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Effect of a neutron-star crust on the r-mode instability
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The presence of a viscous boundary layer under the solid crust of a neutron star dramatically increases the
viscous damping rate of the fluidr-modes. We improve previous estimates of this damping rate by including
the effect of the Coriolis force on the boundary-layer eigenfunction and by using more realistic neutron-star
models. If the crust is assumed to be perfectly rigid, the gravitational radiation driven instability in ther-modes
is completely suppressed in neutron stars colder than about 1.53108 K. Energy generation in the boundary
layer will heat the star, and will even melt the crust if the amplitude of ther-mode is large enough. We solve
the heat equation explicitly~including the effects of thermal conduction and neutrino emission! and find that
the r-mode amplitude needed to melt the crust isac'531023 for maximally rotating neutron stars. If ther-
mode saturates at an amplitude larger thanac , the heat generated is sufficient to maintain the outer layers of
the star in a mixed fluid-solid state analogous to the pack ice on the fringes of the Arctic Ocean. We argue that
in young, rapidly rotating neutron stars this effect considerably delays the formation of the crust. By consid-
ering the dissipation in the ice flow, we show that the final spin frequency of stars withr-mode amplitude of
order unity is close to the value estimated for fluid stars without a crust.

PACS number~s!: 04.30.Db, 04.40.Dg, 97.60.Jd
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I. INTRODUCTION

The r-modes~fluid oscillations governed primarily by th
Coriolis force! have been the focus of considerable attent
over the past few years~see Friedman and Lockitch@1# for a
review!. The gravitational-radiation-driven instability o
these modes has been proposed as an explanation fo
observed relatively low spin frequencies of young neut
stars and of accreting neutron stars in low-mass x-ray b
ries ~LMXBs! as well. Ther-mode instability may also pro
vide a source of gravitational waves detectable by the ‘‘
hanced’’ Laser Interferometric Gravitational Wav
Observatory~LIGO! and VIRGO interferometer, the con
figurations whose operation is expected to begin in about
year 2006. In real neutron stars this instability can only oc
when the gravitational-radiation driving time scale of ther-
mode is shorter than the time scales of the various inte
dissipation processes that may occur in the star. In this p
we re-examine and re-calculate some of the dissipa
timescales associated with the crust of the neutron star.

Recently Bildsten and Ushomirsky@2# made the first es-
timate of the effect of a solid crust on ther-mode instability.
They found that the shear dissipation in the viscous bound
layer between the solid crust and the fluid core decrease
viscous damping time scale by more than a factor of 105 in
old, accreting neutron stars and more than 107 in hot, young
neutron stars. The viscous damping time scale in these
is thus comparable to the gravitational radiation driving tim
scale, and so Bildsten and Ushomirsky concluded that
r-mode instability is unlikely to play a role in old, accretin
neutron stars. In hot, young neutron stars they also predi
that this boundary-layer damping mechanism severely lim
0556-2821/2000/62~8!/084030~12!/$15.00 62 0840
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the ability of the r-mode instability to reduce the angula
momentum of the star, and hence to produce detect
amounts of gravitational radiation.

However, the debate over the relevance of ther-mode
instability to the observed spin periods of neutron stars is
settled. Anderssonet al. @3# corrected a minor numerical fac
tor in the work of Bildsten and Ushomirsky@2# and used
different neutron-star parameters to obtain a significantly
ferent result for the critical frequency of the onset of t
r-mode instability. Anderssonet al. @3# estimated the critical
frequency~the frequency of rotation of the star at which th
driving and damping time scales are equal! to be about 40%
lower than the estimate of Bildsten and Ushomirsky@2#.
Based on this new estimate, and contrary to the conclus
of Bildsten and Ushomirsky@2#, Anderssonet al. @3# inferred
that ther-mode instability is likely to be the mechanism th
limits the LMXB spin periods and those of other millisecon
pulsars as well.

The calculations of Bildsten and Ushomirsky@2# and of
Anderssonet al. @3# depend on an extremely simple model
the boundary layer which neglects the Coriolis force, t
dominant restoring force for ther-modes. Rieutord@4#,
building on the work of Greenspan@5#, improved this model
by finding the self-consistent solution to the lineariz
Navier-Stokes equations~including the Coriolis force terms!
throughout the boundary layer. Rieutord’s model of t
boundary layer includes the correct angular structure and
sults in dissipative time scale estimates that are significa
shorter than those of Anderssonet al. @3#. Coincidentally,
Rieutord’s estimates of the critical spin frequencies ag
rather closely with the original estimates of Bildsten a
©2000 The American Physical Society30-1



ar
g
th
ve

o

b

th
ar
te

e

ha
ky
ca
or
t
e
th
id

ui
p
s
in

e
o
er

o

n

ing
ino
m-

ain
e,
n-
nd
os.

ti-
st-
r is
cy

-
ot
ch
rust

e
t,
uter

ng
the

the
r

i-

’’

a
e-
nd-
ity
ct
em-

e
ing.

of

is
e

. II

ion
will
ty.
ta-

er,
uc-

ec.

oc
tic

LEE LINDBLOM, BENJAMIN J. OWEN, AND GREG USHOMIRSKY PHYSICAL REVIEW D62 084030
Ushomirsky@2#. These changes in the values of the bound
layer dissipation time scale, and the corresponding chan
in the conclusions regarding the physical relevance of
r-mode instability for neutron stars with crusts, ha
prompted us to revisit this subject once again.

Our aim is to provide a complete, careful re-derivation
recent results@2–4#, including the effects of non-uniform
density stellar models—an important factor neglected
Anderssonet al. @3# and Rieutord@4#. We use a variety of
stellar models to explore the sensitivity of the results to
poorly known neutron-star equation of state. In summ
~see Fig. 1!, we find that the critical frequency is even grea
~by 25%–50% depending on the equation of state! than that
estimated by Bildsten and Ushomirsky@2# and Rieutord@4#,
and double to triple that estimated by Anderssonet al. @3#.
Our new results make it appear unlikely that ther-mode
instability is responsible for limiting the spin periods of th
LMXBs.

However, the interpretation of our results is somew
complicated by the recent work of Levin and Ushomirs
@6#. They showed that mechanical crust-core coupling
reduce the relative velocity between the crust and the c
thereby reducing the shear and the viscous dissipaton in
boundary layer. LetDv/v denote the difference between th
velocities in the inner edge of the crust and outer edge of
core divided by the velocity of the core. In the static, rig
crust caseDv/v51, but Levin and Ushomirsky@6# find that
this quantity can lie anywhere in the range 0.05&Dv/v&1.
They find that the precise value ofDv/v varies in a compli-
cated manner with the spin frequency of the star, and is q
sensitive to the thickness of the crust and other model
rameters. Throughout this paper we assume that the cru
static, i.e. thatDv/v51, but indicate at appropriate points
the text how to rescale various quantities~such as dissipation
time scales! for Dv/v,1. Our calculations therefore provid
only an upper limit on the critical frequency for the onset
the r-mode instability in neutron stars with crusts. Howev
our limits are easily adjusted once a more realistic value
Dv/v is known.

In young neutron stars, ther-mode instability is still a
viable mechanism for spindown even ifDv/v51. In the
presence of a crust, the majority of the viscous dissipatio

FIG. 1. Temperature dependence of the critical angular vel
ties of 1.4M ( neutron stars constructed with a number of realis
equations of state.
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confined to a very thin boundary layer. If ther-mode ampli-
tude is larger than some critical value, the resulting heat
in this layer is so intense that it can compete with neutr
cooling and heat the crust-core interface to the melting te
perature. This possibility was first suggested by Owen@7#,
who crudely estimated the critical amplitude to beac
'1023, and the idea of crust re-melting was suggested ag
by Anderssonet al. @3#. Here we perform a comprehensiv
self-consistent analysis of this heating effect, including co
ductive transport of heat into the core and the crust, a
eventual radiation of the excess thermal energy by neutrin
We find that, for maximally rotating neutron stars, the cri
cal dimensionlessr-mode amplitude needed to heat the cru
core interface to the melting temperature at the equato
ac'531023. @This value depends on the spin frequen
and is somewhat larger away from the equator; see Eq.~42!
and Fig. 4.# If the r-mode amplitude grows to a value ex
ceedingac in a hot, young neutron star, the crust will n
form as usual and the neutron star will spin down to a mu
lower frequency than would have been possible were a c
present.

What happens if ther-mode amplitude does exceed th
critical value,ac? If the r-mode completely melts the crus
the boundary layer and the heating are removed and the o
layers of the neutron star quickly cool back down to melti
temperature. If the crust completely cools and solidifies,
boundary-layer heating due to ther-mode quickly heats the
crust back up to melting temperature. It is clear that, in
presence of a strong enoughr-mode, neither a solid crust no
a pure fluid is possible. We imagine the situation to be sim
lar to the pack ice on the Arctic Ocean. While ther-mode
amplitude exceeds the critical valueac in this picture, the
outer layers will be composed of chunks of crustal ‘‘ice
floating in the fluid at the melting temperature of about 1010

K. The dissipation mechanism in this pack ice will be
combination of macroscopic viscosity due to collisions b
tween chunks of ice and microscopic viscosity due to bou
ary layers bordering the chunks. Calculation of the viscos
in this situation would be very complicated but for the fa
that the system must be maintained close to the melting t
perature. The size of the ice chunks~and other variables
controlling the viscosity! will adjust themselves so that th
heat dissipated in the ice flow balances the neutrino cool
This allows us to estimate ther-mode damping time scale
quantitatively in the pack ice, without knowing the details
this complicated process. We find that, forr-mode saturation
amplitudes of order unity, the final spindown frequency
little changed from that of the purely fluid model of th
instability considered over the past few years.

The rest of this paper is organized as follows. In Sec
we re-derive the velocity profile of ther-modes in the bound-
ary layer, and in Sec. III we re-derive the energy dissipat
in the boundary layer using techniques and notation that
be more familiar to the relativistic astrophysics communi
In Sec. IV we apply these results to the question of the s
bility of the r-modes in hot, young neutron stars and in old
colder, accreting ones. In Sec. V we derive the thermal str
ture of the boundary layer and find ther-mode amplitudeac
necessary to heat the bottom of the crust to melting. In S

i-
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EFFECT OF A NEUTRON-STAR CRUST . . . PHYSICAL REVIEW D 62 084030
VI we argue that the presence of anr-mode with an ampli-
tude greater thanac will in fact prevent crust formation, and
instead lead to the pack-ice flow described above. We c
pute the effective dissipation in this flow, and consider
implications of the delayed crust formation for the deve
pent of ther-mode instability. In Sec. VII we summarize an
discuss some of the implications of our results. In the A
pendix we summarize the relevant thermodynamic proper
of the neutron star matter near the crust-core interface.

II. STRUCTURE OF THE BOUNDARY LAYER

We begin by re-deriving the structure of ther-modes in
the boundary layer near a rigid solid crust. Our analysis
proves the initial studies of Bildsten and Ushomrisky@2# and
of Anderssonet al. @3# by properly evaluating the angula
structure of the boundary layer. We follow closely the mo
recent work of Rieutord@4#, but employ a notation that is
more familiar to the relativistic astrophysics community a
improve his estimates by allowing non-uniform density st
lar models.

Let us decompose the fluid perturbation representing ar-
mode into two parts: the eigenfunctions describing the m
in the zero viscosity limit,dva anddU[dp/r, and the cor-
rections that must be added to these when viscosity
present,d ṽa and dŨ. The velocity correctiond ṽa must be
chosen so that the relative velocity between the fluid c
and the solid crust vanishes: for the case of a rigid crust
is equivalent to 05dva1d ṽa. Thus the viscous correction
to the velocity field are not small, at least near the crust. T
correction to the hydrodynamic potentialdŨ, however, will
turn out to be small everywhere.

The equations for the viscous corrections to the veloc
field are obtained by expanding the Navier-Stokes equa
to first order in the amplitude of the perturbation. We assu
that the equilibrium star is rigidly rotating with angular v
locity V, and that the temporal and angular dependence
the mode iseivt1 imw. As usual in boundary-layer theory, w
assume that the fluid functions change much more rapidl
the direction perpindicular to the boundary. Thus we assu
that the angular derivatives are much smaller than radial
rivatives, and neglect them. Under these assumptions,
equations that determine the viscous corrections to the fl
flow are

i ~v1mV!d ṽ r22Vr sin2 ud ṽw52] rdŨ1 2
3

h

r
] r

2d ṽ r ,

~1!

i ~v1mV!d ṽw1
2V

r
d ṽ r12Vcotud ṽu

5
h

r
] r

2~ d ṽw2 1
3 d ṽ r! , ~2!

i ~v1mV!d ṽu22V cosu sinud ṽw5
h

r
] r

2~ d ṽu2 1
3 d ṽ r! ,

~3!
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where h and r are the viscosity and density of the fluid
respectively. These equations assume only that the visc
corrections vary much more rapidly withr than with the
angular coordinates. Thus we generalize the analysis
Rieutord@4#: we do not assumea priori that the fluid flow is
incompressible or that the equilibrium is of uniform densi

The solutions to these equations depend exponentially
r with a characteristic length scaled:

d25
h

2Vr U
r 5Rc

. ~4!

The radial velocity correctiond ṽ r must vanish both at the
boundary and deep within the fluid. Given the exponen
nature of the solutions, it follows thatd ṽ r50 everywhere
within the fluid. With this simplification, Eqs.~2! and ~3!

determine the velocity correctionsd ṽu and d ṽw, while Eq.
~1! determinesdŨ in terms ofd ṽw. Equations~2! and ~3!
may be re-written in the following form:

Fd2] r
22 i S s

2V
1cosu D G~d ṽu1 i sinud ṽw!50, ~5!

Fd2] r
22 i S s

2V
2cosu D G~d ṽu2 i sinud ṽw!50, ~6!

where s5v1mV is the mode frequency in the rotatin
frame.

It is straightforward now to write down the general sol
tions to these equations, and then to impose the boun
condition, 05dva1d ṽa, at the inner edge of the crustr
5Rc . These solutions are given by

d ṽu52dvu~Rc!L1~r ,u!2 i sinu dvw~Rc!L2~r ,u!,
~7!

sinu d ṽw52sinu dvw~Rc!L1~r ,u!1 idvu~Rc!L2~r ,u!,
~8!

wheredva(Rc) is the standard non-viscousr-mode velocity
perturbation, evaluated at the radius of the inner edge of
crust r 5Rc . The functionsL6(r ,u) are defined by

L6~r ,u!5 1
2 e2zAi (cosu1s/2V)6 1

2 e2zAi (cosu2s/2V), ~9!

wherez is the dimensionless radial parameter,

z5
Rc2r

d
, ~10!

and the characteristic thickness of the boundary layer,d, is
defined in Eq.~4!. For r-modes the frequency of the mod
~as measured in the co-rotating frame of the fluid! that ap-
pears in the definition ofL6 has the values/2V51/(m
11). For rapidly rotating neutron starsd'(108 K/T! cm,
whereT is the temperature in the boundary layer. Therefo
d/Rc!1.
0-3
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III. DISSIPATION IN THE BOUNDARY LAYER

The shear of ther-mode velocity field is dominated by th
rapid radial change ind ṽa through the boundary layer. Thu
up to terms of orderd/Rc , the square of the shear tensor
the boundary layer is given by

dsab* dsab5 1
2 Rc

2~ u] rd ṽuu2 1sin2 u u] rd ṽwu2!. ~11!

The angular structure ofd ṽa in Eqs. ~7! and ~8! is deter-
mined in part by the structure of the dissipation-free veloc
field dva. For convenience we may write the non-dissipat
r-mode velocity field as

dvu52 iAr m21 sinm21 u ei (vt1mw), ~12!

dvw5Arm21 sinm22 u cosu ei (vt1mw), ~13!

where A is a normalization constant. It is straightforwa
then to evaluate the square of the shear tensor:

dsab* dsab5
uAu2r 2m

8 d2
F~r ,u!, ~14!

where

F~r ,u!5sin2m22 u @~12cosu!2p1
2 e2zp1

1~11cosu!2p2
2 e2zp2# ~15!

and

p65A2ucosu61/~m11!u. ~16!

Now integrate the energy dissipation rate due to sh
viscosity over the fluid interior to the crust, ignoring terms
orderd/Rc :

dẼ

dt
52E 2hdsab* dsabd 3x52A2puAu2VdRc

2m12rcIm ,

~17!

whereIm is defined by

Im5E
0

p

sin2m21u~11cosu!2Aucosu21/~m11!udu.

~18!

For the case of primary interest to us,m52, this integral has
the valueI250.80411@4#.

Now we can define the viscous timescale for dissipat
in the boundary layer:

1

tv
52

1

2Ẽ

dẼ

dt
. ~19!

Using the expression fordẼ/dt derived above and the usu
expression for the energyẼ we find
08403
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tv5
1

2V

2m13/2~m11!!

m~2m11!!! Im

3A2VRc
2rc

hc
E

0

Rc r

rc
S r

Rc
D 2m12 dr

Rc
. ~20!

Here the quantitiesRc , rc andhc are the radius, density, an
the viscosity of the fluid at the outer edge of the core. W
note that, while the viscous dissipation rate in the bound
layer, Eq. ~17!, depends only on quantities local to th
boundary layer (d, rc , Rc , V), the time scaletv depends
also on the global structure of the mode. This is due to
fact that, while most of the energy dissipation takes place
the boundary layer, most of the energy in the mode is
localized there. For realistic neutron stars this express
Eq. ~20!, for the viscous time scale is about a factor of
larger than the one obtained by Rieutord@4#, who assumed a
uniform-density stellar model.

In deriving our expression for the viscous boundary lay
dissipation time scale, Eq.~20!, we assumed that the crust
rigid and hence static in the rotating frame. The motion
the crust due to the mechanical coupling to the core@6# ef-
fectively increasestv by a factor of (Dv/v)22.

IV. STABILITY OF THE r-MODES

In this section we evaluate viscous timescales for neut
stars ~based on slowly rotating Newtonian models! con-
structed from a set of ‘‘realistic’’ equations of state, and u
these time scales to evaluate the stability of these stars
neutron stars colder than about 109 K the shear viscosity is
expected to be dominated by electron-electron scatter
The viscosity associated with this process is given by@8,9#

hee56.03106r2T22, ~21!

where all quantities are given in cgs units, andT is measured
in K. For temperatures above about 109 K, neutron-neutron
scattering provides the dominant dissipation mechanism
this range the viscosity is given by@8,9#

hnn5347r9/4T22. ~22!

We find it useful to factor the angular velocity and tem
perature dependence from the viscous time scale define
Eq. ~20!. Thus we define a fiducial viscous time scalet̃v
such that

tv5 t̃vS V0

V D 1/2S T

108 K
D , ~23!

where V05ApGr̄. We have evaluated these fiducial vi
cous time scales~for each type of viscous dissipation! for 1.4
M ( neutron star models based on a variety of realistic eq
tions of state@10# as well as the standardn51 polytrope
with a radius of 12.53 km. These results are summarize
Table I, along with other relevant properties of these ste
models. In particular we also include the total radiusR, the
radius of the fluid coreRc , the energy contained in an ex
0-4
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cited r-mode, ẽ5Ẽ(V0 /aV)2 ergs, for the case of a fully
fluid star, the energy contained in an excitedr-mode,ẽc , in
the case with rigid crust, the fiducial gravitational radiati
time scalet̃GR , and a critical temperatureTc ~defined be-
low!. We note that thetv values listed in Table I presum
that the crust is rigid and does not move in the corotat
frame. To take into account the motion of the crust, multip
t̃v

ee and t̃v
nn by (Dv/v)22 @11#.

The gravitational radiation time scale is evaluated h
using the formalism developed by Lindblom, Owen, a
Morsink @12#. This time scale is given by

1

tGR
5

32pGV2m12

c2m13

~m21!2m

@~2m11!!! #2

3S m12

m11D 2m12E
0

Rc
rr 2m12dr. ~24!

Since we presume that the crust is static in the rota
frame, the integral in Eq.~24! extends only over the interio
of the fluid core, rather than throughout the star. Con
quently, these gravitational radiation time scales are so
what longer~typically about 30% longer! than those com-
puted earlier for hotter, completely fluid stars@11#. The
fiducial gravitational radiation time scalet̃GR given in Table
I is defined by

tGR5 t̃GRS V0

V D 2m12

. ~25!

Gravitational radiation tends to drive ther-modes un-
stable, while viscosity suppresses the instability. We de
the critical angular velocityVc , above which ther-mode is
unstable, by the conditiontv5tGR :

TABLE I. Properties of 1.4M ( neutron stars with rigid crusts
for densities belowrc51.531014 g/cm3. Times are given in sec
onds, lengths in kilometers, temperatures in units of 108 K, and
energies in units of 1051 ergs.

EOSa R Rc ẽc ẽ t̃GR t̃v
ee Tc

ee
t̃v

nn Tc
nn

n1poly 12.53 11.01 1.94 2.53 4.25 23.3 1.69 52.0 0
BJI 15.04 12.16 1.30 1.72 13.11 24.6 4.96 54.8 2.
DiazII 15.80 12.60 1.20 1.67 17.37 24.3 6.64 54.2 2.
FP 13.18 11.34 1.93 2.18 5.24 25.9 1.88 57.8 0
Glend1 16.47 12.74 0.97 1.53 25.32 23.4 10.1 52.2 4
Glend2 16.84 12.95 0.96 1.53 28.12 23.7 11.0 52.8 4
HKP 16.43 13.27 1.32 1.76 18.41 24.6 6.97 54.8 3.
PandN 12.77 10.85 1.84 2.08 4.84 26.9 1.67 59.9 0
SHW 14.92 12.89 1.97 2.23 8.40 25.0 3.11 55.8 1.
WFF3 12.98 11.21 2.10 2.33 4.52 27.7 1.52 61.8 0
WGW 14.64 12.38 1.85 2.17 8.32 26.8 2.88 59.8 1.

aThe various equations of state used here are described in Bo
zola, Frieben, and Gourgoulhon@10#.
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Vc

V0
5S t̃GR

t̃v
D 2/11S 108 K

T D 2/11

. ~26!

Figure 1 illustrates the temperature dependence of the cri
angular velocity for 1.4M ( neutron stars constructed from
variety of realistic equations of state. The discontinuities
these curves atT5109 K occur because the superfluid tra
sition changes the viscosity from electron-electron scatte
at low temperatures to neutron-neutron scattering. The o
edge of the core in these models is taken to berc51.5
31014 g cm23 @13#. Equation~26! and the curves in Fig. 1
neglect the motion of the crust in the rotating frame; i.
they assume thatDv/v51. In general,Vc is a factor of
(Dv/v)4/11 smaller than that given in Eq.~26!. Thus, Vc
displayed in Fig. 1 provides an upper bound on the criti
frequency for realistic neutron stars. In these expressions
Vc we neglect the effects of bulk viscosity, which are unim
portant forT&1010 K.

The angular velocity of a neutron star can never exc
some maximum valueVmax'

2
3 V0 @10#. Thus, there is a

critical temperature below which the gravitational radiati
instability is completely suppressed by viscosity. This cr
cal temperature is given by

Tc

108K
5S V0

Vmax
D 11/2t̃GR

t̃v

'S 3

2D 11/2t̃GR

t̃v

. ~27!

In terms ofTc then the critical angular velocity can be e
pressed in a particularly simple form:

Vc

V0
5

Vmax

V0
S Tc

T D 2/11

'
2

3 S Tc

T D 2/11

. ~28!

The values of this critical temperature are given in Tabl
for the caserc51.531014 g cm23. Since the exact density
rc where crust formation begins is only poorly known, w
explore in Fig. 2 the dependence ofTc on rc . The motion of
the crust would changeTc of Eq. ~27! by the factor (Dv/v)2,
and so the curves in Fig. 2 provide an upper bound onTc for
realistic neutron star models.

1
5

5

az-

FIG. 2. Critical temperatureTc as a function of the crust forma
tion densityrc for a number of realistic equations of state.
0-5



th
th
at
ha
tio
ra
e
a

th
he
pa

ch

to
m
he

y

r

c

er
he
y
at
o

-

th

fa
m

ted
-
de,
heat
n is
e.
c-

he

t

en-
is-

ary
the
mbi-

if-
tter

ly

e
the
si-
to a
os.
de-
hall
w
elf.
in
uc-

ry
xi-

the

LEE LINDBLOM, BENJAMIN J. OWEN, AND GREG USHOMIRSKY PHYSICAL REVIEW D62 084030
V. THERMAL STRUCTURE OF THE BOUNDARY LAYER

Viscous dissipation in the boundary layer between
core and the crust deposits thermal energy into a very
layer of material. Previous authors assumed that this he
effectively conducted away from the boundary layer, so t
the star remains essentially isothermal. Clearly, this situa
is idealized, and viscous dissipation will raise the tempe
ture at the crust-core interface. The viscous heating comp
with thermal conduction away from the boundary layer,
well as neutrino emission from the crust and the core. In
section we evaluate ther-mode amplitude needed to raise t
temperature at the boundary layer to a given value. Our
ticular interest is to determine the minimumr-mode ampli-
tude needed to raise the temperature toTm'1010(r/rc)

1/3 K,
the melting temperature of the crust~see the Appendix for a
discussion of the microphysics employed in this paper!. If
this occurs, ther-modes may continue to be unstable to mu
lower angular velocities~see Sec. VI!.

In the discussion that follows, it will be necessary
know the explicit temperature dependences of the ther
conductivity and neutrino emissivity. As described in t
Appendix, these temperature dependences are

k5
k̃

T
, ~29!

e5 ẽT10
n , ~30!

where T105T/1010 K, and the exponent in the emissivit
equation isn58 in the fluid core andn56 in the crust. The
prefactorsk̃ and ẽ are independent of temperature and a
given by k̃,51.531031, ẽ,58.631028 in the core and
k̃.52.831030, ẽ.51.531025 in the crust. The quantitiesk
ande are in cgs units. Note that for notational convenien
in subsequent computations, the temperature in Eq.~29! is
measured in K, while in Eq.~30! it is measured in 1010 K.

Let us first neglect the thermal conductivity altogeth
and ask whatr-mode amplitude is necessary to heat t
boundary layer toTm if the heat is radiated exclusively b
neutrino emission from the boundary layer itself. The r
dẼ/dt at which the shear deposits energy into the vicinity
the boundary layer is given by Eq.~17!, where the amplitude
A is related to the dimensionlessr-mode amplitude, as de
fined by Lindblom, Owen and Morsink@12#, via

a5A16p

5

R

V
A. ~31!

We equate this rate to the neutrino emission rate in
boundary layer, 4pRc

2dẽ,T10
8 , to obtain ac(local), the

r-mode amplitude necessary to keep the crust-core inter
at the melting temperature if thermal conduction is not i
portant:
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ac~ local! 5
R

Rc
S 16pA2 ẽ,Tm,10

8

5I2rcRc
2V3 D 1/2

51.331024S V0

V D 3/2

Tm,10
4 . ~32!

In this equation the numerical prefactor has been evalua
using the standardn51 polytropic stellar model. This esti
mate sets the lower bound on the critical melting amplitu
since heat conduction increases the volume that radiates
by neutrino emission, and hence more viscous dissipatio
required to maintain the interface at a certain temperatur

We now show how to evaluate the effect of finite condu
tivity. The general equation for the thermal evolution of t
material in a neutron star is

Cv] tT52e1¹W •~k¹W T!12hdsab* dsab, ~33!

whereT is the temperature,Cv is the specific heat at constan
density,e is the neutrino emissivity, andk is the thermal
conductivity. This is a time-dependent equation, and in g
eral the overall cooling of the star due to Urca neutrino em
sion must be followed along with the heating in the bound
layer. Letl denote the thickness of the region adjacent to
boundary layer whose temperature is raised above the a
ent by the viscous dissipation. On a time scaletdiff
'Cvl 2/k the heat generated in the boundary layer will d
fuse throughout this larger region. In the neutron-star ma
near the boundary layer this time scale istdiff'8
31025( l /d)2 s, which depends on the temperature on
through the boundary layer thickness,d}T21. The neutron
star as a whole cools on the Urca cooling time scale,tcool

'30 T10
26 s @14#. If the diffusion time scale is shorter than th

cooling time scale, then the temperature distribution in
region near the boundary layer will estabilish a qua
equilibrium state in which the excess heat is conducted in
large enough volume for it to be radiated away by neutrin
The temperature at the inner edge of this region slowly
creases, tracking the overall cooling of the star. As we s
see below, the width of this quasi-equilibrium layer is a fe
hundred times the thickness of the boundary layer its
Thus tdiff,tcool and so a quasi-equilibrium state exists
which Cv] tT can be neglected compared to the heat cond
tion term] r(k] rT).

In the quasi-equilibrium region, but outside the bounda
layer, the temperature distribution is described appro
mately by

] r~k] rT!5e. ~34!

Using the simple dependence ofk and e on temperature,
given by Eqs.~29! and~30!, it is straightforward to obtain a
first integral of Eq.~34!,

S ]T10

]r D 2

5
2ẽ

nk̃
T10

2 ~T10
n 2T0,10

n !, ~35!

whereT0 is the ambient temperature in the core where
heat fluxk] rT tends to zero.
0-6
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The viscous energy generation in the boundary laye
determined by the shear given by Eq.~14!. Here we re-
express this energy generation rate as

2hdsab* dsab5a2
5rcRc

4V0
3

32pR2 S V

V0
D 3

F~r ,u!, ~36!

where the functionF(r ,u) is defined in Eq.~15!. This func-
tion falls off exponentially away from the boundary lay
with the length scaled. ThusF can be reasonably approx
mated as a delta function,

F~r ,u!'A 4h

3Vrc

d~r 2Rc!

f 2~u!
, ~37!

where the angular functionf (u) is defined by

f 22~u!5A 3
8 sin2 u@~12cosu!2p11~11cosu!2p2#.

~38!

Now we return to the full equation for the thermal dist
bution in the vicinity of the boundary layer:

] r~k] rT!5e22hdsab* dsab. ~39!

This equation can be integrated analytically, using Eq.~35!,
when we approximate the heating in the viscous bound
layer by Eq.~37!. The r-mode amplitudeac needed to raise
the temperature to the valueTm is

ac
2

5Rc
4AhrcV

5

16A3pR2f 2~u!
5A 1

4 ẽ,k̃,~Tm,10
8 2T0,10

8 !

1A 1
3 ẽ.k̃.~Tm,10

6 2T0,10
6 !. ~40!

For the values of the microphysical parameters descri
above, the critical amplitude satisfies

ac
2

f 2~u!Tm,10
5 S V

V0
D 5/2

58.031026A12
T0

8

Tm
8

1
5.331028

Tm,10
A12

T0
6

Tm
6 . ~41!

We illustrate in Fig. 3 the dependence of this critical a
plitude on the ambient temperatureT0 for the caseTm
51010 K and u5p/2. The solid curve is the analytical ex
pression given in Eq.~41!. For comparison, we also includ
a selection of points computed numerically by solving t
full differential equation~39! without making the assumptio
that the heat source is a delta function. Clearly, the analyt
approximation is extremely good. We also see that, beca
of the steep dependence of the neutrino cooling rate on
temperature, the value ofac is rather insensitive toT0, ex-
cept whenT0'Tm .

The prefactor of the second term on the right side of E
~41! is much smaller than the prefactor of the first term. Th
we see that the core plays a much more important role
determiningac than the crust. This is easy to understand:
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T5Tm , the neutrino emissivity in the core is approximate
5000 times larger than in the crust. Since we demand tha
crust-core interface be kept at a fixed temperature, m
more heat is emitted on the core side of the interface than
the crust side. Therefore, the heat flux into the core mus
much higher than the flux into the crust. Since the heat fl
into the crust can be neglected~i.e. ẽ,k̃,@ ẽ.k̃.), we may
obtain a much simpler expression for the critical amplitud

ac'2.831023Tm,10
5/2 f ~u!S V0

V D 5/4

~42!

for the caseT0!Tm . For a maximally rotating neutron sta
with Vmax'

2
3 V0, the prefactor in the above equation is 4

31023.
The function f (u), illustrated in Fig. 4, determines th

angular dependence of the critical melting amplitude. Me
ing the crust near the poles requires a higherr-mode ampli-
tude than melting at the equator. However, over a wide ra
of angles the critical amplitude needed to heat the interf
to a given temperature is the same as the equatoriau
5p/2) value to within a factor of 2.

FIG. 3. Dependence of the critical amplitudea on T0 for stars
with V50.5V0. The smooth curve is the analytical expressi
given in Eq.~40!, while the points are numerical solutions to th
heat equation without the delta-function approximation for t
boundary layer heating term.

FIG. 4. Functionf that determines the angular dependence of
critical amplitudea.
0-7
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The critical melting amplitudeac is roughly 20 times
ac(local), our estimate that neglects the effect of therm
conduction, Eq.~32!. From this we may deduce that th
thickness of the layer into which thermal energy is conduc
before being radiated away is of orderl /d'ac

2/ac
2(local)

'400. From our numerical solutions, we confirm that t
thermal flux in the core falls from its value at the crust-co
interface to half that value at approximately 500d. Thus the
thickness of the layer that radiates the excess thermal en
is small enough~just a few centimeters! to justify the quasi-
equilibrium analysis which we used.

Finally, we note that the heating rate used in this calcu
tion neglects the motion of the crust in the rotating frame@6#.
The motion of the crust increases the critical melting am
tude by the factor of (Dv/v)21.

VI. DISSIPATION IN THE ICE FLOW

As a young neutron star cools, its temperature quic
falls below the freezing temperature and a crust begins
form. If no unstabler-mode is present, a solid crust forms
usual. However, if the star is rapidly rotating, them52 r-
mode will be driven unstable, and may grow to an app
ciable amplitude even before the crust begins to form. The
fore, the crust would have to form in the presence of
shearing motion of ther-mode. Even in the presence of th
crust, ther-mode is unstable at high enough frequencies
illustrated in Fig. 1. Once the amplitude of the mode gro
beyond the critical value given in Eq.~42!, the dissipation in
the boundary layer would be sufficient to re-melt the crus
it formed. If the crust fails to form or is completely melte
away, the boundary layer heating would dissappear and
dissipation would not be sufficient to prevent freezin
Clearly, the state of the outer layers of the star can be nei
pure solid nor pure fluid. We imagine that instead a mix
state will form: a neutron-star ice flow, much like the pa
ice on the surface of the Arctic Ocean.

Microscopic viscosity will be replaced in this ice flow b
dissipation that is dominated by collisions between mac
scopic chunks of crust, the boundary layers around the
chunks, or other mechanisms. However, regardless of
detailed dissipation mechanism, this flow is self-regulati
as long as the amplitude of ther-mode remains above th
critical value of Eq.~42!, the dissipation must, on averag
be enough to keep the crust at around the melting temp
ture. Any less dissipation, and the crust would complet
freeze, thus giving rise to a boundary layer which wou
re-melt the crust. Any more dissipation and the crust wo
simply melt, and then promptly re-form as the fluid viscos
alone is insufficient to keep the outer layers hot. The assu
tion of self-regulating flow allows us to compute the dissip
tion rateregardlessof the details of the dissipation mech
nism.

The dominant energy sink at high temperatures is bre
strahlung neutrino emission, with emissivity given by E
~A6!. Thus the viscous dissipation in the ice flow must ju
balance the losses due to neutrino emission. Presuming
the outer layers of the neutron star are kept at the local m
ing temperature given by Eq.~A2!, we can determine the
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total energy dissipated in the ice flow, and hence an effec
time scalet ice on which this ice flow dissipation will damp
the r-mode:

1

t ice
5

1

2Ẽ
E ẽ Tm,10

6 d3x. ~43!

Displaying explicitly the scalings oft ice with the mode
amplitudea and the angular velocityV, we find

t ice5a2S V

V0
D 2

t̃ ice. ~44!

The fiducial timescalest̃ ice range from 1.43108 s to 1.3
3109 s for the ‘‘realistic’’ equations of state discusse
above. Unlike the other dissipative time scales in this pr
lem, this one depends on the mode amplitudea.

The r-mode will continue to be unstable, and thus w
continue to spin down the neutron star by emitting gravi
tional radiation, as long as the gravitational radiation tim
scale is shorter than the ice flow viscosity time scale, and
amplitude remains above the value needed to sustain the
flow. The critical angular velocity where the equality
achieved and the mode becomes stable is

Vc

V0
5S t̃GR

t̃ ice
D 1/8

a21/4. ~45!

For a51, this critical angular velocity has the valu
0.093V0 for the standardn51 polytropic stellar model and
values that range from 0.086V0 to 0.14V0 for the realistic
models considered here.~Note that the gravitational radiatio
time scaletGR used here is the one appropriate for a mo
that extends to the surface of the star, not the one give
Table I for a mode that extends only to the edge of the co!
Thus we see that if the amplitude of ther-mode saturates a
a value that is close to unity, the instability will continue—
even in the presence of a crust—until the angular velocity
the star is a small fraction ofV0.

Is the ice-flow picture described above consistent? Cle
the dissipation due to molecular viscosity is insufficient
keep the outer layers of the neutron star hot, but can co
sions between macroscopic ice chunks accomplish this?
us estimate the characteristic size of the ice chunks neede
produce the needed macroscopic viscosity. We assume
the ice chunks are of average sizeD and the mean free pat
between them isl. If l@D, then the collisions between th
chunks are rare, and do not significantly raise the visco
compared to the purely fluid value~see Sec. 22 of Landau
and Lifshitz @15#!. We therefore consider the regime whe
the ice chunks are densely packed, withD*l, and behave
like a fluid. We follow the discussion of Haff@16# and Bor-
derieset al. @17#.

The ice chunks mainly follow ther-mode velocity flow,
but due to the collisions between themselves acquire a
dom component of velocity,ṽ. The viscosity in such a flow
is given by h ice'rD2ṽ/l @16,17#, and is a factor ofD/l
bigger than the usual molecular viscosity. This is beca
0-8
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each particle transports momentum across a distanceD while
only having traveled the~possibly much smaller! distancel
between each collision.

The collisions between the chunks are inelastic with
fraction g of the collision energy per chunk,rD3ṽ2, being
converted to heat. Considerations of icy particle collisions
the temperature regime appropriate for Saturn’s rings pug
'0.7–0.9~see Borderieset al. @18# for a review!. Since our
flow is near the melting temperature, we expect very ine
tic collisions as well, i.e.,g'1. The collision rate is just

ṽ/l, so the energy dissipation per unit volume in the flow
gr ṽ3/l. For the r-modes the shear dissipation rate
2h icedsab* dsab'h icea

2V2, so ṽ'g21/2aVD. Thus, when
the collisions are inelastic, the random component of the
chunk velocity is comparable to the velocity difference b
tween the neighboring chunks in the overall ice flow. T
viscosity of this granular flow is therefore given by

h ice'
raVD3

g1/2l
'1018

aD3

g1/2l
S r

rc
D S V

V0
D , ~46!

wherel andD are measured in centimeters andh ice is in cgs
units. Not surprisingly, this viscosity is much larger than t
microscopic viscosities given by Eqs.~21! and ~22!.

The energy dissipation rate in the ice flow is obtained
integratingh icedsab* dsab over the outer layers of the star:

dE

dt
'

~aVD !3M cr

g1/2l
, ~47!

whereM cr is the mass of the material at densities less th
rc . Using the r-mode energy for ann51 polytrope ~see
Table I!, the damping time due to this form of viscous di
sipation is

t ice'108 s
g1/2l

aD3 S V0

V D S 0.05M

M cr
D . ~48!

The heat deposited by the ice flow into the star is radiated
neutrinos on the time scale evaluated in Eq.~44!. Equating
these two time scales gives an estimate of the average
chunk size necessary to keep the crust at the local me
temperature:

D'1 cm F S 108 s

t̃ ice
D S g1/2l

D D S V0

aV D 3S 0.05M

M cr
D G1/2

.

~49!

Our estimate of the ice chunk size depends only weakly
the unknown inelasticity of the collisions and the ratiol/D.
We do not expectl to be much smaller thanD, because if it
were, the ice chunks would probably lock together into b
ger pieces, leading to increased friction and dissipat
Moreover, as argued above, we expectg'1 as well. Thus,
for typical values oft̃ ice evaluated above, the value of the ic
chunk size needed to keep the outer layers of the star a
melting temperature isD'1 cm.
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Several conclusions can be drawn from this estima
First, the smaller the mode amplitude, the larger the
chunks have to be in order to provide enough friction~recall
that the viscosity is proportional toD2) to keep the fluid at
the melting temperature in the face of neutrino losses. T
chunk size exceeds the radius of the star whena
&1024(V0 /V)(l/D)1/3. Hence, if the mode amplitude i
smaller than this value, the ice-flow mechanism is unable
keep the outer part of the star in a melted state, and it m
freeze. Since this amplitude is smaller than the critical m
ing amplitude computed in the previous section, this does
further restrict the range of mode amplitudes where the
flow is expected to occur. Second, even fora'1 the chunk
size is small but not microscopic. So our picture of the
flow is consistent throughout the regime of interest.

The argument that the ice flow maintains the star’s ou
layers near melting depends on the ability of ther-mode to
re-heat a solid crust back to the verge of melting, shoul
crust form through some fluctuation. Up to this point w
assumed that this heating is instantaneous oncea exceeds
ac . This is not an issue ifV.Vc @the critical angular ve-
locity for the r-mode instability, Eq.~26!#, since the ampli-
tude of ther-mode is growing due to radiation reaction
this case. However, ifV,Vc , ther-mode is decaying due to
the dissipation in the boundary layer even while it is r
heating the crust. Can ther-mode re-heat the crust and re
form the ice flow before being damped? A simple compa
son of the energy needed to melt the crust,Em , to the mode
energy,Ẽ ~see Table I!, is inadequate, since it neglects th
continuing energy input from gravitational radiation reactio

The r-mode melts the crust on a time scale

tm5
Em

b~dẼ/dt!v

5tv

Em

2bẼ
, ~50!

where the factorb is the fraction of heat flowing into
the crust, which is given approximately byb

5(4ẽ.k̃./3ẽ,k̃,)1/2'0.007 @see Eq. ~35!#. While it is
melting the crust, ther-mode is also damped at the ra
1/td51/tv21/tGR . The damping rate is exactly zero on th
stability curveV5Vc . However, since ther-mode has a
finite amplitude, it will continue to spin the star down belo
the stability line while melting the crust.

Let DV be the change in spin frequency, due to t
r-mode evolution, during the timetm . For smalla, the spin-
down rate is given by Eq.~3.14! of Owenet al. @19#:

1

V

dV

dt
'

0.2a2

tv
. ~51!

Thus, in the time it takes to melt the crust, the star sp
down byDV/Vc'0.1a2Em /bẼ ~which is independent ofa
since Ẽ}a2). By using a Taylor expansion, it is easy
show that ther-mode damping time forV5Vc2DV is ap-
proximately
0-9
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td'
2

11

Vc

DV
tv5

2bẼ

a2Em

tv . ~52!

If tm,td , we conclude that ther-mode can re-melt the crus
and so re-create the ice flow before being damped out. T
condition places the following limit on the mode amplitud
a:

a*
Em

2bẽ
S V0

V D 2

'331023 S V0

V D 2

. ~53!

In the above equation, we assumed that the energy requ
to re-melt the crust is of orderkT per nucleus~since the crust
is near the melting temperature!, i.e.Em'1047Tm,10 erg. This
amplitude is very close, both in the absolute magnitude
in the scaling withV andTm , to the critical melting ampli-
tude ac . Hence, as long as ther-mode amplitude is large
enough to raise the crust-core interface to the melting t
perature, the energy contained in the mode is enough to
the crust even if ther-mode is no longer linearly unstable
Since the criterion~53! does not depend onDv/v while ac
@Eq. ~42!# increases withDv/v, the conclusion does no
change even when the motion of the crust is taken into
count.

VII. DISCUSSION

We have computed stability curves~critical frequency as
a function of temperature! for the onset of ther-mode insta-
bility in a neutron star with a~laminar! viscous boundary
layer under a solid crust. We improve previous calculatio
by including the effect of the Coriolis force~the dominant
restoring force! on the boundary layer and by using realis
neutron-star models—two important ingredients which ha
not been combined in previous work. Our stability results
summarized in Eqs.~27! and~28!, Table I, and Figs. 1 and 2
If the neutron star crust is rigid and does not move in
rotating frame, then our results imply that ther-modes are
not unstable in any of the accreting neutron stars in LMX
or millisecond pulsars. However, if the relative velocity am
plitude between the core and the crust,Dv/v, is significantly
smaller than 1, as recent calculations for constant-den
stars suggest@6#, then our results constitute only the upp
limits on the critical frequencies and temperatures for
onset of ther-mode instability. A self-consistent calculatio
of the r-mode eigenfunctions in the presence of a realis
crust is necessary to settle~at least for unmagnetized neutro
stars! the question of linear stability of ther-modes.

We find that localized heating in the boundary layer b
tween the solid crust and the fluid core can successfully c
pete both with the heat conduction away from the bound
layer and with neutrino emission. In Sec. V, we compu
the critical r-mode amplitude, Eq.~42!, needed to raise the
temperature of the boundary layer to the crust melting te
perature while the interior of the star far away from t
boundary layer remains at a much lower temperature.
amplitude required for this is rather small, of order 1022, and
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is comparable to that necessary to break up the crust
purely mechanical coupling.

Based on the smallness of the melting amplitude, we
gue in Sec. VI that the spindown scenarios for neutron s
with crusts advanced by previous authors may need to
significantly modified. As long as ther-mode amplitude re-
mains above the melting value, a completely solid crus
not possible. Instead, the outer layers of a neutron star
resemble an ice pack which flows along with ther-mode
motion. Viscosity in the ice pack adjusts itself to mainta
the outer layers of the neutron star near the crust’s mel
temperature, regardless of the details of the dissipation in
ice flow. The ice flow can persist even if ther-mode is no
longer linearly unstable according to the instability criteri
for neutron stars with crusts, since anr-mode with an ampli-
tude greater than some minimum value@given in Eq.~53! for
the caseDVuuVc] can melt the crust before being damped
boundary-layer friction. Therefore, if the crust is melted
ther during spindown of young neutron stars or in the fin
stage of a thermal runaway in LMXBs@20#, the final spin
frequency is not set by the boundary-layer damping time,
instead by the balance betweent ice and tGR. This leads to
much smaller final spin frequencies than computed by pre
ous authors. A neutron star with anr-mode amplitude large
enough to create the ice pack can spin down to a freque
nearly as low as a purely fluid star@see Eq.~45!#, provided
the saturation amplitude of a purely fluidr-mode of is order
unity.

Very recently, Wuet al. @21# evaluated the effect of a
turbulent boundary layer between the crust and the core
the stability of ther-modes. They find that the turbulent dis
sipation time scale depends on ther-mode amplitude and
therefore determines a saturation amplitude, wh
they estimate ~in our notation! as asat'1.5
31022(V/V0)5(Dv/v)23, or about 2.031023 for a maxi-
mally rotating star with a rigid crust. Inserting Eq.~10! of
Wu et al. @21# into our Eq. ~39!, we find that a turbulent
boundary layer changes the critical melting amplitude at
equator to

ac'5.631024S V0

V D S Dv
v D 21

~54!

or ac'7.931024 for a maximally rotating polytropic neu
tron star with a rigid crust. Comparing with Eq.~42!, we
conclude that the crust can be heated to the melting temp
ture at even smaller amplitudes than in the presence o
laminar boundary layer. Thus, if ther-mode amplitude in a
newborn neutron star exceeds the critical value given ab
when the temperature drops below the crust’s melting te
perature, then crust formation will be delayed~as we argued
in Sec. VI!. In this case the star will spin down to frequenci
close to those predicted for crustless fluid stars, provided
saturation amplitude of ther-mode is of order unity.
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APPENDIX: THERMODYNAMIC PROPERTIES
OF NEUTRON-STAR MATTER

The strength of electrostatic interactions between the
clei in neutron-star matter is typically expressed in terms
the Coulomb coupling parameter,

G5
Z2e2

akT
, ~A1!

whereZ is the nuclear charge, anda5(3Acellmb/4pr)1/3 is
the radius of the Wigner-Seitz cell withAcell nucleons in it.
According to the recent molecular-dynamics simulations
Farouki and Hamaguchi@22#, such a classical one
component plasma crystallizes whenG*173. However, the
details of the nucleon-nucleon interaction that determinZ
and Acell near the bottom of the crust,r5rc , are still not
completely understood. Depending on the particular inter
tion model, values ofZ ranging from approximately 30 to 5
and Acell in the range of 500 to 1000 are obtained. The
values result in melting temperatures within a factor of 2
1010 K. ~See Pethick and Ravenhall@23# for a review of the
nuclear physics, Douchin and Haensel@24# for the latest cal-
culation, and Haensel@25# for a discussion of the melting
temperatures appropriate for young neutron stars
LMXBs.! Moreover, for some nuclear force models, nuc
at r*1014 g cm23 may resemble rods, plates, and tub
rather than spheres~Lorentz et al. @26#!. The melting tem-
peratures of such exotic phases of matter have not been
culated, but it is reasonable to assume@27# that they will be
comparable to those of ‘‘ordinary’’ matter with spherical n
clei. In the light of these uncertainties, we adopt

Tm51010S r

rc
D 1/3

K, ~A2!

as the fiducial melting temperature of crustal matter.
The thermal conductivity in the neutron-star core is dom

nated by electron-electron collisions. A convenient fit to t
conductivity is given by Flowers and Itoh@28#:
pl

las

rd
.

08403
u-
f

f

c-

e
f

d
i
,

al-

-
e

k5
1.531021

T10
erg cm21 s21 K21, ~A3!

at r5rc , whereT105T/1010 K. The neutrino emissivity in
the core is given by the usual modified Urca formula@29,30#:

e58.631028T10
8 erg cm23 s21, ~A4!

at r5rc . These lead to the expressions for the core valu
k̃,51.531031 and ẽ,58.631028, used in Sec. V.

The microphysics in the crust is, in general, quite a
more complicated. However, we are primarily interested
the conditions at or near the melting temperature. ForT*2
31010 K, the crustal conductivity is also dominated b
electron-electron collisions, and even atT'1010 K, to within
a factor of 2,

k'kee'
2.831020

T10
erg cm21 s21 K21, ~A5!

where we approximated the fits of Flowers and Itoh@28# for
the temperature regime of interest. For temperatures lo
than this, the conductivity is dominated by electron-phon
scattering, which is approximately constant,ke-ph'1020 for
temperatures in excess of the Debye temperature,Td'5
3109(r/rc)

1/2 K. For T!Td , the electron-phonon scatterin
has the same temperature dependence~but a different pref-
actor! as electron-electron scattering,ke-ph'131019/T10.
We also find that the recent calculations of neutrino-p
bremsstrahlung in the crust~Haenselet al. @31# and Ka-
minker et al. @32#! can be reasonably approximated by

e'1.531025S r

rc
D T10

6 erg cm23 s21. ~A6!

These expressions lead to the crust valuesk̃.52.831030

and ẽ.51.531025 that we use in Sec. V. Since the cru
does not play a significant role in determining the tempe
ture at the boundary layer~as shown in Sec. V!, including a
detailed treatment of the microphysics there is not essen
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