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 v
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Abstract

Fuchsian equations provide a way of constructing large classes of space-

times whose singularities can be described in detail. In some of the ap-

plications of this technique only the analytic case could be handled up

to now. This paper develops a method of removing the undesirable hy-

pothesis of analyticity. This is applied to the specific case of the Gowdy

spacetimes in order to show that analogues of the results known in the an-

alytic case hold in the smooth case. As far as possible the likely strengths

and weaknesses of the method as applied to more general problems are

displayed.

1 Introduction

The theory of Fuchsian equations has been applied to analyse singularities in
a variety of classes of spacetimes in general relativity. The term ‘Fuchsian
equations’ has not always been used in the literature on this subject and in this
paper it denotes a certain class of singular differential equations in a generic way.
The existing results in this area will be surveyed briefly below. In this approach
spacetimes containing singularities are parametrized by some functions which
play the role of data on the singularity. In some cases it was necessary to assume
the analyticity of these functions. In other cases smoothness was sufficient. The
aim of this paper is to develop ways of removing the analyticity requirement.
These will be illustrated by the case of Gowdy spacetimes which represent an
ideal laboratory for testing new ideas on the mathematical treatment of the
Einstein equations.

It may not be immediately obvious why the apparently technical distinction
between analytic (Cω) functions and smooth (C∞) functions should be signifi-
cant with a view to physical applications. There are at least two reasons why
it is important. The first is that the physical notion of causality cannot be
reasonably formulated within the class of analytic functions, since the unique
continuation property of the latter means that the solution of an equation at
one point influences its behaviour at all other points, and not only at causally
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related points. Connected with this is the fact that solutions of an equation do
not depend continuously on initial data in any useful sense. For more discussion
of these points see [7], particularly section 2.4. The second, which is also a direct
consequence of the unique continuation property of analytic functions, is that
there is not the same freedom to construct solutions with certain interesting
properties within the analytic class. An example of this will be given in section
6 below.

There are a number of results on Fuchsian equations with smooth coefficients
in the literature and to start with we need to understand why these do not
apply directly to Gowdy spacetimes. The general form of a system of Fuchsian
equations for a vector-valued unknown function u is

t
∂u

∂t
+N(x)u = tf(t, x, u,Dxu) (1)

Here x is a point in some Euclidean space and Dxu is a shorthand for the first
order derivatives of u with respect to the spatial variables x. The function f is
required to extend continuously to t = 0 while the matrix N(x) is required to
satisfy some positivity condition, which may depend on the particular context.
An example of a condition of this type is that the eigenvalues of the matrix
N(x) should have non-negative real parts for all x. Note that the apparently
more general system

t
∂u

∂t
+N(x)u = tαf(t, x, u,Dxu) (2)

with α > 0 can be reduced to the form (1) by introducing tα as a new time
variable. This results in the matrix N(x) being rescaled by a factor α, but this
does not affect its positivity properties.

One approach to proving existence theorems for Fuchsian systems which
does not require any analyticity assumption is due to Claudel and Newman [6].
Of course, in the context of data which are merely smooth (or even finitely
differentiable) the system must be hyperbolic. This is needed to prove existence
for an equation without any singular behaviour in t and the singularity cannot
be expected to improve the situation. In the Claudel-Newman theorem it is
required that f have an asymptotic expansion about t = 0 in integral powers
of t and this property is inherited by the solution. The positivity assumption
on N(x) is weaker than that mentioned above. It is only required that there be
no eigenvalues which are negative integers. An important element of the proof
of the theorem is to expand the candidate solution u in powers of t, writing
it in the form u0 + u1 where u0 is an appropriate polynomial in t and u1 is a
remainder of higher order in t. Then u1 solves a Fuchsian system where the
eigenvalues of N(x) are shifted by an integer in the positive direction. If it is
possible to expand to a sufficiently high order then the shifted eigenvalues all
have positive real parts. The condition which makes the expansion possible is
that a polynomial u0 can be found which satisfies the equation up to an error
of sufficiently high order in t. The only obstruction to this is if the shifted
eigenvalue becomes zero at some stage in the process and this is prevented by
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the assumption made on the eigenvalues of the original matrix. In cases such
as the system arising in the analysis of Gowdy spacetimes in [11] the solutions
cannot be expanded in integral powers of t. Instead non-integral (and even
x-dependent) powers of t and logarithms occur. For this reason the method of
[6] does not apply directly. One of the main methods of the present paper is to
extend the technique of using expansions of the solution to shift the eigenvalues
of N(x) to cases where terms more complicated than integral powers of t occur.

Another approach to proving existence theorems for Fuchsian systems with
smooth coefficients is due to Kichenassamy[9]. In that case there is no restriction
that solutions have expansions in integral powers of t. It is, however, required
that the matrix N(x) be independent of x. This is not satisfied in the Gowdy
case. Since the eigenvalues of the matrix N(x) correspond to powers occurring
in the expansions, this is a consequence of the dependence of these powers on x
in the system coming from the Gowdy spacetimes. Thus the result of [9] does
not apply. It might be possible to extend the proofs in [9] to the case of non-
constant N , but this will not be attempted here. Both the proofs of Claudel and
Newman and of Kichenassamy involve the use of sophisticated techniques from
functional analysis, namely semigroup theory and the Yosida approximation,
respectively. These will be avoided in the approach developed in the following.

In the paper [5] Anguige treats the case of plane symmetric solutions of the
Einstein equations coupled to a perfect fluid. He uses a direct energy argument
of a type familiar in the theory of regular symmetric hyperbolic systems. It is
important in his proof that N(x) is independent of x and positive semi-definite.
This kind of argument will be generalized in the following. On the one hand the
condition that N(x) should be constant will be removed. On the other hand the
positivity condition on the matrix will be relaxed by a method related to that
used in [6]. The eigenvalue condition used in [6] will be replaced by a condition
of formal solvability which abstracts its essential significance.

Next a brief survey of the literature on applications of Fuchsian equations
to general relativity will be given. It appears that the first paper containing
an application of this kind was [13], where Moncrief proved the existence of
a large class of analytic spacetimes with analytic compact Cauchy horizons.
Later Newman [15, 16] based his work on isotropic singularities and Penrose’s
Weyl curvature hypothesis on existence theorems for hyperbolic systems with
singularities of Fuchsian type. These papers did not include proofs of the re-
quired theorems but the necessary proofs were provided in [6]. More recently,
results on isotropic singularities for more general matter models were obtained
by Anguige and Tod [2, 3, 4]. Their theorems require no symmetry assump-
tions but are confined to a special type of singularities. On the other hand
Anguige[5] proved a theorem on the existence of non-isotropic singularities in
plane symmetric spacetimes with perfect fluid.

Another line of development of the applications of Fuchsian equations in
general relativity starts with the work of Kichenassamy and Rendall [11] on sin-
gularities in analytic Gowdy spacetimes. It builds on previous work of Kichenas-
samy outside general relativity (see [10] and references therein). This direction
is continued in the papers [8], [1] and [14] which deal with vacuum models
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with two spacelike Killing vectors, solutions of the Einstein-scalar field equa-
tions and analogues of Gowdy models in string cosmology, respectively. In all
these cases analyticity is assumed. A notable feature of the result of [1] is that
it makes no symmetry assumptions and so, on the basis of function-counting
arguments, concerns general solutions of the Einstein equations with the given
matter model.

The paper is organized as follows. In the second section the notion of a
formal solution of a Fuchsian system is defined. Assumptions on the coefficients
are exhibited which guarantee the existence of a formal solution. They are
fulfilled by the first order form of the Gowdy equations introduced in [11]. In
the third section this form of the equations is modified slightly so as to obtain a
symmetric hyperbolic system. Its formal solvability is shown to follow from that
of the original system. The system satisfied by the remainder term which is the
difference between a true solution of the system and an approximate solution
is computed. The fourth section proves an existence theorem which is general
enough to apply to the case of Gowdy spacetimes with sufficiently low velocity
(k < 3/4). In the fifth section yet another form of the equations is used to cover
the remainder of the full low velocity case (k < 1). The wider applicablity of
the methods of the paper is discussed in the final section.

2 Formal solutions

If the function f in (1) is smooth at t = 0 and hence admits an asymptotic
expansion about t = 0 in integral powers of t then it can be useful to expand
it in this way. In the following a generalization to less smooth functions f will
play an important role. This uses the notion of a formal solution of equation
(1) which will now be defined. It will also be convenient for the following to
introduce a notion of regularity of functions adapted to the given situation. An
analogous notion in an analytic context was introduced in [1].
Definition 1 A function z(t, x) defined on an open subset of [0,∞) ×RN and
taking values in R

K is called regular if it is C∞ for all t > 0 and if its partial
derivatives (defined for t > 0) of any order with respect to the variables x ∈ R

K

extend continuously to t = 0.
Definition 2 A finite sequence (u1, u2, . . . , up) of functions defined on an open
subset U of [0,∞)×R

n containing {0}×R
n is called a formal solution of order

p of (1) if

1. each ui is regular

2. t∂tui +N(x)ui − tf(t, x, ui, Dxui) = O(ti) for all i as t→ 0

Here and in the following the O-symbols are taken in the sense of uniform
convergence on compact subsets.

In [11] an iteration was defined which, in the case that the function f has
suitable analyticity properties, converges to a solution of (1). It is doubtful if
it converges in any useful sense when f is only smooth. However it can be used
to produce a formal solution of any desired order, as will now be shown.
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Lemma 2.1 If the function f is regular and the matrix N(x) is smooth and
satisfies an estimate of the form ‖σN(x))‖ ≤ C with a constant C for σ in a
neighbourhood of zero then for each p the equation (1) has a formal solution of
order p which vanishes at t = 0.
Proof First some definitions from [11] will be recalled. For a regular function
u define F [u] = tf(t, x, u,Dxu). Then F [u] is also regular and is O(t) as t → 0
together with all its spatial derivatives. If v is regular and O(t) as t → 0

together with all its spatial derivatives, define u = H [v] =
∫ 1

0 σ
N(x)−Iv(σt)dσ.

Then u is regular and O(t) together with all its spatial derivatives and satisfies
(t∂t +N)u = v. Then, if G is defined to be the composition FH , any fixed point
v of G defines a solution u of (1) by u = H [v]. Let u1 = 0. It defines a formal
solution of (1) of order one. It will be shown that defining ui = HGi−1[u1]
defines a formal solution of order p for each p. Note the relation ui+1 = HFui.

The first defining property of a formal solution is easily proved by induction.
The main point is to verify the second property. To do this it will first be shown
that ui+1 − ui = O(ti) for each i, and that spatial derivatives of all orders of
the ui satisfy the corresponding estimates. For i = 1 this follows directly from
the properties already demonstrated. To prove the general case, consider the
equation obtained by forming the difference of the equations satisfied by ui+1

and ui. This gives

t∂t(ui+1 − ui) +N(x)(ui+1 − ui) = tM1(ui − ui−1) + tM2Dx(ui − ui−1) (3)

for regular functions M1 and M2 of the arguments t, x, ui, ui−1, Dxui, Dxui−1,
obtained by applying the mean value theorem to differences. The right hand
side of (3) is O(ti). Then the fact can be applied that the operator H preserves
the set of functions which are O(tj) for any j. Spatial derivatives can be handled
in the same way. To complete the proof of the lemma, consider the relation:

t∂tui+1 +N(x)ui+1 − tf(t, x, ui+1, Dxui+1)

= −t[f(t, x, ui+1, Dxui+1) − f(t, x, ui, Dxui)] (4)

Using the mean value theorem and the estimates already obtained for ui+1 −ui

shows that the right hand side of (4) is O(ti+1).
Remark A general criterion for checking the condition on N(x) required to
apply this lemma has been given in ([1]).

Next some basic equations for the Gowdy spacetimes will be recalled. More
details can be found in [11]. The basic unknowns are two real-valued functions
X(t, x) and Z(t, x) of two variables. New variables u and v are defined so that
the relations

Z(t, x) = k(x) log t+ φ(x) + tǫu(t, x) (5)

and
X(t, x) = X0(x) + t2k(x)(ψ(x) + v(t, x)) (6)

hold, where k, X0, φ and ψ are given functions. The positive constant ǫ will be
restricted later. Next introduce further variables by setting

(u0, u1, u2, v0, v1, v2) = (u, t∂tu, tux, v, t∂tv, tvx) (7)
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The Gowdy equations imply the following first order system:

t∂tu0 = u1 (8)

t∂tu1 = −2ǫu1 − ǫ2u0 + t2−ǫ(kxx log t+ φxx) + t∂xu2

− exp(−2φ− 2tǫu0){t
2k−ǫ(v1 + 2kv0 + 2kψ)2 − t2−2k−ǫX2

0x

−2t1−ǫX0x(v2 + tψx + kx(v0 + ψ)t log t)

−t2k−ǫ(v2 + tψx + 2kx(v0 + ψ)t log t)2} (9)

t∂tu2 = t∂x(u0 + u1) (10)

t∂tv0 = v1 (11)

t∂tv1 = −2kv1 + t2−2kX0xx + t∂x(v2 + tψx) + 4kx(v2 + tψx)t log t

+(v0 + ψ)[2kxxt
2 log t+ 4(kxt log t)2]

+2tǫ(v1 + 2kv0 + 2kψ)(u1 + ǫu0)

−2X0xt
2−2k(kx log t+ φx + tǫ∂xu0)

−2t(∂x(v0 + ψ) + 2kx(v0 + ψ) log t)(kxt log t+ tφx + tǫu2) (12)

t∂tv2 = t∂x(v0 + v1) (13)

Here some minor errors in the equations given in [11] have been corrected1. This
system is of the form (2) which implies, as indicated in the introduction, that it
can be brought into the form (1) by a change of time variable. This possibility
will be used freely without further comment in the following. After the change
of time coordinate the system arising from the Gowdy equations satisfies the
hypotheses of Lemma 2.1 provided ǫ < 2k and ǫ < 2 − 2k. In particular, the
bound on σN(x) was verified directly in [11]. Alternatively, it follows easily from
the criterion given in [1]. Hence the above system has a formal solution of any
order which vanishes at t = 0.

3 The symmetric hyperbolic system

In the following the form of the Gowdy equations introduced in section 2 will be
called the first reduced system. Now it will be modified to get a system which,
while less convenient for showing formal solvability, is symmetric hyperbolic
and therefore appropriate for allowing the theory of hyperbolic equations to be
applied. It is obtained from the first reduced system by making the substitutions
u2 = t∂xu0 and v2 = t∂xv0 in some places. The result is:

t∂tu0 = u1 (14)

t∂tu1 = −2ǫu1 − ǫ2u0 + t2−ǫ(kxx log t+ φxx) + t∂xu2

− exp(−2φ− 2tǫu0){t
2k−ǫ(v1 + 2kv0 + 2kψ)2 − t2−2k−ǫX2

0x

−2t1−ǫX0x(v2 + tψx + kx(v0 + ψ)t log t)

−t2k−ǫ(v2 + tψx + 2kx(v0 + ψ)t log t)2} (15)

1I thank Aurore Cabet for pointing these out
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t∂tu2 = u2 + t∂xu1 (16)

t∂tv0 = v1 (17)

t∂tv1 = −2kv1 + t2−2kX0xx + t∂x(v2 + tψx) + 4kx(v2 + tψx)t log t

+(v0 + ψ)[2kxxt
2 log t+ 4(kxt log t)2]

+2tǫ(v1 + 2kv0 + 2kψ)(u1 + ǫu0)

−2X0xt
2−2k(kx log t+ φx + tǫ−1u2)

−2(v2 + t∂xψ + 2tkx(v0 + ψ) log t)(kxt log t+ tφx + tǫu2) (18)

t∂tv2 = v2 + t∂xv1 (19)

This system, which will be referred to as the second reduced system, has the
advantage of being symmetric hyperbolic but also has two potential disadvan-
tages. The one is that the matrix N(x) has been modified while the second
is that possibly dangerous powers of t have been introduced on the right hand
side. The matrix N(x) acquires two negative eigenvalues, which will have to be
dealt with by appropriate methods in due course. As far as the other problem
is concerned, the power t1+ǫ−2k is introduced. This power should be positive.
This can be achieved subject to the inequalities already assumed for ǫ if and
only if k < 3/4. This restriction appears unnatural, but will be assumed in this
section and the next for the second reduced system.

In fact, although the desired inequalities relating ǫ and k(x) can be ensured
by a suitable choice of ǫ at any given point x, this cannot be done at all points
simultaneously by a single choice of the constant ǫ. It can be ensured in a
neighbourhood of any given point. Solutions will be constructed in local neigh-
bourhoods of this kind and then put together using the domain of dependence
to get a solution which is global in x.

Any formal solution {u1, . . . , up} of the first reduced system which vanishes
at t = 0 is also a formal solution of the second reduced system. For t∂t((u2 −
t∂xu0)i) = O(ti) and using the fact that the formal solution vanishes at t =
0 it follows that (u2 − t∂xu0)i = O(ti). This can then be used to see that
the difference terms arising when passing from the first to the second reduced
systems are O(ti), assuming the condition k < 3/4. Although it is not of
significance for the following it is interesting to note that for 3/4 < k < 1 the
sequence whose element with index i is the element of the formal solution of the
first reduced system with index i+ 1 is a formal solution of the second reduced
system.

Given a formal solution it is possible to consider the difference between an
actual solution and the formal solution and the equations which this difference
satisfies. The hope is that this equation is more tractable analytically than the
first and second reduced systems. This is a generalization of the procedure of
subtracting a Taylor polynomial of finite order in the case that the solutions
are smooth at t = 0. Rather than doing this calculation in the specific case
of the Gowdy system it will be done for the following more general symmetric
hyperbolic Fuchsian system:

t∂tu+N(x)u + tAj(t, x, u)∂ju = tf(t, x, u) (20)
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The condition for symmetric hyberbolicity is that the matrices Aj should be
symmetric. As before, all coefficients in the equation are assumed regular. If
{ui} is a formal solution and vi = t−i(u− ui) then

t∂tvi + (N(x) + iI)vi + tAj(t, x, ui + tivi)∂jvi = tgi(t, x, vi) (21)

for some regular function gi. Choosing i large enough ensures that the eigen-
values of N + iI have positive real parts, or even that the matrix is positive
definite. In the Gowdy case this will be referred to as the third reduced system.

4 The basic existence theorem

In this section a local existence theorem will be proved for solutions of the
Gowdy equations in a neighbourhood of the initial singularity in the case that
the data k, X0, φ and ψ are merely smooth. In the case of analytic data the
problem was solved in [11]. Thus if the data are approximated by a sequence of
analytic data (km, X0m, φm, ψm), a corresponding sequence of analytic solutions
is obtained. At the same time formal solutions can be obtained for both the
approximate data and the actual data. Denote the former by umi, where the first
index corresponds to the sequence of data and the second to the enumeration of
elements of an approximate solution. Denote the latter by ui, as before. If the
approximate solutions are constructed as in the proof of the Lemma 2.1 then
umi → ui as m → ∞, uniformly on compact subsets. The same is true of the
spatial derivatives of these functions of any order. It can be concluded that the
sequence of coefficients obtained for the third reduced system is also convergent
on compact sets as m→ ∞. The sequence of solutions of these equations which
we have is only defined a priori on a time interval which depends onm. However,
using the global existence theorem for the Gowdy equations [12] it is possible to
conclude that a sequence of smooth solutions exists on a common time interval.
The aim now is to show that this is a Cauchy sequence in a sufficiently strong
topology. If that can be done then it will follow that the sequence converges to a
limit which is a solution corresponding to the smooth data originally prescribed.

The tool to obtain convergence of the approximations is the technique of
energy estimates. This requires some preliminary remarks on linear algebra.
Consider the matrix-valued function N(x) in the Fuchsian system. Spatial
derivatives of a solution of this system also satisfy a system of the same form,
but with a different matrix N(x). Suppose, for instance, we consider the first
derivative Dxu of the unknown. The system for the pair (u,Dxu) has a matrix
in its singular term which has diagonal blocks N(x) and an off-diagonal block
involving DxN(x). This off-diagonal block does not affect the eigenvalues of
the matrix but may well affect whether it is positive definite or not. Since the
positive definiteness of matrices like this is important in what follows we adopt
a strategy which avoids positivity being lost. In order to implement this it will
be assumed that N(x) is positive definite. Then use the variable w = KDxu for
a positive constant K instead of Dxu itself. For the equation satisfied by (u,w)
the matrix of interest is positive definite provided K is chosen sufficiently small.
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The same trick works for higher derivatives. It suffices to replace the collection
of unknowns {Dαu} by wα = K |α|Dαu. Let the matrix corresponding to N
arising in the system for all these derivatives up to order s be denoted by N (s).
By construction it is positive definite.

The standard method of energy estimates (see e.g. [17] or, for a discussion
aimed at relativists, [7]) proceeds by estimating the Sobolev norms of solu-
tions. The usual Sobolev norm is given by ‖u‖Hs = (

∑
|α|≤s ‖D

αu‖2
L2)1/2. For

the present purposes it is convenient to use the equivalent norm ‖u‖Hs,K =
(
∑

|α|≤sK
2|α|‖Dαu‖2

L2)1/2, where K is, as before, a small enough positive con-
stant.

As a first application of energy estimates, a theorem on the domain of de-
pendence will be proved. Let u and v be two regular solutions of (20) vanishing
at t = 0. Then their difference satisfies an equation of the following form:

∂t(u− v) + t−1N(x)(u − v) +Aj(t, x, u)∂j(u− v) = M(t, x)(u − v) (22)

where M is a regular function constructed from u and v. Choose two times t1
and t2 with 0 < t1 < t2 and let G be the region defined by the inequalities
t1 ≤ t ≤ t2 and |x| ≤ 2t2 − t. Let S1 and S2 be its intersections with t =
t1 and t = t2 respectively. Now multiply the equation (22) by e−κt(u − v),
integrate over G and integrate by parts in the way this is usually done in the
derivation of energy estimates. Here κ is a positive constant. The singular term
containing N can be discarded, due to its sign, giving an estimate of the form
e−κt2I2 ≤ e−κt1I1 + IG, where I1 and I2 are the L2 norms of the restrictions
of u − v to S1 and S2 respectively, and IG is a volume integral over G which
for κ sufficiently large is negative unless u− v is identically zero on G. Letting
t1 tend to zero, so that I1 → 0, gives a contradiction unless u − v = 0 on G.
Thus it has been proved that the solutions u and v agree on G. This proves a
domain of dependence property for solutions of (20) which can be used for the
purpose of gluing together solutions. This means that even if we are interested
in producing solutions on manifolds it is enough to solve the problem on R

n.
Moreover, it is possible to consider without loss of generality the case of cut-off
coefficients and data. By this we mean that there is a compact subset of R

n

such that for x outside this compact set the initial data vanish, the coefficients
Aj and f vanish and N is constant.

The aim is now to construct solutions of the third reduced system for Gowdy
in the case of smooth coefficients. As already indicated it is enough to do this
under the assumption of a cut-off in space. A sequence of functions which is a
candidate for a sequence converging to a solution of the third reduced system
has already been produced. This sequence is obtained by fixing a value of i
sufficiently large that the matrix occurring in the singular term of the third
reduced system is positive definite and forming the difference of the solution of
the second reduced system corresponding to the data (km, φm, X0m, ψm) and the
function umi. It will now be shown by using energy estimates that this sequence
is bounded in suitable Sobolev spaces and in fact is a Cauchy sequence. To do
this differentiate ‖u‖2

Hs,K with respect to t and substitute the third reduced
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system into the result. This gives

d/dt(‖u‖Hs,K)2) = −t−1〈N (s)u(s), u(s)〉L2,K +R (23)

Here u(s) is the collection of all derivatives of u up order s and R is the sum of the
terms which arise in the regular case, i.e. in the case where N is identically zero.
The first term on the right hand side is non-positive and may be discarded. The
terms in R can be estimated just as in the regular case and this gives a bound
for the Hs norm of u, provided s > n/2 + 1. Next the difference of successive
approximants will be estimated. An attempt to apply the standard techniques
in order to show that the sequence is Cauchy only meets one difficulty not
present in the regular Cauchy problem. This is due to differences of the matrices
N for successive elements of the sequence. This can be overcome in a way
similar to that used above where the norms were scaled. The trick is to consider
the collection of the derivatives of the functions of the sequence up to order s
together with the derivatives of the differences of successive elements of the
sequence up to order s−1, the derivatives of the differences being multiplied by
an additional factor K. This once again ensures that the final matrix obtained
is positive definite.

It follows from the above discussions that the sequence of solutions vi of the
third reduced system converges to a solution of the third reduced system corre-
sponding to the original smooth data. This can then be used to define solutions
of the second and first reduced systems and finally a solution of the Gowdy sys-
tem itself corresponding to the data we started with. The construction is such
that the interval on which convergence is obtained may depend on s. However
standard results about symmetric hyperbolic systems with smooth coefficients
show that the solutions for all values of s can be extended to a common time
interval. Hence a solution is obtained on that time interval which is C∞ for
t > 0. The results of this discussion are summed up in the following theorem,
which may be compared with Theorem 1 of [9].
Theorem 4.1 Let k(x), X0(x), φ(x) and ψ(x) be C∞ and assume that 0 <
k(x) < 3/4 for all x. Then there exists a solution of the Gowdy equations with
following properties. For each spatial point x there exists an open neighbour-
hood Ux of x and a number ǫx > 0 such that the restriction of the solution to
Ux satisfies (5) and (6) with ǫ = ǫx, where u and v are regular and tend to zero
as t → 0. The Ux and ǫx can be chosen in such a way that the inequalities
2k(y) − 1 < ǫx < min{2k(y), 2 − 2k(y)} are satisfied for all x and all y ∈ Ux.
Under these conditions the solution is unique.
Remark A formulation of the theorem which is equivalent but cleaner can be
obtained by replacing the constant ǫ by a function ǫ(x). Then it would not be
necessary to introduce the Ux.

In [9] a theorem was proved concerning high velocity analytic solutions in
the case where X0 is independent of x. The method used to prove Theorem 4.1
applies straightforwardly to the high velocity case to give an analogue of the
result of [9] in the smooth case. The following theorem results.
Theorem 4.2 Let k(x), φ(x) and ψ(x) be C∞ and let X0 be a constant. As-
sume that k(x) > 0. Then there exists a solution of the Gowdy equations with
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the following properties. For each spatial point x there exists an open neigh-
bourhood Ux of x and a number ǫx > 0 such that the restriction of the solution
to Ux satisfies (5) and (6) with ǫ = ǫx, where u and v are regular and tend to
zero as t → 0. The Ux and ǫx can be chosen in such a way that the inequality
ǫx < 2k(y) is satisfied for all x and all y ∈ Ux. Under these conditions the
solution is unique.

5 Data with intermediate velocity

In the previous section an existence theorem was proved for Gowdy spacetimes
under the restriction 0 < k < 3/4 on the function k. Next it will be shown that
using a different ansatz allows the range 1/2 < k < 1 to be treated. The two
together then cover the whole range 0 < k < 1 for which results were available
in the analytic case. The new ansatz involves expanding the function Z to a
higher order in t. The ansatz for X remains unchanged. Now Z is of the form

Z = k log t+ φ+ αt2−2k + t2−2k+ǫu (24)

where α = (2 − 2k)−2X2
0x. Reexpressing the Gowdy equations in terms of the

new variables u and v and reducing to first order as before leads to an analogue
of the second reduced system of section 3. The evolution equations for u0, u2, v0
and v2 are the same as before and will not be repeated. The modified equation
for u1 is

t∂tu1 = −2(2 − 2k + ǫ)u1 − (2 − 2k + ǫ)2u0 + t2k−ǫ(kxx log t+ φxx) + t∂xu2

+t1−ǫ[tαxx − 4kx log t(tαx + tǫu2) + 4k2
xt(log t)2(α + tǫu0)]

− exp(−2φ− 2αt2−2k − 2t2−2k+ǫu0){t
4k−2−ǫ(v1 + 2kv0 + 2kψ)2

−2t2k−1−ǫX0x(v2 + tψx + kx(v0 + ψ)t log t)

−t4k−2−ǫ(v2 + tψx + 2kx(v0 + ψ)t log t)2} (25)

and that for v1 is

t∂tv1 = −2kv1 + t2−2kX0xx + t∂x(v2 + tψx) + 4kx(v2 + tψx)t log t

+(v0 + ψ)[2kxxt
2 log t+ 4(kxt log t)2]

+2t2−2k+ǫ(v1 + 2kv0 + 2kψ)(u1 + (2 − 2k + ǫ)u0)

+(4 − 4k)t2−2k(v1 + 2kv0 + 2kψ)α (26)

−2X0xt
2−2k(kx log t+ φx + t2−2kαx + t1−2k+ǫu2

−2kxt
2−2k log t(α+ tǫu0)) − 2(v2 + t∂xψ + 2tkx(v0 + ψ) log t) ×

(kxt log t+ tφx + t3−2kαx + t2−2k+ǫu2 − 2kxt
3−2k log t(α+ tǫu0)

There is also an obvious analogue of the first reduced system of section 2. The
existence of formal solutions of the latter is guaranteed by Lemma 2.1 and these
give rise to formal solutions of the second reduced system as in section 3.

Consider now the sequence of analytic solutions of the Gowdy equations
corresponding to a sequence of analytic approximations to the smooth data

11



of interest. It will be shown that, under the condition that 1/2 < k < 1,
these define a sequence of regular solutions of the second reduced system of this
section. To do this it is necessary to show that for each of these solutions the
function Z admits an asymptotic expansion of the form (24) and not just of the
form (5), which is known a priori. To do this it suffices to apply the existence
theorem of [11] to the first reduced system of this section with the analytic data.

Once these facts are known, it is straightforward to prove an existence the-
orem for the second reduced system of this section using the same techniques
as were applied to the second reduced system of section 3 provided certain in-
equalities are satisfied. These are the inequalities which ensure that each term
on the right hand side of the equation contains a positive power of t. Under the
assumption that 1/2 < k < 1 this can be achieved by choosing the positive real
number ǫ to satisfy 4k − 3 < ǫ < 2k − 1. The following theorem is obtained.
Theorem 5.1 Let k(x), X0(x), φ(x) and ψ(x) be C∞ and assume that 1/2 <
k(x) < 1 for all x. Then there exists a solution of the Gowdy equations with
the following properties. For each spatial point x there exists an open neigh-
bourhood Ux of x and a number ǫx > 0 such that the restriction of the solution
to Ux satisfies (24) and (6) with ǫ = ǫx, where u and v are regular and tend to
zero as t→ 0. The Ux and ǫx can be chosen in such a way that the inequalities
4k(y) − 3 < ǫx < 2k(y) − 1 are satisfied for all x and all y ∈ Ux. Under these
conditions the solution is unique.

6 Discussion

The theorems stated in this paper have all concerned Gowdy spacetimes. It is
nevertheless clear that many of the arguments are much more generally applica-
ble. At the same time some steps are essentially related to the specific Gowdy
case. A general discussion of the procedure will now be given which separates
the general from the particular as much as possible. The first step is to make a
suitable ansatz for the solutions to be constructed as the sum of an explicit part
and a remainder. There may be more than one useful way of doing this. For
example, in the Gowdy case equations (5) and (6) were useful for proving one
theorem while replacing (5) by (24) allowed a different theorem to be proved.
The second step is to reduce the equations to first order. The aim is to produce
a system of Fuchsian form for which the theorem of [9] ensures the existence of
solutions corresponding to the case where the free functions in the ansatz are
analytic. If these free functions are merely smooth the lemma proved in section
2 may be used to show the existence of formal solutions.

The third step is to produce a system which is symmetric hyperbolic and in
Fuchsian form. At this stage the matrix N(x) may have negative eigenvalues,
as is the case in the Gowdy example. It needs to be shown that the formal
solutions already produced define formal solutions of the symmetric hyperbolic
system. From this point on the argument proceeds on a general level, with no
more details of the Gowdy special case being used.

It is instructive at this stage to consider what difficulties would be likely
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to arise in an attempt to generalize the results of [1] from the analytic to the
smooth case. One problem is to bring the equations into a suitable hyperbolic
form by the choice of coordinate or gauge conditions. There was no difficulty of
this type in the Gowdy case, where a rather rigid preferred coordinate system
is available. In more general cases it will be necessary to choose a form of the
reduced Einstein equations carefully from the myriad on offer. If a symmetric
hyperbolic system is obtained it is likely to involve a matrix A0 multiplying the
time derivative of the unknown which is not the identity, thus going beyond the
case discussed above. Even worse, it may be difficult to ensure that A0 remains
bounded and uniformly positive definite as t → 0. These conditions are very
important for the use of energy estimates.

To conclude the paper, an application will be presented where the flexibil-
ity of smooth functions is essential. Existence theorems have been proved for
Gowdy spacetimes in the low velocity case and, under the condition that X0 is
constant, also in the high velocity case. Using the domain of dependence these
can be combined to give a more general class of solutions. To do this consider
a smooth function X0 which is constant on a non-empty open interval I. Now
complete this to data (k,X0, φ, ψ) in such a way that k < 1 on the closure of the
complement of I. Then each point x has a neighbourhood on which one of the
existence theorems applies and the resulting local solutions can be put together
to produce a solution corresponding to the chosen initial data globally in x. If
we tried to do this construction with analytic data then X0 would have to be
globally constant and nothing new would be obtained.
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