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Bondi-type systems near spae-like in�nity and thealulation of the NP-onstantsHelmut FriedrihAlbert-Einstein-InstitutMax-Plank-Institut für GravitationsphysikAm Mühlenberg 514476 Golm, GermanyJános KánnárMTA KFKIRészeske és Mag�zikai KutatóintézetBudapest, Pf. 49,1525, HungaryAbstratWe relate Bondi systems near spae-like in�nity to another type of gauge onditions. Whilethe former are based on null in�nity, the latter are de�ned in terms of Einstein propagation,the onformal struture, and data on some Cauhy hypersurfae. For a ertain lass of timesymmetri spae-times we study an expansion whih allows us to determine the behavior ofvarious �elds arising in Bondi systems in the region of spae-time where null in�nity touhesspae-like in�nity. The oe�ients of these expansions an be read o� from the initial data.We obtain in partiular expressions for the onstants disovered by Newman and Penrose(NP-onstants) in terms of the initial data. For this purpose we alulate a ertain expansionintrodued in [4℄ up to 3rd order.
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1 INTRODUCTION 21 IntrodutionMost studies of gravitational �elds near null in�nity are based on the use of �Bondi-type� oordi-nates. In the �rst investigations of the behavior of the �eld near null in�nity (f. [1℄, [11℄, [22℄)Bondi-type oordinates played a ruial role in the spei�ation of the fall-o� behavior of the �eld.The haraterization of the asymptoti behavior of gravitational �elds near null in�nity in terms ofthe onformal geometry subsequently suggested by Penrose ([16℄, [17℄) does not require the use ofsuh a spei� lass of oordinates. Nevertheless, Bondi-type oordinates are usually also employedin this ontext beause they allow us to exploit in a onvenient way ertain features of the null onestruture. If the gravitational �eld is, however, to be analyzed in detail in the region where futureand past null in�nity J ± �touh� spae-like in�nity, and if this is to be done suh that J − and J+are treated on an equal footing, Bondi-type oordinates are not partiularly helpful. Already inthe simplest non-trivial ase, that of the Shwarzshild solution, the use of double null oordinatesleads to di�ulties.In [4℄ an initial value problem for the onformal vauum �eld equations has been formulatedwhih is designed to analyze near spae-like and null in�nity the Einstein propagation of asymptot-ially �at data on a Cauhy hypersurfae S̃ in a �nite piture. In this setting, whih is based on er-tain onformally invariant strutures, spae-like in�nity is represented by a ylinder I ≃]−1, 1[×S2suh that the sets J± ≃ R × S2, representing future resp. past null in�nity, �touh� the ylinderat its two boundary omponent I± = {±1}×S2. Though the underlying fats about the evolutionequations whih have been used here hold for muh more general situations, the piture has beenanalyzed so far under ertain simplifying assumptions on the initial data. The data are assumed tobe time-symmetri and the onformal struture, whih then represents the free datum, is assumedto extend smoothly through spae-like in�nity suh that the latter is represented by a point i in anextended manifold S = S̃ ∪ {i}. The ylinder I is obtained by blowing up the point i to a sphere
I0 ≃ {0} × S2 and by smoothly extending the solution in a partiular geometri gauge.It an be seen already under these assumptions on the data that the new piture allows us torelate near I± properties of the data on S̃, whih touhes I at I0, to properties of the �eld on nullin�nity by solving a hierarhy of di�erential equations on I. These equations have been used in [4℄to derive ertain �asymptoti regularity onditions� for the initial data whose imposition preventsa ertain lass of logarithmi singularities of the �eld at the sets I± from arising. However, itstill has to be shown that the asymptoti regularity onditions ensure a time evolution of the datawhih extends near spae-like in�nity smoothly to null in�nity.In the present artile we analyze the onsisteny of the early investigations of �elds near nullin�nity with the piture developed in [4℄ and we demonstrate to some extent the e�ieny of thelatter in alulating near spae-like in�nity quantities on null in�nity from the given data. For thispurpose we make two di�erent types of assumptions. On the one hand we shall onsider spae-times arising from time symmetri vauum data as desribed above whih satisfy the asymptotiregularity onditions. Our alulations of �elds on the ylinder I rely only on these assumptions.On the other hand we shall assume that these data develop into solutions whih admit a smoothonformal struture at null in�nity and that the gauge onditions proposed in [4℄ extend in asmooth and regular way to J ±. We expet that our analysis will ontribute information on thesolution proess whih in the end will allow us to remove the seond type of assumptions and toshow that the existene of the smooth evolution an be derived solely from assumptions on theinitial data.The present artile an be divided into three di�erent, though related, parts.
− In [4℄ an expansion of the �eld near spae-like in�nity in terms of a �radial� oordinate ρ, whihvanishes on the ylinder I representing spae-like in�nity, has been introdued. We alulate theoe�ients of this expansion to third order. This alulation is not only of interest beause itallows us to study the NP-onstants, whih will be disussed below, but also beause it providessome information on the smoothness of the evolution near null in�nity for �elds arising fromdata subjet only to our �rst type of assumptions. Though the asymptoti regularity onditionsreferred to above exlude ertain types of logarithmi singularities in the evolution near I, thereexists another potential soure of singularities. To show that in fat no further singularities an



2 RELATING DIFFERENT GAUGE CONDITIONS NEAR NULL INFINITY 3arise at any order, it is learly of interest to understand the situation for the �rst few orders ofthe expansion. The potential singularities should show up for the �rst time at the order of ouralulation. Our alulations show that at this order they are in fat exluded by the asymptotiregularity onditions.We note that our expansion of the �eld near spae-like and null in�nity, whih we arry outin terms of the onformally resaled �elds and assoiated gauge onditions, an be translatedinto an expansion of the �eld near spae-like in�nity in terms of the �physial� �eld and suitableoordinates. We shall not arry out suh a translation beause the main point of our onsiderationis the fat that we an relate quantities on null in�nity to the data on S̃.
− Bondi-type oordinates and ertain related frame �elds (f. the de�nition of the �NP-gauge�below) are based on the struture of null in�nity. The gauge onditions in [4℄ (f. the de�nitionof the �F-gauge� below) are based on Cauhy data, the Einstein equations, and ertain propertiesof onformal strutures. We disuss in general terms how to onstrut near null in�nity thetransformation from the F-gauge into the NP-gauge. Using the expansion referred to above we thenobtain expansions near I+ of various quantities given in the NP-gauge in terms of the oordinatesarising in the F-gauge and oe�ients whih are given diretly in terms of the initial data on S.We note that these expansions imply expansions of quantities of physial interest on null in�nitysuh as the Bondi-energy-momentum, the angular momentum (f. [19℄ for various suggestions),the radiation �eld, et. in terms of the oordinate ρ on null in�nity, whih vanishes at I+, andoe�ients derived from the initial data.Sine we need for our onsiderations quite detailed information on the struture of the initialdata near spae-like in�nity, our expliit alulation are done only for time-symmetri data. How-ever, many of our onsiderations apply also to more general situations and as soon as su�ientinformation on data with non-vanishing extrinsi urvature beomes available (f. [2℄), we shall beable to derive by similar alulations relations between �elds on J− and J +. These relations willontain non-trivial information on the evolution proess.
− As a spei� appliation of this disussion we reonsider the onstants whih have been assoiatedby Newman and Penrose with asymptotially simple spae-times (f. [12℄, [14℄). The NP-onstantsare given by ertain integrals over spherial uts of null in�nity and have been shown to be ab-solutely onserved in the sense of being independent of the hoie of ut. We derive for themexpressions in terms of the initial data on S̃. Suh expressions have been given already in thestati ase in [14℄. We derive analogous expressions for a muh more general lass of spae-timesarising from time-symmetri initial data. For these data the time evolution of the �eld is in generalnot known expliitly as it is the ase in the presene of a time-like Killing vetor �eld. The fatthat we an nevertheless obtain expressions in terms of the data illustrates to some extent thee�ieny of the new piture. Though various authors (f. [8℄, [20℄, [21℄) disuss these onstantsfrom di�erent points of view, no onsensus has been found onerning their geometrial/physialsigni�ane. Whether our disussion will help larify the meaning of the NP-onstants remains tobe seen. One of our main reasons for looking at them is the expetation that they may play a rolein the onstrution of spae-times. In numerial alulations they may ertainly provide a hekon the numerial auray.2 Relating di�erent gauge onditions near null in�nityWe begin by giving an outline of the �nite, regular initial value problem near spae-like in�nity.This has been introdued in the artile [4℄, to whih we refer for more details. It involves a gaugewhih we refer to as the F-gauge. We then reall the NP-gauge, employed in [14℄, to disuss thegravitational �eld near null in�nity. Finally, we disuss how the NP-gauge is related to the F-gauge.2.1 The regular �nite initial value problem near spae-like in�nityWe want to disuss asymptotially �at solutions (M̃, g̃) to Einstein's �eld equations R̃µν = 0in a neighborhood M̃a of spae-like in�nity whih overs parts of future and past null in�nity.The solutions arise from asymptotially �at data on a smooth spae-like Cauhy hypersurfae



2 RELATING DIFFERENT GAUGE CONDITIONS NEAR NULL INFINITY 4
S̃ ⊂ M̃ whih are suh that the intrinsi onformal struture on S̃ admits an extension witha ertain smoothness to a smooth ompat manifold S obtained from S̃ by adjoining a point iwhih represents spae-like in�nity, S = S̃ ∪ {i}. We assume that the solution, i.e. the evolutionin time of these data, possesses a smooth onformal extension (M, g,Θ) suh that we an write
M = M̃ ∪ J − ∪ J +, where J ± ≃ R × S2 represent future respetively past null in�nity and Θdenotes a smooth �onformal fator� on M suh that Θ > 0 and g = Θ2 g̃ on M̃ while Θ = 0,
dΘ 6= 0 on J ±.To analyze in detail the onsequenes of the �eld equations in a neighborhood of spae-likein�nity whih overs parts of J±, the situation above has been disussed in the [4℄ in terms of aertain prinipal �ber bundle M ′

a → Ma with projetion π, 4−dimensional base spae Ma, andbundle spae M ′
a whih is a 5−dimensional manifold with boundary and edges. To desribe thissetting further we need to introdue some notation.We employ the two-omponents spinor and spae-spinor formalisms as used in [4℄ where ǫab,

ǫab are the antisymmetri spinors with ǫ01 = 1, ǫ01 = 1. We set τaa′

= ǫ0
a ǭ0′

a′

+ ǫ1
a ǭ1′

a′ . By
SU(2) will be denoted the group of 2 × 2 matries t = (ta b) satisfying

ǫac t
a

b t
c

d = ǫbd, τac t
a

b t
c

d = τbd,and by U(1) its subgroup of diagonal matries. A basis of the Lie-algebra of SU(2) is then givenby the 2 × 2 matries
u1 =

1

2

(

0 i
i 0

)

, u2 =
1

2

(

0 −1
1 0

)

, u3 =
1

2

(

i 0
0 −i

)

, (2.1)of whih u3 generates U(1).In the following will be desribed in detail the regular �nite initial value problem at spae-likein�nity formulated in [4℄. Though we shall remark in passing on the onstrution of the manifold
M ′

a and the underlying gauge onditions, we refer for the full details to the original artile. Themanifold M ′
a is given by

M ′
a = {(τ, ρ, t) ∈ R × R × SU(2)| 0 ≤ ρ < a, −ω

ρ
≤ τ ≤ ω

ρ
},where a is a positive real number and ω = ω(ρ, t) a smooth non-negative funtion, given below,suh that ω

ρ
extends to a smooth positive funtion with ω

ρ
→ 1 as ρ → 0. By ρ and τ will alsobe denoted the projetions of M ′

a onto the �rst respetively seond omponent of R × R × SU(2).Then any oordinate system on SU(2) will de�ne together with the funtions ρ and τ a oordinatesystem on M ′
a. There will, however, arise no need for us to introdue oordinates on SU(2). Wedenote the projetion onto the third omponent of R×R×SU(2) by t and regard the SU(2)-valuedfuntion t as a �oordinate� on M ′

a.The natural ation on the right of U(1) on SU(2) indues a smooth ation of U(1) onM ′
a. Thequotient M ′

a/U(1) under this ation will be denoted byMa and the indued projetion ofM ′
a onto

Ma by π. We shall write N = π(N ′) for any subset N ′ of M ′
a. The following subsets of M ′

a willbe important for us:
J ′± = {τ = ± ω

ρ
, ρ > 0} ≃ R × S3,

I ′ = {|τ | < 1, ρ = 0} ≃ R × S3, I
′± = {τ = ± 1, ρ = 0} ≃ S3,

C′ = {τ = 0}, I
′0 = {τ = 0, ρ = 0} = C′ ∩ I ′ ≃ S3.Beause they over only a part of null in�nity lose to spae-like in�nity, we should have denotedthe �rst sets more preisely by J ′±

a but we dropped the subsript a for onveniene. By de�nitionthe part of the physial manifold M̃ whih is overed byMa is given by M̃a = Ma \ (J−∪J +∪I ∪



2 RELATING DIFFERENT GAUGE CONDITIONS NEAR NULL INFINITY 5
I− ∪ I+), the sets J± represent future resp. past null in�nity while the set I represents spae-likein�nity for M̃a and the metri indued on it by g̃. Thus M̃a overs a neighborhood of spae-likeand null in�nity in M̃ . The edges I± ≃ S2 of Ma at whih future resp. past null in�nity touhesspae-like in�nity will play an important role in the following. We shall refer to the set C as theinitial hypersurfae sine by de�nition C ∩ M̃a = C \ I0 = S̃ ∩ M̃a. There exists a neighborhood
Ba of i in S and smooth surjetive map π′ : C → Ba whih is injetive on C \ I0 and whih maps
I0 onto i.As desribed in [4℄, the manifold M ′

a is obtained essentially by lifting Ma into the bundle ofnormalized (with respet to ǫab) spin frames. The set I ′0 ≃ SU(2) orresponds to the set ofnormalized (with respet to ǫab and τab) spin frames at the point i. With eah suh spin frame weassoiate a unit tangent vetor of S at i. With this vetor we assoiate in turn a urve through iin Ba and extend the spin frame along this urve by a ertain transport proess. Thus we obtainspin frames at eah point of Ba \ {i}. These frames are transported o� Ba \ {i} ≃ C \ I0 into thespae-timeMa by a ertain propagation law along onformal geodesis orthogonal to C. The latterare given in our desription of M ′
a by the urves ρ = const., t = const. with τ a natural parameteralong them. Sine for given unit tangent vetor at i the spin frame de�ning it is determined up toa phase fator, the spin frames at points of Ma \ (I ∪ I− ∪ I+) are also given up to multipliationsby phase fators, whih orresponds to the ation of the group U(1). The transport laws as well asfurther details of the gauge onditions are enoded in the form of the data and ertain propertiesof the unknowns for the redued equations.Sine it turns out to be most onvenient, we will arry out all our alulations on the manifold

M ′
a and use for the subsets of M ′

a introdued above the same names as for their images under π.We denote by Zui
the vetor �eld generated by ui and the obvious ation of SU(2) on M ′

aand de�ne omplex vetor �elds X+ = −(Zu2
+ iZu1

), X− = −(Zu2
− iZu1

), X = −2 i Zu3
whihsatisfy the ommutation relations

[X, X+] = 2X+, [X, X−] = −2X−, [X+, X−] = −X. (2.2)The onformal �eld equations, in the form used in [4℄, are given in a partiular (onformal,oordinate, and frame) gauge whih is explained, together with the equations, most naturally inthe ontext of normal onformal Cartan onnetions (f. [3℄). Again, we shall not go throughthe omplete argument but just desribe the unknowns and equations. To obtain the equationson M ′
a, we use the fat that the solder and the onnetion forms on the bundle of spin framesindue orresponding forms σaa′ , ωa

b on M ′
a \ I ′ whih extend smoothly to M ′

a. The metri
ǫab ǭa′b′ σ

aa′

σbb′ on M ′
a is degenerate beause < σaa′

, X >= 0 (the angle brakets denoting thedual pairing), but it desends to the Lorentz metri g on π(M ′
a \ I ′).The equations are written as equations for the �vetor�-valued unknown

u = (c0 ab, c
1

ab, c
±

ab, χ(ab)cd, ξabcd, fab, Θ(ab)cd, Θ g
g ab, φabcd),whose omponents have the following meaning. We onsider the smooth vetor �elds

caa′ = c0 aa′ ∂τ + c1 aa′∂ρ + c+ aa′ X+ + c− aa′ X−whih satisfy < σaa′

, cbb′ >= ǫb
a ǭb′

a′ on M ′
a \ I ′. All �elds are written in spae spinor notationbased on the vetor �eld √

2 ∂τ = τaa′

caa′ . Sine τaa′

caa′ is invariant under the ation of U(1) itdesends to a vetor �eld on π(M ′
a\I ′) whih is time-like, has norm τaa′ τaa′

= 2, and is orthogonalto S̃. We have
caa′ =

1√
2
τaa′ ∂τ − τb

a′ cab (2.3)with cab ≡ τ(a
b′ cb)b′ = c0 ab ∂τ + c1 ab∂ρ + c+ abX+ + c− abX−. The onnetion de�nes onnetionoe�ients Γabcd = τb

a′

Γaa′cd = τb
a′

< ωcd, caa′ > whih an be deomposed in the form
Γabcd =

1√
2

(ξabcd − χabcd) =
1√
2

(ξabcd − χ(ab)cd) −
1

2
ǫab fcd,



2 RELATING DIFFERENT GAUGE CONDITIONS NEAR NULL INFINITY 6with �elds satisfying χabcd = χab(cd), ξabcd = ξ(ab)(cd), fab = f(ab). The urvature is representedby the resaled onformal Weyl spinor �eld φabcd = φ(abcd) and by a spinor �eld Θabcd = Θab(cd)whih is the Rii spinor �eld of a ertain Weyl onnetion for g̃.The pull bak π∗ Θ, again referred to as the onformal fator and denoted by Θ, extendssmoothly to M ′
a and is known in our gauge expliitly. It is given by

Θ =
Ω

ρ

(

1 − τ2 ρ
2

ω2

)

, (2.4)and appears, together with the 1-form
dab = 2 ρ

U xab − ρDabU − ρ2DabW

(U + ρW )3
,(with xab as given in appendix [A.2℄) whih haraterizes in a ertain way the di�erene betweenthe Levi-Civita onnetion of g and the Weyl onnetion referred to above, as oe�ient in theonformal �eld equations. We have set here

Ω = ρ2

(U+ρ W )2 ,

ω ≡ 2 Ω (−Dab ΩDab Ω)−
1
2 = ρ (U + ρW )

{

U2 + 2 ρU xabDabU − ρ2DabU DabU

+2 ρ2U xabDabW − 2 ρ3DabU DabW − ρ4DabW DabW
}− 1

2 ,

(2.5)where the smooth funtions U = U(ρ, t), W = W (ρ, t), whih satisfy U = 1 and W = 1
2mADM on

I0, are given as part of the initial data on the initial hypersurfae C′, on whih Dab is the intrinsiovariant derivative. Note that the �elds Ω, ω, dab do not depend on τ . The onformal fatorsatis�es the relations (f. [3℄)
Θ > 0 on M ′

a, {Θ = 0} = J ′− ∪ I ′− ∪ I ′ ∪ I ′+ ∪ J ′+,

caa′(Θ) 6= 0 and ǫab ǭa
′b′ caa′(Θ) cbb′(Θ) = 0 on J ′±.

(2.6)In the following we shall refer to the oordinates τ , ρ, t, the frame {caa′}, and the onformal gaugede�ned by (2.4) as the F-gauge.2.1.1 The onformal evolution equationsWe reall here a few general features of the onformal �eld equations and refer again to [4℄ formore details. The onformal �eld equations imply on M ′
a evolution equations of the form

{A0 ∂τ +A1 ∂ρ +A+X+ +A−X−} u = C u, (2.7)where A0, A1, A±, C denote matrix-valued funtions whih depend on u and the oordinates. Thesystem is, for u lose to the data given below and for the oordinates taking values on M ′
a near

C′, symmetri hyperboli. Writing u = (v, φ) with
v = (c0 ab, c

1
ab, c

±
ab, χ(ab)cd, ξabcd, fab, Θ(ab)cd, Θ g

g ab), φ = (φabcd), (2.8)the evolution equations for v are obtained, with our assumptions on the gauge, from the struturalequations of the normal onformal Cartan onnetion assoiated with g. They read expliitly
∂τc

0
ab = −χ(ab)

ef c0 ef − fab, (2.9)
∂τ c

α
ab = −χ(ab)

ef cα ef , α = 1,+,−, (2.10)
∂τξabcd = −χ(ab)

ef ξefcd +
1√
2

(ǫac χ(bd)ef + ǫbd χ(ac)ef ) fef (2.11)



2 RELATING DIFFERENT GAUGE CONDITIONS NEAR NULL INFINITY 7
−
√

2χ(ab)(c
e fd)e −

1

2
(ǫac Θf

f
bd + ǫbd Θf

f
ac) − iΘµabcd,

∂τfab = −χ(ab)
ef fef +

1√
2

Θf
f

ab, (2.12)
∂τχ(ab)cd = −χ(ab)

ef χefcd − Θ(cd)ab + Θ ηabcd, (2.13)
∂τΘ(ab)cd = −χ(cd)

ef Θ(ab)ef − ∂τΘ ηabcd + i
√

2 de
(aµb)cde, (2.14)

∂τΘg
g

ab = −χ(ab)
ef Θg

g
ef +

√
2 def ηabef , (2.15)where ηabcd = 1

2 (φabcd + φ+
abcd) and µabcd = − i

2 (φabcd − φ+
abcd), with τa

a′

τb
b′τc

c′τd
d′

φ̄a′b′c′d′

= φ+
abcd, denote the eletri and the magneti part of φabcd respetively. These equations are ofthe form

∂τ v = K(v) +Q(v, v) + L(φ), (2.16)with a linear funtion K and a quadrati funtion Q of v, both with onstant oe�ients, and alinear funtion L of φ with oe�ients whih depend on the oordinates. We have L = 0 on I ′.The evolution equations for φ, derived from the Bianhi identities, are genuine partial di�erentialequations. They will be onsidered in more detail below.2.1.2 The initial dataConsequenes of the �nite regular initial value problem have been worked out so far for Cauhydata whih are time symmetri and admit a smooth extension through spae-like in�nity. In fat,it has been assumed in [4℄, as will be done in the following, that the onformal struture is analytinear spae-like in�nity. We note that this ondition is imposed only for onveniene and ould berelaxed. The free Cauhy data on S̃ are then given by the onformal struture of a smooth metri
h on S whih is analyti in some h−normal oordinates near i.We assume h to be given near i in a ertain onformal gauge, the n-gauge (f. [4℄). This reduesthe freedom of performing onformal resalings h→ θ2 h to the hoie of the 4 real parameters θ(i),
θ,a(i), the value of θ in a neighborhood of i then being determined by the onformal gauge. Weassume that Ba is a onvex h−normal neighborhood of i and that ρ desends to a radial normaloordinate on Ba.The metri h̃ indued by g̃ on S̃ is related to h by a resaling h̃ = Ω−2 h, where the onformalfator Ω satis�es ρΩ− 1

2 → 1 as ρ→ 0 and the Lihnerowiz (Yamabe) equation
(DαD

α − 1

8
r)(Ω− 1

2 ) = 0. (2.17)Here D denotes the ovariant derivative and r the Rii salar of h. The form (2.5) of Ω in termsof the funtions U and W is a onsequene of this equation and the required asymptoti behaviorof Ω, whih ensures that h̃ is asymptotially �at.The initial data on C′ for the onformal �eld equations are derived from h and Ω. They aregiven by
c0 ab = 0, c1 ab = ρ xab, c+ ab = zab + ρ č+ ab, c− ab = yab + ρ č− ab,

χ(ab)cd = 0, ξabcd =
√

2 ρ γ̌abcd, fab = xab,

Θabcd = − ρ2

Ω D(abDcd)Ω + 1
12 ρ

2 r habcd, φabcd = ρ3

Ω2 (D(abDcd)Ω + Ω sabcd),

(2.18)



2 RELATING DIFFERENT GAUGE CONDITIONS NEAR NULL INFINITY 8with xab, yab, zab, and the expression habcd of the metri h in spae spinor notation as given inappendix [A.2℄, and sabcd = s(abcd) the trae free part of the Rii tensor of h.In hapter [4.1℄ we shall disuss how the oe�ients č± ab, γ̌abcd de�ning the frame and theonnetion oe�ients are determined on C′ by the (3−dimensional) struture equations from rand sabcd. The observation (f. [4℄) that the data above extend smoothly to I ′0 ⊂ C′ is mostimportant for our onstrution.2.1.3 The transport equations on IAt �rst sight it may appear that the initial data on S̃, thus in partiular on C′, should be om-plemented by boundary data on I ′ for the solutions of equations (2.7) to be uniquely determined.However, it turns out that for any smooth solution to the evolution equations onM ′
a whih oinideson C′ with the initial data above, we have the important relation

A1 = 0 on I ′. (2.19)As a onsequene, equations (2.7) redue to a symmetri hyperboli system of the form {A0 ∂τ +
A+X+ + A−X−} u = C u on I ′ whih allows us to determine the unknown u on I ′ uniquely interms of the value of u on I ′0. Thus we �nd, as was to be expeted, that any smooth solution of(2.7) on M ′

a taking on C′ our initial data is determined uniquely by its data on S̃.More generally, by applying repeatedly the derivative operator ∂ρ to the evolution equations,restriting to I ′, and observing (2.19), we obtain symmetri hyperboli transport equations
{A0 ∂τ +A+X+ +A−X−} up = Cp u

p + gp on I ′, p = 0, 1, 2, . . . , (2.20)for the quantities up = (∂p
ρ u)|I′ . Here the matrix-valued funtion Cp and the vetor valued funtion

gp depend on p and the quantities u0, . . . , up−1, but the matries A0, A± are universal in the sensethat they depend neither on p nor on the initial data. We shall employ the notation above moregenerally, suh that applying it to the �elds sabcd and r on the Cauhy hypersurfae we have
sp

abcd = (∂p
ρ sabcd)|I′0 and rp = (∂p

ρ r)|I′0 , respetively.To integrate the transport equations (2.20) on I ′, we expand all �elds in terms of the matrixelements of unitary representations of SU(2) whih are given, in terms of the matrix elements
(ta b)a,b=0,1 of the 2−dimensional standard representation of t ∈ SU(2), by the omplex-valuedfuntions

SU(2, C) ∋ t→ Tm
j

k(t) =
(

m
j

)
1
2

(

m
k

)
1
2 t(b1 (a1

. . . tbm)j
am)k

, T0
0

0(t) = 1,

j, k = 0, . . . ,m, m = 1, 2, 3, . . .
(2.21)Here, as in the following, setting a string of indies into brakets with a lower index k is meantto indiate that the indies are symmetrized and then k of them are set equal to 1 while theremaining ones are set equal to 0. The funtions √

m+ 1Tm
j

k(t) form a omplete orthonormalset in the Hilbert spae L2(µ, SU(2)) where µ denotes the normalized Haar-measure on SU(2).Under omplex onjugation we have
Tm

j
k(t) = (−1)j+k Tm

m−j
m−k(t), t ∈ SU(2),and, for 0 ≤ k, j ≤ m, m = 0, 1, 2, . . . , we have with βm,j = {j (m− j + 1)} 1

2

X Tm
k

j = (m− 2j)Tm
k

j , X+ Tm
k

j = βm,j Tm
k

j−1, X− Tm
k

j = −βm,j+1 Tm
k

j+1. (2.22)A funtion f satisfying a relation Xf = 2sf with an integer or half integer number s, is said tohave spin weight s. We note the spin raising (lowering) property of the ation of X± on suhfuntions implied by (2.2), i.e. XX± f = 2 (s± 1)X± f . By onstrution of the manifold M ′
a anyfuntion ouring in our formalism has a well de�ned spin weight. This leads to a simpli�ationof the expansion in terms of the funtions T k

m j . The general form of these expansions has beendisussed in detail in [4℄ and will be assumed here without further explanation.



2 RELATING DIFFERENT GAUGE CONDITIONS NEAR NULL INFINITY 9The quantities u0, u1, u2 have been determined in [4℄. They are given here (with a orretionand a useful hange of notation) at the beginning of hapter [4.1℄. The funtions u3 will bealulated in hapter [4.1℄. The quantities up, p = 2, 3, . . . have been shown (f. [4℄) to develop aertain type of logarithmi singularity on the sets I ′± unless the free datum h on S satis�es theasymptoti regularity ondition
D(aqbq

. . . Da1b1 babcd)(i) = 0, (2.23)for q = 0, 1, 2, . . . , where the spinor �eld babcd = b(abcd) represents the Cotton tensor of h. Thevalues of the funtions up, p ≤ 3, whih will be given below, have been alulated on I ′ under theassumption that (2.23) is satis�ed for q ≤ 1. The analysis of the quantities up, to the extent towhih it has been arried out in [4℄, indiates another potential soure for a singular behavior ofthe �elds up, p ≥ 3, at I ′±. This will be disussed further in hapter [4.1℄.2.2 The NP-gaugeFor simpliity we restrit our disussions now to the future of S̃ inM , we refer to future null in�nitysimply as to null in�nity and we denote it by J . In the following we shall desribe a ertain lass ofgauge onditions on (M, g) near null in�nity, referred to as the NP-gauge, whih omprise ertainrequirements on the onformal gauge, ertain oordinates, and a ertain orthonormal frame �eld.Though this gauge is known, our desription will be quite detailed, beause we will have to referto it later. The Levi-Civita onnetion indued by the onformal metri g will be denoted by ∇.Suppose {E◦
aa′} is a smooth frame �eld, satisfying g(E◦

aa′ , E◦
bb′ ) = ǫab ǭa′b′ , whih is de�nedin a neighborhood of null in�nity. We all it an �adapted frame�, if it satis�es the followingonditions. The vetor �eld E◦

11′ is tangent to and parallel propagated along null in�nity. On theneighborhood on whih the frame is given there is exists a smooth funtion u◦ whih indues ana�ne parameter on the null generators of J suh that E◦
11′ (u◦) = 1, whih is onstant on nullhypersurfaes transverse to J , and whih satis�es E◦α

00′ = gαβ∇βu
◦. Thus E◦

00′ is tangent to thehypersurfaes {u◦ = const.} and geodesi. The �elds E◦
11′ , E◦

00′ as well as the �elds E◦
01′ , E◦

10′ ,whih are neessarily tangent to the slies {u◦ = const.} ∩ J , are parallelly propagated in thediretion of E◦
00′ .In terms of its NP-spin-oe�ients (note the slight di�erene of our notation with that of [11℄)

Γ◦
aa′bc =

1

2

{

E◦α
aa′E

◦β
b1′∇αE

◦
c0′β + E◦α

aa′E
◦β
c1′∇αE

◦
b0′β

}

, (2.24)an adapted frame is haraterized by the properties
Γ◦

10′11 = 0, Γ◦
11′11 = 0 on J ,

Γ◦
10′00 = Γ̄◦

01′0′0′ , Γ◦
11′00 = Γ̄◦

01′0′1′ + Γ◦
01′01, Γ◦

00′ab = 0, a, b = 0, 1, near J .
(2.25)The �rst of these onditions tells us that J is shear free. This well known fat follows from theequation for the trae free part sαβ of the Rii tensor of the onformal vauum metri g,

Θ sαβ =
1

2
gαβ∇γ∇γΘ − 2∇α∇βΘ. (2.26)Transvetion with E◦ α

10′ E
◦ β
10′ and restrition to J gives Γ◦

10′11 E
◦
00′(Θ) = 0, while E◦

00′ (Θ) 6= 0 on J .We shall ombine now the onstrution of an adapted frame with the freedom to perform resalings
g → g⋆ = θ2g, Θ → Θ⋆ = θΘ (2.27)with some positive funtion θ, to obtain another adapted frame {E•

aa′} for whih we get furthersimpli�ations besides (2.25). We start with an adapted frame {E◦
aa′} as desribed above. Forarbitrary θ > 0 and for arbitrary funtion p > 0 whih is onstant on the generators of J we set

E•
11′ = θ−2 pE◦

11′ and u•(u◦) =

∫ u◦

u◦
∗

θ2(u′) p−1(u′) du′ + u•∗ on J , (2.28)



2 RELATING DIFFERENT GAUGE CONDITIONS NEAR NULL INFINITY 10where the integration is performed along the generators of J . Then E•
11′ will be parallelly propa-gated and E•

11′(u•) = 1 will hold. We assume that u◦ = u◦∗ and u• = u•∗ on C and set
E•

00′ = p−1E◦
00′ , E•

11′ = θ−2 pE◦
11′ , E•

01′ = θ−1E◦
01′ on C. (2.29)Sine C is di�eomorphi to S2 and thus arries (up to di�eomorphisms) preisely one Rie-mannian onformal struture, we an �x oordinates x3 = ϑ, x4 = ϕ as well as the fun-tion θ on C suh that the metri h⋆ indued by g⋆ on C is given by the standard S2−metri

h⋆ = dϑ2 + sin2 ϑ dϕ2. Using the transformation laws Γ•
10′00 = p−1

[

Γ◦
10′00 − E◦

00′(log θ)
] and

Γ•
01′11 = p θ−2

[

Γ◦
01′11 + E◦

11′(log θ)
] on C, we an ahieve, by suitable hoie of d θ and p,

Γ•
10′00 = 0, Γ•

01′11 = 0, E•
00′(Θ⋆) = const. 6= 0 on C. (2.30)The transformation s⋆

αβ = − 2
θ

{

(∇α∇βθ − 2
θ
∇αθ∇βθ) − 1

4gαβ(∇γ∇γθ − 2
θ
∇γθ∇γθ)

}

+ sαβ of thetrae free part sαβ of the Rii tensor under the resaling (2.27) implies a transformation of
Φ22 = 1

2sαβE
◦α
11′ E

◦β
11′ into Φ⋆

22 = 1
2s

⋆
αβE

•α
11′ E

• β
11′ , whih yields, with the assumption that Φ⋆

22 = 0on J , on the generators of J the ODE
E◦

11′

(

E◦
11′(θ)

)

− 2

θ

(

E◦
11′(θ)

)2 − θΦ22 = 0. (2.31)This equation an be rewritten as a linear ODE for θ−1 whih an be solved on the generators of
J with θ > 0. Using the initial data θ, E◦

11′(θ) on C determined above, we solve for θ to obtain
Φ⋆

22 = 0, Γ•
01′11 = 0 on J . (2.32)Here the seond equation is a onsequene of the �rst, the �eld equations, and (2.30). We assumein the following (2.28). We observe that the indued metri on the setions {u• = const.} is givenas a onsequene everywhere on J by the S2-standard metri.One θ and E•

11′ have been �xed on J , the vetor �eld E•
01′ (whene E•

10′) tangent to {u• =
const.} is determined up to rotations. We hoose some smooth �eld E•

01′ on J , solve the equation
E•

11′(c) = −i E•α
10′ E

•β
11′ ∇⋆

β E
•
01′α (2.33)for the funtion c with initial value c = 0 on C, and replae E•
01′ by ei cE•

01′ to ahieve
Γ•

11′01 = 0 on J . (2.34)Observing the simpli�ations above, we ontrat the analogue of (2.26) for g⋆ with E•α
01′E

•β
10′ toonlude that ∇⋆

α∇⋆ αΘ⋆ = 0 on J . A further ontration with E•α
00′E

•β
11′ gives

E•
11′

(

E•
00′(Θ⋆)

)

= 0, i.e. E•
00′(Θ⋆) = const. on J , (2.35)while a ontration with E•α

00′E
•β
01′ yields now E•

01′

(

E•
00′(Θ⋆)

)

= Γ•
11′00E

•
00′(Θ⋆), whih implies

Γ•
11′00 = 0 on J . (2.36)To �x also d θ on J , we use the onformal transformation law for the Rii salar, i.e.

R[g⋆] =
1

θ2
R[g] +

12

θ2
∇⋆

α θ∇⋆ α θ − 6

θ
∇⋆

α∇⋆ α θ. (2.37)If we require that R[g⋆] = 0 along J , this equation takes on the generators of the null hypersurfae
J the form

E•
11′

(

E•
00′(θ)

)

− 2

θ
E•

11′(θ)E•
00′ (θ) = F ⋆, (2.38)



2 RELATING DIFFERENT GAUGE CONDITIONS NEAR NULL INFINITY 11of a linear ODE for the unknown E•
00′(θ), where the right hand side

F ⋆ = Re

{

E•
01′(E•

10′ (θ)) − 2 Γ•
01′01E

•
10′(θ) − 2

θ
E•

01′(θ)E•
10′ (θ) +

1

12 θ
R[g]

}is given in terms of quantities whih have been determined already on J . Using the initial value
E•

00′(θ) = p−1θ Γ◦
10′00|C , �xed on C by (2.30), we an integrate the equation to ahieve

R[g⋆] = 0, Γ•
10′00 = 0 on J , (2.39)where the seond equation follows again from our previous results and the �eld equations.We do not require onditions of higher order on the onformal gauge. Assuming a onformalgauge as desribed here, we shall refer to an adapted frame {E•

aa′} satisfying the onditions aboveas to an NP-frame, and to a normalized spin frame ε•A
a ≡ {o•A, ι•A} whih implies a NP-frameas to a NP-spin-frame.We extend the oordinates x3, x4 to J suh that they are onstant on the null generatorsof J . As desribed above, we de�ne null hypersurfaes {u• = const.} transverse to J and wedenote by r• the a�ne parameter on the null generators of these hypersurfaes whih satis�es

E•
00′(r•) = 1 and, on J , r• = 0. The oordinates x3, x4 are extended suh that they are onstanton the null generators of {u• = const.}. Thus we get a Bondi-type system (u•, r•, x3, x4) in someneighborhood of null in�nity. Oasionally we shall hange from the oordinates ϑ, ϕ, to a omplexstereo-graphial oordinate given by ζ = eiϕctg ϑ

2 . We write the volume element and the volumeform alternatively
ds2 = −(dϑ2 + sin2ϑ dϕ2) = −P (ζ)−2dζ dζ̄, ǫ = sinϑ dϑ ∧ dϕ = [2P (ζ)]−2dζ ∧ dζ̄,where we set P (ζ) = 1

2 (1 + ζζ̄). We shall refer to the onditions on the onformal saling, theframe �eld, and the oordinates as to the NP-gauge.2.3 Relating the NP-gauge to the F-gaugeWhile the NP-gauge is hinged on null in�nity, the F-gauge is based on a Cauhy hypersurfaeand these gauge onditions are in general ompletely di�erent. In the following we will study thetransformation whih relates one to the other. It is important for this that the onformal fator
Θ, whene J , is known expliitly in the F-gauge.The vetor �elds {caa′} tangent to the 5-dimensional bundle spae M ′

a are not diretly relatedto the NP-gauge on the subset Ma \ I of M . Let S2 ⊃ U ∋ p
s→ s(p) ∈ SU(2) be a smooth loalsetion, de�ned on some open subset U of S2, of the Hopf �bration SU(2) → SU(2)/U(1) ≃ S2.It indues a smooth setion U × R × R ∋ (p, τ, ρ)

S→ (s(p), τ, ρ) ∈ M ′
a. We denote the image of

S by M∗
a . The vetor �elds tangent to s(U) whih have projetion idential to that of X± are ofthe form X± + a±X with some smooth funtions a± on s(U), satisfying a− = −ā+. Beause of(2.2) a± annot vanish on open subsets of s(U). Consequently, the tangent vetor �elds c∗aa′ of

M∗
a satisfying π∗(c∗aa′) = π∗(caa′) are given on M∗

a by
c∗aa′ = caa′ + (a+ c

+
aa′ + a− c

−
aa′)X,with funtions a± whih are independent of τ and ρ. The onnetion oe�ients de�ned on M∗

aby the onnetion form ωb
c and the vetor �elds c∗aa′ are given by

Γ∗
aa′

b
c = Γaa′

b
c + (a+ c

+
aa′ + a− c

−
aa′) (ǫ0

b ǫc
0 − ǫ1

b ǫc
1).In the remaining part of this setion we shall work on π(M ′

a) and denote the projetion of thevetor �elds c∗aa′ , whih de�ne a smooth orthonormal frame �eld on π(M∗
a \ I ′), and the pull-bakof Γ∗

aa′
b

c by S again by c∗aa′ and Γ∗
aa′

b
c. Similarly, the projetions of J ′ ∩M∗

a and I ′+ ∩M∗
a willbe denoted by J and I+.



2 RELATING DIFFERENT GAUGE CONDITIONS NEAR NULL INFINITY 12The frame �eld {c∗aa′}, whih is in general not adapted to null in�nity, will now be related loseto I+ to an adapted frame {E◦
aa′}. On J the vetor �eld E◦

11′ must be of the form
E◦α

11′ = f∇αΘ, (2.40)where ∇ and Θ denote the Levi-Civita onnetion and the onformal fator assoiated with theF-gauge. The requirement 0 = E◦ β
11′∇βE

◦α
11′ = f ∇β Θ∇β f ∇αΘ + f2∇β (1

2 ∇αΘ∇αΘ) that E◦α
11′be parallelly propagated, gives after ontration with a vetor �eld Z transverse to J the ODE

∇αΘ∇α(log f) = −Z(1
2∇βΘ∇βΘ)

Z(Θ)
(2.41)for f on the generators of J . To �x f , we set f = f0 = const. > 0 on some setion C of J . Thefuntion u◦ satisfying E◦α

11′ (u◦) = 1 on J and u◦ = u◦∗ on C an be now be determined.Let λa
b ∈ SL(2, C) satisfy

E◦
aa′ = λb

aλ̄
b′

a′ c
∗
bb′ . (2.42)Rewriting (2.40) in the form E◦

11′ = f c∗bb′(Θ)ǫabǭa
′b′c∗aa′ , we �nd the relations

λ0
1λ̄

0′

1′ = f c∗11′(Θ), λ0
1λ̄

1′

1′ = −f c∗10′(Θ), λ1
1λ̄

1′

1′ = f c∗00′(Θ). (2.43)From (2.42) we obtain λ0
1E

◦
01′ = λ0

0E
◦
11′ − λ̄0′

1′c
∗
10′ − λ̄1′

1′c
∗
11′ . Applying this to the funtion u◦,we get

λ0
0 = λ̄0′

1′c
∗
10′(u◦) + λ̄1′

1′c
∗
11′(u◦). (2.44)Together with the ondition det(λa

b) = 1 the relations (2.43), (2.44) allow us to determine thematrix elements λa
b on J up to replaements λa

b → λa
b η

b
c with (ηa

b) = diag(ei α, e−i α) ∈ U(1).After making here an arbitrary hoie, the adapted frame {E◦
aa′} is determined uniquely near J .To determine an NP-frame {E•

aa′} near J , we need to �nd an appropriate resaling (2.27) anda saling fator p. We set
c⋆aa′ = θ−1 c∗aa′ , E•

aa′ = Λb
aΛ̄b′

a′ c
⋆
bb′ (2.45)with Λa

b ∈ SL(2, C). Assuming (2.28), we have E•α
11′ = f⋆ ∇⋆ αΘ⋆ with

f⋆ =
f p

θ
and E•

00′ (Θ⋆) =
1

f⋆
on J . (2.46)We hoose now θ, d θ, and oordinates x3, x4 suh that the indued metri on C is given by the

S2-standard metri and, with p hosen suh that p = θ on C, onditions (2.30) are satis�ed with
E•

00′(Θ⋆) = f−1
0 .Following the proedure of the previous setion, we an determine the onformal fator θ on

J suh that (2.32) is satis�ed. The transformation Λa
b an be determined in the same way as

λa
b. Imposing ondition (2.34), we determine Λa

b up to U(1)−transformations on C. Conditions(2.35), (2.36) will now be satis�ed as well and we an determine d θ on J suh that (2.39) holds.Extending the tetrad to a neighborhood of J suh that it is parallelly propagated in the diretionof E•
00′ , we get the desired NP-frame.In our later alulations we will need the quantities E•

00′(Λa
b). Using our gauge ondition

Γ•
00′ab = 0 and the transformation laws for the onnetion oe�ients,

Γ⋆
aa′bc =

1

θ

{

Γ∗
aa′bc + ǫa(bc

∗
c)a′(log θ)

}

,

E•
aa′(Λb

c) = −Λf
a Λ̄f ′

a′ Λh
c Γ⋆

ff ′
b

h + Λb
d Γ•

aa′
d

c,



3 THE NP-CONSTANTS 13where Γ⋆
aa′bc denotes the onnetion oe�ients with respet to ∇⋆ and {c⋆aa′}, we �nd

E•
00′(Λb

c) = −Λf
0 Λ̄f ′

0′ Λh
c Γ⋆

ff ′
b

h. (2.47)In the onsiderations above we had to �x various quantities by presribing data on the setion
C. When we shall determine later the expansion of a NP-frame near I+, it will be natural to trypushing C to I+. A priori it is not lear, however, whether this an be done in a ontinuous way.We shall see, that for ertain quantities the limits to I+ do exist, while others quantities an onlydesribed in terms of their growth behavior near I+.3 The NP-onstantsIn 1965 Newman and Penrose disovered ertain non-trivial quantities, de�ned by ertain integralsover a 2-dimensional ross-setion of J +, whih are absolutely onserved in the sense that theirvalues do not depend on the hoie of the setion (f. [12, 14℄). The interpretation of these tenreal NP-onstants is still open. In the ase where the spae-time admits a smooth onformalextension ontaining a point i+ (�future time-like in�nity�) whose past light one represents J+,these onstants are essentially given by the �ve omplex omponents of the resaled onformalWeyl spinor (f. [14, 7℄). However, these quantities do not allow us a simple interpretation either.More interesting is the ase of stationary vauum spae-times. In this ase the onstants have beenalulated and have been given in the form (mass) × (quadrupole moment) − (dipole moment)2(f. [14, 18℄).If the evolution of the �eld in time is not given expliitly as in the presene of a time-likeKilling vetor �eld, there appears to be no obvious way to alulate the NP-onstants. It turnsout, however, that under suitable assumptions on the asymptoti behavior of the �eld near spae-like in�nity the onstants an be alulated by integrating the transport equations on I ′ to asu�iently high order. In the following we shall derive a formula for the onstants in terms ofquantities whih an be determined by solving the transport equations.To explain the original formula (f. [14℄), whih is given in the Bondi-Sahs-Newman-Penroseframework, let (u, r, ϑ, ϕ) denote Bondi-oordinates on the physial spae-time, where r denotes ana�ne parameter along the generators of the null hypersurfaes {u = const.} and the generators arelabeled by the standard oordinates (ϑ, ϕ) on the two-sphere. The null frame {Ẽaa′} as well as aorresponding spinor dyad {õA, ι̃A}, both de�ned on the physial spae-time, are normalized withrespet to the physial metri g̃. They are adapted to the Bondi-oordinates suh that Ẽ00′ = ∂r.We assume that the onformal spae-time with metri g⋆ := r−2g̃ admits a smooth extension as
r → ∞ to a smooth Lorentz spae with boundary J + = {r• = 0} and that the funtions u• := u,
r• := r−1, ϑ, and ϕ extend suh as to de�ne a smooth system of Bondi-type oordinates near J+.Furthermore, we assume that the frame {E•

aa′} and the spinor dyad {o•A, ι•A}, de�ned by
E•

aa′ = r2−a−a′

Ẽaa′

o•A = r õA, ι•A = ι̃A,
(3.1)suh that they are normalized with respet to g⋆, extend to smooth frame resp. dyad near J+.The results of Newman and Unti (f. [15℄) then imply that {E•

aa′} de�nes in fat a NP-frame.Under our assumptions the omponent ψ0 = ψABCDõ
AõB õC õD of the onformal Weyl spinorhas an expansion ψ0 = ψ0

0r
−5 + ψ1

0r
−6 + O(r−7) with oe�ients ψp

0 whih are independent of r.In terms of the physial spae-time the NP-onstants are given with this notation by the integrals
Gm =

∮

2Ȳ2,mψ
1
0 sinϑ dϑ dϕ, (3.2)whih are alulated for �xed value of u. The funtions 2Y2,m, m = −2,−1, 0, 1, 2, denote spin-2spherial harmonis (f. [9℄) whih are obtained from the standard spherial harmonis by

2Y2,m =
1

2
√

6
E•α

01′E
•β
01′δαδβY2,m =

1

2
√

6
ð2Y2,m. (3.3)



4 TIME SYMMETRIC SPACE-TIMES 14Here δ and ð denote the standard ovariant di�erential operator on the unit 2-sphere and the�edth�-operator, respetively. In evaluating (3.2), it will be important that the operator ð isde�ned with respet to the omplex null vetor �eld E•
01′ (f. [10℄).We reexpress the onstants in terms of the �elds g⋆, E•

aa′ , o•A, ι•A satisfying the NP-gauge, inpartiular (2.39). Using the omponent φ0 = r ψABCDo
•Ao•Bo•Co•D of the resaled onformalWeyl spinor, and performing the obvious lift to M ′, we obtain for the NP-onstants the formula

Gm = − 1

2 π

∮

2Ȳ2,mE•
00′(φ0) dS dα. (3.4)Here dS = sinϑ dϑ dϕ denotes the surfae element on the ross-setion {r•, u• = const.} ⊂ J+ and

α denotes a parameter on the �bers of the prinipal �ber bundleM ′ →M . The seond integrationan be performed without hanging the result beause the integrand is independent of the variable
α. The values of these integrals are independent of the value of the onstant de�ning the ross-setion as well as of the hoie of the Bondi-oordinate u• itself. Thus they are invariant undersupertranslations (f. [14℄).We shall determine the NP-onstants by integrating the transport equations on I ′. Sine theseequations and their unknowns are given in the F-gauge, we express (3.4) in this gauge. Using(2.45), we obtain in the notation of the previous hapter

Gm = − 1

2 π

∮

2Ȳ2,m

1

θ4

{

Λb
0Λ

c
0Λ

d
0Λ

e
0

[

Λa
0Λ̄

a′

0′ c∗aa′(φbcde) − 3φbcdeE
•
00′(θ)

]

+ 4 θΛb
0Λ

c
0Λ

d
0E

•
00′(Λe

0)φbcde

}

dS dα.
(3.5)This is the expression for the NP-onstants whih will be used in the alulations of setion [4.3℄.4 Time symmetri spae-timesIn this setion we will use the assumptions of the regular �nite initial value problem near spae-likein�nity and thus restrit our onsiderations to time symmetri spae-times. We begin by solvingthe third order transport equations on I ′. This alulation is of interest for two quite di�erentreasons. First of all, it will give us a �rst insight into the potential soure of singular behavior ofthe quantities up pointed out in setion [2.1.3℄. Further, besides giving information on this questionof priniple, the alulation will allow us to analyze the relation between the NP-onstants and theinitial data for asymptotially �at solutions. Under our assumptions, we will be able to evaluatethe integral (3.5) in terms of quantities derived from the initial data.4.1 Solving the third-order transport equationThe solutions up of equations (2.20) have been given in [4℄ for p ≤ 2. Sine they will be used in thefollowing alulations we reprodue them here, in a notation, though, whih is more onvenient fora systemati disussion of the higher order expansion oe�ients. We also take the opportunity toorret a misprint in [4℄.The solution u0 of the transport equations (2.20) has the form

(c0ab)
0 = −τxab, (c1ab)

0 = 0, (c+ab)
0 = zab, (c−ab)

0 = yab, ξ0abcd = 0,

χ0
(ab)cd

= 0, f0
ab = xab, (Θ g

g ab)
0 = 0, Θ0

(ab)cd
= 0, φ0

abcd = −6mε2abcd,
(4.1)where m = mADM denotes the ADM-mass of the initial data set. The spinors appearing on theright hand side of these and the following formulae are listed in (A.10) of appendix [A.3℄. The



4 TIME SYMMETRIC SPACE-TIMES 15solution u1 is given by
(c0ab)

1 = c01(τ)xab, (c1ab)
1 = xab, (c+ab)

1 = c±1(τ)zab,

(c−ab)
1 = c±1(τ)yab, ξ1abcd = S1(τ)(ǫacxbd + ǫbdxac), χ1

(ab)cd
= K1(τ)ε2abcd,

f1
ab = F 1(τ)xab, (Θ g

g ab)
1 = t1(τ)xab, Θ1

(ab)cd
= T 1(τ)ε2abcd,

φ1
abcd = φ1

1(τ)X+W1ε
1
abcd + [φ1

2(τ) + φ1
3(τ)W1]ε

2
abcd − φ1

1(−τ)X−W1ε
3
abcd,

(4.2)while u2 takes the form
(c0ab)

2 = [c021 (τ) + c022 (τ)W1]xab + c023 (τ)[X−W1yab +X+W1zab],

(c1ab)
2 = c12(τ)xab,

(c+ab)
2 = [c±2

1 (τ) + c±2
2 (τ)W1]zab + c±2

3 (τ)X−W1xab,

(c−ab)
2 = [c±2

1 (τ) + c±2
2 (τ)W1]yab + c±2

3 (τ)X+W1xab,

ξ2abcd = [S2
1(τ) + S2

2(τ)W1](ǫacxbd + ǫbdxac) + S2
3(τ)(ǫacybd + ǫbdyac)X−W1

+ S2
3(τ)(ǫaczbd + ǫbdzac)X+W1 + S2

4(τ)(ε1abcdX+W1 + ε3abcdX−W1),

χ2
(ab)cd = [K2

1 (τ) +K2
2(τ)W1]ε

2
abcd +K2

3 (τ)habcd +K2
4 (τ)(ǫacybd + ǫbdyac)X−W1

−K2
4(τ)(ǫaczbd + ǫbdzac)X+W1 +K2

5 (τ)(ε1abcdX+W1 − ε3abcdX−W1),

f2
ab = [F 2

1 (τ) + F 2
2 (τ)W1]xab + F 2

3 (τ)(X−W1yab +X+W1zab),

(Θ g
g ab)

2 = [t21(τ) + t22(τ)W1]xab + t23(τ)(X−W1yab +X+W1zab),

Θ2
(ab)cd = [T 2

1 (τ) + T 2
2 (τ)W1]ε

2
abcd + T 2

3 (τ)habcd + T 2
4 (τ)(ǫacybd + ǫbdyac)X−W1

− T 2
4 (τ)(ǫaczbd + ǫbdzac)X+W1 + T 2

5 (τ)(ε1abcdX+W1 − ε3abcdX−W1),

φ2
abcd = φ2

1(τ)X+X+W2ε
0
abcd + [φ2

2(τ)X+W1 + φ2
3(τ)X+W2]ε

1
abcd

+ [φ2
4(τ) + φ2

5(τ)W1 + φ2
6(τ)W2]ε

2
abcd − [φ2

2(−τ)X−W1 + φ2
3(−τ)X−W2]ε

3
abcd

+ φ2
1(−τ)X−X−W2ε

4
abcd.

(4.3)
The τ -dependent funtions in these expressions are polynomials whih are given in appendix [A.3℄.The alulation of u3 is failitated by the following properties of the transport equations (2.20).For p ≥ 1 they are of the form

∂τv
p = Lp v

p + lp, Bα∂αφ
p = Mpφ

p, (4.4)where, using the notation (2.8), we set vp = (∂p
ρv)|I′ , φp = (∂p

ρφ)|I′ and denote by Lp and lp amatrix- resp. vetor-valued funtion of the quantities u0, . . . , up−1, while Mp denotes a matrix-valued funtion whih depends on the variables u0, . . . , up−1, vp. The matries Bα neither dependon p nor on the initial data. Thus, given the quantities uq, q ≤ p− 1, we an integrate the �rst ofequations (4.4), whih is an ODE. To integrate the seond equation, we expand the quantities upin terms of the funtions T k
m j given in (2.21) and use (2.22) to redue the integration to that of asystem of ODE's.To determine the initial data for u3 on I ′0, we have to expand the unknowns (2.18) in termsof ρ. Instead of presribing the onformal metri h on the initial slie, whih represents the freedatum, we shall presribe, in a fashion onsistent with the 3-dimensional Bianhi identities, ertainurvature quantities and use the 3-dimensional struture equations and the Yamabe equation todetermine the remaining quantities.The onformal fator, whih appears in the expressions (2.18), is given in (2.5) in terms of thefuntions U and W . The funtion U , whih is determined loally by h near spae-like in�nity, isgiven, by a proedure explained in [4℄, in the form

U =
∞
∑

p=0

Up ρ
2p, (4.5)



4 TIME SYMMETRIC SPACE-TIMES 16with ρ-dependent oe�ients Up. As shown in [4℄, the Taylor expansion of U in terms of ρ has inour gauge the form
U = 1 +

∞
∑

k=4

1

k!
Ûkρ

k. (4.6)For our alulations we shall need the oe�ient Û4, whih will be determined later in this hapter.The funtion W , whih ontains global information on the free initial data, is determined bysolving the Yamabe equation on the initial hypersurfae. We shall onsider here a larger lass offuntions whih are subjet to the Yamabe equation only in a small neighborhood of spae-likein�nity. The oe�ients in the Taylor expansionW = W0 +W1 ρ+ 1
2W2 ρ

2 + 1
3!W3 ρ

3 +O(ρ4) haveexpansion (f. [4℄)
Wi =

2i
∑

m=0

m
∑

k=0

Wi;m,k T
k

m m
2
.They are restrited by the requirement that the Yamabe equation (hαβDαDβ − 1

8rh)[W ] = 0 holdsnear {ρ = 0}, whih implies the simpli�ation
Wi =

2
∑

k=0

Wi;2i,k T
k

2i i, i ≤ 3. (4.7)We get for the onformal fator and the trae-free part of its seond ovariant derivative
Ω = ρ2 −mρ3 +

[

3
4 m

2 − 2W1

]

ρ4 +
[

− 1
2m

3 + 3mW1 −W2

]

ρ5

+
[

5
16 m

4 − 3m2W1 + 3W 2
1 + 3

2 mW2 − 1
3W3 − 1

12 Û4

]

ρ6 +O(ρ7),

D(abDcd)Ω =
[

−6mε2abcd

]

ρ+
[

(12m2 − 36W1)ε
2
abcd − 12 (ε1abcdX+ − ε3abcdX−)W1

]

ρ2

+
[

(−15m3 + 96mW1 − 36W2)ε
2
abcd + (ε1abcdX+ − ε3abcdX−)(24mW1 − 8W2)

− 1
2 (ε0abcdX+X+ + ε4abcdX−X−)W2

]

ρ3 +
[

(156W 2
1 − 150m2W1 + 15m4 + 81mW2

−20W3 − 4 Û4 + 1
12X+X−Û4 − 6X+W1X−W1)ε

2
abcd

+(ε1abcdX+ − ε3abcdX−)(30W 2
1 − 30m2W1 + 15mW2 − 10

3 W3 − 5
6 Û4)

+ 1
2 (ε0abcdX+X+ + ε4abcdX−X−)(3W 2

1 + 3
2mW2 − 1

3W3 − 1
12 Û4) − 2

3xe(aγ
3 e
bc d)

]

ρ4

+O(ρ5).

(4.8)
From this we obtain as initial data for u3 on I ′0

(c0ab)
3 = 0, (c1ab)

3 = 0, (c+ab)
3 = 0, (c−ab)

3 = 0,

ξ3abcd = 0, χ3
(ab)cd

= 0, f3
ab = 0, (Θ g

g ab)
3 = 0,

Θ3
(ab)cd

= 3X+X+W2ε
0
abcd + (−72mX+W1 + 48X+W2)ε

1
abcd

+(27m3 − 288mW1 + 216W2)ε
2
abcd

+(72mX−W1 − 48X−W2)ε
3
abcd + 3X−X−W2ε

4
abcd,

φ3
abcd = (ε0abcdX+X+ + ε4abcdX−X−)(9W 2

1 − 3
2mW2 −W3 − 1

4 Û4)

+4(ε1abcdX+ − ε3abcdX−)(9W 2
1 − 3

2mW2 − 5W3 − 5
4 Û4)

+6 ε2abcd(12W 2
1 − 3mW2 − 20W3 − 4Û4 + 1

12X+X−Û4 − 6X+W1X−W1)

−4xe(aγ
3 e
bc d) + 3s2abcd,

(4.9)



4 TIME SYMMETRIC SPACE-TIMES 17where γabcd = (2 ρ)−1(ǫacxbd + ǫbdxac) + γ̌abcd denote the onnetion oe�ients on C′.We determine now how the funtions Û4, γ3
abcd, and s2abcd are related to the free data on theinitial hypersurfae C′. As shown in [4℄, the struture equations on C′, whih relate the onnetionoe�ients to the urvature, read

1√
2

{

∂ργ̌00ab +
√

2
ρ

[

γ̌0000zab − γ̌0011yab + 1√
2
γ̌00ab

]}

= γ̌0000γ̌11ab − γ̌0011γ̌00ab − 1
2sab00 − 1

6
√

2
r yab,

1√
2

{

∂ργ̌11ab +
√

2
ρ

[

γ̌1100yab − γ̌1111yab + 1√
2
γ̌11ab

]}

= γ̌1100γ̌11ab − γ̌1111γ̌00ab + 1
2sab11 − 1

6
√

2
r zab,and the omponents of γ̌abcd have Taylor expansions

γ̌01ab = 0, γ̌00ab =
1

3!
γ̌3
00ab ρ

3 +O(ρ4), γ̌11ab =
1

3!
γ̌3
11ab ρ

3 + O(ρ4).From this we get
γ̌3
0001 =− 3

4
√

2
s20001, γ̌3

1101 = 3
4
√

2
s20111, γ̌3

0000 =− 3
5
√

2
s20000,

γ̌3
1100 = 3

5
√

2
s20011 − 1

10
√

2
r2, γ̌3

0011 =− 3
5
√

2
s20011 + 1

10
√

2
r2, γ̌3

1111 = 3
5
√

2
s21111,and obtain thus for the quantity Fabcd = −4 xe(aγ

3 e
bc d) + 3 s2abcd the onise expressions

F0 = 9
5 s

2
0, F1 = 3 s21, F2 = 17

5 s22 − 1
15r

2, F3 = 3 s23, F4 = 9
5 s

2
4, (4.10)where we set Fi = F(abcd)i

, si = s(abcd)
i
, using the notation introdued in (2.21).In the n-gauge the urvature vanishes at zeroth and �rst order at spae-like in�nity. At seondorder this is in general not true and the presription of the free data on S in terms of urvaturequantities has to be onsistent with the n-gauge, the Bianhi identity, and the regularity ondition(2.23) for q = 1. The ontent of the n-gauge is expressed in seond order in the urvature by theonditions

DabD
ab r = 0, DabD

ab scdef = −5

4
DcdDef r, D(abDcd sefgh) = 0 at i.It follows that the spinor

tabcd efgh = DabDcd sefgh − 1

3
habcd ∆h sefgh,where ∆h denotes the Laplaian orresponding to the metri h, is symmetri in the �rst and thelast four indies separately. Using the Bianhi identity

Dab sabcd =
1

6
Dcd r,we thus get

1

6
DabDcd r −

1

3
∆h sabcd = tef

ab cdef = ta
e

b
f

cdef = Da
e Db

f scdef +
1

6
∆h sabcd,whene

Da
eDb

f scdef =
19

24
DabDcd r.No further onditions are implied at i on the Rii salar r at this order. Finally, we get from(2.23) for q = 1

Dh
(aDbc sdef)h = 0 at i.The relations above imply that the expansion of tabcd efgh in terms of symmetri spinors and ǫab'san be expressed ompletely in terms of symmetrized twofold ontrations of this spinor, whih in



4 TIME SYMMETRIC SPACE-TIMES 18turn an all be expressed in terms of the symmetri spinor DabDcd r. Working out this expansionwe get
DabDcd sefgh = h(ab

(ef D
cd)

gh) r −
5

15
habcdDef Dgh r at i, (4.11)in our gauge. Going through the proedure desribed in setion (3.5) of [4℄ we get s(abcd)j

=
s2j ρ

2 +O(ρ3) and r = r2 ρ2 +O(ρ3) with
s2j = 3|2−j|

12

4
∑

k=0

R∗
k

(

4
j

)− 1
2 T k

4 j , r2 = 2√
6

4
∑

k=0

R∗
k T

k
4 2, (4.12)where we set R∗

k = 1
2

(

4
k

)

1
2 D(abDcd)k

r∗, with the star indiating that the quantities are given inour gauge at i. The 5 real numbers R∗
k ontain preisely the information on the metri h whihan at this order be freely spei�ed in the n-gauge.We note that the Cotton spinor is then given at i by

Dab bcdef = −5

8

{

ǫa(bDcdDef) r + ǫb(aDcdDef) r
}

,and the deviation of h from onformal �atness at i is enoded at this order in the symmetri spinor
DabDcd r(i).From (4.10), (4.12) we obtain

F0 = 27
20

4
∑

k=0

R∗
k T

k
4 0, F1 = 3

8

4
∑

k=0

R∗
k T

k
4 1, F2 = 3

20
√

6

4
∑

k=0

R∗
k T

k
4 2,

F3 = 3
8

4
∑

k=0

R∗
k T

k
4 3, F4 = 27

20

4
∑

k=0

R∗
k T

k
4 4.Finally, we will alulate the oe�ient Û4 in the Taylor series (4.6). Only the oe�ients U0,

U1 and U2 of the expansion (4.5) ontribute to Û4. These funtions have the following expansions(f. [4℄ for the de�ning integrals).
U0 = exp

{

1

4

∫ ρ

0

(

∆ρ′
2

+ 6
) dρ′

ρ′

}

= 1 +
1

4!

[
√

2 γ3
1100

]

ρ4 +O(ρ5), (4.13)where we used the expansion
∆ρ2 = − 6 +

2
√

2

3
γ3
1100 ρ

4 +O(ρ5).Further we have, with L denoting the Yamabe operator,
U1 =

U0

2 ρ

∫ ρ

0

L[U0]

U0
dρ′ =

1

2

[

−7
√

2

36
γ3
1100 −

1

48
r2

]

ρ2 +O(ρ3). (4.14)Finally, observing (4.12), we obtain
U2 = − U0

2 ρ2

∫ ρ

0

L[U1] ρ
′

U0
dρ′ = O(ρ).Colleting results, we arrive at the expansion

U = 1 +
1

4!

[

−4
√

2

3
γ3
1100 −

1

4
r2

]

ρ4 +O(ρ5) = 1 +
1

4!

[

− 3

10
√

6

4
∑

k=0

R∗
k T

k
4 2

]

ρ4 +O(ρ5). (4.15)



4 TIME SYMMETRIC SPACE-TIMES 19Sine the initial datum for the onformal Weyl spinor is a non-linear funtion of the basiquantities and the transport equations are quadrati in the unknowns, we have to make use of theClebsh-Gordan expansions of produts like T k
2 mT

l
2 n. These are readily alulated by using thede�nition (2.21). For the quantities relevant in our alulation we thus obtain

X−W1X+W1 = −
4

∑

k=0

akT
k

4 2 + 2 b, W 2
1 =

4
∑

k=0

akT
k

4 2 + b,

W1X−W1 = −
√

6
2

4
∑

k=0

akT
k

4 3, W1X+W1 =
√

6
2

4
∑

k=0

akT
k

4 1,

(X−W1)
2 =

√
6

4
∑

k=0

akT
k

4 4, (X+W1)
2 =

√
6

4
∑

k=0

akT
k

4 0,

(4.16)
with oe�ients

a0 = 2√
6
W 2

1;2,0, a1 = 2√
3
W1;2,0W1;2,1, a2 = 2

3 (W1;2,0W1;2,2 +W 2
1;2,1),

a3 = 2√
3
W1;2,2W1;2,1, a4 = 2√

6
W 2

1;2,2, b = − 2
3 (W1;2,0W1;2,2 − 1

2W
2
1;2,1).

(4.17)It was shown in [4℄ that the quantity φ3
i has an expansion of the form

φ3
i =

q
∑

m=|4−2i|

m
∑

k=0

φ3
i;m,kT

k
m m

2
−2+i. (4.18)Using the results above in the last equation of (4.9), this expansion redues to

φ3
i;m,k = 0, for i = {0, . . . , 4} and m ≥ 8,

φ3
0;6,k =−2

√
30W3;6,k, φ3

1;6,k =−10
√

3W3;6,k, φ3
2;6,k =−20W3;6,k,

φ3
3;6,k =−10

√
3W3;6,k, φ3

4;6,k =−2
√

30W3;6,k,

φ3
0;4,k = 18

√
6 ak − 3

√
6mW2;4,k + 3

2R
∗
k, φ3

1;4,k = 9
√

6 ak − 3
2

√
6mW2;4,k + 3

4R
∗
k,

φ3
2;4,k = 18 ak − 3mW2;4,k + 3

2
√

6
R∗

k, φ3
3;4,k = 9

√
6 ak − 3

2

√
6mW2;4,k + 3

4R
∗
k,

φ3
4;4,k = 18

√
6 ak − 3

√
6mW2;4,k + 3

2R
∗
k,

φ3
i;2,k = 0 for i = {1, 2, 3}, φ3

2;0,0 = 0.

(4.19)
Given these data on I ′0, we are in the position to solve the transport equations on I ′. The �rst of



4 TIME SYMMETRIC SPACE-TIMES 20the systems (4.4) an be integrated step by step with the result
(c0ab)

3 = [c031 (τ) + c032 (τ)W1 + c033 (τ)W2]xab + [c034 (τ)X+W1 + c035 (τ)X+W2]zab

+ [c034 (τ)X−W1 + c035 (τ)X−W2]yab,

(c1ab)
3 = [c131 (τ) + c132 (τ)W1]xab + c133 (τ)[X+W1zab +X−W1yab],

(c+ab)
3 = [c±3

1 (τ)X−W1 + c±3
2 (τ)X−W2]xab + [c±3

3 (τ) + c±3
4 (τ)W1 + c±3

5 (τ)W2]zab

+ c±3
6 (τ)X−X−W2yab,

(c−ab)
3 = [c±3

1 (τ)X+W1 + c±3
2 (τ)X+W2]xab + [c±3

3 (τ) + c±3
4 (τ)W1 + c±3

5 (τ)W2]yab

+ c±3
6 (τ)X+X+W2zab,

ξ3abcd = S3
1(τ)X+X+W2ε

0
abcd + [S3

2(τ)X+W1 + S3
3(τ)X+W2]ε

1
abcd

+ [S3
2(τ)X−W1 + S3

3(τ)X−W2]ε
3
abcd − S3

1(τ)X−X−W2ε
4
abcd

+ [S3
4(τ) + S3

5(τ)W1 + S3
6(τ)W2](ǫacxbd + ǫbdxac)

+ [S3
7(τ)X+W1 + S3

8(τ)X+W2](ǫaczbd + ǫbdzac)

+ [S3
7(τ)X−W1 + S3

8(τ)X−W2](ǫacybd + ǫbdyac),

χ3
(ab)cd = K3

1(τ)X+X+W2ε
0
abcd + [K3

2 (τ)X+W1 +K3
3 (τ)X+W2]ε

1
abcd

+ [K3
4 (τ) +K3

5(τ)W1 +K3
6(τ)W2]ε

2
abcd − [K3

2 (τ)X−W1 +K3
3 (τ)X−W2]ε

3
abcd

+K3
1 (τ)X−X−W2ε

4
abcd + [K3

7 (τ) +K3
8(τ)W1]habcd

+ [K3
9 (τ)X−W1 +K3

10(τ)X−W2](ǫacybd + ǫbdyac)

− [K3
9 (τ)X+W1 +K3

10(τ)X+W2](ǫaczbd + ǫbdzac),

f3
ab = [F 3

1 (τ) + F 3
2 (τ)W1 + F 3

3 (τ)W2]xab + [F 3
4 (τ)X−W1 + F 3

5 (τ)X−W2]yab

+ [F 3
4 (τ)X+W1 + F 3

5 (τ)X+W2]zab,

(Θ g
g ab)

3 = [t31(τ) + t32(τ)W1 + t33(τ)W2]xab + [t34(τ)X−W1 + t35(τ)X−W2]yab

+ [t34(τ)X+W1 + t35(τ)X+W2]zab,

Θ3
(ab)cd = T 3

1 (τ)X+X+W2ε
0
abcd + [T 3

2 (τ)X+W1 + T 3
3 (τ)X+W2]ε

1
abcd

+ [T 3
4 (τ) + T 3

5 (τ)W1 + T 3
6 (τ)W2]ε

2
abcd − [T 3

2 (τ)X−W1 + T 3
3 (τ)X−W2]ε

3
abcd

+ T 3
1 (τ)X−X−W2ε

4
abcd + [T 3

7 (τ) + T 3
8 (τ)W1]habcd

+ [T 3
9 (τ)X−W1 + T 3

10(τ)X−W2](ǫacybd + ǫbdyac)

− [T 3
9 (τ)X+W1 + T 3

10(τ)X+W2](ǫaczbd + ǫbdzac).

(4.20)

The τ -dependent funtions in these expressions are given in appendix [A.3℄.We now turn to the seond of the transport equations (4.4), whih is a partial di�erentialequation. The system for the expansion oe�ients φ3
i of the resaled onformal Weyl spinor on

I ′ has the form
(1 + τ)∂τφ

3
0 +X+φ

3
1 − φ3

0 = R0,

∂τφ
3
1 + 1

2X−φ3
0 + 1

2X+φ
3
2 + φ3

1 = R1,

∂τφ
3
2 + 1

2X−φ3
1 + 1

2X+φ
3
3 = R2,

∂τφ
3
3 + 1

2X−φ3
2 + 1

2X+φ
3
4 − φ3

3 = R3,

(1 − τ)∂τφ
3
4 +X−φ3

3 + φ3
4 = R4,

(4.21)



4 TIME SYMMETRIC SPACE-TIMES 21where the right hand sides are given by
R0 = A1(τ)X+X+W2 +A2(τ)(X+W1)

2,

R1 = B1(τ)X+W1 +B2(τ)W1X+W1 +B3(τ)X+W2,

R2 = C1(τ) + C2(τ)W1 + C3(τ)(W1)
2 + C4(τ)W2 + C5(τ)X+W1X−W1,

R3 = B1(−τ)X−W1 +B2(−τ)W1X−W1 +B3(−τ)X−W2,

R4 = −A1(−τ)X−X−W2 −A2(−τ)(X−W1)
2,

(4.22)with τ -dependent funtions Ai(τ), Bj(τ), Ck(τ) whih are listed in appendix [A.3℄. These fun-tions have been alulated from the lower order expansion oe�ients (4.1)-(4.3) and from (4.20).The symmetry inherent in these expressions re�ets the time-symmetry of the underlying spae-time.Using the expansion (4.18) and orresponding expansions of the terms above, we deompose(4.21) into the following equations. For m ≥ 6 the oe�ients φ3
i;m,k, k = 0, . . . ,m, satisfy thehomogeneous system

(1 + τ)∂τφ
3
0;m,k − φ3

0;m,k +
√

(m
2 − 1)(m

2 + 2)φ3
1;m,k = 0,

∂τφ
3
1;m,k + φ3

1;m,k − 1
2

√

(m
2 − 1)(m

2 + 2)φ3
0;m,k + 1

2

√

m
2 (m

2 + 1)φ3
2;m,k = 0,

∂τφ
3
2;m,k − 1

2

√

m
2 (m

2 + 1)φ3
1;m,k + 1

2

√

m
2 (m

2 + 1)φ3
3;m,k = 0,

∂τφ
3
3;m,k − φ3

3;m,k − 1
2

√

(m
2 + 1)m

2 φ
3
2;m,k + 1

2

√

(m
2 + 2)(m

2 − 1)φ3
4;m,k = 0,

(1 − τ)∂τφ
3
4;m,k + φ3

4;m,k −
√

(m
2 + 2)(m

2 − 1)φ3
3;m,k = 0.

(4.23)The oe�ients φ3
i;4,k, k = 0, . . . , 4, solve

(1 + τ)∂τφ
3
0;4,k − φ3

0;4,k + 2φ3
1;4,k = 2

√
6A1(τ)W2;4,k +

√
6A2(τ) ak,

∂τφ
3
1;4,k + φ3

1;4,k − φ3
0;4,k + 1

2

√
6φ3

2;4,k = 1
2

√
6B2(τ) ak +

√
6B3(τ)W2;4,k,

∂τφ
3
2;4,k − 1

2

√
6φ3

1;4,k + 1
2

√
6φ3

3;4,k = [C3(τ) − C5(τ)] ak + C4(τ)W2;4,k,

∂τφ
3
3;4,k + φ3

3;4,k + φ3
4;4,k − 1

2

√
6φ3

2;4,k = − 1
2

√
6B2(−τ) ak −

√
6B3(−τ)W2;4,k,

(1 − τ)∂τφ
3
4;4,k + φ3

4;4,k − 2φ3
3;4,k = −2

√
6A1(−τ)W2;4,k −

√
6A2(−τ) ak,

(4.24)
with the oe�ients ak de�ned in (4.17). The funtions φ3

i;2,k, k = 0, 1, 2, satisfy
∂τφ

3
1;2,k + φ3

1;2,k + 1√
2
φ3

2;2,k =
√

2B1(τ)W1;2,k,

∂τφ
3
2;2,k − 1√

2
φ3

1;2,k + 1√
2
φ3

3;2,k = C2(τ)W1;2,k,

∂τφ
3
3;2,k − φ3

3;2,k − 1√
2
φ3

2;2,k = −
√

2B1(−τ)W1;2,k,

(4.25)while φ3
2;0,0 is subjet to

∂τφ
3
2;0,0 = C1(τ) + [C3(τ) + 2C5(τ)] b, (4.26)with b as de�ned in (4.17).These ordinary di�erential systems have to be integrated for the initial data (4.19) at τ = 0.Sine the equations are already quite ompliated, we used the program MapleV.4 for this purpose.Synthesizing the result of these integrations aording to (4.18), we obtain the following onise
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i on I ′.
φ3

0 =−(1 + τ)(1 − τ)5X+X+W3 + 1
12f0(τ)mX+X+W2

+ 1
6g0(τ)(X+W1)

2 + 1
4h0(τ)X+X+r

2,

φ3
1 =−5 (1 + τ)2(1 − τ)4X+W3 + 1

6f1(τ)mX+W2

+ 1
3g1(τ)W1X+W1 + 1

2h1(τ)X+r
2 + 1

2k1(τ)m
2X+W1,

φ3
2 =−20 (1 + τ)3(1 − τ)3W3 + f2(τ)mW2

+g2(τ)(W1)
2 + 3 h2(τ)r

2 + k2(τ)m
2W1

+p(τ)m4 + [q(τ) − g2(τ)] b,

φ3
3 =5 (1 + τ)4(1 − τ)2X−W3 − 1

6f1(−τ)mX−W2

− 1
3g1(−τ)W1X−W1 − 1

2h1(−τ)X−r2 − 1
2k1(−τ)m2X−W1,

φ3
4 =−(1 + τ)5(1 − τ)X−X−W3 + 1

12f0(−τ)mX−X−W2

+ 1
6g0(−τ)(X−W1)

2 + 1
4h0(−τ)X−X−r2,

(4.27)
with τ -dependent funtions whih an be found in appendix [A.3℄. All the funtions φ3

i havepolynomial dependene on τ .The most interesting feature of this solution is its smoothness at τ = ±1, whih, in view ofthe singular behavior of equations (4.23), (4.24) at these points, was not to be expeted from thebeginning. To explain its signi�ane we indiate the argument whih led to the asymptoti regu-larity ondition (2.23). The Bianhi equations, whih were used to obtain the evolution equationsfor the resaled onformal Weyl spinor and, onsequently, the seond of the transport equations(4.4), form an overdetermined system. Thus there are further equations, to whih we refer as tothe onstraints. In the present ase the onstraints take the form
τ∂τφ

3
1 + 1

2 (X+φ
3
2 −X−φ3

0) − 3φ3
1 =S1,

τ∂τφ
3
2 + 1

2 (X+φ
3
3 −X−φ3

1) − 3φ3
2 =S2,

τ∂τφ
3
3 + 1

2 (X+φ
3
4 −X−φ3

2) − 3φ3
3 =S3,

(4.28)where
S1 =F1(τ)X+W1 + F2(τ)W1X+W1 + F3(τ)X+W2,

S2 =G1(τ) +G2(τ)W1 +G3(τ)(W1)
2 +G4(τ)W2 +G5(τ)X−W1X+W1,

S3 =−F1(−τ)X−W1 − F2(−τ)W1X−W1 − F3(−τ)X−W2,

(4.29)with funtions whih are given in appendix [A.3℄. As before, we obtain equations for the oe�ientsin the expansion (4.18). Together with (4.23), (4.24) these equations imply the systems
(1 + τ)(5 τ2 + 3)∂τφ

3
0;6,k + (5 τ3 − 5 τ2 + 5 τ + 7)φ3

0;6,k − 5 (τ − 1)3φ3
4;6,k = 0,

(1 − τ)(5 τ2 + 3)∂τφ
3
4;6,k + (5 τ3 + 5 τ2 + 5 τ − 7)φ3

0;6,k − 5 (τ + 1)3φ3
4;6,k = 0,

(4.30)and
4(3 + τ2)(1 + τ)∂τφ

3
0;4,k − 2(1 − τ)3φ3

0;4,k + 2(1 − τ)3φ3
4;4,k = T1(τ) ak + T2(τ)W2;4,k,

−4(3 + τ2)(1 − τ)∂τφ
3
4;4,k − 2(1 + τ)3φ3

4;4,k + 2(1 + τ)3φ3
0;4,k = T1(−τ) ak + T2(−τ)W2;4,k,(4.31)with funtions T1 and T2 (given in appendix [A.3℄) derived from the funtions Ri and Sj .It turns out that one these equations have been solved, the remaining expansion oe�ients in(4.18) an be obtained either by purely algebrai operations or by solving ODE's whih are regular



4 TIME SYMMETRIC SPACE-TIMES 23for τ ∈ [−1, 1]. This situation is the same for all orders p ≥ 3 in (4.4). The solutions y(τ), with
y denoting in the ase above the olumn vetor with entries given by the two unknowns of (4.30)resp. of (4.31), an then be given for p ≥ 3 in the form (suppressing here all indies)

y(τ) = X(τ)X(0)−1 y0 +X(τ)

∫ τ

0

X(τ ′)−1 b(τ ′) dτ ′, (4.32)with X(τ) denoting a fundamental matrix of the system of ODE's under study. The vetor-valuedfuntion b(τ) is built from solutions whih are obtained by solving the equations of lower order.In [4℄ the equations (written there in a slightly di�erent form) have been disussed in generaland the fundamental matries X(τ) have been derived. As in the ase of (4.30), (4.31), thereour homogeneous as well as inhomogeneous systems for general p ≥ 3. Thus for ertain valuesof the indies (i.e. p and the indies whih arise from expanding up in terms of the funtions
Tm

i
j) the funtions b(τ) vanish and the solutions are of the form y(τ) = X(τ)X(0)−1 y0. In theseases some of the entries of X(τ) have logarithmi singularities. The latter drop out of the �nalexpression preisely if the asymptoti regularity onditions (2.23) are satis�ed. In the remainingases the entries of the matries X(τ) are polynomials in τ but det(X) = c f(τ) (1 − τ2)p−2 withsome onstant c 6= 0 and some polynomial f(τ) satisfying |f(τ)| ≥ 1 for |τ | ≤ 1. Furthermore,the olumn vetor b(τ) has poles. However, it has no logarithmi singularities if the solutionsof the equations of lower order have no logarithmi singularities. Assuming ondition (2.23), theremaining potential soure of singularities of up, p ≥ 3, at |τ | = ±1 are the integrals on the righthand sides of the expressions (4.32). These have not been analyzed yet. To understand the generalsituation, it is learly of interest to study the problem for the �rst few values of p. Remarkably,in the present ase, p = 3, we �nd that the integrand in (4.32) has poles at |τ | = ±1 and alsooutside the interval [−1, 1], that the integral has poles and no logarithmi terms, but that the �nalsolution is a polynomial in τ .4.2 The detailed transformation formulaeIn this setion we will determine expansions for the onformal sale fator θ and the SL(2, C)-valuedfuntion Λa

b whih de�ne the transformation from the F-gauge into the NP-gauge as desribedin setion [2.3℄. To alulate the NP-onstants in terms of the initial data we shall determine thevalues of the integrals de�ning these quantities by taking their limits as ρ→ 0. The gauge in whihthese integrals are given is based on a setion C of the generators of J +. We shall try to push thissetion to I+. The usefulness of this proedure depends, of ourse, on the resulting form of theODE's on J + whih were used in [2.3℄ to �x the F-gauge.Near I+ the hypersurfae J ± an be given as the graph {τ = τs, ρ > 0} of the funtion
τs = τs(ρ, ta b) whih is given by

τs =
2 Ω

ρ
[−DabΩD

abΩ]−
1
2 . (4.33)Substituting the expansions (4.8) of Ω and those of the frame vetors into the expression above,we get the expansion

τs = 1 +
1

2
mρ+ 2W1ρ

2 +O(ρ3). (4.34)Setting in (2.41) Z = ∂τ , we obtain for the right hand side of this equation the expansion
Z(1

2∇βΘ∇βΘ)

Z(Θ)
=

5

3
mρ2 −

(

229

63
m2 − 24

5
W1

)

ρ3 +O(ρ4). (4.35)Suppose T = T 0 ∂τ + T 1 ∂ρ + T+X+ + T−X− is a vetor �eld de�ned near and tangent to J+.Denote by T ∗ the vetor �eld whih is indued by it on J+. If ρ and ta b are used as oordinates on
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J +, one �nds for T ∗ the expression T ∗ = T 1 ∂ρ + T+X+ + T−X−. Applying this to the gradientof Θ on J +, we �nd that the left hand side of (2.41) is given by
(

{

−2ρ2 + 19
3 mρ3 +O(ρ4)

}

∂ρ +
{

36
5 X−W1 ρ

3 +O(ρ4)
}

X+ +
{

36
5 X+W1 ρ

3 +O(ρ4)
}

X−
)

(log f).Thus, dividing (2.41) on both sides by ρ2, we get a di�erential equation of the form T ∗(log f) = gon J + with a vetor �eld T ∗ and a funtion g whih extend smoothly to I+ suh that T ∗ =
−2 ∂ρ + O(ρ) near I+. For given datum f0 on I+ this equation has a unique smooth solutionwhih an be expanded in terms of ρ. As shown in our general disussion, the value of f0 has tobe onstant on C to ful�ll the NP-gauge onditions. We hoose f0 = − 1

2
√

2
on I+ and �nd for thesolution of (2.41) the expansion

f = − 1

2
√

2

{

1 +
5

6
mρ+

(

191

252
m2 +

6

5
W1

)

ρ2 +O(ρ3)

}

. (4.36)To obtain the matrix elements λa
b of (2.42) by using (2.43) we have to alulate the derivatives

c∗aa′(Θ) of the onformal fator. Using the expansion oe�ients derived in [4.1℄, we get
c∗00′(Θ) = O(ρ4),

c∗01′(Θ) =
√

2
{

X+W1ρ
3 +O(ρ4)

}

, c∗10′(Θ) =
√

2
{

X−W1ρ
3 +O(ρ4)

}

,

c∗11′(Θ) =
√

2
{

−2 ρ+ 3mρ2 + (8W1 − 3m2)ρ3 +O(ρ4)
}

.

(4.37)Substituting these expressions into the formulae (2.43) the matrix elements λ0
1 and λ1

1 an bealulated expliitly up to a U(1) phase transformation. Sine the hoie of the latter is notimportant for the following we hoose it suitably to obtain
λ0

1 = ρ
1
2

{

1 − 1
3mρ+ (− 7

5W1 + 113
252m

2)ρ2 +O(ρ3)
}

, λ1
1 = ρ

5
2

{

1
2X+W1 +O(ρ)

}

, (4.38)whih allows us to determine also the expansion
E◦

11′ =
√

2
{

1
4mρ

2 + (− 7
12m

2 + 2W1)ρ
3 +O(ρ4)

}

∂τ

+
√

2
{

1
2ρ

2 − 7
6mρ

3 + (577
252m

2 − 31
5 W1)ρ

4 +O(ρ5)
}

∂ρ

+
√

2
{

− 9
5X−W1ρ

3 +O(ρ4)
}

X+ +
√

2
{

− 9
5X+W1ρ

3 +O(ρ4)
}

X−.

(4.39)To solve the di�erential equation for the a�ne parameter on the generators of J +, we observe thatalready in the ase of Minkowski spae-time this parameter is a singular funtion of ρ, given by
u◦ = −

√
2ρ−1 + u◦∗. The inspetion of the expansion (4.39) suggests to searh for a solution of theform

u◦ = w +
√

2

(

−1

ρ
+

7

3
m log ρ

)

. (4.40)This ansatz does indeed lead to a smooth regular equation for w near I+. It allows us to alulatethe expansion
u◦ =

√
2

{

−1

ρ
+

7

3
m log ρ+ u◦∗ +

(

109

126
m2 +

62

5
W1

)

ρ+O(ρ2)

}

, (4.41)where u◦∗ denotes an arbitrary onstant initial datum on I+. As desribed in hapter [2.3℄, thematrix elements λ0
0 and λ1

0 an now be determined. We obtain the expansions
λ0

0 = ρ
3
2

{

77
10X−W1 +O(ρ)

}

, λ1
0 = ρ−

1
2

{

−1 − 1
3mρ+O(ρ2)

}

. (4.42)
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b on null in�nity, we an alulate the limits of the NP-spin-oe�ients

Γ◦
01′11 and Γ◦

10′00 at I+ as ρ→ 0. Substituting our expansions into the formula for the onnetionoe�ients
Γ◦

aa′bc = λf
aλ̄

f ′

a′λ
g
bλ

h
cΓ

∗
ff ′gh − ǫghλ

g
bE

◦
aa′(λh

c), (4.43)we arrive at the expressions
Γ◦

01′11|I+ = lim
ρ→0

Γ◦
01′11 = 0, Γ◦

10′00|I+ = lim
ρ→0

Γ◦
10′00 =

11

6
√

2
m. (4.44)The next step is to alulate the onformal sale fator θ by solving equation (2.31). Todetermine the Rii spinor omponent Φ22 = 1

2RαβE
◦α
11′E

◦ β
11′ , we have to determine the Riitensor Rαβ of the metri g. The omponents of the tensor

Θαβ :=
1

2
R̂(αβ) −

1

12
gαβR̂+

1

4
R̂[αβ] (4.45)in the frame {c∗aa′}, where R̂αβ resp. R̂ denote the Rii tensor and the urvature salar indued bythe Weyl onnetion ∇̂ with oe�ients Γ̂ β

α γ = Γ β
α γ +δβ

αfγ +δβ
γ fα−gαγf

β (f. [3℄), are among thevariables of the onformal �eld equations. Thus they are known to 3rd-order in the ρ-oordinate.From the general transformation law
R̂αβ = Rαβ − 2∇(αfβ) + 2fαfβ − gαβ(∇γf

γ + 2fγf
γ) + 4∇[αfβ], (4.46)we get the relation

Θαβ =
1

2

(

Rαβ − 1

6
gαβR

)

−∇βfα + fαfβ − 1

2
gαβfγf

γ . (4.47)From this we derive the expression
Φ22 = ΘαβE

◦α
11′E

◦β
11′ + E◦

11′(E◦α
11′ fα) − (E◦α

11′ fα)2. (4.48)Substituting here (4.39) and the expansion of the one-form f obtained from the solution of the�eld equations we get the expansion
Φ22 =

5

6
mρ3 +

(

−167

42
m2 +

18

5
W1

)

ρ4 +O(ρ5) (4.49)on J+.On I+ is indued in our gauge the standard S2-metri. Therefore we solve equation (2.31) withthe initial ondition
lim
ρ→0

θ = 1. (4.50)For the onformal sale fator we obtain then the expansion
θ = 1 +

5

6
mρ+

(

6

5
W1 +

191

252
m2

)

ρ2 +O(ρ3). (4.51)By the hoie of the initial value for the onformal fator the sale funtion p appearing in thegauge transformations is also �xed with
p ≡ 1 on J+. (4.52)In the onformal gauge haraterized by the onformal fator Θ⋆ := θΘ the generators of nullin�nity are expansion free. Proeeding as indiated before, we onstrut the NP-frame {E•

aa′}.



4 TIME SYMMETRIC SPACE-TIMES 26Observing the expansions (2.42) and (2.45) of the null vetors E◦
11′ resp. E•

11′ and taking intoaount the properties of the onformal resaling we get the relations
Λ0

1 = θ−
1
2 λ0

1e
ic, Λ1

1 = θ−
1
2 λ1

1e
ic, (4.53)with funtion c, haraterizing the phase freedom, whih will be �xed later. Using (4.38) and (4.51)we get the expansions

Λ0
1 = ρ

1
2

{

1 − 3
4 mρ+

(

15
32 m

2 − 2W1

)

ρ2 +O(ρ3)
}

eic, Λ1
1 = ρ

5
2

{

1
2 X+W1 +O(ρ)

}

eic, (4.54)from whih we derive in turn the expansion
E•

11′ =
√

2
{

1
4mρ

2 + (−m2 + 2W1)ρ
3 +O(ρ4)

}

∂τ

+
√

2
{

1
2ρ

2 − 2mρ3 + (253
56 m

2 − 37
5 W1)ρ

4 +O(ρ5)
}

∂ρ

+
√

2
{

− 9
5X−W1ρ

3 +O(ρ4)
}

X+ +
√

2
{

− 9
5X+W1ρ

3 +O(ρ4)
}

X−,

(4.55)of the vetor �eld E•
11′ tangent to the null generators of J +. Furthermore the new a�ne parameterhas the form

u• =
√

2

{

−1

ρ
+ 4m log ρ+ u•∗ +

(

195

28
m2 +

74

5
W1

)

ρ+O(ρ2)

}

, (4.56)with a free onstant u•∗. Using the formula analogous to (2.44) we derive
Λ0

0 = ρ
1
2

{

− 101
10 X−W1ρ+O(ρ2)

}

e−ic, Λ1
0 = ρ−

1
2

{

−1 − 3
4 mρ+O(ρ2)

}

e−ic. (4.57)To determine of the phase fator e±ic we solve equation (2.33) along the generators of null in�nity.Expanding the right hand side, we get
E•

11′(c) = 2 Im

{

Λ̂f
1
¯̂
Λ

f ′

1′Λ̂
g
1Λ̂

h
0Γ

⋆
ff ′gh − Λ̂0

0E
•
11′ (Λ̂1

1) + Λ̂1
0E

•
11′(Λ̂0

1)
}

, (4.58)where Λ̂a
b has been obtained from the matrix Λa

b above by setting c = 0. Substituting theknown data into the equation above, the solution c whih is needed to satisfy the gauge ondition
Γ•

11′01|J = 0, is found to have an expansion
c = O(ρ2), (4.59)whih entails the expansions

eic = 1 +O(ρ2), E•
11′(eic) = O(ρ3), E•

01′ (eic) = O(ρ2). (4.60)The matrix elements Λa
b are now determined on null in�nity to the preision needed in ourlater alulations, but in the de�nition (3.5) of the NP-onstants appear some of the transversalderivatives E•

00′(Λa
b) of the matrix elements as well. Using the general formulae (2.47) we get theexpansions

E•
00′(Λ0

0) =
√

2ρ
1
2

{

113
40 X−W1 +O(ρ)

}

, E•
00′(Λ1

0) =
√

2ρ−
3
2

{

1
4 + 85

48mρ+O(ρ2)
}

,

E•
00′(Λ0

1) =
√

2ρ−
1
2

{

1
4 + 67

48 mρ+O(ρ2)
}

, E•
00′(Λ1

1) =
√

2ρ
3
2

{

− 47
40X+W1 +O(ρ)

}

,
(4.61)where we have taken the expressions (4.60) for the phase fator into aount.The transversal derivative of the onformal sale fator E•

00′(θ) is �xed on null in�nity by therequirement R[g⋆]|J+ = 0. Thus it has to satisfy equation (2.38) with initial datum
E•

00′(θ)|I+ = lim
ρ→0

θ p−1Γ◦
10′00 = lim

ρ→0
Γ◦

10′00. (4.62)



4 TIME SYMMETRIC SPACE-TIMES 27Given the matrix Λa
b and the onformal sale fator θ, all the terms appearing in equation (2.38)an be alulated in a straightforward way, with the exeption of the urvature salar R[g], whosealulation requires some explanation. Contrating equation (4.47) we get the identity

R[g] = 6 (Θaa′bb′ + ∇aa′fbb′ + faa′fbb′)ǫ
abǭa

′b′ , (4.63)where
∇aa′fbb′ = c∗aa′(fbb′) − (Γ∗

aa′cbǭb′c′ + Γ̄∗
aa′c′b′ǫbc)f

cc′.Expanding these quantities we get
R[g] =

(

23
3 m

2 − 168
5 W1

)

ρ2 +O(ρ3),

F ⋆ =
(

23
36 m

2 − 4W1 + 6
5a−X+W1 − 6

5a+X−W1

)

ρ2 +O(ρ3),
(4.64)whih entail with (2.38) the expansion

E•
00′(θ) =

√
2

{

11

12
m+

(

13

6
m2 − 4W1 +

6

5
a−X+W1 −

6

5
a+X−W1

)

ρ+O(ρ2)

}

. (4.65)Given the expansion above, we an alulate expansions of various quantities of physial interest,suh as the Bondi energy momentum, the angular momentum, and the radiation �eld on J +. Sinethe oe�ients in these expansions are given diretly in terms of the initial data on the Cauhyhypersurfae S, the expansions ontain information about the evolution of the �eld over an in�niterange. As an example we will alulate below the NP-onstants.We lose this setion with a remark on the BMS group, the group of transformation betweendi�erent Bondi-type systems. It was shown in [13℄ that for solutions for whih the the ondition
lim

u•→−∞
Γ•

[e] 01′00 = 0 ould be realized at spae-like in�nity, where the subsript �e� is to denotethe eletri part of the onsidered spin-oe�ient, one an single out the inhomogeneous Lorentzgroup as the group of transformations preserving this ondition. It turns out that under ourassumptions, whih inlude in partiular the time-symmetry of the solution, the even strongerondition lim
u•→−∞

Γ•
01′00 = 0 is satis�ed. This means that for our solutions there is a natural wayto single out the inhomogeneous Lorentz group as asymptoti symmetry group.4.3 The NP-onstants in time symmetri spae-timesUsing the formulae of the previous hapters we an express the NP-onstants in terms of the initialdata for the orresponding time symmetri solutions. All the quantities appearing in the integral(3.5) are known in terms of the initial data to the preision needed to perform the limit ρ→ 0.We have to express the spin-2 spherial harmonis 2Ȳ2,m in terms of the funtions T j

m k. By(3.3) the de�nition of the ð-operator is based on the hoie of the omplex null vetor �eld E•
01′ .In appendix [A.1℄ we have applied the standard hoie and derived the relations between theoperators X+ and ð and between the spin-2 spherial harmonis 2Y2,m and the funtions T j

m k.By this hoie we should have E•
01′ = i√

2
X+ on I+. However, alulating the vetor E•

01′ in theonventions used above, we get
E•

01′ |I+ =
1√
2
X−. (4.66)There are two auses of the di�erene. We �xed the phase fator suh as to simplify the alulationsand the onventions used in the F-gauge and the NP-gauge are suh that one has to swap the twospinors of the dyad to get from one to the other onvention. The form (4.66) of E•

01′ orrespondsto −i
√

2m̄, if m denotes the standard omplex null vetor used in appendix [A.1℄. This means that



5 CONCLUDING REMARKS 28(4.66) orresponds to the operator −ið̄ instead of ð disussed in the appendix. Observing this and(A.9) in (3.4) we obtain the formula
Gm = i2−m(5π)

1
2

∮

T̄ 2−m
4 4 E

•
00′(φ0)µ for m = −2, . . . , 2, (4.67)where µ = 1

4π2 dSdα is the Haar-measure on SU(2).To alulate (4.67) we expand the integrand in terms of ρ and take the limit as ρ → 0. Forthis we have to determine for E•
00′(φ0) only the terms of order O(1). In the limit only these termsgive a ontribution while the terms of order ρ−1 anel eah other. Using the expliit results of theprevious hapters we arrive after some lengthy but straightforward alulations at the expression
Gm

∣

∣

I+= lim
ρ→0

Gm = i2−m(10π)
1
2

∮

T̄ 2−m
4 4

(

− 5

32
X−X−r

2 +
635

8
mX−X−W2 −

1905

2
(X−W1)

2 +
16

3
X−X−W3

)

µ.
(4.68)Expanding the funtions in the brakets in terms of the funtions T k

m j and using the orthogonalityrelations satis�ed by these funtions we an perform the integration. All terms expet the last onegive some ontributions. Using the formulae (4.7), (4.12) and (4.16) we get the �nal expression
Gm

∣

∣

I+=
i2−m

2
(15π)

1
2

{

127 (mW2;4,2−m − 6 a2−m) − 1

2
√

6
R∗

2−m

}

, (4.69)where the oe�ients a2−m, whih are quadrati in W1;2,k, are given by (4.17). We note that thestruture of this more general expression is essentially the same as that of the expression obtainedby Newman and Penrose in the ase of stati and stationary solutions.5 Conluding remarksWe have seen that, under the assumptions explained above, ertain �elds whih are given nearspae-like in�nity in terms of Bondi-type systems an be expressed in a straightforward way interms of the gauge onditions used in [4℄ and an thus be related diretly to the struture of theCauhy data whih give rise to the spae-times by Einstein evolution. The alulations involvedare quite lengthy but taking into aount that we relate quantities whih are obtained by a non-linear evolution over an in�nite domain of spae-time to the data from whih they arise, the overallstruture of the argument is surprisingly simple.ACKNOWLEDGMENTS: One of us (H.F.) would like to thank the ITP in Santa Barbaraand the KFKI RMKI in Budapest for hospitality, the work of H.F. was supported in part by theNational Siene Foundation and Grant No. PHY94-07194. J.K. would like to thank the AEI inPotsdam for hospitality where part of this work was ompleted, his researh was supported by thegrant OTKA-D25135.A AppendixA.1 X+ and the ð-operatorIn this setion we desribe the relation between the operators ð, ð̄ introdued in [13℄ and theoperators X+, X−, X used in [4℄.Consider on the group SU(2), whih is di�eomorphi to S3, oordinates {x, y, α} suh thatoutside a set of measure zero the general group element tab ∈ SU(2) is given by
tab =

1
√

1 + ζζ̄

(

eiα ie−iαζ
ieiαζ̄ e−iα

)

, (A.1)



A APPENDIX 29with ζ = x+ iy. Then α is a parameter and x and y are onstant on the orbits of the the subgroup
U(1). The tangent vetors ∂x, ∂y, respetively ∂α at the unit element oinide with the generators
u1, u2, and u3 of the Lie algebra of SU(2). Writing P = 1

2 (1 + ζζ̄), we get for the orrespondingleft invariant vetor �elds the expressions
Zu1

= P cos(2α)∂x + P sin(2α)∂y + 1
2 [x sin(2α) − y cos(2α)]∂α,

Zu2
= −P sin(2α)∂x + P cos(2α)∂y + 1

2 [y sin(2α) + x cos(2α)]∂α,

Zu3
= 1

2∂α,

(A.2)whene
X+ = −Zu2

− iZu1
= e2iα{−i

√
2(m− i

2
√

2
ζ̄∂α}, X = −2iZu3

= −i∂α,

X− = −Zu2
+ iZu1

= e−2iα{i
√

2(m̄+ i

2
√

2
ζ∂α},

(A.3)where the vetors m =
√

2P∂ζ and m̄ =
√

2P∂ζ̄ de�ne a omplex dyad tangent to the surfaes
{α = const.} whih is null with respet to the standard S2-metri ds2 = P−2dζ dζ̄ on thesesurfaes.We may identify SU(2) with the spin frame bundle over the base manifold S2 with stru-ture group U(1). The setion {α = 0} an be identi�ed with the base manifold (with a pointomitted). Here we take the omplex null frame {m, m̄} de�ned above, where a group element
ua

b = diag(eiα, e−iα) ∈ U(1) ats as u({m, m̄}) = {e2iαm, e−2iαm̄}. A funtion η on S3 is said tohave spin weight N, if it an be deomposed as η|ζ,α = e2Niαη0, where the funtion η0 is indepen-dent of the parameter α along the �bers. The ð-operator is de�ned by the omplex null vetor mand ats on a spin-N funtion asðη|ζ,α =
√

2
{

m(η0) +Nη0 m̄
γmβδβmγ

}

e2(N+1)iα =
√

2
{

m(η0) +
1√
2
Nζ̄η0

}

e2(N+1)iα, (A.4)where δ denotes the Levi-Civita di�erential operator indued by the standard S2-metri. Thismeans that ðη has spin weight N +1. (This treatment of the funtions with spin weight and the ðoperator is a bit di�erent from the one whih an be found in the literature (f. [13, 9, 10℄), wherethe expressions are evaluated on some ross-setion of S3.)The horizontal lift of the vetor m de�ned with respet to the Levi-Civita onnetion δ is givenby
mH |ζ,α = m− i

2
√

2
ζ̂∂α. (A.5)This means that the ð-operator on S3 is given byð|ζ,α =

√
2 e2iαmH . (A.6)Comparing the formulae (A.3), (A.5) and (A.6) we get the relations

X+ = −ið, X− = ið̄, X = −[ð, ð̄]. (A.7)The spherial harmonis Yl,m are de�ned as an orthogonal funtion system on the sphere S2.They an be extended to S3 as funtions with zero spin weight, i.e. they beame independent onthe parameter along the �bers. This means that they an be expanded as Yl,m =
∑

k,j

ckjT
j

2k k interms of the funtions T j
m k. The spherial harmonis satisfy the equation ðð̄Yl,m = −l(l+1)Yl,m,so using the relations (A.7) and (2.22) we arrive at the relation

Yl,m =
∑

j

cjT
j

2l l. (A.8)



A APPENDIX 30Taking into aount the expliit oordinate expressions of the group elements one ould determinethe expansion oe�ients cj . Using the de�nition of the spin harmonis sYl,m (f. [9℄) and equations(2.22), (A.7) and (A.8) one an also derive the relation between the funtions sYl,m and thefuntions T j
m k. We shall only need the transformation formulae

Y2,m= (−i)4−m
(

5
4π

)
1
2 T 2−m

4 2 ,

2Y2,m= (−i)2−m
(

5
4π

)
1
2 T 2−m

4 0 , −2Y2,m = (−i)2−m
(

5
4π

)
1
2T 2−m

4 4 .

(A.9)A.2 Some useful spinor identitiesHere we desribe irreduible deompositions of spinors with four unprimed indies in terms of the�primary spinors� εi
abcd, habcd, xab, yab, zab and ǫab, where
xab =

√
2ǫ

0
(a ǫ

1
b) , yab = − 1√

2
ǫ 1
a ǫ 1

b , zab = 1√
2
ǫ 0
a ǫ 0

b ,

εi
abcd = ǫ

(e
(a ǫ f

b ǫ
g

c ǫ
h)i

d) , habcd = −ǫa(cǫd)b.
(A.10)It is well known that a spinor Aabcd satisfying Aabcd = A(ab)(cd) = −Acdab an be deomposed inthe form Aabcd = ǫacAbd + ǫbdAac with Aab = 1

2 A
f

afb = A(ab) and that a spinor Sabcd satisfying
Sabcd = S(ab)(cd) = Scdab an be written in the form Sabcd = S(abcd) + 1

3habcdS with S := S ef
ef .It follows from this that an arbitrary four index spinor with symmetries Xabcd = X(ab)(cd) an beexpanded in terms of εi

abcd, ǫacxbd + ǫbdxac, ǫacybd + ǫbdyac, ǫaczbd + ǫbdzac and habcd.The following relations were frequently used in the alulations:
yabxcd = −ε3abcd −

1

2
√

2
(ǫacybd + ǫbdyac), zabxcd = ε1abcd +

1

2
√

2
(ǫaczbd + ǫbdzac);

xabx
ab = −1, xaby

ab = 0, xabz
ab = 0, yaby

ab = 0, yabz
ab = − 1

2 , zabz
ab = 0;

x f
a xbf = 1

2ǫab, y f
a xbf = 1√

2
yab, z f

a xbf = − 1√
2
zab,

y f
a ybf = 0, y f

a zbf = − 1
2ǫ

1
a ǫ

0
b , z f

a zbf = 0;

ε0abcdx
cd = 0, ε0abcdy

cd = −zab, ε0abcdz
cd = 0, ε1abcdx

cd = − 1
2zab,

ε1abcdy
cd = − 1

4xab, ε1abcdz
cd = 0, ε2abcdx

cd = − 1
3xab, ε2abcdy

cd = 1
6yab,

ε2abcdz
cd = 1

6zab, ε3abcdx
cd = 1

2yab, ε3abcdy
cd = 0, ε3abcdz

cd = 1
4xab,

ε4abcdx
cd = 0, ε4abcdy

cd = 0, ε4abcdz
cd = −yab;

x(abxcd) = 2 ε2abcd, x(abycd) = −ε3abcd, x(abzcd) = ε1abcd,

y(abycd) = 1
2ε

4
abcd, y(abzcd) = − 1

2ε
2
abcd, z(abzcd) = 1

2ε
0
abcd;

x
f

(a ε0
b)cdf

= 1√
2
ε0abcd, x

f

(a ε1
b)cdf

= 1
2
√

2
zabxcd, x

f

(a ε2
b)cdf

= 1
12 (ǫacxbd + ǫbdxac),

x
f

(a ε3
b)cdf

= 1
2
√

2
yabxcd, x

f

(a ε4
b)cdf

= − 1√
2
ε4abcd, h

f

ab(c xd)f = 1
2 (ǫacxbd + ǫbdxac);

y
f

(d ε2
c)abf

=− 1
2
√

2
ε3abcd + 1

24 (ǫacybd + ǫbdyac), z
f

(d ε2
c)abf

=− 1
2
√

2
ε1abcd + 1

24 (ǫaczbd + ǫbdzac);

ε2 ef
ab ε1cdef =− 1

12ε
1
abcd + 1

8
√

2
(ǫaczbd + ǫbdzac), ε2 ef

ab ε3cdef =− 1
12ε

3
abcd + 1

8
√

2
(ǫacybd + ǫbdyac);

ε2abcdε
2 abcd = 1

6 , ε2 ef
ab ε2cdef = − 1

6ε
2
abcd + 1

18habcd.



A APPENDIX 31A.3 The detailed expressions for up, p = 0, . . . , 3The τ -dependent funtions ouring in (4.2).
c01(τ) =m (4

3 τ
3 − 1

3 τ
5), c±1(τ) =m (τ2 − 1

6 τ
4), S1(τ) =

√
2m (1

2 τ
2 − 1

4 τ
4),

K1(τ) =m (−12 τ + 4 τ3), F 1(τ) = 1
3 mτ4, t1(τ) =

√
2 4 τ m,

T 1(τ) =6m (1 − τ2), φ1
1(τ) =−12 (1 − τ)2, φ1

2(τ) =−m2 (18 τ2 − 3 τ4),

φ1
3(τ) =−36 + 36 τ2.The τ -dependent funtions ouring in (4.3).

c021 (τ) = m2 (−2 τ3 − 3 τ5 + 8
7 τ

7 − 1
7 τ

9), c022 (τ) = 16 τ3 − 26
5 τ5 + 6

5 τ
7,

c023 (τ) = 8 τ3 − 7
5 τ

5 − 3
5 τ

7, c12(τ) = m (−4 τ2 + 2
3τ

4),

c±2
1 (τ) = m2 (−2 τ2 + 3 τ4 − 8

9 τ
6 + 1

14 τ
8), c±2

2 (τ) = 12 τ2 − 3 τ4 + 3
5 τ

6,

c±2
3 (τ) = −6 τ2 − 1

2 τ
4 + 3

10 τ
6, S2

1(τ) =
√

2m2 (4
3 τ

4 − 2
9 τ

6 − 1
28 τ

8),

S2
2(τ) =

√
2 (6 τ2 − 5

2 τ
4 + 9

10 τ
6), S2

3(τ) =
√

2 (− 5
4 τ

4 + 3 τ2 − 9
20 τ

6),

S2
4(τ) = −36 τ2 + 11τ4 + 3

5 τ
6, K2

1(τ) = m2 (24 τ − 8 τ3 + 4 τ5 − 4
21 τ

7),

K2
2(τ) = −144 τ + 72 τ3 − 108

5 τ5, K2
3(τ) = m2 (− 20

3 τ
3 + 8

3 τ
5 − 20

63 τ
7),

K2
4(τ) = −

√
2 2 τ3, K2

5(τ) = −48 τ + 36
5 τ5,

F 2
1 (τ) = m2 (−2 τ2 + 1

3 τ
4 − 4

9 τ
6 + 1

7 τ
8), F 2

2 (τ) = 2 τ4 − 6
5 τ

6,

F 2
3 (τ) = 3 τ4 + 3

5 τ
6, t21(τ) =

√
2m2 (−12 τ − 8

3 τ
3 + 4

3 τ
5),

t22(τ) =
√

2 (48 τ − 16 τ3), t23(τ) =
√

2 (24 τ + 8 τ3),

T 2
1 (τ) = m2 (−12 + 12 τ2 − 10 τ4 + 2

3 τ
6), T 2

2 (τ) = 72 − 72 τ2 + 36 τ4,

T 2
3 (τ) = m2 (4 τ2 − 8

3 τ
4 + 4

9 τ
6), T 2

4 (τ) = −
√

2 6 τ2,

T 2
5 (τ) = 24 − 12 τ4, φ2

1(τ) = −(−1 + τ)4,

φ2
2(τ) = 4m (37

10 τ
6 − 41

5 τ
5 − 41

2 τ
4 + 46 τ3 − 18 τ2), φ2

3(τ) = 16 (1 + τ) (−1 + τ)3,

φ2
4(τ) = 6 (− 8

21 τ
8 + 14

3 τ
6 − 15 τ4 + 6 τ2)m3, φ2

5(τ) = 6m (− 46
5 τ

6 + 62 τ4 − 72 τ2),

φ2
6(τ) = −72 (1 + τ)2 (−1 + τ)2.



A APPENDIX 32The τ -dependent funtions ouring in (4.20).
c031 (τ) = (3 τ3 + 18 τ5 + 283

21 τ7 − 1510
189 τ

9 + 2972
2079 τ

11 − 74
693 τ

13)m3,

c032 (τ) = (−44 τ3 − 588
5 τ5 + 268

7 τ7 − 58
7 τ

9 + 6
5 τ

11)m,

c033 (τ) = 48 τ3 − 96
5 τ5 + 312

35 τ
7 − 12

7 τ
9,

c034 (τ) = (−20 τ3 − 6 τ5 + 439
70 τ

7 − 573
280 τ

9 − 1
40 τ

11)m,

c035 (τ) = 16 τ3 − 4 τ5 − 4
7 τ

7 + 4
7 τ

9,

c131 (τ) = (12 τ2 + 15 τ4 − 14
3 τ

6 + 3
7 τ

8)m2,

c132 (τ) = −72 τ2 + 18 τ4 − 18
5 τ6,

c133 (τ) = −36 τ2 + 3 τ4 + 9
5 τ

6,

c±3
1 (τ) = (18 τ2 + 12 τ4 − 31

5 τ
6 + 3

2 τ
8 − 3

40 τ
10)m,

c±3
2 (τ) = −12 τ2 + 4

5 τ
6 − 2

7 τ
8,

c±3
3 (τ) = (9

2 τ
2 − 33

2 τ
4 + 50

3 τ
6 − 515

84 τ8 + 25
27 τ

10 − 34
693 τ

12)m3,

c±3
4 (τ) = (−48 τ2 + 105 τ4 − 453

10 τ
6 + 2847

280 τ8 − 7
8 τ

10)m,

c±3
5 (τ) = 36 τ2 − 12 τ4 + 24

5 τ6 − 6
7 τ

8,

c±3
6 (τ) = −3 τ2 − 2 τ4 + 3

5 τ
6 + 1

14 τ
8,

S3
1(τ) = −9 τ2 − 2 τ4 + 13

5 τ
6 + 1

14 τ
8,

S3
2(τ) = (108 τ2 − 168 τ4 + 86 τ6 − 39

5 τ8 − 3
20 τ

10)m,

S3
3(τ) = −72 τ2 + 48 τ4 − 72

5 τ6 − 4
7 τ

8,

S3
4(τ) = (− 9

4 τ
2 − 37

4 τ4 + 19
2 τ6 − 827

168 τ
8 + 355

378 τ
10 − 6

77 τ
12)

√
2m3,

S3
5(τ) = (6 τ2 + 69

2 τ
4 − 333

20 τ6 + 1999
560 τ

8 + 13
80 τ

10)
√

2m,

S3
6(τ) = (18 τ2 − 6 τ4 + 24

5 τ6 − 9
7 τ

8)
√

2,

S3
7(τ) = (−3 τ2 − 33

2 τ
4 + 177

20 τ
6 − 379

112 τ
8 + 1

40 τ
10)

√
2m3,

S3
8(τ) = (6 τ2 − 2 τ4 + 3

7 τ
8)

√
2m,

K3
1(τ) = −6 τ − 8 τ3 + 18

5 τ
5 + 4

7 τ
7,

K3
2(τ) = (144 τ + 12 τ3 − 351

5 τ5 + 237
5 τ7 − 17

4 τ
9)m,

K3
3(τ) = −96 τ + 16 τ3 + 72

5 τ
5 − 64

7 τ7,

K3
4(τ) = (−54 τ + 12 τ3 − 216 τ5 + 796

7 τ7 − 440
21 τ9 + 16

11 τ
11)m3,

K3
5(τ) = (576 τ − 216 τ3 + 1962

5 τ5 − 714
5 τ7 + 23

2 τ
9)m,

K3
6(τ) = −432 τ + 288 τ3 − 864

5 τ5 + 288
7 τ7,

K3
7(τ) = (40 τ3 − 16 τ5 + 100

21 τ
7 − 160

189 τ
9 + 20

693 τ
11)m3,

K3
8(τ) = (−240 τ3 + 582

5 τ5 − 218
7 τ7 + 23

6 τ9)m,

K3
9(τ) = (9 τ3 − 33

20 τ
5 − 13

20 τ
7 + 1

80 τ
9)
√

2m,

K3
10(τ) = (−4 τ3 + 6

5 τ
5)

√
2,
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F 3

1 (τ) = (9 τ2 + 2 τ4 − 7
3 τ

6 + 26
7 τ8 − 20

21 τ
10 + 74

693 τ
12)m3,

F 3
2 (τ) = (−60 τ2 + 36 τ4 − 12 τ6 + 106

35 τ
8 − 6

5 τ
10)m,

F 3
3 (τ) = − 24

5 τ
6 + 12

7 τ
8,

F 3
4 (τ) = (−12 τ2 − 6 τ4 + 7

2 τ
6 + 169

56 τ8 + 1
40 τ

10)m,

F 3
5 (τ) = 4 τ4 − 4

5 τ
6 − 4

7 τ
8,

t31(τ) = (36 τ + 20 τ3 + 46 τ5 − 296
21 τ

7 + 272
189 τ

9)
√

2m3,

t32(τ) = (−312 τ − 24 τ3 − 72
5 τ

5 − 40
7 τ7)

√
2m,

t33(τ) = (144 τ − 96 τ3 + 144
5 τ5)

√
2,

t34(τ) = (−96 τ − 12 τ3 + 294
5 τ5 − 86

35 τ
7)

√
2m,

t35(τ) = (48 τ − 48
5 τ5)

√
2,

T 3
1 (τ) = 3 + 9 τ2 − 3 τ4 − τ6,

T 3
2 (τ) = (−72 − 36 τ2 + 81 τ4 − 423

5 τ6 + 33
4 τ8)m,

T 3
3 (τ) = 48 − 24 τ2 + 16 τ6,

T 3
4 (τ) = (27 − 18 τ2 + 180 τ4 − 134 τ6 + 204

7 τ8 − 16
7 τ10)m3,

T 3
5 (τ) = (−288 + 216 τ2 − 558 τ4 + 1326

5 τ6 − 243
10 τ8)m,

T 3
6 (τ) = 216 − 216 τ2 + 216 τ4 − 72 τ6,

T 3
7 (τ) = (−24 τ2 + 16 τ4 − 20

3 τ
6 + 32

21 τ
8 − 4

63 τ
10)m3,

T 3
8 (τ) = (144 τ2 − 102 τ4 + 178

5 τ6 − 57
10 τ

8)m,

T 3
9 (τ) = (27 τ2 − 81

4 τ
4 − 11

20 τ
6 + 9

80 τ
8)
√

2m,

T 3
10(τ) = (−12 τ2 + 6 τ4)

√
2.The τ -dependent funtions ouring in (4.22).

A1(τ) =
(

36 τ − 78 τ2 + 82 τ3 − 97
2 τ

4 + 6
5 τ

5 + 169
5 τ6 − 208

7 τ7 + 54
7 τ8

)

m,

A2(τ) = −648 τ + 1728 τ2 − 1692 τ3 + 432 τ4 + 2592
5 τ5 − 2286

5 τ6 + 756
5 τ7 − 162

5 τ8,

B1(τ) = (108 τ − 234 τ2 − 396 τ3 + 1503 τ4 − 579 τ5 − 14939
20 τ6

+ 11682
35 τ7 + 40413

560 τ8 − 2591
70 τ9 + 177

80 τ10)m2,

B2(τ) = −648 τ + 1404 τ2 − 540 τ3 − 810 τ4 + 1404
5 τ5 + 1458

5 τ6 − 108 τ7 + 108
5 τ8,

B3(τ) = (−72 τ + 168 τ2 + 24 τ3 − 274 τ4 + 120 τ5 + 306
5 τ6 − 32 τ7 + 6

7 τ
8)m,

C1(τ) = (−27 τ + 342 τ3 − 696 τ5 + 2598
7 τ7 − 4555

63 τ9 + 1079
231 τ

11)m4,

C2(τ) = (504 τ − 3492 τ3 + 17607
5 τ5 − 41289

35 τ7 + 16559
140 τ9)m2,

C3(τ) = −1296 τ + 2376 τ3 − 4752
5 τ5 + 216 τ7,

C4(τ) = (−432 τ + 792 τ3 − 3072
5 τ5 + 816

7 τ7)m,

C5(τ) = −216 τ + 108 τ3 + 648
5 τ5 + 324

5 τ7.



REFERENCES 34The τ -dependent funtions ouring in (4.27).
f0(τ) =−18 + 216 τ2 − 240 τ3 + 18 τ4 − 48 τ5 + 204 τ6 − 144 τ7 + 30 τ8,

f1(τ) =−9 − 216 τ2 + 696 τ3 − 198 τ4 − 2544
5 τ5 + 984

5 τ6 + 936
7 τ7 − 411

7 τ8,

f2(τ) =−3 − 216 τ2 + 372 τ4 − 936
5 τ6 + 219

7 τ8,

g0(τ) =108 − 1944 τ2 + 4752 τ3 − 5724 τ4 + 19008
5 τ5 − 6264

5 τ6 + 864
5 τ7 − 108

5 τ8,

g1(τ) =54 − 972 τ2 + 1620 τ3 + 378 τ4 − 11448
5 τ5 + 5778

5 τ6 + 108
5 τ7 − 108

5 τ8,

g2(τ) =18 − 540 τ2 + 972 τ4 − 2808
5 τ6 + 108

5 τ8,

h0(τ) = 3
2 , h1(τ) = 3

4 , h2(τ) = 1
4 ,

k1(τ) =108 τ2 − 276 τ3 − 129 τ4 + 4077
5 τ5 − 3289

10 τ6 − 9439
35 τ7 + 32803

280 τ8 + 463
20 τ9 − 2721

280 τ
10,

k2(τ) =252 τ2 − 942 τ4 + 3614
5 τ6 − 6341

35 τ8 + 99
7 τ10,

p(τ) =− 27
2 τ2 + 171

2 τ4 − 116 τ6 + 1299
28 τ8 − 911

126 τ
10 + 1079

2772 τ
12,

q(τ) = 216
5 τ8 − 576

5 τ6 + 648 τ4 − 864 τ2.The τ -dependent funtions ouring in (4.29).
F1(τ) = (72 τ2 − 1071

2 τ4 + 4077
5 τ5 − 2639

20 τ6 − 18878
35 τ7 + 113287

560 τ8 + 1389
20 τ9 − 15087

560 τ10)m2,

F2(τ) = −864 τ2 + 1584 τ3 − 810 τ4 − 1296
5 τ5 + 882

5 τ6 + 432
5 τ7 − 108

5 τ8,

F3(τ) = (−36 τ2 − 40 τ3 + 156 τ4 − 888
5 τ5 + 194

5 τ6 + 456
7 τ7 − 198

7 τ8)m,

G1(τ) = (27
2 τ2 + 171

2 τ4 − 348 τ6 + 6495
28 τ8 − 911

18 τ
10 + 1079

308 τ12)m4,

G2(τ) = (−144 τ2 − 1071 τ4 + 3679
2 τ6 − 220837

280 τ8 + 24999
280 τ10)m2,

G3(τ) = 1116 τ4 − 468 τ6 + 648
5 τ8,

G4(τ) = 174mτ4 − 1824
5 mτ6 + 684

7 mτ8,

G5(τ) = 432 τ2 − 234 τ4 + 306
5 τ6 + 216

5 τ8.The τ -dependent funtions ouring in (4.31).
T1(τ) =−46656 τ + 124416 τ2 − 138240 τ3 + 51840 τ4 + 31104 τ5 − 133056

5 τ6

+12096τ7 − 50112
5 τ8 + 10368

5 τ9,

T2(τ) = (5184 τ − 3456 τ2 − 5088mτ3 − 6048 τ4 + 12288 τ5 + 384 τ6 − 4128 τ7
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