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 Under neutrality, polymorphisms are maintained through the balance between mutation 

and drift. Under selection, a variety of mechanisms may be involved in the maintenance of 

polymorphisms, for example, sexual selection or host-parasite coevolution on the population 

level or heterozygote advantage in diploid individuals. Here we address the emergence of 

polymorphisms in a population of interacting haploid individuals. In our model, each mutation 

generates a new evolutionary game characterized by a payoff matrix with an additional row 

and an additional column. Hence, in general, the fi tness of new mutations is frequency-

dependent rather than constant. This dynamical process is distinct from the sequential fi xation 

of advantageous traits and naturally leads to the emergence of polymorphisms under selection. 

It causes substantially higher diversity than observed under the established models of neutral 

or frequency-independent selection. Our framework allows for the coexistence of an arbitrary 

number of types, but predicts an intermediate average diversity.         
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 E
volutionary dynamics is characterized by the interplay of 
mutation, selection and random drift  1 – 4 . Evolutionary experi-
ments in microbes provide powerful demonstrations of all 

these forces at work 5 – 8 . Typically, it is assumed that mutants with a 
random fi tness value, which remains constant throughout, arise and 
either go extinct or reach fi xation 9 . Advantageous mutations can 
quickly reach fi xation in the population. However, such events are 
too rare to substantially increase genetic diversity over time 10 – 12 . 
Evolutionary game theory provides an alternative perspective on 
evolutionary change, by modelling the fi tness of a mutant as a func-
tion of the frequencies of all types of individuals in the population. 
For example, a mutant may be advantageous at the beginning of an 
invasion, but its fi tness may drop below the residents ’  fi tness when it 
reaches a certain abundance 2,4 ,13,14 . In such models, the number of 
types is usually fi xed from the outset 13,15 . Th is corresponds to two 
(or few) allele models in population genetics 1,3 . 

 Here we present a model where each mutation generates a new 
evolutionary game characterized by a payoff  matrix with an addi-
tional row and an additional column. Th is represents a generaliza-
tion that is analogous to the infi nite-alleles model that has mainly 
been considered in the context of neutral or constant selection so 
far 3 . Th is approach results in substantially higher diversity than 
observed under the established models of neutral or frequency-
independent selection and permits the coexistence of an arbitrary 
number of types, but predicts an intermediate average diversity.  

 Results  
  Description of the model   .   We propose an approach where 
every mutation leads to a new game between the mutant and the 
residents. We use stochastic evolutionary game dynamics with 
 n  types of individuals in a fi nite population of size  N  (refs   16,17). 
Interactions between individuals are captured by an  n × n  payoff  
matrix. Th e payoff  of a type  i  individual when it interacts with a 
type  j  individual is the entry  a   ij   in the payoff  matrix. Th e average 
payoff  of an individual determines its fi tness and is a function 
of the frequencies of all types. In our model, any new mutation 
increases the number of types in the game. We assume that mutant 
 m  inherits the payoff  entries of its parent  p , subject to Gaussian 
noise. Th us, the mutant ’ s payoff  against type  j ,  a   mj  , has mean  a   pj  , 
and the payoff  of type  j  against the mutant,  a   jm  , has mean  a   jp  . If 
there are  n  resident types when the mutant appears, the  n × n  
payoff  matrix is extended by an additional column (the payoff  
entries of residents interacting with the mutant) and an additional 
row (the payoff  entries of the mutant interacting with residents) 
( Fig. 1 ). Conversely, when type  j  goes extinct, row  j  and column  j  in the 
payoff  matrix are deleted, such that it is reduced to an ( n     −    1) × ( n     −    1) 
matrix. Our reference scenario is frequency-independent (constant) 
selection, where each type has a fi xed fi tness. In this special case, 
each row in the payoff  matrix consists of identical numbers,  a   ij      =     a   ik   
for all  i ,  j , and  k .   

  Mutant games between two types   .   First, we consider the case of a 
single mutant  B  in a homogeneous population of  A -types. Fitness 
diff erences depend on the distribution of payoff  values and on the 
intensity of selection  w . To avoid negative fi tness values, we assume 
that fi tness is an exponential function of the average payoff  multi-
plied by  w  (see Methods). Under constant selection with Gaussian 
distributed payoff s around the parent type payoff , the probability for 
an advantageous mutation is 50 % . For frequency-dependent selec-
tion, 50 %  of the mutants are also initially advantageous. In 25 %  of 
the cases, the mutants ’  fi tness is greater than that of the wild type 
regardless of the mutants ’  abundances. In these cases, the mutants 
will take over the population deterministically for strong selection 
 w , or large population size  N . Some of these mutations increase the 
average fi tness and some of them will decrease it, the latter rep-
resenting Prisoner ’ s Dilemmas 13 . Th is game is characterized by a 

specifi c ordering of payoff s,  a  BA > a  AA > a  BB > a  AB , a situation that is 
typically described as interactions between cooperators (type  A ) 
and defectors (type  B ). Th e payoff  ordering implies that defectors 
always have higher fi tness and tend to spread, but this decreases the 
average fi tness of the population. Another 25 %  of the mutations are 
initially advantageous but lose this advantage once they become 
abundant and hence promote coexistence, which is reminiscent 
of the Hawk – Dove game 13  or the Snowdrift  game 18  and charac-
terized by the payoff  ordering  a  BA > a  AA > a  AB > a  BB . Th e remaining 
50 %  of the mutants are disadvantageous at low frequencies and 
will typically be lost. However, for weak selection,  w N�1/   , the 
stochastic nature of the process allows even slightly disadvanta-
geous mutants to invade and fi x  . Conversely, advantageous mutants 
can also be lost for the same reason. Th e corresponding fi xation 
probabilities can be calculated from a moment expansion of the 
distribution of payoff s 19 .   

  Mutant games between  n  types   .   Here we focus on a more general 
case of a continuously evolving population. New types appear and 
old types go extinct. No type can be fi xed in the population forever. 
Instead of looking at the fi xation probability of a certain type, we 
will focus on the evolutionary dynamics in such a population and 
see under which conditions a stable polymorphism can naturally 
emerge. 

 In population genetics, frequency-dependent selection in dip-
loids has been considered in the past, but the focus has been on 
special cases such as symmetric overdominance 20,21 . In evolution-
ary game theory, it is argued that frequency-dependent selection 
is generic, with constant selection describing a special case 2,14,16 . 
Our model allows us to address the consequences of frequency-
dependent selection. We focus on the average number of diff erent 
types simultaneously present in the population. Th e interactions 
can be any two-player game, leading to any kind of linear frequency 
dependence. 

 Whereas previous models of evolutionary games with variable 
numbers of types were based on deterministic dynamics 22 – 25 , we 
focus on the more general case of stochastic evolutionary dynamics. 
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   Figure 1    |         Dynamic payoff matrices. Mutant games are characterized by 

growing and shrinking payoff matrices, as shown in this example with 3 

and 4 types. All elements of the payoff matrix can be different, whereas 

for the special case of constant selection payoff entries in each row are 

identical. ( a ) A mutation increases the dimension of the payoff matrix 

from 3 to 4. The new column describes interactions of the previous types 

with the new mutant, whereas the new row describes the interactions 

of the new mutant with the previous types. ( b ) Extinction of a type  S  2  

decreases the dimension of the payoff matrix from 4 to 3. Whenever 

a type goes extinct, the corresponding row and column of the payoff 

matrix are deleted.  
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We consider a Moran process in a population of constant size  N . In 
every time step, one individual is randomly chosen proportional to 
its fi tness, and produces a mutant with probability   μ   or an identical 
off spring with probability 1    −      μ  . A randomly chosen individual in 
the population is replaced by this off spring. Th e fi tness of a given 
individual is determined from its interactions within the popula-
tion (see Methods). Mutations increase and extinctions decrease the 
dimension of the payoff  matrix ( Fig. 1 ). To ensure that the selec-
tion intensity is independent with evolutionary time, we normalize 
the payoff  matrix aft er each mutation and aft er each extinction such 
that the highest absolute payoff  value equals one.   

  Diversities under constant selection and mutant games   .   An exam-
ple for the diff erent dynamics arising through mutant games com-
pared with constant selection is shown in  Fig. 2 . For weak selection, 
 Nw     �       1, the extinction times are of the order of  N  generations and 
frequency-dependent selection is not markedly diff erent from con-
stant selection. However, for larger populations or higher intensity 
of selection  w , stable alliances can coexist for a long time 26 . Mutants 
can aff ect the population by (i) destroying existing alliances and tak-
ing over the population, (ii) enabling one of the residents or a new 
alliance of residents to take over or (iii) leading to another stable 
alliance together with a subset of the resident types or all of them. 
Only if the mutant type enters the population without displacing 
any resident, does the number of types increase. Nonetheless, fre-
quency-dependent selection leads to a signifi cant increase in the 
diversity of the population compared with neutral or constant selec-
tion. Th e balance between selection and drift  is governed by the 
product of the selection intensity and the population size. For fi xed 
selection intensity, the smaller the population, the larger the genetic 
drift . For fi xed population size, the smaller the selection intensity, 
the larger the genetic drift . Here we assess the eff ect of genetic drift  

by varying the selection intensity in a population of fi xed size (see 
Methods). 

 To further analyse diversity, let us recall population genetics 
under weak selection. Under neutrality and low mutation, the 
average number of diff erent types, which can sometimes increase 
by mutation and always decreases by extinction, is described by 
Ewens ’  sampling formula 27  (see Methods). To ensure that there 
can be an equilibrium between mutations and extinctions, we must 
assume   μ      �        N      −    1  .  In large populations, this condition is violated and 
the diversity is substantially higher. Even in this case, frequency-
dependent selection leads to more diversity than constant selection 
(see Methods). Our weak selection results recover Ewens ’  sampling 
formula, both under constant and frequency-dependent selection. 
However, for strong selection, the results are strikingly diff erent 
in these two cases. For constant selection, diversity decreases with 
increasing intensity of selection, because the extinction and fi xation 
times become shorter. In contrast, increasing the selection intensity 
under frequency-dependent selection stabilizes alliances between 
diff erent types and typically increases diversity ( Fig. 3 ). For small 
mutation rates,   μ      �        N      −    2 , neutral mutations go extinct on a faster 
timescale than new mutations arise, but polymorphisms may still 
exist for a long time. Mutations lead to transitions between mono-
morphic states or coexistence states involving 2,3,4 or more types 
under strong selection ( Fig. 4) . Th e stationary distribution of these 
coexistence states can be computed based on the transition prob-
abilities (see Methods). Th is recovers our results for the distribution 
of the number of coexisting types ( Fig. 3) . Evolutionary dynamics 
selects stable polymorphisms, but diversity is an emergent property 
because our mutant games lead to all possible payoff  matrices.   

  Th e nature of the games   .   As soon as more than two types coexist, we 
can also analyse the interactions of each pair of types. Here we focus 

W
ea

k 
se

le
ct

io
n 

S
tr

on
g 

se
le

ct
io

n

Time (generations)

N
um

be
r 

of
 in

di
vi

du
al

s

500

0

1,000

500

0

1,000

Constant selection Frequency-dependent selection
a b

c

0 500 1,000 0 500 1,000

d

w=0.0001 w=0.0001

w=10 w=10

   Figure 2    |         Sample trajectories of the evolutionary dynamics in a Moran process. The left panels are for constant selection and the right panels are for 

frequency-dependent selection. Top: for weak selection,  w     =    0.0001, the dynamics with constant selection ( a ) is similar to that with frequency-dependent 

selection ( b ), because possible coexistences disappear due to genetic drift. As on average   μ   /  N  mutations appear per generation,   μ   neutral fi xation events 

are expected per generation, and a single type dominates over 1 /   μ   generations. Bottom: for strong constant selection,  w     =    10, successive fi xation events 

of the 50 %  advantageous mutants are observed ( c ), the expected number of such events per generation is  N μ   / 2. For frequency-dependent fi tness ( d ), 

pairwise coexistences are stable over long periods of time. Additional mutants can arise and lead to the coexistence of 3 or even more types (population 

size  N     =    1,000, mutation rate   μ      =    10     −    4  per time step, all simulations start from a monomorphic state).  
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on 2 × 2 subgames of the observed 3 × 3 games. As a polymorphism of 
 n  types usually arises from a previous polymorphism of  n     −    1 types, 
the vast majority of the 2 × 2 subgames ( ~ 90 % ) show stable coexist-
ences. However, there is a small fraction of 2 × 2 games in which one 
type dominates over the other. In particular, when viewed in isola-
tion, a few of these pairs engage in Prisoner ’ s Dilemma interactions 
( ~ 1 % ). Despite the metaphorical power of the Prisoner ’ s Dilemma 
in the theory of evolution of cooperation, there is a striking lack of 
empirical cases described by this model 28 . Th e relative rarity of Pris-
oner ’ s Dilemma relationships occurring in mutant games seems to 
corroborate the dearth of empirical evidence for it. Besides, restrict-
ing the analysis to pairwise interaction in this way can be mislead-
ing, because any pair of individuals represents just a subset of a more 
complex interacting community of many types. For example, they 
could be part of a rock-scissors-paper-type cyclic dominance hier-
archy that is known for its capacity to support coexistence 29,30 . In 
contrast,  ~ 10 %  of pairwise interactions represent Snowdrift  games, 
which do not mandate the presence of further types or other mecha-
nisms to account for polymorphisms. Hence the Snowdrift  game 
seems a biologically appealing and possibly more relevant frame-
work to address cooperation 18 .    

 Discussion 
 Complex communities can only be observed when the intensity 
of selection is strong, which means that the rate of adaptation of 
a population to external conditions is relatively high. HIV evolu-
tion, host-parasite coevolution, or antibiotic resistance are examples 

for high selective pressures. Moreover, intraclonal polymorphism is 
frequently observed in bacterial species 31,32 . Our mutant games 
show an intriguing resemblance to recent observations in long-term 
evolutionary experiments with  Escherichia coli : When kept in a 
constant environment, these bacteria alternate between monomor-
phic phases and coexistence of up to a handful of distinct genotypes 
for hundreds of generations 32 , similar to our strong selection case 
in  Fig. 2 . 

 Frequency-dependent selection is a recurrent theme in evolu-
tionary biology, with applications as diverse as Fisher ’ s explanation 
of the 1:1 sex ratios 33 , sympatric speciation 34 , and the allelic diver-
sity of the immune system driven by host parasite coevolution 35 . 
In each case, the most important consequences for the evolution-
ary process arise through frequency dependence and, in particular, 
through stable polymorphisms. In our model, any mutation pro-
duces a new game between mutant type and resident types, which 
takes the full spectrum of frequency dependence into account. It 
is straightforward to extend our framework to diploid populations, 
where pairwise games correspond to the interactions of two alle-
les at one locus 21  (see Methods), and frequency-dependent selec-
tion arises from diploidy rather than interaction between diff erent 
genotypes. 

 Under constant selection, the average fi tness of a population 
keeps increasing (neglecting occasional dips due to the stochas-
tic fi xation of disadvantageous mutants), which contrasts with the 
proposed mutant games where frequency-dependent selection may 
result in an increase as well as a decrease of fi tness. Evolutionary 
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intensities. As expected, our simulations (fi lled symbols) agree with Ewens ’  sampling formula under weak selection (lines). The top panels show a 

low mutation rate,   μ      =    10     −    6  per time step. For constant selection ( a ), diversity decreases slightly with increasing intensity of selection. For frequency-

dependent selection ( b ), diversity increases substantially with increasing intensity of selection. For strong selection, we can alternatively compute the 

stationary distribution from the transitions between the different polymorphisms ( Fig. 3  (open symbols)). Although the number of types is not limited 

in our model, there are typically 4 or less types coexisting in our simulations at the same time. The bottom panels show higher mutation rates,   μ      =    10     −    4  

per time step, where the diversity under neutral selection is already high. Under frequency-independent selection ( c ) diversity increases compared with 

( a ), owing to the increasing mutation rate. But frequency-dependent selection ( d ) increases diversity further compared with constant fi tness ( c ) or lower 

mutation rates ( b ) (population size  N     =    1,000, averages obtained over 500 independent realizations and 10 7  generations per realization. All simulations 

begin in a monomorphic state, averages start after 25,000 generations).  
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processes represent an optimization to a changing environment 14 , 
but in addition, evolutionary trajectories are constrained through 
inheritance and mutations. Mutant games capture all these eff ects in 
a concise framework and present a complementary perspective on 
the emergence of polymorphisms and the degree of diversity.   

 Methods  
  Payoff and fi tness   .   In evolutionary game theory, the fi tness of individuals is 
determined through games, that is, interactions with other individuals. In our 
case, the game is characterized by a payoff  matrix. If only two types,  S  1  and  S  2 , 
interact, the payoff  matrix is given by
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In our model, the payoff  is determined from interactions with all other individu-
als in the population, excluding self interactions. Th us, the payoff  of type  S  1  is  
p1 11 12= 1 1 1( ) ( ) ( ) ( )i N a N i N a− − + − −   , where  i  is the number of  S  1  individuals 
in the population. Equivalently, we have  p2 21 22= 1 1 1i N a N i N a( ) ( ) ( )− + − − −    
for the payoff  of type  S  2 . To avoid the complications of negative fi tness, we defi ne 
the fi tness,  f  j , of type  j  as an exponential function of its payoff    π    j  ,  f wj j= + ⋅exp[ ]p   . 
Here  w  (0 ≤  w     <     � ) controls the selective diff erences between players with diff erent 
payoff s 36 . If  a  11     =     a  12 , and  a  21     =     a  22 , the payoff s are independent of interactions and 
are only determined by the type of the individuals. Th is special case corresponds 
to constant selection, where the fi tness of one type does not depend on the fre-
quency of the types in the population. Neutral selection corresponds to  w     =    0 or 
to  a  11     =     a  21     =     a  12     =     a  22 . 

 In a population of  n  types, we use a  n  ×  n  matrix to describe the payoff s. When a 
mutant appears, an additional column and row are added to the matrix to describe 
the additional interactions. In the general frequency-dependent case, 2 n     +    1 new 

(1)(1)

payoff  matrix entries have to be defi ned. In contrast, for constant selection, only 
one new variable is needed to describe the fi tness of a mutant. Th ere are several 
ways to generate these new variables. Suppose that  m  is the mutant type,  j  is a 
resident type, and  p  is the mutant ’ s parent type. In the simplest case, the payoff s 
of the mutant  m  against the resident types  j ,  a   mj  , and the payoff s of the resident 
types against the new mutant,  a   jm  , are chosen randomly and independently of 
the current types from some probability distributions. But it is more natural, if 
the mutants are similar to their parents by inheriting some aspects of their payoff  
entries. To this end, we randomly choose the payoff  of the mutant against a 
certain resident from a distribution around its parent ’ s payoff  against that resident. 
Although we can take arbitrary distributions for the payoff  entries in our model, we 
focus on the simplest case, where the payoff  entries of the off spring are Gaussian 
distributed around its parent ’ s payoff  entries. In other words, the mean of the new 
payoff  entries  a   mj   for the mutant  m  is given by the payoff   a   pj   of its parent type  p  
against a type  j  individual. An equivalent rule holds for the payoff  of the resident 
types against a mutant, the new payoff  entries  a   jm   have mean  a   jp  . For the Gaussian 
distribution, a change in the variance corresponds to a change in the intensity of 
selection 19 . Th us, we always set the variance to one. 

 Th is approach implies that mutations with selective advantage are favoured, 
such that the average fi tness increases over time. In our case, this would mean that 
the eff ective intensity of selection is also increasing, making the system nonstation-
ary. To avoid this eff ect, we rescale the payoff  matrix by dividing it by the largest 
absolute value of all payoff  entries aft er every mutation and every extinction. 

 With the full information on the payoff s, we can calculate the fi tness of all types 
in the population based on the payoff  matrix. For example, type  j  obtains the payoff  
 p j k

d
jk k jja i a N= 11( )/( )Σ = − −    where  i   k   is the number of type  k  individuals in the 

population and  d  is the number of types.   

  Moran dynamics   .   Th e Moran process describes the evolutionary dynamics in a 
fi nite population with overlapping generations 16,36,37 . We start with a homogene-
ous population with constant size  N     =    1,000 and payoff   a  11     =    1. In every time step, 
one individual is chosen randomly in proportion to its fi tness, and produces an 
identical off spring with probability 1    −      μ   or a mutant with probability   μ  . Th e off -
spring then replaces a randomly chosen individual. In nature, mutation rates 
can range from 10     −    8  to 10     −    3  per base, per generation 38 . Although mutation rates 
are not aff ected by local population size, the eff ect of mutation rates on diversity 
is directly related to it. To investigate realistic mutation rates in our model, we 
consider it based on the population size  N . As our primary interest is diversity 
driven by selection rather than diversity driven by mutations, we focus on low 
mutation rates here. When the mutation rate is high,   μ  >1 /  N , the diff erences 
between the population dynamics under frequency-dependent and constant 
selection are less obvious, as the diversity is mainly driven by mutation. In the 
case of   μ      =    1 /  N , frequency-dependent selection still leads to higher diversity, 
compared with constant selection ( Supplementary Fig. S1) . In either case 
diversity tends to decrease for strong selection, which becomes more 
pronounced for higher mutation rates ( Fig. 3;   Supplementary Fig. S1 ). Th e 
reason is that there are only relatively few coexistence games and mutant 
types may destabilize them — and the stronger the selection, the faster 
this occurs. 

 When a mutation occurs, we generate the payoff  matrix according to the 
method described above. We record the number of individuals of diff erent types 
in every time step, which gives a straightforward picture of the population 
dynamics over time. As the system evolves for a long time, we record the 
number of types in every generation. To avoid dependence on the initial 
condition, we excluded the data of the fi rst 25,000 generations (see the captions 
of fi gures) in the averages. To compare constant fi tness and frequency-
dependent fi tness, we run simulations in both cases, which only diff er in 
the process for generating payoff  matrices. 

 Th e results under weak selection refl ect the usual statistical properties of 
genetic data samples. Th e probability of  m  diff erent alleles present in the popula-
tion under neutral selection,  P ( m ), can be calculated by Ewens ’  sampling formula,  

P m Sm
N m

N( ) = / ( )⎡⎣ ⎤⎦q q   , where  S iN i
N( ) = ( )0

1q qΠ =
− +   , and  m

N⎡⎣ ⎤⎦    are the unsigned 

Stirling numbers of the fi rst kind 3,39 . For a haploid Moran process, as in our case, 
the parameter   θ   is  N μ  .   

  Transition probabilities between different coexistence states   .   Let us consider 
selection scenarios generated by introducing mutants. Under strong selection 
and low mutation rates, a population is usually in an equilibrium where diff erent 
types coexist with each other. Th e appearance of a new mutant during a phase of 
coexistence can lead to establishment of a new alliance with the new mutant as an 
additional type, formation of a new alliance with fewer types (which may include 
the mutant type or not), replacement of one type from the previous alliance with 
the new mutant, or extinction of the mutant. 

 Here we infer the probabilities of these selective consequences under the 
Moran process. We assume a mutation rate   μ      �        N      −    2  .  In this case, the average time 
of waiting for a new mutant is much longer than the average time a population 
needs to reach a new equilibrium aft er a mutation. We start simulations from a 
homogeneous population. Mutants show up at random. Aft er a mutant appears, 
we wait until the population reaches a new equilibrium, and infer whether the 
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    Figure 4    |         Transition probabilities between different levels of diversity. 
The consequences of mutations for the diversity are described by 

transition probabilities for low mutation rates under strong selection. 

The transition probability between different levels of diversity results 

from the appearance of a mutant. Each circle marks a certain number of 

coexisting types and the probability that the population is in this state (cf. 

to  Fig. 3b ), arrows mark the probabilities of the transitions between these 

states after the appearance of a mutant. A mutation can only increase the 

diversity by at most one type, but this probability decays rapidly with the 

number of coexisting types. A new mutation can also lead to a decrease 

in the diversity to any level. Here we show the transitions for up to four 

coexisting types under strong selection; as illustrated in  Fig. 3b , the 

probability to be in states with  n >4 under strong selection is negligible for 

the present parameter combination. (population size  N     =    1,000, mutation 

rate   μ      =    10     −    6  per time step, selection intensity  w     =    10, averages obtained 

over 500 independent realizations and 10 7  generations per realization 

after a transient period of 25,000 generations. All simulations start from a 

monomorphic state).  
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diversity has decreased, increased or been maintained. Each state is characterized 
only by the number of coexisting types. For example, state one represents that 
the population is homogeneous, and state two represents that there are two types 
coexisting. We are interested in the probability that a population changes from one 
state to another. Th e transition matrix between diff erent states  T  is obtained by 
averaging over the evolutionary trajectories. Th e element  t   ij   denotes the transition 
probability from  i  to  j  coexisting types. For low mutation rates,  t   ij   is very small for 
 j>i     +    1. Th e fraction of time that the population spends in each state of diversity is 
then given by the stationary distribution of the Markov chain determined by the 
transition matrix  T  ( Fig. 4 ).   

  Population size   .   For fi xed selection intensity, the smaller the population size is, the 
larger the genetic drift . For fi xed population size, the smaller the selection intensity 
is, the larger the genetic drift . Th us, the stochastic eff ect from the small population 
size is similar to a smaller intensity of selection. Instead of having two parameters 
that lead to the same eff ect, we focussed our discussion on the case of  N     =    1,000 for 
various intensities of selection. Focussing on variable selection intensities is compu-
tationally less costly than varying the population size. For both the Moran process 
and the Wright – Fisher process, the required CPU time scales with the population 
size, but not with the intensity of selection. For comparison, we also carried out 
simulations for  N     =    100, where the same patterns of diff erence between frequency-
dependent selection and constant selection are observed ( Supplementary Fig. S2) .   

  Diploid populations   .   Th e evolutionary game dynamics for Mendelian popula-
tions has been studied in detail in the past 40 – 42 ; the interaction of two alleles at a 
diploid locus can be interpreted as a special kind of two-player game, which has 
a symmetric payoff  matrix 43 – 45 . Suppose there are two types of alleles, allele A 
and allele B. Th e fi tness of a homozygous individual AA is  w  AA , the fi tness of a BB 
individual is  w  BB  and the fi tness of a heterozygous individual AB is  w  AB . Th is can 
be formalized as

 

A B

A

B
AA AB

AB BB

w w

w w

⎛
⎝⎜

⎞
⎠⎟

.

  

When  w  AA > w  AB  and  w  BB > w  AB , it corresponds to under-dominance, where 
heterozygous individuals have a lower fi tness than homozygous individuals. When 
 w  AA     <     w  AB  and  w  BB     <     w  AB , a condition of over-dominace is described. A diploid 
population with more than two types of alleles at a single locus can be described 
by a symmetric  n  ×  n  matrix, where  n  is the number of diff erent alleles and matrix 
element  w   ij   represents the fi tness of a diploid individual with genotype  ij . 

 We have simulated the dynamics of such a diploid population under diff erent 
selection intensities based on the Moran process ( Supplementary Fig. S3) . In every 
time step, one allele is replaced, and thus the time for one generation is twice as 
long as the one in a haploid Moran model. Under the same mutation rate, the 
diversity of a diploid population ( Supplementary Fig. S3a ) is higher compared with 
the frequency-dependent case in a haploid population ( Fig. 4b ). Th is is because 
symmetry of the payoff  matrix  w   ij      =     w   ji   favours coexistence of diff erent types. In 
the simplest case with only two alleles, a coexistence game corresponding to over-
dominance has the ordering of payoff s,  w  AA     <     w  AB  and  w  BB     <     w  AB . Suppose allele 
 A  is a random mutant from allele  B , and the payoff s of the new genotypes,  w  BB  and 
 w  AB , are random variables with mean  w  BB . Th us, the probability to have a coexist-
ence of these two alleles is 37.5 % , which is larger than 25 % , the probability to have 
a coexistence in a two-allele haploid model. In the diploid approach, the fi tness of 
a genotype  ij ,  w   ij  , is a constant number, and does not change with the composition 
of the frequencies of diff erent genotypes (but the fi tness of an allele is frequency 
dependent). Hence, this kind of frequency dependence corresponds to constant 
selection in a haploid population. To introduce frequency dependence on this level 
leads to serious mathematical intricacies 40,43,45,46 .   

  Wright-Fisher dynamics   .   In the Wright-Fisher Model, all individuals produce a 
large number of off spring proportional to their fi tness. Th en, all individuals from 
the previous generation die, and are replaced by  N  new individuals sampled at 
random from the off spring pool. Th is corresponds to a multinomial sampling of 
off spring. Th e expected number of off spring of a certain type,  j , in the next genera-
tion is proportional to its fi tness. Neglecting mutations, the expected number of 
type  j  is  N i f i fj j k

d
k k( )/ Σ =1   , where,  i   j   and  f   j   are the number of individuals and the 

fi tness of type  j . If there is no diff erence in fi tness between types in the popula-
tion, the expected number of individuals of the diff erent types is constant and the 
composition of the population will only be changed by random drift . When we 
consider mutations, the probability that an off spring mutates is   μ  . On average, 
there are  N μ   new mutants in the population per generation. 

 We analyse the same quantities in the Wright – Fisher process as above in the 
Moran process. We see similar patterns in the diff erences between constant selec-
tion and frequency-dependent selection ( Supplementary Fig. S4) . However, for 
very strong selection, diversity decreases in our set-up. Th is can be understood as 
follows: consider a stable coexistence between two types. If a fl uctuation leads the 
system away from this point, one type has a slight payoff  advantage, which causes 

a large fi tness advantage owing to our exponential payoff  to fi tness mapping. Such 
a fl uctuation can lead to the immediate fi xation of one type in the next generation 
and thus destroy the stable coexistence quickly. 

 Again, under weak selection and low mutation rates, we recover the diversity 
given by Ewens ’  sampling formula. Under neutral selection, random drift  in a 
Moran process is twice as strong as in a Wright – Fisher process 47 . Th us, we have 
  θ      =    2 N μ   in Ewens ’  sampling formula for the Wright – Fisher process.                                                             
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