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Abstract. We present the first results in a new program intended to make the best use of all
available technologies to provide an effective understanding of waves from inspiralling black hole
binaries in time to assist imminent observations. In particular, we address the problem of combining
the close-limit approximation describing ringing black holes and full numerical relativity, required
for essentially nonlinear interactions. We demonstrate the effectiveness of our approach using
general methods for a model problem, the head-on collision of black holes. Our method allows a
more direct physical understanding of these collisions indicating clearly when non-linear methods
are important. The success of this method supports our expectation that this unified approach
will be able to provide relevant results for black hole binaries in time to assist gravitational wave
observations.
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(Some figures in this article are in colour only in the electronic version; see www.iop.org)

Binary black hole systems pose one of the most exciting and challenging problems of
general relativity, constituting not only a fundamental gravitational two-body problem, but
also an important astrophysical problem of direct and immediate observational relevance.
Gravitational waves from binary black hole mergers are considered one of the most promising
candidates for experimental detection by the first wave of large interferometric gravitational
wave observatories coming on line over the next few years. These imminent observations
present an urgent call to the theoretical relativity community to immediately provide any
information possible about the radiation that might be expected from these collisions.

The problem divides physically into three phases. Initially, a slow adiabatic inspiral lasting
until the black holes are so close that the orbital motion destabilizes, a brief period of strong,
essentially non-linear two-body interaction, and the linear ring-down of the newly formed
remnant black hole to stationarity. Correspondingly, theorists have approached the problem
along three primary avenues: the post-Newtonian (PN) slow-motion approximation applicable
in the inspiral phase, the ‘close-limit’ (CL) single perturbed black hole approximation handling
the ring-down, and the full numerical simulation (FN) of Einstein’s equations, which could
ideally handle the entire problem on a large computer, but is so far limited to brief evolutions
on small 3D domains. Nevertheless, the full numerical approach should be vital to treating the
intermediate, essentially non-linear phase.

In order to form the best theoretical model possible for the radiation from these systems we
feel it is vital to combine these three approaches focusing the numerical simulations squarely
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on the intermediate phase of the interaction where no perturbative approach is applicable.
The state-of-the-art in these three fields has advanced to the point where we can expect such
an eclectic approach to provide a reasonable model for binary black hole radiation. In the
cases where it has been applied the close-limit model has proved to be a reliable model for
radiation after the system has formed a common event horizon, and work in this field has
advanced sufficiently so that arbitrary perturbations can now be calculated routinely [1]. In
full numerical relativity, parts of the plunge of rather general black hole systems, such as the
grazing collision of two black holes with linear momenta and spins, can be simulated [2].
And the post-Newtonian method has advanced to the point where it might be trusted even for
black holes approaching the last stable orbit (LSO). Recent estimates [3] suggest that in the
absence of spins there are 0.6 orbits left for full-numerical treatment, and numerical relativity
should today be able to handle this part of the plunge (roughly 50M evolution time). The
primary obstacle to proceeding with the combined model is the construction of appropriate
interfaces between the three existing models. Recent interest within the post-Newtonian and
gravitational wave research community in providing Cauchy data for simulations may soon
lead to the development of a practical PN–FN interface [3]. In this letter we introduce a general
approach to providing the FN–CL interface.

The nominal result of a numerical simulation of Einstein’s equations is a time succession
of values on a 3D grid for the spatial metric and extrinsic curvature holding the geometric
spacetime information. For binary black hole simulations we expect the late time behaviour
of the system to be best characterized as a ‘ringing’ black hole with outgoing radiation, with
perturbation theory providing a good model for the dynamics. The perturbative model not only
allows an inexpensive continuation of the evolution, but also supplies a clear interpretation of
the dynamics not manifest in the generic numerical simulation. The dynamics reduces to the
evolution of a single complex field, the Newman–Penrose Weyl scalarψ4 = Cαβγ δn

αm̄βnγ m̄δ ,
obeying a linear hyperbolic equation and being directly related to the outgoing gravitational
radiation. Because of the axisymmetry of the background Kerr black hole the problem can be
further simplified by Fourier (in ϕ coordinate) decomposition ofψ4, reducing to a series of 2D
evolution problems for the axialm-mode components of ψm

4 (t, r, θ) evolving according to the
Teukolsky equation [4].

Several important steps are required to concretely implement the FN–CL interface:

(1) Specify the background black hole by its mass M and angular momentum a = J/M2.
(2) Construct a space-like slice from the late-time region of the numerical spacetime which

will be mapped to a constant time slice in the perturbative calculation. In general this slice
may not be identified with the numerical foliation.

(3) Specify an embedding explicitly mapping the numerical slice to the corresponding slice
in the background spacetime.

(4) Specify a (null and complex) tetrad, (lµ, nµ,mµ, m̄µ), on the numerical slice which will
map, on the background slice, to an approximation of the standard tetrad used in the
perturbative formalism where lµ and nµ are conveniently chosen to lie along the two-
degenerated principal null directions of the background spacetime.

(5) Using the specified tetrad and the numerical data for the metric gij and the extrinsic
curvature Kij on the slice calculate ψ4 and ∂tψ4. These will provide the Cauchy data for
the perturbative evolution.

(6) Evolve with the time-domain Teukolsky equation to determine the subsequent perturbative
dynamics.

The heart of the problem is making the specifications required in (2)–(4). The general
idea is to numerically compute physical quantities or geometrical invariants and relate them
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to their analytic expressions in the perturbatively preferred coordinate system. There is
generally no unique way to make these specifications but the first order gauge and tetrad
invariance of the perturbative formalism implies that the results will not depend strongly
on small variations in these choices. Step (5) was explicitly worked out in [5]. Since a
concrete implementation requires us to make choices for which there is no clear mathematical
preference, we will proceed by trying first the simplest possible specifications and adding
sophistication only when it seems to be necessary. We begin with a model binary black
hole problem which has already been solved by 2D numerical relativity and close-limit
perturbation theory, head-on collisions of initially resting equal-mass black holes (Misner
initial data). At the same time, we will try not to tune our techniques too closely to this
particular example so that our method can be readily generalized. For this reason we will
perform our numerical evolutions generically in 3D, using well-tested, numerical techniques
and codes (Cactus [6]) ‘off the shelf’ with no fine-tuning for this problem. We also apply
perturbation theory as described by the Teukolsky equation, allowing for a rotating black
hole background, without multipole decomposition. Specifically, for the numerical evolutions
we have used the ADM system of Einstein’s equations with maximal slicing for the lapse
and vanishing shift, finite differenced on a 1283 (octant mode) numerical grid, initially
mapped non-uniformly to the standard Misner coordinates to allow a distant outer boundary
without sacrificing resolution in the inner region. We express the Teukolsky equation in
Boyer–Lindquist coordinates, although it may be convenient in the future to evolve the
perturbations in another gauge, such as a Kerr–Schild representation of the Kerr metric
[7].

We implement the steps listed above as follows:

(1) In this case there is no angular momentum so the background reduces to Schwarzschild,
a = 0. Since only about 0.1% of the system’s mass will be lost as radiation we specify
the background mass as equal to the initial ADM mass.

(2) We make the simplest choice of background slice by identifying the numerical slice with a
Schwarzschild time slice. Numerical experience with Schwarzschild black hole evolutions
in maximal slicing suggest a strong correspondence.

(3) For the embedding, it is clear that the trivial choice, identification of numerical and
background coordinates is inadequate because the black hole horizon must invariably
expand in this numerical gauge (we use vanishing shift). On the other hand the
same expansion has the tendency to drive the exterior region toward manifest spherical
symmetry. A reasonable estimate for the map into the background Schwarzschild slice is
a trivial identification of the numerical and background θ and φ coordinates, with some
relabelling of the constant-r spheres. We account for the radial rescaling by choosing
the background radius r ′ so that the value of Weyl-curvature invariant I = C̃abcdC̃

abcd

averaged over θ in the numerical slice coincides with its background value I = 3M2/r ′6

in the background slice.
(4) We define an appropriate, manifestly orthonormal, tetrad primarily by identifying timelike

normal, radial, and azimuthal directions. The unit normal and radial direction vectors
providing the spatial components of lµ and nµ. The complex vectors mµ and m̄µ point
within the spherical 2-surface. At each step, a Gram–Schmidt procedure is first used to
ensure that the triad remains orthonormal. Then a type III (boost) null rotation fixes the
relative normalization of the two real-valued vectors to make it consistent with the tetrad
assumed in the perturbative calculation.

(5) Within the full numerical simulation we compute the values ψ4 and ∂tψ4 consistent with
our tetrad specification using the formulas in [5].
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(6) Interpolate these Cauchy data (using splines) to generate data directly usable by the
Teukolsky code developed in [8]. For the perturbative evolutions we use the tortoise
coordinate r∗ = r + 2M ln(r/2M − 1) in the range −20 < r∗/M < 50 with
nθ × nr∗ = 48 × 700.

We evolved Einstein’s equations numerically from Misner initial data for several different
initial separations labelled by the proper distance L as shown in figure 1. A typical duration
of the total evolution was t = 10M and we extracted Cauchy data every t = 1M . A transition
time tT was determined by methods detailed below. After each Teukolsky code evolution we
extract the full relevant signal of the waveforms, which typically lasted for t < 100M . The
resulting radiation energies are shown in figure 1 where we compare our 3D results with the
results of [9] where explicit use of the symmetries of the problem have been implemented
in a 2D simulation. The other case for comparison is the Price–Pullin [10] curve providing
the pure close-limit result. While all three predictions agree very well for small initial proper
separations L/M < 3, it is clear that for larger separations the close limit and full numerical
curves deviate considerably. Our results follow quite precisely the 2D computations. A
minimal full numerical evolution time (given by our linearization time below) is essential in
obtaining the above agreement. Evolution of exact initial data only perturbatively does not
reproduce the full numerical results for large separations, but follows the Price–Pullin curve
[11].
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Figure 1. The total radiated energy from two black holes initially at rest (Misner initial data).
The solid line represents Price–Pullin results [10] (labelled as PP, " = 2) for the close limit
approximation. 2D full numerical results [9] are here given by full circles and the new FN–CL
results are labelled with stars. The minimal amount of evolution needed for (L ≈ 3.4, 4.5, 6.4) to
reach the perturbative regime are approximately 1M, 3M, 6M respectively.

Extracting waveforms every 1M of non-linear numerical evolution allows us to study the
transition to linear dynamics, and to perform important consistency tests on our results. If
we have made a good definition of the perturbative background in steps (1)–(4) above then
we can expect our radiation waveform results to be independent of the transition time, tT ,
once the linear regime is reached and for as long as the numerical simulation continues to
be accurate. We apply two independent criteria for estimating the onset of linear dynamics,
the speciality invariant prediction based only on the Cauchy data and another estimate based
on the stability of the radiation waveform phase. The speciality invariant introduced in [12]
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Figure 2. Radiated energy versus transition time. These figures show a clear plateau after
linearization until numerical error begins to cause problems after 6M .

predicts linear dynamics when S = 27J 2/I3 differs from its background value of unity
by less than a factor of two outside the (background) horizon, implying that not significant
distortion is left outside the potential barrier. Such a deviation from algebraic speciality implies
significant ‘second order’ perturbations. The phase of the waveform also provides an indicator
of linear dynamics. Starting with detached black holes, we expect an initial period of weak
bremsstrahlung radiation followed by the appearance of quasinormal ringing. On the other
hand, switching to perturbative evolution immediately leads to prematurely ringing. Hence we
first observe a series of phase delays for the beginning of the ringing until the actual ringing
takes place, thereafter no phase shift should be seen. The value of tT when the phase freezes
gives a precise estimate of time for linearization of the system. We find that both estimates
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Figure 3. Waveforms (above) and Cauchy data (below) for initial separation L/M = 4.5. The
observer location is r∗ = 20M and θ = π/2. The data have been extracted after t = 4M and 5M of
full 3D nonlinear evolution respectively. There are evident differences in the extracted Cauchy data
at the times considered because of the intervening evolution. Nevertheless the resulting waveforms
agree, demonstrating the equivalence of the linear and non-linear evolution through this period, as
well as the robustness of our methods.
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for linearization time are in good agreement, yielding that t < 1M for the L/M = 2.2 case,
t ≈ 1M forL/M = 3.4, 3M forL/M = 4.5, and 6M forL/M = 6.4. The linearization time is
somewhat longer than the ‘ringing times’ reported in figure 7 of [9] indicating that linearization
occurs slightly after the onset of ‘ringing’ for the stronger collisions. Our linearization times
are still much shorter than those for the appearance of a common apparent horizon and should
be closer to the formation of a common event horizon.

Two example curves of energy versus tT are shown in figure 2. Before the linearization
time the premature application of perturbation theory tends to result in an overestimate of the
energy. After linearization there is a plateau region when the energy is insensitive to tT as is
required if we have defined a useful FN–CL interface. Eventually, after 6M in these cases,
numerical errors caused by the ‘grid-stretching’ inherent in the use of maximal slicing tend to
result again in an overestimate of the energy. A stronger indication of the robustness of our
method is evident in the waveforms themselves. After linearization, the waveforms should
also be independent of tT . Figure 3 shows an example of this comparing tT = 4M and 5M for
the L/M = 4.5 case. Despite the fact that the Cauchy data at transition time is very different,
the waveform is almost identical. The waveform quite agrees (apart from the reversed sign)
with the ψ4 published in [9], figure 13. It is worth noting here that our waveforms for the
Misner data seem to be the first complete ones computed using 3D full numerical relativity.

Perturbation theory is very useful to gain information about waveforms from numerical
spacetimes. Customarily this interface has been implemented only on a time-like surface to
determine radiation content ‘far-away’ from the black hole. A much more natural boundary
between the linear and non-linear regimes occurs on a spacelike interface defined by the
time beyond which non-linear black hole perturbations no longer contribute significantly to
the radiation. We have taken a general approach to the problem of providing such a FN–
CL interface which we believe is essential to providing timely estimates of binary black
hole waveforms. We are aware of only one previous attempt to make a combined use of
numerical and close-limit evolution implemented in the case of two black holes formed by
collapsing matter [13], using a 2D code and l = 2 metric perturbations (à la Zerilli) of
the Schwarzschild background. Our method aims toward complete generality using full
3D numerical simulations and applying perturbation theory as described by the Teukolsky
equation, applicable to arbitrary remnant black hole backgrounds. This approach is directly
applicable to a unified eclectic model of colliding black holes joining the close-limit, full
numerical relativity, and post-Newtonian methods. To our knowledge this is the first time
such an approach has been proposed and turned into a concrete and generic scheme. The
success in this test case encourages our hopes for providing theoretical results on black hole
merger waveforms in time to assist the first gravitational wave observations. We will direct
our future work toward a fully combined PN–FN–CL model for estimating astrophysically
relevant binary black hole collision waveforms.
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[2] Brügmann B 1999 Int. J. Mod. Phys. D 8 85

Seidel E 1999 Prog. Theor. Phys. (Suppl.) 136 87 and references therein



L156 Letter to the Editor

[3] Buonanno A and Damour T 2000 Phys. Rev. D 62 064015
[4] Teukolsky S A 1973 Astrophys. J. 185 635
[5] Campanelli M, Lousto C O, Baker J, Khanna G and Pullin J 1998 Phys. Rev. D 58 084019

Campanelli M, Lousto C O, Baker J, Khanna G and Pullin J 2000 Phys. Rev. D 62 069901(E) (erratum)
[6] Seidel E and Suen W-M 1999 J. Comp. Appl. Math. at press
[7] Campanelli M et al in preparation
[8] Krivan W, Laguna P, Papadopoulos P and Andersson N 1997 Phys. Rev. D 56 3395
[9] Anninos P, Hobill D, Seidel E, Smarr L and Suen W-M 1995 Phys. Rev. D 52 2044

[10] Price R H and Pullin J 1994 Phys. Rev. Lett. 72 3297
[11] Lousto C O 1999 Preprint gr-qc/9911109
[12] Baker J and Campanelli M 2000 Phys. Rev. D to appear

(Baker J and Campanelli M 2000 Preprint gr-qc/0003031)
[13] Abrahams A M, Shapiro S L and Teukolsky S A 1995 Phys. Rev. D51 4295


