ΘαβE

◦α
11′E

◦β
11′ + E◦

11′(E◦α
11′ fα) − (E◦α

11′ fα)2. (4.48)Substituting here (4.39) and the expansion of the one-form f obtained from the solution of the�eld equations we get the expansion
Φ22 =

5

6
mρ3 +

(

−167

42
m2 +

18

5
W1

)

ρ4 +O(ρ5) (4.49)on J+.On I+ is indu
ed in our gauge the standard S2-metri
. Therefore we solve equation (2.31) withthe initial 
ondition
lim
ρ→0

θ = 1. (4.50)For the 
onformal s
ale fa
tor we obtain then the expansion
θ = 1 +

5

6
mρ+

(

6

5
W1 +

191

252
m2

)

ρ2 +O(ρ3). (4.51)By the 
hoi
e of the initial value for the 
onformal fa
tor the s
ale fun
tion p appearing in thegauge transformations is also �xed with
p ≡ 1 on J+. (4.52)In the 
onformal gauge 
hara
terized by the 
onformal fa
tor Θ⋆ := θΘ the generators of nullin�nity are expansion free. Pro
eeding as indi
ated before, we 
onstru
t the NP-frame {E•

aa′}.



4 TIME SYMMETRIC SPACE-TIMES 26Observing the expansions (2.42) and (2.45) of the null ve
tors E◦
11′ resp. E•

11′ and taking intoa

ount the properties of the 
onformal res
aling we get the relations
Λ0

1 = θ−
1
2 λ0

1e
ic, Λ1

1 = θ−
1
2 λ1

1e
ic, (4.53)with fun
tion c, 
hara
terizing the phase freedom, whi
h will be �xed later. Using (4.38) and (4.51)we get the expansions

Λ0
1 = ρ

1
2

{

1 − 3
4 mρ+

(

15
32 m

2 − 2W1

)

ρ2 +O(ρ3)
}

eic, Λ1
1 = ρ

5
2

{

1
2 X+W1 +O(ρ)

}

eic, (4.54)from whi
h we derive in turn the expansion
E•

11′ =
√

2
{

1
4mρ

2 + (−m2 + 2W1)ρ
3 +O(ρ4)

}

∂τ

+
√

2
{

1
2ρ

2 − 2mρ3 + (253
56 m

2 − 37
5 W1)ρ

4 +O(ρ5)
}

∂ρ

+
√

2
{

− 9
5X−W1ρ

3 +O(ρ4)
}

X+ +
√

2
{

− 9
5X+W1ρ

3 +O(ρ4)
}

X−,

(4.55)of the ve
tor �eld E•
11′ tangent to the null generators of J +. Furthermore the new a�ne parameterhas the form

u• =
√

2

{

−1

ρ
+ 4m log ρ+ u•∗ +

(

195

28
m2 +

74

5
W1

)

ρ+O(ρ2)

}

, (4.56)with a free 
onstant u•∗. Using the formula analogous to (2.44) we derive
Λ0

0 = ρ
1
2

{

− 101
10 X−W1ρ+O(ρ2)

}

e−ic, Λ1
0 = ρ−

1
2

{

−1 − 3
4 mρ+O(ρ2)

}

e−ic. (4.57)To determine of the phase fa
tor e±ic we solve equation (2.33) along the generators of null in�nity.Expanding the right hand side, we get
E•

11′(c) = 2 Im

{

Λ̂f
1
¯̂
Λ

f ′

1′Λ̂
g
1Λ̂

h
0Γ

⋆
ff ′gh − Λ̂0

0E
•
11′ (Λ̂1

1) + Λ̂1
0E

•
11′(Λ̂0

1)
}

, (4.58)where Λ̂a
b has been obtained from the matrix Λa

b above by setting c = 0. Substituting theknown data into the equation above, the solution c whi
h is needed to satisfy the gauge 
ondition
Γ•

11′01|J = 0, is found to have an expansion
c = O(ρ2), (4.59)whi
h entails the expansions

eic = 1 +O(ρ2), E•
11′(eic) = O(ρ3), E•

01′ (eic) = O(ρ2). (4.60)The matrix elements Λa
b are now determined on null in�nity to the pre
ision needed in ourlater 
al
ulations, but in the de�nition (3.5) of the NP-
onstants appear some of the transversalderivatives E•

00′(Λa
b) of the matrix elements as well. Using the general formulae (2.47) we get theexpansions

E•
00′(Λ0

0) =
√

2ρ
1
2

{

113
40 X−W1 +O(ρ)

}

, E•
00′(Λ1

0) =
√

2ρ−
3
2

{

1
4 + 85

48mρ+O(ρ2)
}

,

E•
00′(Λ0

1) =
√

2ρ−
1
2

{

1
4 + 67

48 mρ+O(ρ2)
}

, E•
00′(Λ1

1) =
√

2ρ
3
2

{

− 47
40X+W1 +O(ρ)

}

,
(4.61)where we have taken the expressions (4.60) for the phase fa
tor into a

ount.The transversal derivative of the 
onformal s
ale fa
tor E•

00′(θ) is �xed on null in�nity by therequirement R[g⋆]|J+ = 0. Thus it has to satisfy equation (2.38) with initial datum
E•

00′(θ)|I+ = lim
ρ→0

θ p−1Γ◦
10′00 = lim

ρ→0
Γ◦

10′00. (4.62)
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b and the 
onformal s
ale fa
tor θ, all the terms appearing in equation (2.38)
an be 
al
ulated in a straightforward way, with the ex
eption of the 
urvature s
alar R[g], whose
al
ulation requires some explanation. Contra
ting equation (4.47) we get the identity

R[g] = 6 (Θaa′bb′ + ∇aa′fbb′ + faa′fbb′)ǫ
abǭa

′b′ , (4.63)where
∇aa′fbb′ = c∗aa′(fbb′) − (Γ∗

aa′cbǭb′c′ + Γ̄∗
aa′c′b′ǫbc)f

cc′.Expanding these quantities we get
R[g] =

(

23
3 m

2 − 168
5 W1

)

ρ2 +O(ρ3),

F ⋆ =
(

23
36 m

2 − 4W1 + 6
5a−X+W1 − 6

5a+X−W1

)

ρ2 +O(ρ3),
(4.64)whi
h entail with (2.38) the expansion

E•
00′(θ) =

√
2

{

11

12
m+

(

13

6
m2 − 4W1 +

6

5
a−X+W1 −

6

5
a+X−W1

)

ρ+O(ρ2)

}

. (4.65)Given the expansion above, we 
an 
al
ulate expansions of various quantities of physi
al interest,su
h as the Bondi energy momentum, the angular momentum, and the radiation �eld on J +. Sin
ethe 
oe�
ients in these expansions are given dire
tly in terms of the initial data on the Cau
hyhypersurfa
e S, the expansions 
ontain information about the evolution of the �eld over an in�niterange. As an example we will 
al
ulate below the NP-
onstants.We 
lose this se
tion with a remark on the BMS group, the group of transformation betweendi�erent Bondi-type systems. It was shown in [13℄ that for solutions for whi
h the the 
ondition
lim

u•→−∞
Γ•

[e] 01′00 = 0 
ould be realized at spa
e-like in�nity, where the subs
ript �e� is to denotethe ele
tri
 part of the 
onsidered spin-
oe�
ient, one 
an single out the inhomogeneous Lorentzgroup as the group of transformations preserving this 
ondition. It turns out that under ourassumptions, whi
h in
lude in parti
ular the time-symmetry of the solution, the even stronger
ondition lim
u•→−∞

Γ•
01′00 = 0 is satis�ed. This means that for our solutions there is a natural wayto single out the inhomogeneous Lorentz group as asymptoti
 symmetry group.4.3 The NP-
onstants in time symmetri
 spa
e-timesUsing the formulae of the previous 
hapters we 
an express the NP-
onstants in terms of the initialdata for the 
orresponding time symmetri
 solutions. All the quantities appearing in the integral(3.5) are known in terms of the initial data to the pre
ision needed to perform the limit ρ→ 0.We have to express the spin-2 spheri
al harmoni
s 2Ȳ2,m in terms of the fun
tions T j

m k. By(3.3) the de�nition of the ð-operator is based on the 
hoi
e of the 
omplex null ve
tor �eld E•
01′ .In appendix [A.1℄ we have applied the standard 
hoi
e and derived the relations between theoperators X+ and ð and between the spin-2 spheri
al harmoni
s 2Y2,m and the fun
tions T j

m k.By this 
hoi
e we should have E•
01′ = i√

2
X+ on I+. However, 
al
ulating the ve
tor E•

01′ in the
onventions used above, we get
E•

01′ |I+ =
1√
2
X−. (4.66)There are two 
auses of the di�eren
e. We �xed the phase fa
tor su
h as to simplify the 
al
ulationsand the 
onventions used in the F-gauge and the NP-gauge are su
h that one has to swap the twospinors of the dyad to get from one to the other 
onvention. The form (4.66) of E•

01′ 
orrespondsto −i
√

2m̄, if m denotes the standard 
omplex null ve
tor used in appendix [A.1℄. This means that
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orresponds to the operator −ið̄ instead of ð dis
ussed in the appendix. Observing this and(A.9) in (3.4) we obtain the formula
Gm = i2−m(5π)

1
2

∮

T̄ 2−m
4 4 E

•
00′(φ0)µ for m = −2, . . . , 2, (4.67)where µ = 1

4π2 dSdα is the Haar-measure on SU(2).To 
al
ulate (4.67) we expand the integrand in terms of ρ and take the limit as ρ → 0. Forthis we have to determine for E•
00′(φ0) only the terms of order O(1). In the limit only these termsgive a 
ontribution while the terms of order ρ−1 
an
el ea
h other. Using the expli
it results of theprevious 
hapters we arrive after some lengthy but straightforward 
al
ulations at the expression
Gm

∣

∣

I+= lim
ρ→0

Gm = i2−m(10π)
1
2

∮

T̄ 2−m
4 4

(

− 5

32
X−X−r

2 +
635

8
mX−X−W2 −

1905

2
(X−W1)

2 +
16

3
X−X−W3

)

µ.
(4.68)Expanding the fun
tions in the bra
kets in terms of the fun
tions T k

m j and using the orthogonalityrelations satis�ed by these fun
tions we 
an perform the integration. All terms expe
t the last onegive some 
ontributions. Using the formulae (4.7), (4.12) and (4.16) we get the �nal expression
Gm

∣

∣

I+=
i2−m

2
(15π)

1
2

{

127 (mW2;4,2−m − 6 a2−m) − 1

2
√

6
R∗

2−m

}

, (4.69)where the 
oe�
ients a2−m, whi
h are quadrati
 in W1;2,k, are given by (4.17). We note that thestru
ture of this more general expression is essentially the same as that of the expression obtainedby Newman and Penrose in the 
ase of stati
 and stationary solutions.5 Con
luding remarksWe have seen that, under the assumptions explained above, 
ertain �elds whi
h are given nearspa
e-like in�nity in terms of Bondi-type systems 
an be expressed in a straightforward way interms of the gauge 
onditions used in [4℄ and 
an thus be related dire
tly to the stru
ture of theCau
hy data whi
h give rise to the spa
e-times by Einstein evolution. The 
al
ulations involvedare quite lengthy but taking into a

ount that we relate quantities whi
h are obtained by a non-linear evolution over an in�nite domain of spa
e-time to the data from whi
h they arise, the overallstru
ture of the argument is surprisingly simple.ACKNOWLEDGMENTS: One of us (H.F.) would like to thank the ITP in Santa Barbaraand the KFKI RMKI in Budapest for hospitality, the work of H.F. was supported in part by theNational S
ien
e Foundation and Grant No. PHY94-07194. J.K. would like to thank the AEI inPotsdam for hospitality where part of this work was 
ompleted, his resear
h was supported by thegrant OTKA-D25135.A AppendixA.1 X+ and the ð-operatorIn this se
tion we des
ribe the relation between the operators ð, ð̄ introdu
ed in [13℄ and theoperators X+, X−, X used in [4℄.Consider on the group SU(2), whi
h is di�eomorphi
 to S3, 
oordinates {x, y, α} su
h thatoutside a set of measure zero the general group element tab ∈ SU(2) is given by
tab =

1
√

1 + ζζ̄

(

eiα ie−iαζ
ieiαζ̄ e−iα

)

, (A.1)



A APPENDIX 29with ζ = x+ iy. Then α is a parameter and x and y are 
onstant on the orbits of the the subgroup
U(1). The tangent ve
tors ∂x, ∂y, respe
tively ∂α at the unit element 
oin
ide with the generators
u1, u2, and u3 of the Lie algebra of SU(2). Writing P = 1

2 (1 + ζζ̄), we get for the 
orrespondingleft invariant ve
tor �elds the expressions
Zu1

= P cos(2α)∂x + P sin(2α)∂y + 1
2 [x sin(2α) − y cos(2α)]∂α,

Zu2
= −P sin(2α)∂x + P cos(2α)∂y + 1

2 [y sin(2α) + x cos(2α)]∂α,

Zu3
= 1

2∂α,

(A.2)when
e
X+ = −Zu2

− iZu1
= e2iα{−i

√
2(m− i

2
√

2
ζ̄∂α}, X = −2iZu3

= −i∂α,

X− = −Zu2
+ iZu1

= e−2iα{i
√

2(m̄+ i

2
√

2
ζ∂α},

(A.3)where the ve
tors m =
√

2P∂ζ and m̄ =
√

2P∂ζ̄ de�ne a 
omplex dyad tangent to the surfa
es
{α = const.} whi
h is null with respe
t to the standard S2-metri
 ds2 = P−2dζ dζ̄ on thesesurfa
es.We may identify SU(2) with the spin frame bundle over the base manifold S2 with stru
-ture group U(1). The se
tion {α = 0} 
an be identi�ed with the base manifold (with a pointomitted). Here we take the 
omplex null frame {m, m̄} de�ned above, where a group element
ua

b = diag(eiα, e−iα) ∈ U(1) a
ts as u({m, m̄}) = {e2iαm, e−2iαm̄}. A fun
tion η on S3 is said tohave spin weight N, if it 
an be de
omposed as η|ζ,α = e2Niαη0, where the fun
tion η0 is indepen-dent of the parameter α along the �bers. The ð-operator is de�ned by the 
omplex null ve
tor mand a
ts on a spin-N fun
tion asðη|ζ,α =
√

2
{

m(η0) +Nη0 m̄
γmβδβmγ

}

e2(N+1)iα =
√

2
{

m(η0) +
1√
2
Nζ̄η0

}

e2(N+1)iα, (A.4)where δ denotes the Levi-Civita di�erential operator indu
ed by the standard S2-metri
. Thismeans that ðη has spin weight N +1. (This treatment of the fun
tions with spin weight and the ðoperator is a bit di�erent from the one whi
h 
an be found in the literature (
f. [13, 9, 10℄), wherethe expressions are evaluated on some 
ross-se
tion of S3.)The horizontal lift of the ve
tor m de�ned with respe
t to the Levi-Civita 
onne
tion δ is givenby
mH |ζ,α = m− i

2
√

2
ζ̂∂α. (A.5)This means that the ð-operator on S3 is given byð|ζ,α =

√
2 e2iαmH . (A.6)Comparing the formulae (A.3), (A.5) and (A.6) we get the relations

X+ = −ið, X− = ið̄, X = −[ð, ð̄]. (A.7)The spheri
al harmoni
s Yl,m are de�ned as an orthogonal fun
tion system on the sphere S2.They 
an be extended to S3 as fun
tions with zero spin weight, i.e. they be
ame independent onthe parameter along the �bers. This means that they 
an be expanded as Yl,m =
∑

k,j

ckjT
j

2k k interms of the fun
tions T j
m k. The spheri
al harmoni
s satisfy the equation ðð̄Yl,m = −l(l+1)Yl,m,so using the relations (A.7) and (2.22) we arrive at the relation

Yl,m =
∑

j

cjT
j

2l l. (A.8)



A APPENDIX 30Taking into a

ount the expli
it 
oordinate expressions of the group elements one 
ould determinethe expansion 
oe�
ients cj . Using the de�nition of the spin harmoni
s sYl,m (
f. [9℄) and equations(2.22), (A.7) and (A.8) one 
an also derive the relation between the fun
tions sYl,m and thefun
tions T j
m k. We shall only need the transformation formulae

Y2,m= (−i)4−m
(

5
4π

)
1
2 T 2−m

4 2 ,

2Y2,m= (−i)2−m
(

5
4π

)
1
2 T 2−m

4 0 , −2Y2,m = (−i)2−m
(

5
4π

)
1
2T 2−m

4 4 .

(A.9)A.2 Some useful spinor identitiesHere we des
ribe irredu
ible de
ompositions of spinors with four unprimed indi
es in terms of the�primary spinors� εi
abcd, habcd, xab, yab, zab and ǫab, where
xab =

√
2ǫ

0
(a ǫ

1
b) , yab = − 1√

2
ǫ 1
a ǫ 1

b , zab = 1√
2
ǫ 0
a ǫ 0

b ,

εi
abcd = ǫ

(e
(a ǫ f

b ǫ
g

c ǫ
h)i

d) , habcd = −ǫa(cǫd)b.
(A.10)It is well known that a spinor Aabcd satisfying Aabcd = A(ab)(cd) = −Acdab 
an be de
omposed inthe form Aabcd = ǫacAbd + ǫbdAac with Aab = 1

2 A
f

afb = A(ab) and that a spinor Sabcd satisfying
Sabcd = S(ab)(cd) = Scdab 
an be written in the form Sabcd = S(abcd) + 1

3habcdS with S := S ef
ef .It follows from this that an arbitrary four index spinor with symmetries Xabcd = X(ab)(cd) 
an beexpanded in terms of εi

abcd, ǫacxbd + ǫbdxac, ǫacybd + ǫbdyac, ǫaczbd + ǫbdzac and habcd.The following relations were frequently used in the 
al
ulations:
yabxcd = −ε3abcd −

1

2
√

2
(ǫacybd + ǫbdyac), zabxcd = ε1abcd +

1

2
√

2
(ǫaczbd + ǫbdzac);

xabx
ab = −1, xaby

ab = 0, xabz
ab = 0, yaby

ab = 0, yabz
ab = − 1

2 , zabz
ab = 0;

x f
a xbf = 1

2ǫab, y f
a xbf = 1√

2
yab, z f

a xbf = − 1√
2
zab,

y f
a ybf = 0, y f

a zbf = − 1
2ǫ

1
a ǫ

0
b , z f

a zbf = 0;

ε0abcdx
cd = 0, ε0abcdy

cd = −zab, ε0abcdz
cd = 0, ε1abcdx

cd = − 1
2zab,

ε1abcdy
cd = − 1

4xab, ε1abcdz
cd = 0, ε2abcdx

cd = − 1
3xab, ε2abcdy

cd = 1
6yab,

ε2abcdz
cd = 1

6zab, ε3abcdx
cd = 1

2yab, ε3abcdy
cd = 0, ε3abcdz

cd = 1
4xab,

ε4abcdx
cd = 0, ε4abcdy

cd = 0, ε4abcdz
cd = −yab;

x(abxcd) = 2 ε2abcd, x(abycd) = −ε3abcd, x(abzcd) = ε1abcd,

y(abycd) = 1
2ε

4
abcd, y(abzcd) = − 1

2ε
2
abcd, z(abzcd) = 1

2ε
0
abcd;

x
f

(a ε0
b)cdf

= 1√
2
ε0abcd, x

f

(a ε1
b)cdf

= 1
2
√

2
zabxcd, x

f

(a ε2
b)cdf

= 1
12 (ǫacxbd + ǫbdxac),

x
f

(a ε3
b)cdf

= 1
2
√

2
yabxcd, x

f

(a ε4
b)cdf

= − 1√
2
ε4abcd, h

f

ab(c xd)f = 1
2 (ǫacxbd + ǫbdxac);

y
f

(d ε2
c)abf

=− 1
2
√

2
ε3abcd + 1

24 (ǫacybd + ǫbdyac), z
f

(d ε2
c)abf

=− 1
2
√

2
ε1abcd + 1

24 (ǫaczbd + ǫbdzac);

ε2 ef
ab ε1cdef =− 1

12ε
1
abcd + 1

8
√

2
(ǫaczbd + ǫbdzac), ε2 ef

ab ε3cdef =− 1
12ε

3
abcd + 1

8
√

2
(ǫacybd + ǫbdyac);

ε2abcdε
2 abcd = 1

6 , ε2 ef
ab ε2cdef = − 1

6ε
2
abcd + 1

18habcd.



A APPENDIX 31A.3 The detailed expressions for up, p = 0, . . . , 3The τ -dependent fun
tions o

uring in (4.2).
c01(τ) =m (4

3 τ
3 − 1

3 τ
5), c±1(τ) =m (τ2 − 1

6 τ
4), S1(τ) =

√
2m (1

2 τ
2 − 1

4 τ
4),

K1(τ) =m (−12 τ + 4 τ3), F 1(τ) = 1
3 mτ4, t1(τ) =

√
2 4 τ m,

T 1(τ) =6m (1 − τ2), φ1
1(τ) =−12 (1 − τ)2, φ1

2(τ) =−m2 (18 τ2 − 3 τ4),

φ1
3(τ) =−36 + 36 τ2.The τ -dependent fun
tions o

uring in (4.3).

c021 (τ) = m2 (−2 τ3 − 3 τ5 + 8
7 τ

7 − 1
7 τ

9), c022 (τ) = 16 τ3 − 26
5 τ5 + 6

5 τ
7,

c023 (τ) = 8 τ3 − 7
5 τ

5 − 3
5 τ

7, c12(τ) = m (−4 τ2 + 2
3τ

4),

c±2
1 (τ) = m2 (−2 τ2 + 3 τ4 − 8

9 τ
6 + 1

14 τ
8), c±2

2 (τ) = 12 τ2 − 3 τ4 + 3
5 τ

6,

c±2
3 (τ) = −6 τ2 − 1

2 τ
4 + 3

10 τ
6, S2

1(τ) =
√

2m2 (4
3 τ

4 − 2
9 τ

6 − 1
28 τ

8),

S2
2(τ) =

√
2 (6 τ2 − 5

2 τ
4 + 9

10 τ
6), S2

3(τ) =
√

2 (− 5
4 τ

4 + 3 τ2 − 9
20 τ

6),

S2
4(τ) = −36 τ2 + 11τ4 + 3

5 τ
6, K2

1(τ) = m2 (24 τ − 8 τ3 + 4 τ5 − 4
21 τ

7),

K2
2(τ) = −144 τ + 72 τ3 − 108

5 τ5, K2
3(τ) = m2 (− 20

3 τ
3 + 8

3 τ
5 − 20

63 τ
7),

K2
4(τ) = −

√
2 2 τ3, K2

5(τ) = −48 τ + 36
5 τ5,

F 2
1 (τ) = m2 (−2 τ2 + 1

3 τ
4 − 4

9 τ
6 + 1

7 τ
8), F 2

2 (τ) = 2 τ4 − 6
5 τ

6,

F 2
3 (τ) = 3 τ4 + 3

5 τ
6, t21(τ) =

√
2m2 (−12 τ − 8

3 τ
3 + 4

3 τ
5),

t22(τ) =
√

2 (48 τ − 16 τ3), t23(τ) =
√

2 (24 τ + 8 τ3),

T 2
1 (τ) = m2 (−12 + 12 τ2 − 10 τ4 + 2

3 τ
6), T 2

2 (τ) = 72 − 72 τ2 + 36 τ4,

T 2
3 (τ) = m2 (4 τ2 − 8

3 τ
4 + 4

9 τ
6), T 2

4 (τ) = −
√

2 6 τ2,

T 2
5 (τ) = 24 − 12 τ4, φ2

1(τ) = −(−1 + τ)4,

φ2
2(τ) = 4m (37

10 τ
6 − 41

5 τ
5 − 41

2 τ
4 + 46 τ3 − 18 τ2), φ2

3(τ) = 16 (1 + τ) (−1 + τ)3,

φ2
4(τ) = 6 (− 8

21 τ
8 + 14

3 τ
6 − 15 τ4 + 6 τ2)m3, φ2

5(τ) = 6m (− 46
5 τ

6 + 62 τ4 − 72 τ2),

φ2
6(τ) = −72 (1 + τ)2 (−1 + τ)2.



A APPENDIX 32The τ -dependent fun
tions o

uring in (4.20).
c031 (τ) = (3 τ3 + 18 τ5 + 283

21 τ7 − 1510
189 τ

9 + 2972
2079 τ

11 − 74
693 τ

13)m3,

c032 (τ) = (−44 τ3 − 588
5 τ5 + 268

7 τ7 − 58
7 τ

9 + 6
5 τ

11)m,

c033 (τ) = 48 τ3 − 96
5 τ5 + 312

35 τ
7 − 12

7 τ
9,

c034 (τ) = (−20 τ3 − 6 τ5 + 439
70 τ

7 − 573
280 τ

9 − 1
40 τ

11)m,

c035 (τ) = 16 τ3 − 4 τ5 − 4
7 τ

7 + 4
7 τ

9,

c131 (τ) = (12 τ2 + 15 τ4 − 14
3 τ

6 + 3
7 τ

8)m2,

c132 (τ) = −72 τ2 + 18 τ4 − 18
5 τ6,

c133 (τ) = −36 τ2 + 3 τ4 + 9
5 τ

6,

c±3
1 (τ) = (18 τ2 + 12 τ4 − 31

5 τ
6 + 3

2 τ
8 − 3

40 τ
10)m,

c±3
2 (τ) = −12 τ2 + 4

5 τ
6 − 2

7 τ
8,

c±3
3 (τ) = (9

2 τ
2 − 33

2 τ
4 + 50

3 τ
6 − 515

84 τ8 + 25
27 τ

10 − 34
693 τ

12)m3,

c±3
4 (τ) = (−48 τ2 + 105 τ4 − 453

10 τ
6 + 2847

280 τ8 − 7
8 τ

10)m,

c±3
5 (τ) = 36 τ2 − 12 τ4 + 24

5 τ6 − 6
7 τ

8,

c±3
6 (τ) = −3 τ2 − 2 τ4 + 3

5 τ
6 + 1

14 τ
8,

S3
1(τ) = −9 τ2 − 2 τ4 + 13

5 τ
6 + 1

14 τ
8,

S3
2(τ) = (108 τ2 − 168 τ4 + 86 τ6 − 39

5 τ8 − 3
20 τ

10)m,

S3
3(τ) = −72 τ2 + 48 τ4 − 72

5 τ6 − 4
7 τ

8,

S3
4(τ) = (− 9

4 τ
2 − 37

4 τ4 + 19
2 τ6 − 827

168 τ
8 + 355

378 τ
10 − 6

77 τ
12)

√
2m3,

S3
5(τ) = (6 τ2 + 69

2 τ
4 − 333

20 τ6 + 1999
560 τ

8 + 13
80 τ

10)
√

2m,

S3
6(τ) = (18 τ2 − 6 τ4 + 24

5 τ6 − 9
7 τ

8)
√

2,

S3
7(τ) = (−3 τ2 − 33

2 τ
4 + 177

20 τ
6 − 379

112 τ
8 + 1

40 τ
10)

√
2m3,

S3
8(τ) = (6 τ2 − 2 τ4 + 3

7 τ
8)

√
2m,

K3
1(τ) = −6 τ − 8 τ3 + 18

5 τ
5 + 4

7 τ
7,

K3
2(τ) = (144 τ + 12 τ3 − 351

5 τ5 + 237
5 τ7 − 17

4 τ
9)m,

K3
3(τ) = −96 τ + 16 τ3 + 72

5 τ
5 − 64

7 τ7,

K3
4(τ) = (−54 τ + 12 τ3 − 216 τ5 + 796

7 τ7 − 440
21 τ9 + 16

11 τ
11)m3,

K3
5(τ) = (576 τ − 216 τ3 + 1962

5 τ5 − 714
5 τ7 + 23

2 τ
9)m,

K3
6(τ) = −432 τ + 288 τ3 − 864

5 τ5 + 288
7 τ7,

K3
7(τ) = (40 τ3 − 16 τ5 + 100

21 τ
7 − 160

189 τ
9 + 20

693 τ
11)m3,

K3
8(τ) = (−240 τ3 + 582

5 τ5 − 218
7 τ7 + 23

6 τ9)m,

K3
9(τ) = (9 τ3 − 33

20 τ
5 − 13

20 τ
7 + 1

80 τ
9)
√

2m,

K3
10(τ) = (−4 τ3 + 6

5 τ
5)

√
2,
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F 3

1 (τ) = (9 τ2 + 2 τ4 − 7
3 τ

6 + 26
7 τ8 − 20

21 τ
10 + 74

693 τ
12)m3,

F 3
2 (τ) = (−60 τ2 + 36 τ4 − 12 τ6 + 106

35 τ
8 − 6

5 τ
10)m,

F 3
3 (τ) = − 24

5 τ
6 + 12

7 τ
8,

F 3
4 (τ) = (−12 τ2 − 6 τ4 + 7

2 τ
6 + 169

56 τ8 + 1
40 τ

10)m,

F 3
5 (τ) = 4 τ4 − 4

5 τ
6 − 4

7 τ
8,

t31(τ) = (36 τ + 20 τ3 + 46 τ5 − 296
21 τ

7 + 272
189 τ

9)
√

2m3,

t32(τ) = (−312 τ − 24 τ3 − 72
5 τ

5 − 40
7 τ7)

√
2m,

t33(τ) = (144 τ − 96 τ3 + 144
5 τ5)

√
2,

t34(τ) = (−96 τ − 12 τ3 + 294
5 τ5 − 86

35 τ
7)

√
2m,

t35(τ) = (48 τ − 48
5 τ5)

√
2,

T 3
1 (τ) = 3 + 9 τ2 − 3 τ4 − τ6,

T 3
2 (τ) = (−72 − 36 τ2 + 81 τ4 − 423

5 τ6 + 33
4 τ8)m,

T 3
3 (τ) = 48 − 24 τ2 + 16 τ6,

T 3
4 (τ) = (27 − 18 τ2 + 180 τ4 − 134 τ6 + 204

7 τ8 − 16
7 τ10)m3,

T 3
5 (τ) = (−288 + 216 τ2 − 558 τ4 + 1326

5 τ6 − 243
10 τ8)m,

T 3
6 (τ) = 216 − 216 τ2 + 216 τ4 − 72 τ6,

T 3
7 (τ) = (−24 τ2 + 16 τ4 − 20

3 τ
6 + 32

21 τ
8 − 4

63 τ
10)m3,

T 3
8 (τ) = (144 τ2 − 102 τ4 + 178

5 τ6 − 57
10 τ

8)m,

T 3
9 (τ) = (27 τ2 − 81

4 τ
4 − 11

20 τ
6 + 9

80 τ
8)
√

2m,

T 3
10(τ) = (−12 τ2 + 6 τ4)

√
2.The τ -dependent fun
tions o

uring in (4.22).

A1(τ) =
(

36 τ − 78 τ2 + 82 τ3 − 97
2 τ

4 + 6
5 τ

5 + 169
5 τ6 − 208

7 τ7 + 54
7 τ8

)

m,

A2(τ) = −648 τ + 1728 τ2 − 1692 τ3 + 432 τ4 + 2592
5 τ5 − 2286

5 τ6 + 756
5 τ7 − 162

5 τ8,

B1(τ) = (108 τ − 234 τ2 − 396 τ3 + 1503 τ4 − 579 τ5 − 14939
20 τ6

+ 11682
35 τ7 + 40413

560 τ8 − 2591
70 τ9 + 177

80 τ10)m2,

B2(τ) = −648 τ + 1404 τ2 − 540 τ3 − 810 τ4 + 1404
5 τ5 + 1458

5 τ6 − 108 τ7 + 108
5 τ8,

B3(τ) = (−72 τ + 168 τ2 + 24 τ3 − 274 τ4 + 120 τ5 + 306
5 τ6 − 32 τ7 + 6

7 τ
8)m,

C1(τ) = (−27 τ + 342 τ3 − 696 τ5 + 2598
7 τ7 − 4555

63 τ9 + 1079
231 τ

11)m4,

C2(τ) = (504 τ − 3492 τ3 + 17607
5 τ5 − 41289

35 τ7 + 16559
140 τ9)m2,

C3(τ) = −1296 τ + 2376 τ3 − 4752
5 τ5 + 216 τ7,

C4(τ) = (−432 τ + 792 τ3 − 3072
5 τ5 + 816

7 τ7)m,

C5(τ) = −216 τ + 108 τ3 + 648
5 τ5 + 324

5 τ7.



REFERENCES 34The τ -dependent fun
tions o

uring in (4.27).
f0(τ) =−18 + 216 τ2 − 240 τ3 + 18 τ4 − 48 τ5 + 204 τ6 − 144 τ7 + 30 τ8,

f1(τ) =−9 − 216 τ2 + 696 τ3 − 198 τ4 − 2544
5 τ5 + 984

5 τ6 + 936
7 τ7 − 411

7 τ8,

f2(τ) =−3 − 216 τ2 + 372 τ4 − 936
5 τ6 + 219

7 τ8,

g0(τ) =108 − 1944 τ2 + 4752 τ3 − 5724 τ4 + 19008
5 τ5 − 6264

5 τ6 + 864
5 τ7 − 108

5 τ8,

g1(τ) =54 − 972 τ2 + 1620 τ3 + 378 τ4 − 11448
5 τ5 + 5778

5 τ6 + 108
5 τ7 − 108

5 τ8,

g2(τ) =18 − 540 τ2 + 972 τ4 − 2808
5 τ6 + 108

5 τ8,

h0(τ) = 3
2 , h1(τ) = 3

4 , h2(τ) = 1
4 ,

k1(τ) =108 τ2 − 276 τ3 − 129 τ4 + 4077
5 τ5 − 3289

10 τ6 − 9439
35 τ7 + 32803

280 τ8 + 463
20 τ9 − 2721

280 τ
10,

k2(τ) =252 τ2 − 942 τ4 + 3614
5 τ6 − 6341

35 τ8 + 99
7 τ10,

p(τ) =− 27
2 τ2 + 171

2 τ4 − 116 τ6 + 1299
28 τ8 − 911

126 τ
10 + 1079

2772 τ
12,

q(τ) = 216
5 τ8 − 576

5 τ6 + 648 τ4 − 864 τ2.The τ -dependent fun
tions o

uring in (4.29).
F1(τ) = (72 τ2 − 1071

2 τ4 + 4077
5 τ5 − 2639

20 τ6 − 18878
35 τ7 + 113287

560 τ8 + 1389
20 τ9 − 15087

560 τ10)m2,

F2(τ) = −864 τ2 + 1584 τ3 − 810 τ4 − 1296
5 τ5 + 882

5 τ6 + 432
5 τ7 − 108

5 τ8,

F3(τ) = (−36 τ2 − 40 τ3 + 156 τ4 − 888
5 τ5 + 194

5 τ6 + 456
7 τ7 − 198

7 τ8)m,

G1(τ) = (27
2 τ2 + 171

2 τ4 − 348 τ6 + 6495
28 τ8 − 911

18 τ
10 + 1079

308 τ12)m4,

G2(τ) = (−144 τ2 − 1071 τ4 + 3679
2 τ6 − 220837

280 τ8 + 24999
280 τ10)m2,

G3(τ) = 1116 τ4 − 468 τ6 + 648
5 τ8,

G4(τ) = 174mτ4 − 1824
5 mτ6 + 684

7 mτ8,

G5(τ) = 432 τ2 − 234 τ4 + 306
5 τ6 + 216

5 τ8.The τ -dependent fun
tions o

uring in (4.31).
T1(τ) =−46656 τ + 124416 τ2 − 138240 τ3 + 51840 τ4 + 31104 τ5 − 133056

5 τ6

+12096τ7 − 50112
5 τ8 + 10368

5 τ9,

T2(τ) = (5184 τ − 3456 τ2 − 5088mτ3 − 6048 τ4 + 12288 τ5 + 384 τ6 − 4128 τ7

+1824 τ8 − 1344 τ9 + 384 τ10)m.Referen
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