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Abstract. The main concepts of gravitational lens theory are introduced on the basis
of spacetime geometry without assuming approximations. The singularities of light cones,
in particular their caustics, are reviewed as examples of singularities of Lagrangian resp.
Legendrian maps. It is indicated how the usual approximate lens theory may be derived from
the general framework.
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1 Introduction

After the discovery of the double quasar QSO 0957 + 561 A, B by Walsh, Carswell
and Weymann in 1979, gravitational lensing rapidly developed into a major tool of
astrophysics, providing infomation about cosmological parameters, masses and mass
distributions on the scales of stars, galaxies, galaxy clusters and that of the universe at
large. It enables astronomers to obtain information about dark matter, the structure
of quasars and very distant, early generation galaxies up to redshifts of z ~ 5.

Usually, gravitational lens theory is based on plausible assumptions and various
approximations designed for astrophysical applications. Physical notions and relations
are expressed essentially in the framework of classical geometrical optics, with minimal
input from general relativity. While such an approach is useful for the intended pur-
pose, it conceals the spacetime-geometrical origin of lensing phenomena. Moreover,
by using ab initio simplifications based on intuition, one foregoes the possibility to
assess the accuracy of approximations, and one may not even recognize which general
relativistic relations are being approximated. Besides, such presentations may render
it difficult for relativists, used to think in terms of light cones, timelike world lines and
the like, to understand what it’s all about.

Be that as it may, here I want to outline how the basic qualitative relations of
gravitational lens theory may be introduced as part of Lorentzian spacetime geometry

a] dedicate this paper to George Ellis, with affection and gratitude for fourty years of many
stimulating encounters and sharing of ideas.
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Fig. 1 The lens map according to the standard presentation of lens theory.

without use of perturbation theory. Approximations are introduced only in the last
section, intended to indicate the transition to standard, “linear” lens theory where
models of lensing mass distributions in an expanding universe are needed which one
cannot hope to describe as exact solutions to the gravitational field equations. Thus,
the following considerations aim at understanding, not at computing.

The following presentation owes much to collaboration with Ted Newman and
Simonetta Fritelli and overlaps with our joint paper [5].

2 The standard formalism

Suppose a point source S (quasar) is seen by an observer O, close to a deflecting mass
distribution L (galaxy) and seen by O in three images I; at angular positions 0; with
respect to the center of the “lens” L (see Fig.1). Since in real cases the deflection angles
are very small, the light rays may be approximated by broken straight lines. If the
distances OL,0S and LS are denoted as Dy, Dg and Dyg, respectively, if Euclidean
geometry is applied, and if the angles are represented by tangent vectors to O’s sphere
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of vision, the approximate relations

=

B=0-10) (1)

between the (unobservable) “true position” 5 of S and the positions g of its images
are easily obtained. In eq.(1),

~ 4G Dys S
V)= —= [ dM'In|0 — ¢ 2
©) 2D Dg / n| | (2)
is the logarithmic deflection potential associated with the mass distribution of L, pro-
jected into the lens plane £ drawn through some “center” of L orthogonally to the
“optical axis” OL. The deflection angle is then
Ds -

A3 (3)

a= .
Drs

(Egs.(2) and (3) express that « is the sum of the well known Einstein deflection
angles of the mass elements dM’ at §.)

In order to consider extended sources (and for other reasons) it is useful to introduce
also a source plane G and to study the lens map

[:L 6,00 (4)

defined by (1). This map is nonlinear and not injective. Generically the critical points
of [ (where the derivative I, vanishes) form smooth, non-intersecting, closed critical
curves; their images, the caustic curves of [, may have cusps and intersect each other.

Consider S as moving around in &. As long as S is outside of all caustic curves, it
has exactly one image I. If S reaches a caustic, there appears another (critical) image
which splits into two when S moves on, having crossed the caustic. The caustic curves
not only serve to determine the number of images, they are also the positions which
lead to particularly bright images.

Maps of the plane into itself have been studied by H. Whitney who showed in 1955
that the only stable singularities of such maps are folds and cusps, as indicated in Fig.
1.

The image positions corresponding to a source at 3 are given as the solutions 6 of

V=0 (5)
where
1)) (6)

Physically, (5) is an expression of Fermat’s principle. In the terminology of catas-
trophe theory, (5) shows that 3 may be considered as a control parameter which
determines, via (5) and the “potential” ¢, the states 9_;-; whenever 5 crosses a caustic,
a ”catastrophe” occurs. Catastrophe theory provides information about singularities
which are stable in families of lens maps which arise when the deflection potential is
taken to depend on parameters such as the D’s in (2), or properties of the lens.
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Fig. 2 A typical light cone in (1+2) dimensional spacetime. In (143) dimensions, the wave
fronts, the caustic and the crossover set are 2dimensional. The world line of a source intersects
the light cone at the events marked 1, 2 and 3 which correspond to 3 images of the source
seen by the observer; compare Fig. 1.

To travel from S to O, light needs different times along different rays. The arrival
time differences between images I;, I; are given by

D1.Ds

LS

— —

CAtij = : (1 + ZL) : (¢(9u 6) - ¢(9]; 6) (7)

(The redshift z;, of the lens with respect to O, absent in the simple static situation
considered so far, has been included to cover the cosmological case.)

The preceding equations can be used to obtain relations between observables and
properties of sources and lenses; the formalism can be generalized to several lens planes
between source and observer. For a systematic account see, e.g., [1] and the references
therein.

We now ask: How does the preceding scenario arise from GR? Which space is
shown in Fig. 1, what is meant by the distances if source, deflector and ovserver are
situated in an expanding universe?

3 Light cone singularities

To answer the questions just raised, one has to study light cones.
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Let (M, g) denote a (time-oriented, (143)-dimensional) spacetime. Let C denote
the past null (half) cone in the tangent space Mo of some (observation) event O
without its apex, so C has topology R x S2. The light cone € of O in M is defined as
the image of C under the exponential map at O,

expp : C =5 €. (8)

While C is an ordinary, circular cone, its image € in general has two kinds of
singular points: intersection points where two lightlike geodesic generators of € meet,
and conjugate points. Intuitively the latter are those events at which “infinitesimally
close” generators of € “intersect to first order”. To define them properly one considers
the equation of geodesic deviation

Vo= Ry KKV (9)

which defines (connection) vector fields Y%(s) on geodesics z%(s) with tangents K*(s).
Then, points conjugate to O on a generator x%(s) of € are those events P for which there
exists a (not identically vanishing) Jacobi field Y*(s) which vanishes at O and P. The
events conjugate to O on any generator form the caustic of €, the intersection points
constitute the crossover set of €. Fig. 2 shows a light cone in a (142) dimensional
spacetime.

In a curved spacetime, light cone singularities are not exeptional, but occur gener-
ically; thus light cones in general are not immersed submanifolds of M. The deforma-
tion of light cones by matter and the ensuing formation of singularities are the origin
of gravitational lens phenomena, as Fig. 2 indicates.

At critical points, the map « defining a light cone - (8) - is not smoothly invertible.
To avoid using ill-defined multivalued and non-smooth functions, it turns out to be
useful to “lift” light cones (and more generally null hypersurfaces) from spacetime into
phase space and to study the resulting projection back into M. The general setting
for this procedure will be briefly summarized next.

4 Lagrangian and Legendrian submanifolds, maps and singularities

The cotangent bundle T*M = {z% p,} of an n-manifold M, e.g. spacetime, carries
a canonical 1-form k = p.dx® and a symplected 2-form w = dk = dp, A dz®. A
submanifold N of T*M on which the pull-back of w vanishes is called Lagrangian, and
the restriction to NV of the canonical projection 7 of T* M onto its base M, v : N — M,
is said to be a Lagrangian map.

Consider next the projectivized cotangent bundle PT*M which arises by regarding
the momentum coordinates p, as homogeneous coordinates on each fibre, viewed as an
(n-1) dimensional projective space. The canonical 1-form k on T*M defines at each
point of T*M a contact hyperplane consisting of all tangent vectors to PT*M at a
point (x,p) which are annihilated by k. Thus, the total space PT*M of the bundle
is a contact space. An (n-1) dimensional submanifold A of PT*M whose tangent
vectors are all contained in the contact hyperplanes at their respective positions, is
called a Legendrian submanifold of PT*M, its projection A : A — M is referred to as
a Legendrian map.
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The usefulness of these concepts in the present context (and similarly in mechanics)
is due to the fact that (at least) for n < 5, all stable singularities of such maps - the
local forms of v respectively A near points where the rank of the derived maps v,
resp. A, are not maximal, have been classified and turned out to be remarkably
simple ([2]). For an introduction with examples from physics see, e.g., [12], available
as gr-qc/9906065.)

For n = 4 there are, in particular, five types of Legendrian singularities.

As we shall describe below, the map [ of (4) is Lagrangian, and the map v of (8)
is Legendrian.

As an example of a Legendrian map which will be useful in sec. 6 to illustrate
lensing, take M = R3 = {z,y,z}. On that part of PT*M where p, # 0 we set
p, = —1 and take as coordinates x,y, z,pz, py. A Legendrian submanifold is then
given by

A x=4p] — 2yp., z = 3p; — yp3, Py = P,
where p, and y form coordinates on A. (Indeed, on A,k = pydz + pyd, —dz = 0.)
The Legendrian map is
X (peyy) = (2,9, 2) = (9] — 2ups, v, 3p, — yps)-
The critical points of A form the smooth curve
(., 2, D2, y) = (=803, 6p2, —3py, Py, D7)
Its image, the caustic curve
(J?, Y, Z) = (—8])2, 6p§:a _3pi)a

has a cusp at the origin, where the kernel of A, is tangent to the critical curve. The
crossover set of the image of A in R? is the curve z = 0,2 = %yQ, y > 0. The shape of
the “surface” A\(A) is qualitatively shown in Fig. 3. At the caustic curves, marked As,
two sheets of the surface meet in cusp ridges. These meet at the swallowtail singular
point marked As, which is also the end point of the crossover curve.

5 Light cones as images of Legendrian maps

The definition (8) of the light cone € of an event O can be reformulated as follows.
Let U denote a timelike, future-directed unit vector at O, let € run trough all unit
vectors orthogonal to U, and let s denote that affine parameter on the generator of €
with initial tangent € — U which vanishes at O. € is then given by

%= Xe,s). (10)

(For given €, s ranges through the maximal interval 0 < s < s,, for which the corre-
sponding generator exists). If U is the 4-velocity of an observer at O, the event x* is
seen by that observer in the direction € at affine distance s. The lift of the map (10)
into PT*M is defined by

4:C—&cC PT*M, (11)
(é: S) — (Xa(ga 5),pa = gabast(' . ))a
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Fig. 3 The range of W of a legendrian map A with 2 cusp ridges A2, a swallowtail singularity
As and a crossover curve. Further details of the Figure (source world lines, light rays and
the surface & will be explained in sec. 6 in relation to Fig.4.

where as before the p, are to be taken as homogeneous fibre coordinates. 4 is an
embedding of C into PT*M as a Legendrian submanifold since 0, X is lightlike and
0z X are Jacobi vectors orthogonal to 9, X®. The diagram

C — PT*M

¢

exhibits the map - which defines € as Legendrian. Therefore the machinery
sketched in section 4 applies and provides the five types of stable caustic singular-
ities of light cones. (Canonical forms of these singularities are given in [12]; pictures
are presented in [3]and in [4], where they are also explicitly exemplified as optical
wavefronts in Minkowski spacetime.)(One subtle point deserves to be mentioned here:
Stability in the theory of Legendrian maps is defined with respect to Legendrian per-
turbations which, if applied to lightcones or lightlike wavefronts, will lead out of the
classes of these special Legendrian maps. So far, no proof has been published that
stability under appropriately restricted perturbations leads only to the same stable
caustics as the general case. This has been stated without proof in [4]; the proof given
in [3] has a gap, as pointed out to me by Volker Perlick.)
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Fig. 4 The light cone € of an observation event O and its intersection W with a source
hypersurface ¥, indicated with suppression of one sapce time dimension. The wave surface
W is, in fact, a “surface” such as shown in Fig. 3, intersected by source world lines as
indicated in that Figure, which also shows the projection of W onto &. The intersection of
the light rays of Fig. 4 with W correspond bijectively to the points of W in Fig. 3. These
points are projected onto &; points on the same source world line have the same image in &.

6 Intrinsic definition of the lens map and the emission time function

Now we are ready to answer some of the questions raised at the end of section 2,
following [5]. To set the stage, we augment the spacetime to a kinematical cosmological
model (M, g, U) by introducing a timelike unit vector field U on M representing the
mean motion of matter. (For simplicity we disregard peculiar motions here.) As before,
O is to represent an observation event, and we assume the observer to participate in
the mean motion. Then, the redshift z of sources with respect to (O, U) is defined as
a function on C, z = Z(¢€, s) . If the model is expanding, z is strictly increasing with
s and can be used as a “distance parameter” instead of s. Note that the model (M, g,
U) need not have any symmetries.

Suppose we wish to model the lensing of an extended source at redshift z; or of
a collection of point sources with approximately that redshift. The light rays which
arrive at O from these sources fill a narrow “subcone” ¢ of € | see Fig. 4. To simplify the
geometry without losing significant details we choose, close to the sources, a timelike
”source hypersurface” ¥ ruled by integral curves of U, and replace the actual source
world lines by world lines in ¥ in such a way that different source world lines which
are connected to O by the same light ray are replaced by one line within . (This
amounts to projecting the sources onto a ”screen” nearly orthogonal to the lines of
sight.) Let y*, A = 1,2, be spatial, comoving coordinates in T, and let ¢ be a time
coordinate, which measures proper time on the world lines in €. The 2-parameter
family of these world lines, the quotient of ¥ by the U-curves, will be called the source
surface and denoted by & . The intersection W = CN % is a (piece of a) wave front
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associated with the aforementioned subcone ¢. (¥ is to be chosen such that at points
of W, the tangent planes to W are nearly orthogonal to the light rays towards O in
the rest spaces of the sources. The exact configuration does not matter.) The light
ray of ¢ "seen” at O in the direction € meets the wave front W at a unique event
Xa(e s(€) = (y*,t) , i.e., there is defined a map

Nié (yht)eW g (12)

from a disc of S? into €. This map X is Legendrian. Since ¥ is a product & x R, A
decomposes into the (Lagrangian) map

[:é— (") e S (13)
and the function
T:e—t. (14)

[ assigns to each direction at O (contained in the subcone) a source position on & ;
it thus serves the same purpose as the [ of (4) in section 2 and will again be called
the lens map. T assigns to each such € the proper time at which the respective light
ray was emitted at the source (y*) , it will be named the emission time function. If
the cone ¢ of light rays intercepts lensing matter, it may contain a part of the caustic
of € . A source (y) may then be seen in different images corresponding to different
emission times t; . Thus, T serves essentially the same purpose as the function ¢ in
(6).

The preceding analysis implies: The intersection of the caustic of € with the wave
front W is the singularity of W, and the projection of that into the source surface &
is the caustic of the lens map. The latter corresponds to the caustic of standard lens
theory as used in section 2.

A typical wave front exhibits a swallowtail singularity as shown in Fig. 3. The
vertical lines indicate source world lines. The points of the wave front represent events
at which photons are emitted which later arrive at O; these points are in one-to-one
correspondence with light rays and directions € at O (except for points of the crossover
curve which correspond to two light rays each). T is a function on the wave front.
Fig. 4 also illustrates the role of the caustic in & as separating sources with different
numbers of images.

7 Distances, fluxes and intensities

The map A defined in connection with (12) relates a part of the observer’s sphere of
vision, S? , to a part of the wave front W. In the vicinity of a non-critical direction €,
this map is approximated by the tangent map A, at €, which maps the tangent plane
SZ bijectively onto the tangent plane to W at the source point (y*,t) . The image of
a little circular source around (y“,t) is then elliptical. If € is a non-degenerate critical
point, A\, maps S2 onto the tangent line of the caustic at A(€) . In this case, the image
of a small circular source around A(€) is a thin filament oriented in the direction of
the kernel of A\, at €.
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To render (some of) the preceding statements quantitative, A\, will be related to
Jacobi fields, defined in connection with (9). For this purpose, we reparametrize the
light rays from O to the wave front, setting 5§ = ﬁ ,sothat 5=0at Oand §=1 at

W, and rewrite (10) as
2% = X*(€,5). (15)

Further, let 0 be a unit tangent vector of Se% , the tangent plane to the observer’s
sphere of vision. § uniquely determines a Jacobi field Y(Gj 5 on the light ray from O
in the direction € such that Y (6, 1) is tangent to W at A(€) ,

Me(0) =Y (0, 1). (16)

(Y'(6,5)d$ connects the rays determined by € and €+ 6d¢ at the same 5 values.) By
construction,

. dl
v = 5 (1)
where dl is the distance of the events A(€), A(€ + 6d¢) on W, which subtends the
angle d¢ at the observer. By definition, the ratio in (17) is the“angular diameter
distance d of the event © = A(€) from the observer (O, U) in the direction € with
respect to the transverse direction g .7 Note that d depends not only on O and x,
but also on U, ( aberration ), on € (the direction at which z is seen) and on 6 (the
transverse direction at which dl is seen).

The 6 — dependence exhibits the distortion of an image relative to the intrinsic
shape of the source’s transverse cross section. If, instead of looking at a line element
dl, the observer looks at an area dA on W which subtends a solid angle dw , he can
define the “ area distance

dA
dw )
of z from (O, U) in the direction &.” If z is seen by O in different directions ¢€,¢é ...
, the corresponding area distances r,r’ can differ considerably; this is called relative
magnification by lensing. Since the (bolometric) flux Fp of a point source is given in
terms of luminosity L , redshift zs and area distance rg by

CAm(1 + ze)4r2

=

r=( (18)

Fo (19)

the geometric magnification just referred to is accompanied by an equal flur magni-

fication. On the other hand, the observed (bolometric) intensity Ip of an extended,

resolved source with intrinsiv intensity Is depends on redshift only,
I

(142"

Thus, isophotal curves can be identified in the images, hence relative distortions and
magnifications can be measured. (For derivations of (19) and (20) and details see, e.g.,

1.

Iy = (20)
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Note that area distance r and redshift z, for an observer (O, U) in a kinematic
cosmological model, are defined on the (tangent) null cone C of O, not on the light
cone €, and while r first increases with s or z in a given direction €, it in general will
have maxima and even zeros. In fact, the caustic of € consists of exactly those images
of C where the area distance r vanishes.

On a light ray, the area distance obeys the focusing equation [7]

d? 2 2

2" = —(|o)* + 47 Gp(1 + 2z)*)r. (21)
|o| denotes the magnitude of the shear of the null cone, p the dust matter density.
It is here and through the geodesic deviation equation (9) that the gravitational field
equation enters lens theory. The shear term in (21) is due to conformal curvature,
the matter term is due to Ricci curvature; both are nonlinearly coupled, however. (A
cosmological term is not excluded; it does not affect (21).) The focusing equation
shows why caustics, magnification etc. generically occur.

8 The problem of computing the lens map

The map A defined in section 6 depends on the spacetime curvature between sources
and observer, which in turn is related to the energy-momentum distribution of matter.
Except for the special, ideal case of spherical symmetry ([9], [10], A presumably cannot
be computed exactly. The best one can do is find, under special assumptions on
the matter distribution in (part of) spacetime, approximations to A, analytically or
numerically.

One strategy to do that which originated in [6] and in [8], is to first use the geodesic
deviation equation to determine the tangent map A, in other words to determine A
infinitesimally near one ray, and then secondly to integrate the result to obtain \ itself.

The basis for the first step has been laid already in section 7. Indeed, eq. (16)
reads explicitly

— oyt 0 ot 0
Y(0,1) =08 (% — + —==).
(0.1)=0"(55 oy T BeP 5 (22)
(Remember: §4 = % is the tangent to a curve €(¢) on the observer’s sphere of

vision which determines the Jacobi vector Y(Gj, 5) whose value at the wave front is
given in (22).) Therefore, once the Jacobi field Y has been found, the total differential
system

dy? = 15(&)de? (22a)
and the differential
dt = T (€)de® (22b)

can be read off (22). On integration, (22a) should result in the lens map [, eq. (14),
and (22b) should give the emission time function T, eq. (15). The problem is thus
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S L

Fig. 5 Light rays from & to O. The “central” ray -y is not deflected, in contrast to ~s,
which is connected to its neighbour by a Jacobi field with values £1.d¢, £sdg.

reduced to the integration of Jacobi’s equation (9) for which methods are available
([11], [8])-

The method just indicated can be carried out, at least under some simplifying
assumptions, as follows.

Let us consider the lensing situation of section 6, specialized to the case that,
between observation event O and source wave frontW, the matter density p differs only
slightly from a cosmic mean value p, %’) < 1, except in a narrow ”slab” surrounding a
timelike lens hypersurface (analogous to the source hypersurface T) where, in addition
to the small fluctuation dp, there is matter with a large density contrast corresponding
to a strong lens; see Fig. 5.

In contrast to the wave front W, the intersection £ of the lens hypersurface with the
light cone € of O is a smooth, spacelike 2-surface if, in agreement with our assumptions,
we assume that a caustic of € occurs in the past of the slab only.

To follow infinitesimal light beams on € backwards from O through £ to W, one
introduces on each light ray an orthonormal pair E;, Fo of vectors, orthogonal at
O to both the 4-velocity of U and the initial direction € of the ray and parallel
propagated on the ray. The Jacobi vectors on that ray defined by the initial data
Y (O) =0, D,Y(0) = 6 (with § as in sec. 7), can be written

Y =€ By 4 %ey + €0k,

The “screen part” & = EAFE4 of Y then obeys a reduced Jacobi equation § =7T-&,
where the 2 x 2-matrix 7 is formed from the curvature tensor. (See [8]) We include
in 7 only those matter and curvature terms which are due to the small perturbations,
not those due to the strong lens. Let s_ < s < sy correspond to an interval on a
ray where the action of the lens dominates. Outside of it, the rays are affected by the
small perturbations only. To determine the reduced Jacobi vector £(s), let D (s, so)
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denote that solution of
D=T-9 (23)
which satisfies the initial conditions
D(s0,50) = 0,D(s0,50) = 1.
Then,
D(s0,50) = (D(s,0) —D(s,50) - D(s0,0)) - D (50, 0) (24)

also obeys (23), but with initial data

@(50,50) = 1,5(50,50) =0.

These matrices serve to “transport” £(s) from O(s = 0) to s_, and from sy to the
source S(5), (see Fig. 5):

E(s)=D(s,0)-F () =),
4.

£(5) =D(5,54) &(s4) +D(5,54) - &(s

The lens action is taken into account through

E(s4) = E(s-) = —(1+ 21) Vg, d. (25)

This result is obtained by approximating the small, relevant part of the lens surface
traversed by rays by a plane and treating its neighbourhood by linear perturbation
theory, see [6], [8]; @ is the deflection angle defined on L, given in egs. (2), (3).
Combining the last three equations and using that sy ~ sy ~ s_, sp corresponding
to the lens surface, one obtains the following approximate relation between £; =

£(5),& = £(5):
&~ (@(5, sp) + (5, SL)E.)(SL, 0)- 9_1(SL, 0))-&, — (14 21)D(5, SL)VgLO_Z(Zf})

The ®-factors in this equation all refer to propagation under the influence of the small
fluctuations only; the action of the strong lens is accounted in the differential deflection
term only.

We now assume that those matrices which are defined on each ray separately,
are nearly independent of where a particular ray (of the narrow ray bundle under
consideration) passes the lens surface £. Accordingly, we substitute for these matrices
their values on one particular ray -y which is not deflected, i.e. on which @ vanishes.
(Such a ray which is not affected by the presence of the strong lens, always exists since
the deflection potential ¥ has a minimum.) The matrix D(s, sz,) on that ray satisfies
(24) with sg = sz. Using that simplifies (26) to

&~ D(5,0)- D (s£,0) - &L — (1 + 20)D(5, 5L) Ve, @

This is the “differential” version of the lens equation aimed at. We now consider
that equation for a one-parameter family of rays which begins with the ray vy (where
d = 0) and ends at some chosen ray 7y. Such a family is defined by a curve é(¢) on
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the observer’s sphere, the corresponding points on £ and S trace curves with tangents
&1, and &, respectively. Integration of the last equation along such a family of curves
gives the approzimate cosmological lens equation ([13])

—

T=2(50) -0 — (1+2.)0(5,s)a@(6), (27)

where § and @ have the same meanings as in eqs. (1) - (3) and 7, according to the
construction, stands for coordinates on the source surface &.

The last equation is more general than the simple lens equation; besides the action
of the lens, it takes into account the influence of the small density fluctuations of the
matter between lens, source and observer (cosmic rotation and shear). It has first
been obtained and discussed in the paper just quoted.

If we put 3 = ©71(5,0) - 7 and, at the end, neglect cosmic rotation and shear,
then the matrices (5, s1.), (1 + z1.)®71(5,0) and D(sr,0) reduce to the unit matrix
times the “empty cone, Dyer-Roeder distances” Dys, Dg, Dy, respectively, and (27)
simplifies to (1) - (3). These distances depend on the underlying cosmological model
- usually a Friedmann model - and on the redshifts of lenses and sources [1].

Now, all ingredients of the simple picture of the standard formalism of section 2
have been obtained from GR, albeit guided by simplifying assumptions from astro-
physics.
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