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Without mutation and migration, evolutionary dynamics ultimately leads to the extinction of all but one
species. Such fixation processes are well understood and can be characterized analytically with methods
from statistical physics. However, many biological arguments focus on stationary distributions in a
mutation-selection equilibrium. Here, we address the mixing time required to reach stationarity in the
presence of mutation. We show that mixing times in evolutionary games have the opposite behavior
from fixation times when the intensity of selection increases: in coordination games with bistabilities,
the fixation time decreases, but the mixing time increases. In coexistence games with metastable states, the
fixation time increases, but the mixing time decreases. Our results are based on simulations and the
Wentzel-Kramers-Brillouin approximation of the master equation.
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How long does it take for a stochastic many-particle
system to reach its stationary distribution? This question
goes beyond traditional equilibrium statistical physics and
requires a theory for nonequilibrium systems. Significant
progress has been made over the last decades, but devel-
oping a more complete theory is still very much a work in
progress. Many nonequilibrium systems lack an energy or
Lyapunov function; any theoretical analysis has to start
from the microscopic dynamics itself. Such approaches
have been applied successfully to off-equilibrium phe-
nomena in physics [1] but also to a number of applications
in adjacent disciplines including epidemiology, biological
transport, and pattern formation; and to agent-based mod-
els in economics and of social phenomena [2-5].

For stochastic processes with absorbing states, our open-
ing question can be answered—at least to some extent.
Absorbing states are those in which the system gets
“trapped,” so that a full dynamic arrest occurs. Systems
with absorbing states exhibit new types of phase transi-
tions, universality classes, and complexity, previously un-
known in physics [6,7]. They are relevant in social systems,
where an absorbing state may correspond to a uniform
consensus, and in evolutionary biology where they de-
scribe fixation of a trait. Stochasticity can also drive indi-
vidual phenotypes to extinction in evolutionary game
dynamics. In the absence of mutation, a given phenotype
is never reintroduced once it has become eliminated from
the population. Addressing the question of equilibration
times then amounts to calculating the time to fixation [8,9].

The purpose of our work is to develop a similar approach
for evolutionary systems with mutation. In such systems
there are no absorbing states and thus no fixation. Still, they
reach a stationary distribution at asymptotic times. In order
to characterize the approach to stationarity we consider
what is referred to as the mixing time in the theory of
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Markov processes [10]. This is the time needed for the
probability distribution over states to approach its station-
ary shape up to some small distance e. The use of Markov
processes is common in evolutionary game theory [11],
game learning, and equilibrium selection [12,13]. We go
beyond the study of equilibria, and focus on the transients
of Markov chains and study mixing times in evolutionary
games. Mixing times have been considered in the
context of Markov-chain Monte Carlo methods [10], and
recently in game dynamical learning [14], but, to our
knowledge, they have not been discussed for evolutionary
processes. We here introduce the basic concepts, analyze
mixing times in 2 X 2 evolutionary games, and show how
methods from quasiclassical physics can be used for
analytical approximations. Our analysis is based on com-
puter simulations and analytical approximations using the
Wentzel-Kramers-Brillouin (WKB) method [15,16]. While
we focus on specific instances of evolutionary dynamics,
we expect that these tools can describe the nonequilibrium
dynamics of a large class of individual-based models.

We consider a well-mixed population of N individuals of
type A or B. The state of the system is determined by the
number n € {0, ..., N} of individuals of type A. The payoff
matrix and the fitnesses of individuals of the two types in
an evolutionary 2 X 2 game are given by [11]

A B ) = 27ha + 4220,
A a b SN (1)
B ¢ d [p(n) = ghsc + SFid,

if the system is in state n. The parameters a, b, c, and
d specify the underlying game. We study the evolu-
tionary dynamics defined by the birth-death process with
rates [17]
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where ATl(n) = I1,(n) — I15(n), and where T, is the rate

at which an individual of type B is replaced by an individ-
ual of type A in state n, and T, is the rate of the opposite
event. The parameter u € [0, 1] represents the mutation
rate, and B8 = 0 is the intensity of selection. The probabil-
ity P,(n) of finding the system in state n at time ¢ then
obeys the master equation

P(n)=T/  ,P(n—1)+T, P(n+1)

— (T, + T,))P(n). 3)

We denote the asymptotic stationary distribution by
Y*(n) = lim,_ ., P,(n). Following Ref. [10], the mixing
time 7., () is defined as f,,;,(g) = min{r:d(r) = &} where
the variational distance d(r) = 33 ,|P,(n) — ¢*(n)| mea-
sures the distance of the probability distribution P,(-) from
the stationary distribution #*(-) [10]. The standard choice
of the parameter & is & = § [10].

In order to characterize the behavior of mixing times in
different scenarios, it is useful to first consider the limit of
N — oo, In this case, the fraction of individuals of type A,
x = n/N, fulfills the deterministic replicator-mutator
equation

x=px(l —x(a—c)x—(d—>b)1 -1~ w)

1—2x
+ . 4
M “4)

The number, position, and stability of the fixed points of
Eq. (4) generally depend on the parameters 8 and u, as
well as on the underlying game [11,18].

We first study a symmetric coexistence game, defined by
a=1,b=2 2,d = 1.Inthis scenario, Eq. (4) has one
stable fixed point at x* = 1/2, and no other fixed points.
The left panel of Fig. 1 shows the stationary distributions of
the resulting Markov chain for different intensities of se-
lection 8. With increasing (3, the distribution concentrates
on the area around the deterministic fixed point. The corre-
sponding mixing times are shown in the right-hand panel,
starting the dynamics in a single state, Py(n) = 8,,,,, for
varying ng. Increasing the intensity of selection 8 reduces
the mixing time, because mixing is governed by the deter-
ministic flux, which increases with B. For ny # % the
mixing time is limited by this term. Note that the fixation
time in this game increases exponentially with V, as motion
against the deterministic flux is required [9].

Next, we address a symmetric coordination game with
parameters a =2, b=1, ¢ =1, d =2. In this case,

Eq. (4) has an unstable fixed point at x; = l and two stable
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FIG. 1 (color online). Symmetric coexistence game in a popu-
lation of N = 100 individuals. Left: Stationary distributions of
the stochastic dynamics [Eq. (3)]. Right: Mixing time (g = 1/4)
when the stochastic process is started from a Dirac distribution at
Py(n) = 8(n — ny). The mutation rate is u = 1/101, leading to
a uniform stationary distribution at 8 = 0.

fixed points x, and x; near x = 0 and x = 1, respectively.
Figure 2 shows the bimodal stationary distributions and
mixing times for this game. With increasing 8, the distri-
bution becomes sharply peaked around the stable fixed
points. For a localized initial condition the mixing process
requires motion against the deterministic flow. Hence,
mixing is governed by stochastic effects, and the analytical
computation of mixing times is far from straightforward.
When the system is started near a stable fixed point, it will
quickly tend to a quasistationary distribution (QSD)
around that fixed point. The probability will then slowly
leak over to the other side on a time scale exponentially
slow in N. Thus, the mixing times increase with increasing
intensity of selection, whereas fixation times decrease with
B [9]. We can exploit this separation of time scales to
calculate the mixing time analytically, similar to the prob-
lem of calculating the mean switching time between quasi-
stationary states.

Let us assume that we start to the left of the unstable
fixed point, x; = n;/N. The time-dependent ansatz we use
for the probability distribution is

leak ;) = l//*(l’l)(l + eiEt) n<n
e {l//*(n)(l —e ) n>n, )
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FIG. 2 (color online). Symmetric coordination game in a
population of N = 100 individuals. Left: Stationary distribution
of the master equation, Eq. (3). Right: Mixing time (¢ = 1/4) as
a function the position of the Dirac distribution from which the
dynamics is started. The mutation rate is & = 1/101, leading to
a flat stationary distribution for 8 = 0.
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where —F < 0 is the eigenvalue of the slowest decaying
mode of the problem. The validity of this ansatz can be
verified numerically, it holds on an exponentially long time
scale in N. Calculating the variational distance between the
ansatz of Eq. (5) and the stationary distribution, we find
tmix(€) = —E~'1n[2¢] such that the problem reduces to
finding the eigenvalue —FE. Based on Eq. (5), the current
through the central fixed point is given by J(¢) =
LY en, ¥ (n) = —(E/2)e”F'. Thus we can find E
from the initial current, J(0) = —E/2. Calculating the
mixing time then reduces to determining the escape current
in a bistable potential [19].

As this is a one-step process, exact expressions exist for
the mean first passage times [20]. One avenue would be to
derive the large N asymptotics for these [9,21,22]. We do
not follow this approach, instead we calculate the initial
current through the unstable fixed point based on the
celebrated WKB approximation. This has two advantages:
first, this method is valid for a much wider range of prob-
lems, such as those with multiple jumps [23,24], or of
higher dimensions [25]; second, the stationary distribution
*(n) is calculated as a by-product. Our approach also
complements recent studies which have successfully intro-
duced these methods to evolutionary game theory by cal-
culating fixation times in evolutionary games without
mutation [26]. Before we describe the main steps of the
calculation, it is useful to expand the transition rates,
Eq. (2), into powers of 1/N in leading and subleading
order. Specifically, we write T*(Nx)= w(x)+
u+(x)/N [24]. We use the WKB ansatz

PpVEB(x) = exp[—NS(x) — S, ()] (6)

where both S(x) and S (x) are assumed to be of order N°. It
is important to note the difference between the ansatz of
Eq. (5) and the ansatz of Eq. (6). The ansatz of Eq. (5) is
valid on exponentially long time scales and about the
asymptotes of the distribution and it takes account of the
back current through the central fixed point. The ansatz of
Eq. (6) is valid everywhere, but only on short time scales. It
can therefore be used to calculate the initial current. We
proceed by inserting Eq. (6) into Eq. (3), assuming (quasi)
stationarity (9,#"“KB = 0) and expanding the resulting
equation into powers of N~ ! [16,23,24,26]. In lowest order,
we find a Hamilton-Jacobi equation,

H(x,p) = wi(x)(e? =D +w_(x)e”=1)=0, (7)

where p = 9,.S. This constitutes an equation for S(x) and it
has two solutions: (i) the activation solution

w-fufzg]

and (ii) the so-called relaxation solution S(x) = 0. In next
order, we find the activation solution

_[* u,(f)_u+(§) l
it = [ae (w_<§> W+<§>) + 5 Inlw (w- ()]
)

and the relaxation solution S;(x) = In[H,(x, 0)], where
H,= 0H/dp. In our setup the activation solution de-
scribes the behavior of the QSD to the left of x; = 1/2.
The relaxation mode, describing deterministic motion to
the right of x;, will play no significant role in our further
analysis.

To complete the calculation two main tasks remain:
(i) the activation solution ¢WKB defined by Egs. (6), (8),
and (9) needs to be normalized, and (ii) the QSD needs to
be connected to the initial current J(0) through x;. These
tasks can be addressed by performing a Kramers-Moyal
expansion of the master equation, Eq. (3), around the
unstable fixed point x;. Writing f.(x) = Nw.(x)(x)
we find

r r2 ! —
axl:r_zilﬁfr(x) - Wfr(x)] =0, (10)

where the term in the square bracket is identified as the
divergence-free probability current J(0). Further algebraic
manipulations then lead to [23]

H,,(x,0)9,"B(x)
2N ’

J = $VBOH,, (x, 0)(x — x,) —

(1n

where H,,=0?H/dp*=w,+w_ and H, =d’H/
dxop=w_w' /w, —w,w’ /w_. Rearranging Eq. (11)
one has

NG
PV (G) =

px
X — X1

VH/(NH,)

The final step then consists in matching the asymptote,
yVKB(y) = J/me”’, valid for y < —1, with the
relaxation-mode solution yWKB(x) = Ae NSW=51() The
normalization constant A is obtained from a Gaussian
approximation of the relaxation solution about the fixed
point x, [25].

Carrying out this procedure the initial current is found to
be exponential in N:

J(0) = op ) T 57 e NS =S 5158110,
47N

(13)

e erfe(y),

where y = (12)

Finally the mixing time is
tmix(€) = In(2¢)/[2J(0)]- (14)

Figure 3 shows the mixing times calculated via the
WKB method along with direct computation from a

028101-3



PRL 109, 028101 (2012)

PHYSICAL REVIEW LETTERS

week ending
13 JULY 2012

10°F B=1.0, 4=0.125 1

—_
(=)
S
—
o
—

Mixing time T
_
(=]
2
—
L)
-

(=]
Y
—

0 50 100 150 200
Population size N

FIG. 3 (color online). Mixing time (¢ = 1/4) for the symmet-

ric coordination game as a function of the population size N.

Lines are calculated from Eq. (14); dots are from integration of
the master equation.

numerical integration of the master equation. Agreement is
generally very good, except for small values of N when the
introduction of the continuous variable x as well as the
expansion in powers of N~ ! become inaccurate. The slight
offset between the two sets of results is due to the Gaussian
approximation made when normalizing the QSD ¢ WKB(.).
Better agreement could be obtained by normalizing the
distribution numerically. We note that the dependence of
Imix(€) on e is logarithmic, so the impact of a choice
different from & = } is minor.

While the WKB approach can successfully be employed
to obtain mixing times, there are limitations to this method.
One potential problem is the divergence of the WKB solu-
tion ¢ WKB(x) at the boundaries of the system. This does not
affect the outcome of our calculation as long as the stable
fixed points of the replicator-mutator equation are not too
close to the boundaries of phase space, but it does limit the
range of B and u for which it is valid. We stress that the
ansatz of Eq. (5) still applies, but the eigenvalue E needs to
be calculated via a different approach. The methods we
have presented lend themselves to generalisation. For ex-
ample, the assumption of symmetry of the problem can be
relaxed, and cases in which the stationary distribution is not
symmetric and/or the unstable fixed point is not at x = 1/2
can be addressed with relatively minor modifications of the
ansatz of Eq. (5) [27].

In summary, we have introduced the concept of mixing
times for evolutionary dynamics with mutation. As inten-
sity of selection is increased, the mixing times in coex-
istence games decrease. In coordination games, one
observes the opposite trend. In both cases the behavior of
mixing times is opposite to that of fixation times in the
corresponding systems without mutation. The concept of
mixing times may often be more appropriate for many
biological systems than the computation of fixation times,
in particular when effects of mutation or immigration
cannot be ignored [28]. As shown in our work, tools
from theoretical physics can be used to successfully esti-
mate mixing times based on semianalytical considerations.

We expect this to be useful not only for biological systems,
but also for models of social dynamics and other interact-
ing many-particle processes.
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