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H I G H L I G H T S
c A weakly beneficial mutant can take over slower than a neutral one (slowdown).
c We link slowdown to the sojourn times in intermediate states.
c Fixation time in a small population can be non-monotonic with selection strength.
c We identify generic classes of 2�2 evolutionary games that are non-monotonic.
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We study the stochastic dynamics of evolutionary games, and focus on the so-called ‘stochastic

slowdown’ effect, previously observed in Altrock et al. (2010) for simple evolutionary dynamics.

Slowdown here refers to the fact that a beneficial mutation may take longer to fixate than a neutral one.

More precisely, the fixation time conditioned on the mutant taking over can show a maximum at

intermediate selection strength. We show that this phenomenon is present in the Prisoner’s Dilemma,

and also discuss counterintuitive slowdown and speedup in coexistence games. In order to establish the

microscopic origins of these phenomena, we calculate the average sojourn times. This allows us to

identify the transient states which contribute most to the slowdown effect, and enables us to provide

an understanding of slowdown in the takeover of a small group of cooperators by defectors in the

Prisoner’s Dilemma: Defection spreads fast initially, but the final steps to takeover can be delayed

substantially. The analysis of coexistence games reveals even more intricate non-monotonic behavior.

In small populations, the conditional average fixation time can show multiple extrema as a function of

the selection strength, e.g., slowdown, speedup, and slowdown again. We classify generic 2�2 games

with respect to the possibility to observe non-monotonic behavior of the conditional average fixation

time as a function of selection strength.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The theory of evolutionary games describes the effects of
selection, reproduction and mutation in competitive environ-
ments of interacting agents. In an evolutionary setting, reproduc-
tive success (or fitness) depends on the performance in the
evolutionary game. The strategies, or types of the game are
assumed to be hard-wired to an individual’s genotype, and passed
on from parent to offspring. Natural selection acts, such that more
successful strategies spread faster over time than less successful
strategies. Whether a particular strategy is successful or not
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depends on the state of the overall population (Maynard Smith
and Price, 1973; Taylor and Jonker, 1978; Hofbauer et al., 1979;
Zeeman, 1980; Nowak and Sigmund, 2004). An individual’s fitness
will generally depend on the frequencies of all strategies present
in the population. This is referred to as ‘frequency dependent
selection’ (Maynard Smith, 1982; Weibull, 1995; Hofbauer and
Sigmund, 1998; Nowak, 2006a). For large populations, such
systems are traditionally described by deterministic equations
of motion, typically replicator dynamics or close variations
(Schuster and Sigmund, 1983; Hofbauer and Sigmund, 1998;
Gintis, 2000; Sandholm, 2010). We here focus instead on the
stochastic evolutionary dynamics of two strategies, a mutant type
A and a wildtype B, in a finite population of size N.

A significant body of literature is now available on the
stochastic dynamics of evolutionary processes, and a number of
phenomena induced by stochasticity have now been identified
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Table 1
Symbols used in this paper, roughly in order of their appearance. Section 3 has its

own table of symbols.

Symbol Definition

A, B Types (strategies) in the population. A is the invading mutant,

B is the wildtype

N Population size

i, j Number of individuals of type A, also called state of the

system. States 0 and N are absorbing

T þi Transition probability from state i to state iþ1

T�i Transition probability from state i to state i�1

Pt(j) Probability that the population is in state j at time t.

Time is discrete

Pt ðj9iÞ Conditional probability that the population is in state j at

time t when it was in state i at time 0

ptðj9iÞ Conditional probability to enter state j at time t, when it

started from state i at time 0

fij Probability to ever visit state j, starting in state i

fi Fixation probability in state N, starting in state i, fi ¼fiN ,

and 1�fi ¼fi0

ri Probability to ever return to state i, once there

qtðj9iÞ Conditional probability of time t spent in state j, starting

from i

tij Average sojourn time in j, starting in i: First moment of qtðj9iÞ,

tij ¼
P1

t ¼ 1 tqtðj9iÞ
ti Unconditional average fixation time starting from i

t0
i , ti

N Conditional average fixation time into 0 or N, respectively,

starting from i

a, b, c, d Payoffs of a single interaction between individuals

pA , pB Average payoffs of A, B in a well-mixed population of fixed

size N

u, v Parameters that characterize the evolutionary game in state i.

pA�pB ¼ uiþv

b Selection intensity. b¼ 0 means neutral evolution

fA, fB Fitness of A, B, e.g., f A ¼ ebpA

f Expected fitness in the population. In state i we have

f ¼ ðif AþðN�iÞf BÞ=N

in Points where Tþ
in
¼ T�in , i.e., in ¼ 0, N, �u=v

gþi , g�i Game-dependent part of the transition probabilities T 7
i in

state i

D̂1, D̂2, D
ˇ

1
Coefficients of the weak selection expansion of tij that only

depend on i, j, N
~E1, ~E2, Ê1, Ê2,

E
ˇ

1, E
ˇ

2

Coefficients of the weak selection expansions of ti, t0
i , ti

N

that only depend on i, N

Hk Harmonic number, Hk ¼
Pk

l ¼ 1 1=l

P.M. Altrock et al. / Journal of Theoretical Biology 311 (2012) 94–106 95
(Nowak et al., 2004; Antal and Scheuring, 2006; Altrock et al.,
2010; Traulsen et al., 2005, 2006a; Traulsen and Hauert, 2009;
Claussen and Traulsen, 2005; Claussen, 2007; Cremer et al., 2008;
Bladon et al., 2010). Once all individuals of a given type have been
eliminated, they are never re-introduced in the absence of
mutation. Naturally, a stochastic evolutionary process without
mutations ends up in such an absorbing state. If selection is
sufficiently weak, this allows the fixation of disfavored types
(Nowak et al., 2004). Fixation will ultimately also occur in
coexistence games, where the replicator dynamics predicts a
mixed asymptotic state. However, in this case the time-to-
fixation diverges with increasing selection (Traulsen et al.,
2006b, 2007b).

Here, we analyze the phenomenon of ‘stochastic slowdown’
observed in games between two types, a wildtype and a mutant
(Altrock et al., 2010). Assuming an evolutionary game in which
the mutant is always better off than the wildtype (no matter
what the composition of the population is), it was shown that
increasing the selection pressure (and with it the evolutionary
advantage of the mutant) fixation into the all-mutant state can
slow down. In other words, fixation can take longer on average at
non-zero selection strength than in the neutral case of no
selection at all. Consequently, a beneficial mutation can take
longer to take over a population than a neutral one. This
somewhat counter-intuitive effect was investigated in Altrock
et al. (2010), where a number of relatively simple evolutionary
setups are analyzed and constraints on parameters such as the
population size required to observe this kind of stochastic slow-
down are derived.

We focus on the Prisoner’s Dilemma game and on coexistence
games. We provide an in-depth analysis of the transient dynamics
of stochastic slowdown, and investigate what states of the
system contribute most to the slowdown effect. To this end, we
calculate the average conditional sojourn times, i.e., the average
time the system spends in any particular configuration before
fixating into the all-mutant state, and provide a weak selection
approximation.

In Section 2 we describe the general setup of evolutionary
dynamics in finite populations with two types, and define the
quantities of interest, in particular fixation and sojourn times. In
Section 3, we introduce a minimal model in which slowdown can
be observed and analyzed, which allows us to develop an intuitive
understanding of stochastic slowdown. In Section 4 we introduce
the model describing interactions between individuals of two
different types in the setting of an evolutionary game. Section 5
contains our main results. Further discussion and conclusions can
be found in Section 6. Some of the technical details of our analysis
can be found in the Appendix. Table 1 explains the symbols used
in this manuscript.
2. Model

2.1. General setup

We model a well-mixed population of size N, subject to a
birth–death process in discrete time of overlapping generations
that keeps the size of the population constant. We consider the
interaction of two types, a mutant A and a wildtype B. We denote
the number of mutants in the population by i, and accordingly the
number of individuals of the wildtype is N�i.

The birth–death process is fully characterized by the prob-
abilities to increase or decrease the number of individuals of
the mutant type at each time step, i.e., whether to increase i to
iþ1 (a mutant displaces an individual of the wildtype) or whether
to reduce it to i�1 (an individual of the wildtype displaces a
mutant), or not to make any change at all. We denote the
probability of a the occurrence of a transition from i to iþ1 in a
given time step by T þi , and T�i accordingly denotes the probability
that a transition from i to i�1 occurs. The quantity 1�T þi �T�i is
then the probability that the population remains in state i. We
exclude mutations such that the states i¼0 and i¼N are absorb-
ing, i.e., we have T þ0 ¼ T�N ¼ 0. The dynamics of the system is then
governed by the following master equation:

Ptþ1ðjÞ ¼ ð1�T þj �T�j ÞPtðjÞþT þj�1Ptðj�1ÞþT�jþ1Ptðjþ1Þ, ð1Þ

where Pt(j) denotes the probability of finding the system in state j

at time t. Similarly paths can be conditioned on an initial state i.
Writing Ptðj9iÞ for the conditional probability of finding the system
in state j exactly t time steps after starting the dynamics in state i,
we have

Ptþ1ðj9iÞ ¼ ð1�T þj �T�j ÞPtðj9iÞþT þj�1Ptðj�19iÞþT�jþ1Ptðjþ19iÞ: ð2Þ

2.2. Fixation probabilities

If the system is started from a configuration with i individuals
of the mutant type, then it will eventually fixate in one of the two
absorbing states at i¼0 or i¼N. The probability that this fixation
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occurs at i¼N (the mutant type takes over the entire population)
is denoted by fi, where i is the initial number of mutants.
Accordingly, fixation at i¼0 (mutant type goes extinct) occurs
with probability 1�fi.

In order to calculate fixation probabilities it is useful to first
consider the probabilities ptðj9iÞ describing the event that the
system enters state j exactly t time steps after having been
started in state i. We stress that this is not the same as the
probability Ptðj9iÞ of being found in state j after a lag period of
t time steps and having started at i. Instead, ptðj9iÞ only captures
events in which the system was in a state different from j at time
step t�1 after starting from i. One then has the following back-
ward master equation (Goel and Richter-Dyn, 1974; Karlin and
Taylor, 1975):

ptþ1ðj9iÞ ¼ ð1�T þi �T�i Þptðj9iÞþT þi ptðj9iþ1ÞþT�i ptðj9i�1Þ, ð3Þ

where again i denotes the initial state, and j the state t time steps
later. Summing over all t yields the recursion

fij ¼ ð1�T þi �T�i ÞfijþT þi fiþ1jþT�i fi�1j: ð4Þ

Here fij ¼
P1

t ¼ 0 ptðj9iÞ is the probability that the system reaches
state j at any later time if the system is started in state i.
The solution of this recursion is given in Appendix A. The
fixation probability of a group of i mutants of type A is fi ¼fiN .
Similarly, 1�fi ¼fi0 is the probability that the mutation
goes extinct in the population if there are i mutants initially.
Once the ptðj9iÞ are known, it is straightforward to compute
the average time to fixation, conditioned for example on
cases in which the mutant takes over. The average conditional
fixation time is given by

P1
t ¼ 0 tptðN9iÞ=fi (Antal and Scheuring,

2006; Traulsen and Hauert, 2009). Recall here that ptðN9iÞ
denotes the probability that the system reaches state N precisely
t time steps after starting in state i. More generally, the
kth-moment of the conditional fixation times can be obtained asP1

t ¼ 0 tkptðN9iÞ=fi.
Table 2
Additional symbols used in Section 3.

Symbol Definition

S Subsystem consisting of all states i¼ 2, . . . ,N�1

q Conditional probability of a transition from 1 into S, q¼ T þ1 =ðT
þ
1 þT�1 Þ

s1 Average time spent in state 1 between arrival and subsequent

departure, s1 ¼ 1=ðT þ1 þT�1 Þ

p1 Conditional probability that the system leaves S into i¼1

t1, tN Average times between entering S and leaving again into 1,N

rðkÞ Conditional probability of fixation in 0, or N, given that the initial

state 1 is visited exactly k times

rN ðkÞ rNðkÞ ¼rðkÞ=f1

b Net bias towards moving from i¼1 into S
2.3. Sojourn times

Sojourn times are a helpful tool with which to characterize the
transient dynamics of stochastic processes with fixation (Ohtsuki
et al., 2007). The sojourn time tij is the average total time a
population started in state i spends in the state with j mutants
before absorption. This includes returns to state j and time steps
in which the system remains in j, i.e., tij is the average total

number of time steps spent in j until absorption if started from i.
Unconditional sojourn times: We can identify the sojourn times

by considering the escape process from each of the internal states
i¼ 1, . . . ,N�1 (Ewens, 2004). Once in i at time step t, the prob-
ability ri that the process is found in state i again at any future
time step t04t is given by

ri ¼ ð1�T þi �T�i ÞþT þi fiþ1iþT�i fi�1i: ð5Þ

Then, the conditional probability for the system starting in state i

to spend a total time of t40 steps in state j before absorption is

qtðj9iÞ ¼fijr
t�1
j ð1�rjÞ: ð6Þ

The sojourn time at j, conditioned on a starting point i, is obtained
as the first moment of this distribution

tij ¼fijð1�rjÞ
X1
t ¼ 1

trt�1
j ¼

fij

1�rj
: ð7Þ

This expression can be simplified further, noting that ri ¼

1þT þi ðfiþ1i�1ÞþT�i ðfi�1i�1Þ. Consequently, the average sojourn
time in state j, starting in i, reads

tij ¼
fij

T þj ð1�fjþ1jÞþT�j ð1�fj�1jÞ
: ð8Þ

The average life-time ti, i.e., the unconditional fixation time (see,
e.g., Altrock and Traulsen, 2009b) with initial condition i is then
given by the sum over all average sojourn times, ti ¼

PN�1
j ¼ 1 tij.

Conditional sojourn times: We will now consider average
sojourn and fixation times, conditioned on paths ending in the
all-mutant state. We can here use general results relating condi-
tional to unconditional quantities, see Ewens (2004). If we denote
sojourn times conditioned on fixation on the all-mutant state by
tN

ij then one has tN
ij ¼fj=fitij. The conditional fixation time tN

i is
given by

tN
i ¼

XN�1

j ¼ 1

fj

fi

tij ¼
XN�1

j ¼ 1

fj

fi

fij

T þj ð1�fjþ1jÞþT�j ð1�fj�1jÞ
: ð9Þ

We note that the average time to fixation conditioned on arrival
in the state 0 (i.e., a population free of mutants) can be obtained
in an analogous manner as

t0
i ¼

XN�1

j ¼ 1

1�fj

1�fi

tij: ð10Þ

The expressions for average fixation and sojourn times are used in
Section 5 to understand the statistical mechanics of trajectories
conditioned on fixation of the mutant based on mutant–wildtype
interactions cast into an evolutionary game. Before we get to
these results we discuss a simpler model capturing the essence of
probabilistic fixation of an advantageous mutant. The benefit of
this excursion is a better understanding of the slowdown effect
that we discuss for the evolutionary Prisoner’s Dilemma game.
3. Simplified model for stochastic slowdown

In order to develop a first intuitive understanding of the
stochastic spread of a beneficial mutation let us consider a
simplified model of the birth–death process. Table 2 gives an
overview about the symbols exclusively used in this section. To
disentangle the different effects contributing to the occurrence of
slowdown, we focus on a basic model with only a small number
of possible states. The left-hand panel of Fig. 1 shows the setup of
a general birth–death process in a population of N individuals. We
now take a coarse-grained view of the system and collect
all states i¼ 2,3, . . . ,N�1 into a subsystem S, as shown in the
right-hand panel of Fig. 1. The birth–death process can be thought
of the hopping dynamics between four different states, i¼0, i¼1,
S and i¼N, where i¼0 and i¼N are absorbing.

State i¼1 is characterized fully by T þ1 and T�1 . These also
determine the probability q¼ T þ1 =ðT

þ
1 þT�1 Þ with which the next

move of the system (out of state 1) is into state S and not into



Fig. 1. Illustration of the birth–death model of a population of size N (panel A),

characterized by the transition probabilities in each state, T 7
i . Panel B shows the

simplified model in which states i¼ 2, . . . ,N�1 are aggregated into a coarse-

grained state S characterized by the variables p1, t1 and tN (see text for details).
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state 0. The average time the system stays in state i¼1 is
s1 ¼ 1=ðT þ1 þT�1 Þ. Interestingly, this is also the average waiting
time conditioned on the event that the next move is to state S as
well as the average waiting time conditioned on the event that
the next move is to state i¼0 (Antal and Scheuring, 2006; Taylor
et al., 2006).

We assume now that the system has entered state S at time t.
The previous state at t�1 then must have been i¼1. In this
situation state S is characterized by the following three quanti-
ties: (i) the probability p1 that the next state after leaving S is
i¼1; (ii) the average time t1 that elapses between entering state S

and returning to state i¼1; and (iii) the average time tN that
elapses between entering state S and reaching state i¼N. This is
illustrated in the right-hand panel of Fig. 1. We stress that the
quantities T 7

i depicted in the left-hand panel of Fig. 1 are the
probabilities with which a birth–death event occurs in the next

time step. The quantity 1�T þi �T�i is the probability that no event
occurs in the next step, which may well be positive. The quantity
p1 illustrated in the right-hand panel of the figure is the prob-
ability that the next hop at any time is into state i¼1 if the system
is in S, the next hop will be towards state N with probability 1�p1.
The difference between the two cases is indicated by the two
types of arrows in Fig. 1.

We now address the average conditional fixation time tN
1 .

Assume that the system starts in state i¼1. It can then reach
i¼N by first hopping to state S and then to i¼N without returning
to i¼1. This will occur with probability rð0Þ ¼ qð1�p1Þ and will on
average take s1þtN time steps. Alternatively, the system may
enter S, return to i¼1 precisely once, then return to S and then to
i¼N. The probability for this event is rð1Þ ¼ qðp1qÞð1�p1Þ and it
will require 2s1þt1þtN time steps. Analogously, the probability
that exactly k returns to state i¼1 occur before absorption at i¼N

occurs is

rðkÞ ¼ qðp1qÞkð1�p1Þ: ð11Þ

The time required for this trajectory is s1þtNþkðs1þt1Þ. The
probability for the particle to end up at N eventually (and not at
i¼0) is then

f1 ¼
X1
k ¼ 0

rðkÞ ¼ qð1�p1Þ

1�p1q
: ð12Þ

The conditional probability that the particle returns to site i¼1
exactly k times given that it is eventually absorbed at N is then

rNðkÞ ¼
rðkÞ
f1

¼ ðp1qÞkð1�p1qÞ: ð13Þ

Averaging the time required for these processes over k, we find for
the average conditional fixation time starting at i¼1

tN
1 ¼

X
k

rNðkÞ½s1þtNþkðs1þt1Þ� ¼ s1þtNþðs1þt1Þ
p1q

1�p1q
: ð14Þ

With this, we can study how the properties s1 and q of state i¼1
and those of the coarse-grained state S (i.e., t1,tN ,p1) contribute to
the overall fixation time. Consider for example the simple model
system given by N¼4 and

T þ1 ¼
1þb

2
, T�1 ¼

1�b
2

, ð15Þ

T þ2 ¼ T�2 ¼ T þ3 ¼ T�3 ¼
1

2
, ð16Þ

where 0rbr1 introduces a net bias towards moving into S

when positioned at i¼1. This is a special case of the constant-step
process analyzed in Altrock et al. (2010), one of the most basic
models exhibiting the phenomenon of stochastic slowdown. In
this model, we have T þ1 þT�1 ¼ 1 independently of b, so that s1

does not depend on b. At the same time the subsystem S is
composed of sites i¼2 and i¼3, and the corresponding transition
rates T 7

2 and T 7
3 are independent of b. The only relevant model

variable affected by changes in b is q¼ ð1þbÞ=2 so that tN
1

increases as b is increased (note here that the term p1q=ð1�p1qÞ

is increasing and highly non-linear in q). Thus, the fixation time tN
1

increases with b, despite the fact that with increasing b the
system tends to move towards N.

Intuitively, the slowdown effect in this toy model can be
understood as follows: consider an ensemble of (independent)
realizations of the birth–death process, all started at t¼0 in state
i¼1. These realizations may be thought of as particles hopping
about independently on the set of available states i¼0, i¼1, S and
i¼N. At a given time t40 a number of such particles will have
been absorbed at i¼0 and i¼N, a number of particles will be
located at i¼1, and a further set of particles will be in state S.
Whenever a particular particle leaves state S and enters state i¼1
it is returned (after some waiting time) into the pool of occupants
of S with probability q. With probability 1�q it is absorbed at i¼0
(again after some waiting time). Increasing the model parameter
q and thus returning an increased fraction of such particles into
the subsystem S will (on average) increase the typical ‘age’ of
particles in the pool at state S. Given that all particles being
absorbed at i¼N are drawn from this pool of particles in state S,
this will in turn lead to an increased age among the particles
arriving at i¼N, and hence an increased conditional fixation time
tN

1 . While this intuitive interpretation of stochastic slowdown is
valid for the toy model of the constant-step process, the interplay
between the different factors contributing to the conditional
fixation time is more intricate in other birth–death processes,
such as the frequency dependent Moran process. In the remainder
of the paper we will study these effects in the context of
evolutionary games. Furthermore, other counter-intuitive effects
are found, including multiple extrema of the conditional fixation
time as a function of selection strength.
4. Game dynamics

We consider frequency dependent selection in evolutionary
games between two types A and B. The payoff to each of the two
interacting individuals is a if they are both of type A, whereas two
interacting individuals of type B receive d each upon mutual
interaction. An A interacting with a B receives b, whereas B

obtains c in this situation. This defines a symmetric 2�2 game
with the payoff matrix

A B
A

B

a b

c d

� �
: ð17Þ

We assume that the interaction between individuals occur on a
much faster time scale than the birth–death dynamics, so that the
payoff of an individual is given by the expected payoff obtained
from interaction with a randomly chosen individual. These
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average payoffs are then given by

pA ¼
aði�1ÞþbðN�iÞ

N�1
, ð18Þ

pB ¼
ciþdðN�i�1Þ

N�1
, ð19Þ

for players of types A and B, respectively. We have here excluded
self-interaction. It is worth mentioning that the average payoffs i~n
such games are (affine) linear in the frequency, i, of type A.

In order to define the evolutionary process we need to specify
how the payoffs for each of the two strategies determine the
success in reproduction. Reproductive success is determined
by fitness, which in turn is a function of the average payoff
received by a particular strategy. We denote fitness for the two
types of players by fA and fB, respectively. Several choices are
possible for the mapping from payoff, see Eqs. (18) and (19), to
fitness. Nature does not tell us what fitness function to apply, but,
by definition, fitness is a monotonically increasing function of the
payoff (Wu et al., 2010). Following Traulsen et al. (2008), we
choose

f A ¼ expðbpAÞ, ð20Þ

f B ¼ expðbpBÞ: ð21Þ

While this a special choice, the phenomena discussed here are
also present for other choices, e.g., a linear payoff-to-fitness
mapping. It is important to remember that payoff and fitness
are both frequency dependent. The parameter b, referred to as the
intensity of selection, determines how strongly the payoff from an
individual’s interactions influences fitness. For vanishing selection
intensity (b¼ 0), evolution is neutral for any game, i.e., no
strategy has an advantage over the other in any state of the
population. In our setup we have f A ¼ f B ¼ 1 for b¼ 0.

In order to define the actual dynamics of the systems we make
use of the frequency dependent Moran process (Moran, 1962;
Nowak et al., 2004). In this process the transition probabilities of
the birth–death process are given by

T þi ¼
i

N

ðN�iÞ

N

f A

f
, ð22Þ

T�i ¼
i

N

ðN�iÞ

N

f B

f
, ð23Þ

T0
i ¼ 1�T þi �T�i , ð24Þ

where f ¼ ði=NÞf AþððN�iÞ=NÞf B is the expected fitness of a ran-
domly chosen individual in the population. We point out that this
is a one-step process, so at each step of the dynamics at most one
replacement of an individual by another occurs. Accordingly, the
transition rates between states i and j vanish for all 9i�j941.

The transition probabilities in Eqs. (22)–(24) depend only on
the ratio of the fitness values, f A=f B. Given the exponential fitness
mapping, this ratio in turn only depends on the average payoff
difference pA�pB. The same dependence on the payoff difference
is also obtained for many other mappings in the case of linear
weak selection (Bladon et al., 2010; Wu et al., 2010). In our case,
the payoff difference is linear in i and it can hence be written in
the form pA�pB ¼ uiþv. For games of the specific form given in
Eq. (17) we have

u¼
aþd�ðbþcÞ

N�1
, ð25Þ

v¼ b�dþ
b�a

N�1
: ð26Þ

These two parameters govern the frequency dependent evolu-
tionary dynamics. The frequency dependent term proportional to
u measures the cumulated success of pure interactions (A–A, and
B–B) versus the success of mixed interactions (A–B, and B–A). The
constant contribution is proportional to v, which roughly gives a
measure for the ‘invasion barrier’ of an A mutant, i.e., the
performance of A–B versus B–B, minus a small correction from
A–B versus A–A interactions.

In addition, the roots of the gradient of selection, T þi �T�i , i.e.,
the points in for which there is no net advantage to either strategy,
can be written in terms of u, and v. Solving T þ

in
�T�in ¼ 0 leads to

in ¼ 0,N, and in ¼�v=u. We point out that this latter quantity need
not be an integer, and that it may lie outside the space of allowed
configurations, i.e., we may have ino0 or in4N—in these cases A

is always advantageous over B or vice versa. For 0o inoN, we
either have a coexistence game or a coordination game.
5. Results and discussion

5.1. Neutral evolution

Neutral evolution is the natural benchmark case of a strategy’s
evolutionary success, both in population genetics and in evolu-
tionary games in finite populations (Ewens, 2004; Nowak, 2006a).
Neutral evolution emerges in the special case of pA�pB ¼ 0 for
any i and b, or generally for b¼ 0. This leads to T þi ¼ T�i , and thus
to

fij ¼

N�i

N�j
for i4 j,

i

j
for ir j,

8>>><
>>>:

ð27Þ

see Appendix A. The neutral transition probabilities read

T 7
i ¼

iðN�iÞ

N2
, ð28Þ

such that the probability of returning to state i, Eq. (5), under
neutrality becomes

ri ¼ 1�1=N: ð29Þ

Hence, using Eq. (7) the unconditional average sojourn times are

tij ¼

N
N�i

N�j
for i4 j,

N
i

j
for ir j:

8>>><
>>>:

ð30Þ

The unconditional average fixation times follow from a summation
over all j. With some basic algebra this summation leads to
the unconditional average fixation time ti ¼NiðHN�1�Hi�1Þþ

NðN�iÞðHN�1�HN�iÞ, where we use the notation Hk to indicate
harmonic numbers, see definition in Table 1, or Eq. (B.9) in the
Appendix. The neutral conditional average fixation times can be
found in a similar way, by multiplying with fj=fi ¼ j=i, and
summing over j, Eq. (9). The part of the sum with i4 j thus has
terms of the form ðj=iÞððN�iÞ=ðN�jÞÞ. In the other part of the sum
with ir j, the ratios cancel, which gives a constant contribution.
Terms in initial state i factor out, such that we find

tN
i ¼

NðN�iÞ

i
ðNðHN�1�HN�iÞþ1Þ: ð31Þ

For a single mutant (i¼ 1Þ the conditional average fixation time
under neutral conditions is thus N2

�N time steps, or N�1 genera-
tions. Note that in fact neutral evolution means T 7

i r1=4, so that
the probability for the process to stay put, 1�T þi �T�i , is greater than
1/2, making the neutral process ‘lazy’ in the terminology of
Montenegro and Tetali (2006).

Neutral evolution serves as the reference baseline, and we ask
how weak (but non-vanishing), intermediate, and strong selection
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changes the conditional fixation times with respect to this bench-
mark. We focus our analysis on classical evolutionary games exhibit-
ing counterintuitive behavior of fixation times as a function of
selection intensity. For these cases we investigate weak and strong
selection (boo1, and b-1, respectively). In these cases it is
possible to derive closed-form analytical results for the conditional
fixation times, and seemingly contradictory results may be found.
For example the weak selection limit can indicate that small, but
non-zero selection strength can lead to a slowdown of fixation, i.e.,
the conditional fixation times are higher than in the case of neutral
evolution. On the other hand, a speedup effect can be seen for the
same game in the limit of strong selection, indicating non-monotonic
behavior of the conditional fixation time as a function of selection
strength, a feature that we will investigate in more detail below.

5.2. Weak selection

The concept of weak selection is essential to many recent
findings in evolutionary game theory (Nowak et al., 2004; Nowak,
2006b; Traulsen and Nowak, 2006; Ohtsuki et al., 2006; Tarnita
et al., 2009). The weak selection limit here refers to a linearization
of the effects of the game in terms of small values of the selection
intensity b. In this limit the evolutionary game results in a small
frequency dependent bias in addition to the undirected random
drift of neutral evolution. Weak selection serves as a powerful
first estimate of how selective bias and fluctuations in small
populations influence each other. As one novelty we establish the
weak selection approximation of the average sojourn times. We
do not present full mathematical details here, some of the main
results can be found in Appendix B.

Two relevant quantities for time scales in evolutionary games
are given by the unconditional and conditional average fixation
times of a single mutant, t1, and tN

1 . Remarkably, the fixation times
under weak selection have a very simple dependence on the
structure of the underlying evolutionary game (Altrock and
Traulsen, 2009b). One finds the weak selection approximations

t1 �NHN�1þ
~E2

6
vb, ð32Þ

tN
1 �NðN�1Þ�NðN�1Þ

Ê1

36
ub, ð33Þ

where the game parameters enter in the distinct forms of
Eqs. (25) and (26). The coefficients ~E2, and Ê1 in these expansions
depend only on the population size N and on the state i, but
not on the game parameters. Detailed expressions are given in
Appendix B.

5.3. Strong selection

The specific choice we made for the mapping from payoffs to
fitness, f A ¼ expðbpAÞ, f B ¼ expðbpBÞ, allows a strong selection
limit; Altrock and Traulsen (2009a) have discussed strong selec-
tion (b-1) for a closely related process with selection at birth
and at death. We consider the limiting case of strong selection in
order to compare it with the weak selection approximation. A
natural question to ask is: Do weak selection approximation and
strong selection limit agree qualitatively? As discussed below,
some games show a slowdown at small selection strength, the
weak-selection limit predicts an increase of fixation time with
increasing selection. On the other hand, in the strong selection
limit of the same games the beneficial mutant can also fixate
faster than in the neutral limit. Hence the time-to-fixation can be
non-monotonic in the selection intensity.

The transition probabilities as defined in Eqs. (22) and (23),
can be written as T 7

i ¼ iðN�iÞ=N2g7
i , see also Bladon et al. (2010).
For the specific dynamics we study here, we have

gþi ¼
1

i

N
ð1�e�bðpA�pBÞÞþe�bðpA�pBÞ

, ð34Þ

g�i ¼ e�bðpA�pBÞgþi : ð35Þ

As we are interested in the slowdown effect, we will now restrict
the detailed analysis to cases in which strategy A is always
favored by selection, irrespective of the state i of the population,
i.e., to cases in which pA4pB, that is expð�bðpA�pBÞÞo1. The
other cases follow in a similar way, and we refer to the discussion
in Altrock and Traulsen (2009a). Taking the limit of infinite
selection strength we obtain

lim
b-1

gþi ¼N=i, ð36Þ

lim
b-1

g�i ¼ 0, ð37Þ

and we have

lim
b-1

T þi ¼
N�i

N
, ð38Þ

lim
b-1

T�i ¼ 0, ð39Þ

for the transition probabilities per time step. Hence, the A mutant
will always spread, but the process remains stochastic, as T þi o1
for all internal states. The strong-selection limit of the probability
to ever reach state j, starting from i, is

lim
b-1

fij ¼
1 if ir j,

0 else:

(
ð40Þ

Especially, fixation of A occurs with probability one, fi-1, which
implies tN

i -ti. Nevertheless, because of non-vanishing waiting
probabilities T0

i ¼ 1�T þi , the fixation times still fluctuate. For the
return probability, Eq. (5), we simply obtain rj ¼ j=N, so that we have

lim
b-1

tij ¼

N

N�j
if ir j,

0 else,

8><
>: ð41Þ

for the average sojourn times. The average fixation time is the sum
over all sojourn times, which amounts to

ti ¼
XN�1

j ¼ i

N

N�j
¼NHN�i, ð42Þ

where Hk are the harmonic numbers, see Table 1. Eq. (42) is the
asymptotic result for the unconditional and conditional average
fixation time of advantageous A mutants in the limit of strong
selection. If B is favored by selection instead, a similar analysis can
be carried out, leading to ti ¼NðHN�1�HN�i�1Þ in the limit of strong
selection.

Coordination games have a more intricate dependency on the
initial condition, but we note that the derivation is analogous to
the cases of simple dominance above. For coexistence games, the
fixation times diverge with the selection intensity b, which can be
shown by arguing that there exist an internal state j1, and an
adjacent internal state j2 ¼ j1þ1, such that T�io j1

-0, and T þi4 j2
-0

for all other internal states i in the limit of strong selection. Hence,
rj1

,rj2
-1, and the sojourn times tij1

and tij2
diverge, irrespective of

the state i from which the dynamics is started. Thus, the fixation
time diverges as well.
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5.4. Two generic examples: Prisoner’s Dilemma and coexistence

Let us now reduce the analysis to games with fixed a¼0, and
d¼1. The payoff matrix then reads

A B
A

B

0 b

c 1

� �
: ð43Þ

For co0 and b41, we have a Prisoner’s Dilemma, in which the
invading mutant A corresponds to defection, and the wildtype B

corresponds to cooperation: the punishment for mutual defection
is zero, the reward for mutual cooperation is one, both are kept
fixed. The two free parameters of the game are then the tempta-
tion to defect against a cooperator, b, and the suckers payoff for
cooperating with a defector, c. Defection dominates cooperation,
for each frequency defectors have a higher payoff than coopera-
tors. As defectors spread, the average fitness decreases mono-
tonically. We will here be interested in the fixation of defectors in
finite populations, starting from a situation in which there is one
defector initially. Questions we will ask are then for example:
given that the defectors eventually take over, how long does this
take, and how does it depend on the selection strength? As
explained above, our benchmark when testing the effects of
selection is the case of neutral evolution, tN

1 ¼N2
�N. Naively,

one would expect that increasing the selection strength should
enhance the evolutionary advantage of defectors, and hence
reduce the time to fixation at the all-defect absorbing state. As
we will see below, the behavior of the system is much more
intricate, though.

We start by analyzing the weak-selection limit. For the generic
subset of games that fulfill bþc41, the linear weak-selection
approximation predicts an increasing time to fixation of one
initial defector as a function of selection strength. This can be
seen from the analytical results presented in more detail in the
Appendix, see in particular Eq. (B.10), where we note that Ê2

vanishes for a single initial defector. One then finds that the
difference between the conditional fixation time at small selec-
tion intensity and that at neutrality is of the form �CðNÞub
(compare Eqs. (25) and (33)), where c(N) is a constant which
only depends on the population size, and where CðNÞ40 for
Fig. 2. Prisoner’s Dilemma: non-monotonic fixation time. Average conditional fixation t

of neutral evolution (quantity shown is tN
1 ðbÞ=tN

1 ð0Þ�1) for N¼20. The fixation time unde

small selection intensity, the inset depicts larger values of b. Solid lines are the sem

independent realizations). The fixation time approaches a value of NHN�1 for b-1, Eq
NZ3, compare also to Altrock and Traulsen (2009b) and Taylor
et al. (2006). As a consequence, the conditional fixation time
increases under weak selection when u¼ 1�b�co0, i.e., when
b�c41, the conditional fixation time at low non-zero intensities
of selection is then higher than in the neutral case. In the limit of
strong selection, on the other hand, we expect that the condi-
tional fixation time approaches the value NHN�1, Eq. (42), which is
less than the neutral result of NðN�1Þ (the harmonic numbers
diverge logarithmically in N). This implies a non-monotonic
behavior of tN

1 as a function of b, with at least one maximum at
intermediate values of the intensity of selection.

In order to confirm this further, we plot the semi-analytical
solution of the conditional fixation time from a single defector
mutant, as obtained from explicitly carrying out the sum in Eq.
(9), in Fig. 2. For c¼�0:1 and b¼5.0, the conditional fixation time
depends non-monotonically on the intensity of selection: if the
intensity of selection is roughly below 0.07, fixation is expected to
take longer than neutral. The analytical curve is corroborated by
results from individual based Monte-Carlo simulations of the
underlying birth–death process. It is interesting to note that
while the behavior of tN

1 ðbÞ is nonlinear with an intermediate
maximum, the actual slowdown, i.e., the initial increase of tN

1 with
the selection intensity b occurs in the regime of weak selection.
The maximum in fixation time is seen when selection intensity is
of order 1=N. The slowdown effect is only relatively small in our
example (approximately 4% relative to the neutral case). This is
due to special features of the Moran process and to the numerical
values we have chosen for the payoff matrix; the increase in
fixation time can be much larger in other frequency dependent
microscopic processes, as discussed in Altrock et al. (2010).

Slowdown in a social dilemma game, where cooperation is
dominated by defection, is a phenomenon of small population
size, it vanishes with increasing population size in the following
sense: the larger the population, the smaller the range of selection
intensities to observe slowdown. More specifically the range over
which the slowdown occurs scales as 1=N. This holds for the
frequency-dependent Moran process, its variant studied here,
imitation processes, as well as the Wright–Fisher process
(Altrock and Traulsen, 2009b; Wu et al., 2010). The non-monotonic
behavior of average fixation times is influenced by the payoff
ime of a single defecting mutant in a population of cooperators, relative to the case

r neutral evolution is t20
1 ð0Þ ¼ 380, see Eq. (31). The main panel shows the result for

i-analytical solution, Eq. (9), gray dots are from Monte-Carlo simulations (106

. (42). Accordingly, tN
1 ðbÞ=tN

1 ð0Þ�1 approaches ��0:81, as seen in the inset.
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structure of the game in a complex manner, and it is hard to
predict for which parameter ranges slowdown is extreme. How-
ever, as shown in Altrock et al. (2010), stochastic slowdown
occurs in a variety of simple microscopic processes, and is
facilitated in systems with only a small number of selective states
and a large range of almost neutral states.

In order to understand the slowdown effect and the non-
monotonicity of the time-to-fixation in more detail, we can ask
where the process spends most of its time, i.e., we consider the
conditional sojourn times, tN

1,j for the intermediate states
j¼ 2,3, . . . ,N�1. Results from our semi-analytical calculations
and from simulations are shown in Fig. 3. As before we compare
results from the selection scenario to those for neutral evolution.
The neutral conditional sojourn time in each frequency j does not
depend on either of the two states, i or j, but only on the
population size N, limb-0tN

ij ¼ limb-0½fj=fitij� ¼N. The reason is
that the fixation probability in each state increases linearly in j,
e.g., fj=fi ¼ j=i. This compensates the asymmetry of the neutral
unconditional sojourn times, which decrease inversely with
increasing distance from initial condition, e.g., tij ¼Ni=j.

The independence on the intermediate states no longer holds for
b40, see Appendix B. The non-monotonicity of the conditional
fixation time of an advantageous defector results from a competition
of two effects: We observe in Fig. 3 that the system spends less time
in states of low frequencies of defectors, j, than under neutral
evolution, but that states of high frequencies are sojourned more
Fig. 3. Prisoner’s Dilemma: sojourn times. The conditional average sojourn time in state

relative to the neutral case (quantity shown is tN
1jðbÞ=tN

1jð0Þ�1) for four different values

analytical solution fj=fit1,j , dots are obtained from 106 independent individual based

additional time spent in states close to j¼N exceeds the time gain in the states close to j

size N¼20.
often than in the neutral regime. The increase of the conditional
sojourn times close to the absorbing boundary i¼N is a combined
effect of high waiting probabilities (low transition rates T 7

i ), and the
fact that processes conditioned on fixation in N are treated as having
a reflecting boundary in i¼0. If selection is sufficiently weak, the
reduction in sojourn times for states with low j is relatively small,
and only occurs for a few states. The majority of states experience an
increased sojourn time relative to neutral. Thus, the initial gain in
speed due to positive selection cannot compensate the later time
loss. As the strength of selection increases, more and more states
experience an effective reduction in sojourn times (see Fig. 3) and
the relative time gain in each of these states also increases. An
increased sojourn time relative to the neutral case is now only found
near the j¼N state, so that the reduction at the beginning of the
evolutionary trajectory now dominates, leading to a speedup.

We point out that the seemingly counterintuitive slowdown
and the non-monotonic behavior of tN

1 as a function of b rests in
the fact that we condition on fixation in N. We consider only the
ensemble of trajectories that eventually fixate in N, this ensemble
naturally grows with increasing frequency dependent selection,
but the average time it takes any of these trajectories to reach
state N shows complex behavior and the slowdown effect.

Next we discuss the behavior of tN
1 ðbÞ for the snowdrift game

representing coexistence games, b41 and c40. In these games, A

can invade B and B can invade A, a stable coexistence of the two
strategies typically evolves. The snowdrift game is chosen frequently
j¼ 1, . . . ,N�1 of a single defecting mutant in a population of cooperators, rescaled

of selection intensity b as indicated in each panel. Shaded bars refer to the exact

Monte-Carlo simulations of the evolutionary Moran process. For small b, the total

¼0 and slowdown occurs. Payoff values a¼0.0, b¼5.0, c¼�0:1, d¼1.0, population
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as a representative of this class (Doebeli et al., 2004; Doebeli and
Hauert, 2005): cooperators can be invaded by defectors as the
temptation to defect is still larger than the reward of mutual
cooperation. However, cooperating against a defector now yields a
payoff greater than mutual defection, such that cooperation and
Fig. 4. Coexistence of A and B: non-monotonic fixation time. Conditional average

fixation time of a single mutant, measured relative to the neutral case (quantity

plotted is tN
1 ðbÞ=tN

1 ð0Þ�1). The fixation time under neutral evolution is t30
1 ð0Þ ¼ 870,

see Eq. (31). The payoff values of the coexistence game are a¼0.0, b¼1.2, c¼0.1,

d¼1.0, in a population of size 30 individuals. The black lines are the exact

analytical solution, Eq. (9), gray dots are from individual based Monte-Carlo

simulations (5� 105 independent realizations). Inset: For very strong selection,

the fixation time diverges.

Fig. 5. Coexistence of A and B: sojourn times. Conditional average sojourn time in state j

the neutral case (quantity shown is tN
1jðbÞ=tN

1jð0Þ�1), using four different values of the s

analytical solution fj=fit1,j , dots are obtained from 105 independent individual based M

b¼1.2, c¼0.1, d¼1.0, population size N¼30.
defection can coexist in a population. The snowdrift game is a social
dilemma, as selection does not favor the social optimum of mutual
cooperation.

Again, we denote wildtypes B as cooperators and the mutants
A as defectors. In coexistence games, the frequency dependent
fitness difference f A�f B is positive at low numbers of cooperators.
A population consisting mostly of cooperators can hence be
invaded by defectors. Once the number of defectors has reached
a certain threshold, the fitness advantage is reversed, f A�f B

becomes negative. In the corresponding deterministic replicator
equation, this leads to a stable fixed point at which both types
coexist. The stochastic dynamics of finite populations of indivi-
duals interacting in coexistence games will still fixate into the
absorbing all-A or all-B states eventually. But due to the determi-
nistic flux towards the coexistence fixed point, the time-to-
fixation diverges rapidly with selection pressure (Traulsen et al.,
2007a). Our numerical analysis, however, reveals that there are
generic subsets of coexistence games in which the conditional
fixation time can decrease for intermediate values of selection, as
illustrated in the example of Fig. 4.

The dependence of tN
1 ðbÞ on b is surprisingly intricate. The

conditional fixation time tN
1 shows two extrema as a function of

the selection strength. In order to present a more complete picture
we complement the calculation of fixation times by results for
conditional sojourn times in Fig. 5 for several values of the selection
pressure. The typical picture is that, at non-zero selection strength,
states of low frequency of A are visited substantially less often than
under neutrality, but the fixation process spends long periods at
high-frequency states. At low (but non-zero) selection strength the
¼ 1, . . . ,N�1 of a single defecting mutant in a population of cooperators, relative to

election intensity b as indicated in the four panels. Shaded bars refer to the exact

onte-Carlo simulations of the evolutionary Moran process. Payoff values are a¼0.0,
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number of states near j¼1 that experience a reduced sojourn time is
small (see Fig. 5). The majority of states is subject to an increase in
sojourn time relative to the neutral case, leading to an overall
increase the fixation time. At intermediate strength of selection a
sizeable fraction of states experiences a substantial reduction of
sojourn times (see e.g., the case b¼ 5 in Fig. 5), this effect dominates
over the effective slowdown in states near j¼N. The net effect of
these two competing forces is then an overall speedup. Unlike in the
case of the Prisoner’s Dilemma however, in which virtually all states
experience a reduction in sojourn time at strong selection (see
Fig. 3), the set of states in which sojourn times are reduced is limited
in the coexistence game studied in Fig. 5. Even for very large values
of b� 20 we find that sojourn times are increased compared to
neutral for states j approximately above j¼20 in a population of
N¼30. At the same time the sojourn time in these states near j¼N

increases considerably as b is increased (see lower right panel of
Fig. 5), leading to an overall slowdown effect, and ultimately to a
conditional fixation time which diverges with b.
Fig. 6. Phases of possible non-monotonic behavior of the fixation time tN
1 , as a

function of b in the game plane parameterized by b and c. Panel A shows a

schematic drawing of the parameter space, the small inset figures depict the

qualitative shape of the conditional fixation time tN
1 as a function of the selection

strength b. The parameters plane can be split into four quadrants separated by the

vertical line of b¼1, and the horizontal line of c¼0. The lower left quadrant

defines coordination games. The lower right quadrant defines a Prisoner’s

Dilemma game with dominance of A over B. In the upper right quadrant, strategies

A and B define a coexistence game, in the upper left one, B dominates (sometimes

called ‘harmony game’). The black line c¼ 1�b (along which all games have the

equal-gains-from-switching property) separates the two regimes in which the

conditional fixation time tN
1 increases (above), or decreases (below) with increas-

ing linear weak selection. In the coexistence quadrant we schematically draw

dashed lines that separate different regimes of non-monotonic behavior of the

conditional fixation time tN
1 with selection intensity b. The three following panels

B–D scan the b�c plane for the number of non-trivial solutions of tN
1 ðbÞ ¼ tN

1 ð0Þ;

bright shading means one solution (hence one extreme value), dark shading

means two solutions (hence two extreme values) for finite b. In the white regions

tN
1 ðbÞ has no extrema as a function of b. In the three examples shown in panels

B–D, the parameter area in which a coexistence game has two extrema in tN
1 ðbÞ

increases as N is increased.
5.5. Analysis of generic 2�2 games

Here we describe the behavior of more general 2�2 games,
parametrized by b, and c, with fixed a¼0, and d¼1. This results in
a parameter plane, spanned by b and c. While this is a reduction of
the space of all possible games, all generic types of 2�2 evolu-
tionary games are captured by this parameterization (Weibull,
1995). In particular one has a coordination game for bo1, co0, a
Prisoner’s Dilemma type game for b41, co0 and a harmony
game for bo1, c40. The region b41, c40 represents coex-
istence games. We now ask whether the conditional fixation time
tN

1 as a function of b has nontrivial solutions of tN
1 ðbÞ ¼ tN

1 ð0Þ. If
there are such solutions, then assuming that tN

1 is smooth, there
has to be at least one extremum. For systems with slowdown, the
single extremum is a maximum. In cases where one finds speed-
up there can be two extrema, a maximum and a minimum.

We are interested in the type of complexity the resulting
curves show depending on b, and c, i.e., how many extrema
one should expect as a function of selection strength. In what
follows we will discuss the generic classes of 2�2 games
separately.

Coordination games (bo1, and co0): in this case, our numer-
ical analysis reveals that no maxima or minima in the fixation
time are possible. However, there is a finite strong selection limit,
lower than that of neutral evolution. Hence the fixation time can
be assumed to decrease monotonically with increasing selection.

Prisoner’s Dilemma (b41,co0), and harmony game (bo1,
c40): games with b41, and co0 are called social dilemmas
because the social optimum is not the dominant strategy. Com-
plementary, the dilemma is resolved if bo1, and c40, where
mutual cooperation is dominant. In both cases, we can observe
slowdown for sufficiently weak selection, followed by a speedup
for strong selection. This is seen if bþc41, otherwise the
conditional time-to-fixation simply decreases in b. In both quad-
rants of the parameter plane, the line that formally separates
slowdown games from non-slowdown games is given by the set
of games with equal gains from switching, c¼ 1�b.

Coexistence games (b41, and c40): here, fixation times have
always been believed to diverge quickly with increasing selection.
Our previous discussion reveals that for intermediate levels of
selection, there is the possibility of a speedup, although initially,
the fixation time increases as predicted by the linear weak
selection approximation. Fig. 6 shows in which parts of the
coexistence regime there can be a strongly non-monotonic
dependence of the conditional fixation times on the intensity of
selection, as shown in the example of Fig. 4.
In accordance with the scaling analysis in Altrock et al. (2010),
non-monotonic behavior of tN

1 that leads to the pattern in Fig. 6
vanishes with increasing population size. For large populations,
the range of the selection strength in which slowdown is found
scales as 1=N.

Note also that in Fig. 6B–D the regime of slowdown, to be
observed in games where one strategy dominates the other,
reaches into the game parameter area of coexistence games. This
is due to the observation that in finite populations, not every
game in which the deterministic dynamics predicts an mixed
equilibrium is in fact a coexistence game. There is a finite size
correction to the equilibrium value. If the equilibrium is below
1=N, or above 1�1=N, a formal coexistence game rather describes
dominance in a finite population.
6. Conclusions

The study of cooperation in an evolutionary context mainly
focuses on mechanism that allow the emergence and mainte-
nance of cooperation (see e.g., Axelrod and Hamilton, 1981;
Maynard Smith, 1982; Nowak, 2006b; Santos et al., 2006;
Sigmund et al., 2010; Hilbe and Traulsen, 2012; van Veelen
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et al., 2012). In well-mixed populations, cooperation cannot be
maintained when defection emerges unless mechanisms promot-
ing cooperation are present, such as repetition, punishment, or
rewarding. Nonetheless, in small groups of cooperators that are
bound to be invaded by defectors stochastic effects can have a
beneficial impact (Cremer et al., 2012), leading to a possible delay
of the extinction of cooperation. Nowak (2012) summarizes
important steps in the understanding of cooperation from an
evolutionary perspective, and also points out future challenges in
the experimental study of human cooperation. Our analysis here
can be seen as a next step towards a more intuitive understanding
of large fluctuations, the time a dominated strategy can be
expected to be maintained, and the importance of the particular
game that is being played to overall fitness.

In summary we have studied the time-to-fixation in finite
populations of individuals interacting in 2�2 games, subject to a
birth–death process. In particular we have focused on the detailed
mechanics of a stochastic slowdown effect, previously reported for
simple evolutionary processes in Altrock et al. (2010). The term
slowdown refers to cases of non-zero selection strength in which
fixation of a single advantageous mutant in a population takes
longer on average than in the neutral case. Our analysis proceeds
partly based on numerical simulations and partly by exact mathe-
matics, the latter resulting in closed-form expressions for fixation
times which are then evaluated numerically. We derive the weak
and strong selection limits of these relations. Considerations of a
simple toy model complement our mathematical analysis of the
more intricate and complex games. For simple-birth–death pro-
cesses we can identify a small set of model parameters contribut-
ing to the time-to-fixation, and hence the competing effects
leading to slowdown or speedup can be disentangled.

Depending on the specific choice of the payoff matrix we find
intricate functional dependence of the fixation time on the
intensity of selection, with non-monotonicities and multiple
intermediate extrema. Generic instances of the Prisoner’s
Dilemma may exhibit an initial slowdown of fixation at low, but
non-zero selection strength, followed by a speedup into a faster-
than-neutral regime at strong selection. In coexistence games we
have identified an initial slowdown at low selection, followed by a
speedup at intermediate intensity of selection, followed again by
a slowdown. In order to systematize these different types of
behavior we have classified the parameter plane of 2�2 games,
characterized by two generic game parameters, according to the
complexity their respective conditional fixation times show as a
function of selection strength.

As a second main contribution we have linked fixation times
and the slowdown effect to average sojourn times, i.e., to the time
the system spends in different states before fixation into the all-
mutant absorbing state occurs. We find that the slowdown
(relative to the case of neutral evolution) is caused by an increase
of the time spent near the all-mutant state. The time spent near
the all-wildtype state is reduced increasingly as selection strength
sets in. Both effects compete, and can result in a non-monotonic
behavior of the conditional fixation time, such as the one shown
in Fig. 2.

While we focus on 2�2 games and restrict the discussion to a
variant of the Moran process, we expect the slowdown effect and
possible non-monotonic behavior of conditional fixation times to
play a role in other systems as well. The connection between the
evolutionary game with payoff matrix (17), and the evolutionary
dynamics of two alleles, A and B, at a single locus in a population
of diploid organisms with random pairing of gametes is, for
example, discussed by Traulsen and Reed (2012). Given these
parallels it will not be surprising if a stochastic slowdown is to
occur in model systems in population genetics with directional
selection.
While we appreciate that slowdown effects may not have been
found in real-world experimental systems so far, we would like to
argue that – up to recently – there has not been much reason to
look for them systematically. We hope that our theoretical
findings may stimulate a discussion of how long a beneficial
mutation needs to reach fixation in a population, especially in
systems for which there exist estimates of selection strength and
fitness function. With such systems in mind, we hope that it may
then be possible to test the applicability of our findings in real-
world systems.

We would like to conclude by briefly addressing the symmetry
in conditional fixation times, discovered by Antal and Scheuring
(2006) and Taylor et al. (2006): One has tN

1 ¼ t0
N�1 for all 2�2

games in finite populations with two strategies A and B, for all
microscopic birth–death dynamics and any selection strength
(excluding pathological cases in which some of the transition
rates vanish). The conditional average fixation time of a single A

individual is always the same as that of a single B individual.
Given this rather surprising symmetry it is natural so ask whether
conditional sojourn times have a similar property, i.e., whether
fj=f1t1j ¼ ð1�fjÞ=ð1�f1ÞtN�1j? Here, a numerical comparison
suggests that this is indeed the case, see also Taylor et al. (2006).
Acknowledgments

TG is grateful for funding by the Research Councils UK (RCUK
reference EP/E500048/1), and by EPSRC (references EP/I005765/1
and EP/I019200/1). TG acknowledges hospitality by the Max-
Planck-Institute for Evolutionary Biology, Plön, Germany. PMA
and AT acknowledge financial support from the Deutsche For-
schungsgemeinschaft and the Max-Planck-Society. We gratefully
acknowledge discussions with Bin Wu.
Appendix A. Stationary probabilities

For the probability to ever visit state j before absorption,
starting from i, the recursion fij ¼ ð1�T þi �T�i Þfijþ T þi fiþ1jþ

T�i fi�1j holds. For i¼ j, we simply find fii ¼ 1. For i4 j, the solution
of the recursion with absorbing boundaries 0, N is (Ewens, 2004)

fij ¼

PN�1
k ¼ i

Qk
m ¼ jþ1

T�m
T þmPN�1

k ¼ j

Qk
m ¼ jþ1

T�m
T þm

: ðA:1Þ

For io j, solving the recursion leads to

fij ¼

Pi�1
k ¼ 0

Qk
m ¼ 1

T�m
T þmPj�1

k ¼ 0

Qk
m ¼ 1

T�m
T þm

, ðA:2Þ

which yields the fixation probability fi ¼fiN as special case. Note
that without mutation rates absorption is the only possible
outcome, fi0 ¼ 1�fi.
Appendix B. Weak selection

The transition rates in state i up to first order in b read

T þi �
iðN�iÞ

N2
þ

iðN�iÞ2

N3
ðuiþvÞb, ðB:1Þ

T�i �
iðN�iÞ

N2
�

i2ðN�iÞ

N3
ðuiþvÞb: ðB:2Þ
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For i4 j, we obtain

fij �
N�i

N�j
1�ði�jÞ

ðiþ jþNÞuþ3v

6
b

� �
: ðB:3Þ

For io j, we find

fij �
i

j
1þðj�iÞ

ðiþ jÞuþ3v

6
b

� �
, ðB:4Þ

which recovers the 1/3-rule for i¼1 and j¼N (Nowak et al., 2004;
Lessard and Ladret, 2007). The return probability in state j, before
absorption, is given by rj ¼ 1þT þj ðfjþ1j�1ÞþT�j ðfj�1j�1Þ. The
sojourn time in j on the other hand is related to the escape
probability rj from j, see Eq. (7). Up to first order in the selection
intensity we find

1

1�rj
�Nþ

ðNþ j2
ðNþ6Þ�NjðNþ3ÞÞu�3ðN�2jÞv

6
b: ðB:5Þ

With this, and using Eq. (7) as well as Eqs. (B.3) and (B.4) we can
compute the linear weak selection approximation for the average
sojourn time in j. For initial conditions i4 j this reads

tij �
N�i

N�j
ðN�ðD̂1uþD̂2vÞbÞ, ðB:6Þ

where the quantities D̂1 ¼ ðiN
2
þði2�1þ jð3�2jÞÞN�6j2

Þ=6 and
D̂2 ¼ ðði�jþ1ÞN�2jÞ=2 are independent of the selection intensity
and the payoffs.

For initial conditions io j we obtain

tij �
i

j
ðN�ðDˇ 1uþD̂2vÞbÞ, ðB:7Þ

where Dˇ 1 ¼ D̂1þðN
2
ðj�iÞÞ=6. This enables us to calculate the

average life time of the Markov chain between 0 and N under
weak selection

ti ¼
XN�1

j ¼ 1

tij

�NiðHN�1�Hi�1ÞþNðN�iÞðHN�1�HN�iÞþð
~E1uþ ~E2vÞ

b
6
: ðB:8Þ

Here, we have written

Hk ¼
Xk

l ¼ 1

1

l
, ðB:9Þ

for the harmonic numbers. The coefficients in Eq. (B.8) are given
by

~E1 ¼NðN�iÞðN�3Þði�1Þ�iNði2�1ÞðHN�1�Hi�1Þ

þðN�iÞðði�1ÞðiðNþ3ÞþNð2Nþ3ÞÞ

�NðN�iþ1Þð2Nþ iþ1ÞðHN�1�HN�iÞÞ,

~E2 ¼ iðN�iÞ3ðNþ2Þ�3iNðiþ1ÞðHN�1�Hi�1Þ

�ðN�iÞðði�1Þ3ðNþ2Þ�18NðN�iþ1ÞðHN�1�HN�iÞ:

For i¼1, the term ~E1 vanishes for all N such that the term
proportional to u drop out in Eq. (B.8). Thus, the average life time
of a single mutant is given by t1 �NHN�1þðN

2
þN�2ð1þ

NHN�1ÞÞvb=12, compare with the result by Altrock and Traulsen
(2009b).

In a similar fashion, we can derive a weak-selection approx-
imation for the conditional average fixation time

tN
i �

NðN�iÞ

i
ð1þNðHN�1�HN�iÞÞ

þ
NðN�iÞ

i

Ê1

36
uþ

Ê2

2
v

 !
b, ðB:10Þ
where

Ê1 ¼ ð6�7iÞN2
þ2ð9þði�9ÞiÞN�6ði2�1Þ

þ6Nð1þNðN�iþ3ÞÞðHN�1�HN�iÞ,

Ê2 ¼NðHN�1�HN�iÞ�iþ1:

The term Ê2 vanishes for all N if i¼1, and we arrive at the
approximation tN

1 �NðN�1Þð1�ðN2
�2NÞÞub=36 (Taylor et al.,

2006; Altrock and Traulsen, 2009b; Altrock et al., 2010). The
conditional extinction time of an initial group of i mutants under
weak selection is approximately

t0
i �

NðNiðHN�1�Hi�1Þ�Nþ iÞ

N�i

þ
N

N�i

E
ˇ

1

36
uþ

Ě2

2
v

 !
b: ðB:11Þ

Here

E
ˇ

1 ¼ 6NiðNiþ1ÞðHN�1�Hi�1Þ

�ðN�iÞð5iN2
þ2ið3þ iÞN�6ði2�1ÞÞ,

E
ˇ

2 ¼ ðN�iÞðiþ1Þ�NiðHN�1�Hi�1Þ: ðB:12Þ

We see that for i¼N�1, E
ˇ

2 vanishes, and E
ˇ

1ði¼N�1Þ ¼ Ê1ði¼ 1Þ,
hence t0

N�1 ¼ tN
1 , which holds for any intensity of selection (Taylor

et al., 2006; Antal and Scheuring, 2006).
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