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We present a class of numerical solutions to the SU~2! nonlinears model coupled to the Einstein equations
with a cosmological constantL>0 in spherical symmetry. These solutions are characterized by the presence
of a regular static region which includes a center of symmetry. They are parametrized by a dimensionless
‘‘coupling constant’’ b, the sign of the cosmological constant, and an integer ‘‘excitation number’’n. The
phenomenology we find is compared to the corresponding solutions found for the Einstein-Yang-Mills~EYM!
equations with a positiveL (EYML). If we chooseL positive and fixn, we find a family of static spacetimes
with a Killing horizon for 0<b,bmax. As a limiting solution forb5bmax we find aglobally static spacetime
with L50, the lowest excitation being the Einstein static universe. To interpret the physical significance of the
Killing horizon in the cosmological context, we apply the concept of a trapping horizon as formulated by
Hayward. For small values ofb an asymptotically de Sitter dynamic region contains the static region within a
Killing horizon of cosmological type. For strong coupling the static region contains an ‘‘eternal cosmological
black hole.’’

PACS number~s!: 04.40.2b, 04.25.Dm, 04.70.Bw, 98.80.Hw
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I. INTRODUCTION

The aim of this paper is to discuss the static spheric
symmetric solutions of the SU~2! nonlinears model coupled
to the Einstein equations with a cosmological constantL
>0 ~subsequently referred to as the EsSU(2)L model!. The
existence of such solutions was suggested by the fact tha
Einstein universe@3# and the de Sitter spacetime@4# admit
the existence of a discrete one-parameter family of sta
spherically symmetric regular solutions of the SU~2!-s
model. These solutions are unstable, the number of unst
modes equals the ‘‘excitation index.’’ The static solutions
the de Sitter background correspond to the uncoupled li
i.e., the vanishing coupling constant of the EsSU(2)L model.

Globally regular stationary ‘‘solitonic’’ solutions, if they
exist, play a fundamental role in the dynamics of gravitat
systems. If they are stable, they provide possible end st
of evolution—and models for ‘‘stars’’ or ‘‘particles.’’ Inter-
est in solitonic solutions and the subtleties of the interact
of matter with gravity was revived by the surprising nume
cal discovery of static solutions to the Einstein-Yang-Mi
~EYM! system by Bartnik and McKinnon@5#. It was soon
found that these solutions are unstable@6#, but there is a link
between this instability and another surprise in general r
tivity ~GR!:

In recent years the discovery of critical phenomena at
threshold of black hole formation has introduced a new tw
into the gravitational collapse problem. In the original wo
of Choptuik the intermediate attractor that separates the
possible generic end-states of a free scalar field—the for
tion of a black hole and complete dispersion—is the s
0556-2821/2000/62~4!/044047~11!/$15.00 62 0440
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similar ‘‘choptuon’’ which forms a naked singularity. How
ever, as was discovered by Choptuik, Chmaj, and Bizon@7#,
also unstable solitons can serve as an intermediate attra
in critical collapse. In particular they found that the fir
Bartnik-McKinnon excitation actually forms an intermedia
attractor associated with type I critical collaps
phenomena—as opposed to the type II originally found
Choptuik~both named because of the correspondence to p
nomena of statistical physics, for a recent overview on cr
cal collapse phenomena see, e.g., Choptuik@8#!.

While both the free scalar field and the EYM system
not contain any dimensionless parameters, thes models are
simple systems with a dimensionless coupling constant. T
they provide a convenient family of theories that is suita
to study genericity and bifurcation phenomena.

It is known that, apart from trivial solutions, the nonline
s-models do not admit soliton solutions in Minkows
space, and when coupled to gravity, there exist neither s
tons nor static black hole solutions that are asymptotica
flat ~see, e.g., Ref.@9#!. The presence of a positive cosm
logical constant changes this situation by introducing
length scale into the model. From dimensional analysis
concludes that the behavior of the solutions depends non
turbatively onL, and that only the sign ofL is significant.
Within the static spacetimes we restrict ourselves to spa
times which possess a static region that has a regular ce
and is bounded by at most one Killing horizon~as opposed to
two, such as in the Schwarzschild–de Sitter case!.

In the coupled case we find four qualitatively differe
types of solutions along each ‘‘branch’’ defined by the ‘‘e
citation index.’’ For small coupling constant of thes model,
©2000 The American Physical Society47-1
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C. LECHNER, S. HUSA, AND P. C. AICHELBURG PHYSICAL REVIEW D62 044047
the solutions are globally regular, and a Killing horizon sep
rates a static region from an asymptotically de Sitter dyna
region. For intermediate values of the coupling constant
situation is similar, but the region exterior to the cosmolo
cal horizon expands for some time, but eventually rec
lapses. For even higher values of the coupling constant
horizon encloses a dynamic region that undergoes colla
Thus in some sense the static region gets turned ‘‘ins
out.’’

Solutions with a finite regular static region and positi
cosmological constant only exist for a coupling const
smaller than some critical value which depends on the e
tation index. The limit is singular, but combining it with
limit L→0 yields solutions which are globally regular an
static and have spatial topologyS3.

For L.0 the ‘‘first static excited states’’ exhibit one un
stable mode, so that our solutions form a one parame
family of candidate solutions for type I intermediate attra
tors. The full linear stability analysis, that leads to this res
will be presented in a separate paper@10#. Similar results
have been found for the EYML system, which has bee
studied in great detail by Volkovet al. @1#.

The organization of this paper is as follows. In Sec. II w
introduce our nonlinears model and discuss its basic pro
erties. We then specialize to spherical symmetry using
hedgehog ansatz for the SU~2!-valued matter field and write
out the spherically symmetric field equations in a suita
gauge.

The problem of finding regular static solutions of th
EsSU(2)L problem is discussed in Sec. III. The static regio
containing the soliton are confined within a Killing horizo
outside of which the timelike Killing vector becomes spac
like and the spacetimes are dynamical. The static regions
constructed by solving a boundary value problem as
scribed in Sec. III D. The global structure of the spacetim
is then determined by evolving the static data beyond
horizon. This evolution problem is discussed in Sec. III
The phenomenology of the solutions we find is presente
Sec. IV. Finally, Sec. V gives a discussion of our results a
compares them to the results of Volkovet al. @1# for the
EYML system.

Conventions are chosen as follows. Spacetime indices
greek letters, SU~2! indices are uppercase latin letters, t
spacetime signature is (2,1,1,1), the Ricci tensor is de-
fined asRmn5R mln

l , and the speed of light is set to unit
c51.

II. THE SU „2…-s MODEL IN SPHERICAL SYMMETRY

A. Harmonic maps as matter models

Nonlinears models are special cases of harmonic ma
from a spacetime (M ,gmn) into some target manifold
(N,GAB) ~see e.g., Ref.@11#!. For the SU~2!-s model, the
target manifold is taken asS3 with GAB the ‘‘round’’ metric
of constant curvature. Harmonic mapsXA(xm) are extrema
of the simple geometric action

S52
1

2
gE

M
dmxAugugmn]mXA]nXBGAB~X!. ~2.1!
04404
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Their importance for physics was pointed out in a revie
article by Misner@12#.

Variation of the matter action~2.1! with respect to the
metric gmn yields the stress-energy tensor of the harmo
map

Tmn5gS ¹mXA¹nXBGAB~XC!

2
1

2
gmn¹sXA¹sXBGAB~XC! D . ~2.2!

This stress-energy-tensor obeys the weak, strong, and d
nant energy conditions.

In order to produce static configurations attractive a
repulsive forces have to be balanced. In particular in
space the virial theorem implies that the components of
stress-energy tensor cannot have a fixed sign~see the discus-
sion by Gibbons@13#!. For static configurations of any har
monic map the sum of the principal pressures( î 51

3
Tî î is

nonpositive everywhere@13# (Tî ĵ denote the spatial compo
nents of the stress-energy tensor with respect to an ortho
mal frame!. The self-interaction of anys model can there-
fore be interpreted as attractive. In contrast for the Ya
Mills field the sum of the principal pressures is nonnegati
which can be interpreted as a repulsive self-interaction. B
fields therefore do not allow soliton solutions on a flat bac
ground. But while the Yang-Mills field coupled to gravit
admits solitons by cancelling the repulsive force with grav
@14#, the gravitatings model correspondingly does not~see,
e.g., Ref.@9#!.

Thus we cannot expect static solutions to exist unless
add some ‘‘repulsive force’’—or in the presence of no
trivial topology. As an example for the latter one could thin
of a static spherical universe of topologyS3, where there is a
balance between the tendencies to collapse towards e
‘‘center.’’ A repulsive force on the other hand can be intr
duced with a positive cosmological constantL. Therefore we
consider the total action

S5E d4xA2gS 1

16pG
~R22L!1LM D , ~2.3!

where LM is given by the Lagrangian of Eq.~2.1!. This
action gives rise to the Einstein equations

Rmn2
1

2
gmnR1Lgmn58pGTmn , ~2.4!

as well as to the field equations of the harmonic map

gmn@¹m¹nXA1G̃BC
A ~XD!¹mXB¹nXC#50, ~2.5!

where G̃BC
A denote the Christoffel symbols with respect

GAB . The field equations thus allow a general nonlinear
pendence on the fieldsXA through the Christoffel symbols
and they depend quadratically on the first derivatives of
fields.
7-2
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SU~2! COSMOLOGICAL SOLITONS PHYSICAL REVIEW D62 044047
In units wherec51 the coupling constantg of the har-
monic map has dimension mass/length, whereas the gra
tional constantG is of dimension length/mass. Both con
stants enter the equations only in the dimensionless pro
b54pGg, thereby defining a one-parameter family of d
tinct gravitating matter models. The parameterL plays a
different role, since it has dimension 1/length2. Thus, when
the cosmological constant is nonzero, it provides the len
scale of these theories. Therefore all theories with the s
value ofb are equivalent irrespective of the value ofL. If,
on the other hand,L50, the field equations are scale inva
ant. The gravitating SU~2!-s model with non-negative cos
mological constant thus corresponds to a two-parameter f
ily of inequivalent theories, parametrized by the continuo
parameterb and the discrete parameter sgn(L).

B. Spherical symmetry

A spherically symmetric metric can be written in the ge
eral form as the warped product~see, e.g., Ref.@15#!

ds25dt21R2~r,t !dV2, ~2.6!

wheredt2 is a general two-dimensional Lorentzian line e
ment and the area of the orbits of SO~3! is given by
4pR2(r,t). Choosing the coordinatest andr orthogonal one
can write the metric in the form

ds252A~r,t !dt21B~r,t !dr21R2~r,t !dV2. ~2.7!

In Eq. ~2.7! there is some gauge freedom left, which can
used to eliminate one of the three functionsA, B, or R.

One way to fix the gauge would be to use the functionR
as a coordinate. This is possible as long as¹mRÞ0. This
gauge is usually referred to as the Schwarzschild gauge. H
we will deal with the situation that¹mR becomes zero on
some maximal two sphere~which is not a horizon!, a phe-
nomenon which we will discuss in detail below.

Following Volkov et al. @1# we therefore choose a differ
ent gauge, which keeps close to the standard Schwarzs
line element in another way: we fixA(r,t)51/B(r,t)
[Q(r,t) and keep the area of the SO~3! orbits as the second
free function

ds252Q~r,t !dt21
1

Q~r,t !
dr21R2~r,t !dV2. ~2.8!

The metric ~2.8! is regular whereQ(r,t) and R(r,t) are
regular functions on spacetime, except possibly at po
where eitherQ(r,t) or R(r,t) vanish. The vanishing o
Q(r,t) is related to the existence of horizons, which w
also be discussed below.

For a regular spacetime the vanishing ofR(r,t) is asso-
ciated with the singularity of spherical coordinates at the a
of symmetry. Such a coordinate center does not necess
have to be present~e.g., in a spherical wormhole!, but we
will require our spacetimes to possess at least one reg
center—there may also be two, such as in the Einstein s
universe written in spherical coordinates. In the followin
several boundary conditions will be derived from regular
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requirements, we will therefore make some comments
regularity near the center of spherical symmetry for the m
ric defined in Eq.~2.8!: We assume the existence of fou
regular~meaningC` or Ck as appropriate! coordinate func-
tionsx, y, z, t on the manifold. All other functions are define
as regular if they can be expressed as regular functionsx,
y, z, t. Furthermore, the relations between the functionsR, u,
f andx, y, z are required to be the standard coordinate tra
formation between Cartesian and spherical coordinatesx
5R sinf sinu, y5R cosf sinu, z5R cosu. Note that the
spherical coordinates, in particularR, are not regular func-
tions, but all even powers ofR are. Near the axis we choos
the parametrization of the radial coordinater such that it has
the same regularity features asR:

r5Rh~R2!,

whereh is a regular positive function – and thus alsor itself
is not regular. Any spherically symmetric function which is
regular function ofx, y, z, t ~or just ‘‘regular’’ for short! can
therefore be written as a regular function ofr2 and t.

For any fixedt the centerR50 then is a regular point o
spacetime, ifQ(0,t)5h(0). Without restricting generality
we can chooseh(0)51 for convenience, such that

R~r,t !5r„11O~r2!…,
~2.9!

Q~r,t !511O~r2!.

In spherical symmetry it is possible to define a quasilo
mass

m5
R

2
~12¹mR¹mR!, ~2.10!

which reads

m5
R

2
S 12

Ṙ2

Q
2Q~R8!2D . ~2.11!

in our coordinate system~2.8!. For a recent discussion of th
properties of the quasilocal mass in spherical symmetry
Hayward@16#.

The harmonic map field configurationXA(xm) can be
called spherically symmetric, if the Lie derivatives of th
energy-momentum tensor with respect to the Killing vec
fields that generate the SO~3! action vanish. One possibility
to achieve this, is to demand that all fields be functions or
and t only. This would leave us with a coupled system
differential equations for three fields and two metric fun
tions. Since the target manifold (S3,G) alsoadmits SO~3! as
an isometry group, there is an alternative way to impo
spherical symmetry on the harmonic map, which is the w
known hedgehog ansatz. We first introduce spherical coo
nates (f ,Q,F) on the target manifold, writing the SU~2! line
element as

ds25d f21sin2 f ~dQ21sin2 QdF2!. ~2.12!
7-3
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The hedgehog ansatz now ties the coordinates on the ta
manifold to those on the base manifold:

f ~xm!5 f ~r,t !, Q~xm!5u, F~xm!5w. ~2.13!

Due to this ansatz two of the three coupled fields are alre
determined and only one fieldf (r,t) enters the equations
The matter field equations~2.5! are then reduced to th
single nonlinear wave equation

h f 5
sin~2 f !

R2
, ~2.14!

whereh is the wave operator of the spacetime metric.
Regularity of the harmonic map within this ansatz mea

that when expressing the field in terms of regular coordina
XA on SU~2!, the XA are regular fields on spacetime. Sin
XA(xm)5@ f (r,t)/r#xA, wherexA denote the Cartesian coo
dinatesx,y,z on spacetime, the fieldf (r,t) thus has to be of
the form

f ~r,t !5rH~r2!5 f 8~0!r1O~r3!, ~2.15!

whereH is a regular function. Thusf vanishes at the cente
which means that the centerR50 is mapped to one of the
poles of the target manifold, that have been fixed via
hedgehog ansatz.

III. STATIC SOLUTIONS

A. Static field equations

In addition to spherical symmetry we assume that spa
time admits a hypersurface orthogonal Killing vector fie
] t , which is timelike in some neighborhood of the~regular!
centerR50. The combinations (t

t)2(r
r)22(u

u) and (t
t)2(r

r)
of the mixed components of Einstein’s equations plus
matter field equation~2.14! then yield the following set of
coupled second order autonomous ODEs for the metric fu
tions Q(r), R(r) and the matter fieldf (r):

~R2Q8!8522LR2, ~3.1!

R952bR f82, ~3.2!

~QR2f 8!85sin 2f . ~3.3!

Furthermore the above system of equations has a consta
motion:

2b sin2 f 1R2~L2bQ f82!1RQ8R81QR822150.
~3.4!

This expression can either be derived by integrating the
tem ~3.1!–~3.3! and using the regularity conditions at th
axis, or by using the (r

r) component of Einstein’s equation
Note that if f is a matter field solution, then so is alsokp
6 f for any integerk.

If L is nonzero it sets the length scale, it thus can
eliminated in these equations by using the dimension
quantitiesr̄5ALr and R̄5ALR. If, on the other hand,L
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vanishes, the equations are scale invariant, and thus inva
under rescalingsr̄5ar and R̄5aR. Furthermore, in this
case Eq.~3.1! together with regularity conditions at the ax
implies Q[1.

If we integrate the equations with the above bound
conditions fromr50 to larger values ofr one of the fol-
lowing four situations has to occur:~1! the static region
‘‘ends’’ in a singularity; ~2! integration might run into a
second~regular! pole R50, which would mean that the re
sulting spacetime has compact slices of constantt and is
globally static;~3! the static region might persist up to spati
infinity; ~4! the static region might be surrounded by a Ki
ing horizon beyond which spacetime becomes dynami
The first case can easily be produced by shooting off a re
lar center with arbitrary initial data, it can be excluded
setting up a boundary value problem that enforces one of
other three cases. The second case can be discarded fo
model with positive cosmological constant, since the ex
tence of a static region with two regular centers is not co
patible with the field equations: To see this recast Eq.~3.1!
into the integral form~3.21!. It is clear then, that—for non-
zero L—Q8 diverges ifR goes to zero a second time. Fo
L50 of course, such solutions may exist as, e.g., the st
Einstein universe~3.7!, which will be discussed in the nex
section. The third case can also be excluded if the cos
logical constant is positive: a static region can not be
tended to spatial infinity, but rather a singular point of t
equationsQ(rH)50, that corresponds to a horizon, has
develop. This can be seen as follows: Suppose the solu
exists up tor→` and R is monotonically increasing—al
other assumptions automatically lead to one of the cases
or 4—then one can show, that forL positive Q8,
2const/r for r large enough, which means thatQ would be
bounded from above by a function that tends to2` as r
→`. So againQ has to cross zero at some finite value ofr.

For positive cosmological constant we therefore may c
fine ourselves to the cases with horizon, and we will co
struct static regions as an ordinary differential equat
~ODE! boundary value problem, where the boundary con
tions correspond to a regular center atr50 and a regular
horizon atr5rH , where the determination of the value o
rH is part of the boundary value problem. The appropri
boundary conditions at the horizon will be determined
Sec. III C, and the boundary value problem is described
Sec. III D.

Given a static region, i.e., a region of spacetime where
Killing vector ] t is timelike, which is bounded by a Killing
horizon, we can consider as a second step the time evolu
problem of the static data on the horizon into the dynam
region where the Killing vector] t is spacelike and the space
time is thus homogeneous. The time evolution problem t
reduces to a system of ODEs which are solved as an in
value problem as described in Sec. III E.

B. Exact solutions

Some solutions of Eqs.~3.1!–~3.4! with a regular center
can be given in closed form. They do arise as certain lim
of the numerically constructed family of solutions to b
given below.
7-4
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SU~2! COSMOLOGICAL SOLITONS PHYSICAL REVIEW D62 044047
First of all, for L.0, for the trivial casef [0 Eq. ~3.2!
has the solutionsR(r)5ar1b. Imposing the regularity con
ditions ~2.9! this gives de Sitter spacetime

R~r!5r, Q~r!512
Lr2

3
, f [0. ~3.5!

For f [p/2, R(r) is of the same form as above. Forb
50 we get

R~r!5r, Q~r!5122b2
Lr2

3
, f [

p

2
, ~3.6!

which looks similar to de Sitter for larger but has a conica
singularity at the center ifb.0. Furthermore the static re
gion shrinks with increasingb and ceases to exist forb
51/2. In the limit of vanishing coupling constantb50,
where spacetime is de Sitter, this solutionf [p/2 is still
singular at the center with diverging energy density. Nev
theless the total energy is finite, and this solution may
viewed as the ‘‘high excitation’’ limit of the regular solu
tions, that exist on de Sitter background@4#.

Finally, for L50 Eq. ~3.1!, together with regularity con-
ditions at the axis, yieldsQ[1. For b51 the remaining
equations can be solved analytically to give the static E
stein universe

R~r!5sinr, Q~r![1, f ~r!5r. ~3.7!

Note that the stress-energy tensor, which has the form
perfect fluid in this case satisfiesm13p50. As will be de-
scribed in detail in Sec. IV C the static Einstein univer
arises in the limit of maximal coupling constant of the n
merical constructed first excitation if at the same timeL is
set to zero.

For completeness we mention that there also exist e
solutions to Eqs.~3.1!–~3.4!, that do not possess a regul
center of spherical symmetry, such as the Nariai spaceti

C. Horizons and global structure

In order to discuss the global structure of the spacet
and in particular regularity questions from which we deri
the boundary conditions for our ODEs, it is helpful to co
sider a coordinate system, which is regular at the horiz
We write the metric~2.8! as

ds252Q~r!du222du dr1R~r!2 dV2, ~3.8!

where the coordinate functionr and the metric function
Q(r) coincide with those in the metric~2.8!, and the coor-
dinateu is given as

u5t2E dr

Q~r!
. ~3.9!

Note that the coordinates~3.8! cover only half of the
maximally extended spacetime. In the following, we w
simplify our discussion by only talking about the Killin
horizon contained in the portion of spacetime covered h
All statements made can be extended trivially to the co
04404
r-
e

-

a

ct

e.

e

n.

e.
-

plete spacetime and in particular the second componen
the horizon by time reflection. We also remark that all so
tions have the topologyS33R.

The static Killing vector field is]/]u5]/]t, where the
latter is taken with respect to the (t,r) coordinates. The met
ric ~3.8! is regular if Q(r) and R(r) are regular functions,
except whenR50, which corresponds either to the usu
coordinate singularity of spherical symmetry, which h
been discussed in Sec. II B or to a spacetime singularity
discussed in Sec. III E.

The Killing vector field]u , which we have assumed to b
timelike in some neighborhood of the~regular! centerR50
need not necessarily beglobally timelike. Regions where it
becomes spacelike, i.e.,Q(r),0, are dynamic with homo-
geneous spacelike slices of constant timer, the spatial topol-
ogy being S23R. Such regions thus correspond
Kantowski-Sachs models. At the boundary of static and
namic regions the metric functionQ(r) vanishes, such a
surface ofr5const is thus a null surface. Furthermore t
Killing vector field ]u is null and tangent on this surface
which therefore is a Killing horizon.

In the presence of an asymptotic infinity, such as in
asymptotically flat or asymptotically de Sitter spacetime, o
can use the asymptotic region to classify event horizons, e
as black hole or cosmological event horizons. Furtherm
one is provided a straightforward definition of ‘‘inward’’ an
‘‘outward’’ directions. In the cosmological case these issu
are less clear. We therefore follow the definitions of Ha
ward @2#: He proposed a local definition of atrapping hori-
zon, a concept which does not make use of asymptotic fl
ness and is therefore also suitable for more gen
situations. Intuitively, the physical interpretation of the Kil
ing horizon depends on whether the dynamical region is c
lapsing or expanding off the horizon, and whether this reg
is to be interpreted asinsideor outside. Both can be formu-
lated in terms of the null expansionsQ6 of ingoing and
outgoing null rays from two surfaces. In spherical symme
we considerR5const surfaces, with null expansions

Q65
1

R2
L 6R2, ~3.10!

whereL6 is the Lie-derivative along the null directions

l 15]r and l 252]u2Q]r , ~3.11!

respectively, so

Q152
R8

R
and Q2522Q

R8

R
. ~3.12!

The first use of the expansions is to define a trapped sur
in the sense of Penrose@17# as a compact spatial surface fo
which Q2Q1.0. If one of the expansions vanishes, t
surface is called a marginal surface. For a nontrapped sur
Q2 and Q1 have opposite signs, and we call directions
which the expansion is positive outward, and inward whe
is negative.
7-5
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On the Killing horizon Q50, Q2uQ5050 while
Q1uQ50Þ0 andL1Q2uQ50Þ0 ~except when alsoR850,
which we exclude for the moment!. In Hayward’s terminol-
ogy @2# such a three-surface is called a trapping horizon. I
said to be outer ifL1Q2uQ50,0, inner if L1Q2uQ50,0,
future if Q1uQ50,0, and past ifQ1uQ50.0. A future outer
trapping horizon provides a general definition of a bla
hole, while a white hole has a past outer horizon, and c
mological horizons are inner horizons.

If R8(r)50 within the static region then

L1Q2uQ50,0, Q1uQ50,0 ~3.13!

and the surfaceQ50 is a future outer trapping horizon. O
the other hand ifR8 vanishes in the dynamical region or
monotonic, then the signs in Eq.~3.13! are reversed and on
speaks of a past inner trapping horizon.

Note, that at points whereR850, bothQ650. However,
this does not lead to a~trapping! horizon since the expan
sions merely change sign. The significance of such marg
surfaces is that the meaning of inward and outward dir
tions are reversed. A typical example is an ‘‘equatorial’’ tw
surface of a round three sphere at a moment of time sym
try.

Using the expansionsQ1 andQ2 ~3.12! one can rewrite
the quasilocal mass~2.11!

m5
R

2 S 11
R2

4
Q1Q2D . ~3.14!

Using the above assignment of inward and outward direc
the quasilocal mass can be interpreted as the total mass
is containedwithin any spatial three volume, that is bound
by the two-sphere with areal radiusR. On the marginal sur-
faces, whereR850, the quasilocal mass equalsR/2.

D. The boundary value problem for the static region

The system of ODEs~3.1!–~3.3! has singular points for
R50 andQ50. Making use of the imposed regularity co
ditions at the axis~2.9! and ~2.15! the equations demand i
additionQ9(0)522L/3. Note that solutions, that are reg
lar in a neighborhood ofr50 are determined by the value o
the single parameterc[ f 8(0).

The other singular point occurs at the horizon, whe
Q(rH)50. Formal Taylor series expansions aroundr5rH
give

Q~r!5QH8 ~r2rH!1
Q9~rH!

2
~r2rH!21O@~r2rH!3#,

R~r!5RH1R8~rH!~r2rH!1
R9~rH!

2
~r2rH!2

1O@~r2rH!3#, ~3.15!

f ~r!5b1 f 8~rH!~r2rH!1
f 9~rH!

2
~r2rH!2

1O@~r2rH!3#,
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where

rH , f ~rH!5b, R~rH!5RH , Q8~rH!5QH8
~3.16!

are free shooting parameters. The other coefficients are
termined by the requirement thatQ and R be regular func-
tions of r. Consistency with Eqs.~3.1!–~3.4! then amounts
to the conditions

R8~rH!5
122b sin2 b2RH

2 L

RHQH8
, ~3.17!

Q9~rH!522
R8~rH!Q8~rH!

RH
22L, ~3.18!

f 8~rH!5
sin 2b

Q8~rH!RH
2

, ~3.19!

f 9~rH!5
sin 2b

Q8~rH!RH
2 S 2

R8~rH!

RH
1cos 2b1

L

Q8~rH!
D .

~3.20!

In order to determine the spectrum of static solutions fo
fixed coupling constantb, we solve the boundary valu
problem Eqs.~3.1!–~3.3! with boundary conditions~2.9!,
~2.15!, and~3.15! between axis and horizon. We use a sta
dard two point shooting and matching method~routine
D02AGF of the NAG library @18#!, where the parameter
f 8(0), rH , f (rH), RH , andQH8 serve as shooting param
eters.

For b50 a discrete one-parameter family of solutions h
already been discussed in@4#. In order to get good initial
guesses for the shooting parameters forb.0, we follow one
solution fromb50 up to higher values ofb, interpolating
the values of the shooting parameters at the present and
‘‘ b step’’ to obtain values for the next ‘‘b step.’’

E. Integration through the horizon

Since the singularity at the horizon is merely a coordin
singularity, we can extend spacetime through the horizon
reintroduce the coordinates in Eq.~2.8! in the dynamic re-
gion beyond the horizon. The Killing vector field] t becomes
spacelike, and instead oft the timelike coordinate isr. The
coupled system of ODEs~3.1!–~3.3! together with initial
conditions~3.15! therefore constitute an initial value prob
lem.

While integrating forward in timer, essentially two
things can happen according to the behavior ofR(r).

~1! R(r) is monotonically increasing for allr.0. Then
time evolution exists for allr.0. This can be seen by turn
ing Eqs.~3.1!–~3.3! into integral equations

Q852
2L

R2 E0

r

R2dr̄, ~3.21!
7-6
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R8512bE
0

r

R f82 dr̄, ~3.22!

f 85
1

QR2E0

r

sin~2 f !dr̄. ~3.23!

All first derivatives are bounded as long asQ andR do not
go to zero. Beyond the horizonQ cannot go to zero, since
Q8,0 for all r.0 andQ(rH)50. R cannot go to zero since
it is monotonically increasing by assumption andR(0)50.
ThereforeQ, R, andf stay finite for all finiter.

From Eq.~3.22! it follows that 0,R8<1 for all r>0, so
R5O(r) for r→`. From Eq. ~3.21! we get, that Q
5O(r2) and from Eq.~3.23! we see thatf 8 goes to zero as
r23 and thereforef goes to a constant at infinity.

~2! R develops an extremum at some finiterextr.0. Since
R9<0 for all r andR8(r),0 for all r.rextr, which follows
from Eq. ~3.22!, R goes to zero at some finiterS.rH .

Here we already excluded the caserS,rH in Sec. III A,
since this means a singularity in the static region.

For the same reasons as above, time evolution exists
all r,rS . In the limit r→rS a spacetime singularity occurs
This follows from inspection of the Kretschmann invarian

RmnstRmnst5
1

R4
@414R2Q82R821R4Q92

18QR8~R2Q8R92R8!

14Q2~R8412R2R92!#. ~3.24!

Since by assumptionQ(r),Q8(r), and R8(r) are negative
nearrS all terms of Eq.~3.24! are non-negative and at lea
some of them clearly have a nonzero numerator while
denominator vanishes with some power ofR.

The construction of solutions beyond the horizon cons
of solving the initial value problem, i.e., we integrate Eq
~3.1!–~3.3! with initial conditions ~3.15! for r.rH , where
the parametersrH , f (rH), RH , andQH8 are determined by
the solutions of the boundary value problem described
Sec. III D. For numerical integration we used routineD02CBF

of the NAG library @18#.

IV. PHENOMENOLOGY OF SOLUTIONS

A. Phenomenology of numerically constructed solutions
with LÌ0

For b50 the EsSU(2)L equations decouple into Ein
stein’s vacuum equations withL and the matter field equa
tion ~2.14! on the fixed background. With our regularity co
ditions at the axis the solution to Einstein’s equations is
Sitter space

Q~r!512
Lr2

3
, R~r!5r, ~4.1!

whereas the field equation~3.3! admits a discrete one param
eter family of regular solutions@4#. Within the static region
04404
or

e

ts
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these solutions oscillate aroundp/2 where energy increase
with the number of the oscillations and is limited from abo
by the energy of the ‘‘singular’’ solutionf [p/2. Outside the
cosmological horizon atr51 the solutions remain finite an
tend to a constant near infinity.

Increasing the coupling constantb, the numerical analysis
shows, that solutions of this type persist as long asb does
not get too large. The qualitative behavior of the fieldf in the
static region is the same as in the uncoupled case, i.e.
nth excitation oscillatesn times aroundp/2, whereas the
behavior of the field in the dynamic region as well as t
behavior of the geometry depend strongly on the value of
coupling constantb.

To summarize, we get the following qualitative picture
solutions in dependence on the coupling constantb.

For smallb, 0<b<bcrit(n), the solutions are similar to
those of the uncoupled caseb50, that is, the area of SO~3!
orbits is monotonically increasing withr, beyond the hori-
zon the solutions persist up to an infinite value of the co
dinate timer. Near infinity the geometry asymptotes to th
de Sitter geometry, that isR5O(r) andQ tends to2` as
O(r2). According to Hayward’s definitions@2# the horizon is
an inner past trapping horizon, separating the static reg
from an expanding dynamic region. The fieldf shows the
same qualitative behavior as in the uncoupled caseb50 ~see
Figs. 1 and 2!.

For b5bcrit(n) the areal radiusR(r) still increases for all
r.0 but this time goes to a constant at infinity, that
R8(`)50. For even stronger coupling,bcrit(n),b
,b* (n), R develops a maximum in the dynamic region, i.
R8(rE)50 at some finite timerE.rH ~see Fig. 3!. As was
discussed in Sec. III ER then decreases and goes to zero
some finite coordinate timerS—which corresponds to the
finite proper timetS5*rH

rSdr/AQ(r). This causes the geom

etry to be singular atrS . The horizon, which again is an
inner past trapping horizon separates the static region f

FIG. 1. The first three solutions for coupling constantb50.3
,bcrit . Inside the horizon atr/rH51 the ‘‘nth’’ excitation crosses
the p/2 line n times. In the dynamic region outside the horizon t
solutions evolve towards a constant.
7-7
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an initially expanding dynamic region, which reaches
maximal spatial extension atrE and then recollapses to
singularity atrS . The maximum of the areal radius occurs
earlier and earlier times as the coupling constant is increa
until it merges with the location of the horizon whenb
5b* (n).

At b5b* (n) the ‘‘maximal two sphere’’ coincides with
the horizonrE5rH . The fact thatR8(rH)50 at this value
of b may be interpreted as exchanging the inward and o
ward direction at the horizon: for smaller values ofb the
static region wassurroundedby the inner past trapping ho
rizon, whereas for larger values of the coupling const
b* (n),b,bmax, whererE,rH , the static regionencloses
the horizon, which becomes now anouter future trapping
horizon. Beyond this horizon, the dynamic region underg
complete collapse atr5rS .

Embedding diagrams of the static regions of the first
citation for several values ofb can be found in Fig. 4. We

FIG. 2. The energy densitymn5Qn( f n8)
21sin2(fn)/Rn

2 for the
first three excitations atb50.3. – denotes the first,3 the second,
and1 the third excitation, allmn have been normalized to unity a
the axis. The corresponding total energies, measured in unit
1/AL are E1/4pg51.66621,E2/4pg51.88082, and E3/4pg
51.956613.

FIG. 3. The area functionR(r) for the first excitation forb near
bcrit(1), 0.470366,bcrit(1),0.470373. The vertical line marks th
horizon atr50.88761.
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note, that the ‘‘critical’’ values of the coupling constan
bcrit(n), b* (n), and bmax(n) decrease with the excitatio
number n. In Sec. IV C we will give an argument, tha
bmax(n) is a decreasing sequence, which is bounded fr
below by the maximal coupling constantbmax(`)51/2 for
the ‘‘singular’’ solution ~3.6!.

The solutions described above exist in the presence
positive cosmological constantL.0. As will be described in
detail in the next section, Sec. IV B the limitb→bmax yields
regular solutions iff one takes the limitL→0 appropriately
as described in Sec. IV B.

B. The limit b\bmax„n…

Recall from Sec. III A that the cosmological constantL
sets the length scale in Eqs.~3.1!–~3.4! and that it can be
eliminated from these equations, by introducing the dim
sionless quantitiesr̄5ALr andR̄5ALR. This corresponds
to measuring all quantities that have dimension of leng
such as, e.g., the energyE, the coordinate distance of th
horizonrH from the origin, the radial geometrical distance
the horizondH from the origin, the areal radiusRH of the
horizon, and 1/f 8(0), in units of 1/AL. We find that all pa-
rameters, that have dimension of length go to zero in
limit b→bmax when measured with respect to this leng
scale. This indicates that 1/AL is not the appropriate length
scale for taking this limit. We therefore switch to the alte
native viewpoint ofrH as our length scale, and we fixrH
51. In this setupL depends onb and the excitation indexn
and goes to zero in the limitb→bmax. The parametersE,
dH , and 1/f 8(0) attain finite values when measured in un
of rH , whereasRH /rH goes to zero~see Fig. 5!. This
strongly suggests that there exists a solution withb5bmax
which obeys Eqs.~3.1!–~3.4! with L50 and has two center

of
FIG. 4. The rotational surfacesz(R) correspond to the embed

ding of at5const slice (u5p/2) into R3. The upper and lower half
part of the diagram resemble the two static regions causally s
rated by the horizon atz50. Shown is the geometry of the firs
excitation forb in the range 0<b<0.913,bmax. The sphere of
unit radius for de Sitter space (b50) gets more and more deforme
asb increases.
7-8
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of symmetry. In particular this means that the static region
this solution has no boundary, since anyt5const slice has
topologyS3.

Furthermore, as can be seen from Fig. 6, the dimens
less parameterf (rH) for the first excitation tends top, and
R8(rH) tends to21 in the limit b→bmax. As will be shown
in the next section, Sec. IV C,L50 impliesQ[1. The lim-
iting solution withL50 will therefore satisfy the regularity
conditions~2.9! and~2.15! not only at the axisr50 but also
at the second zero ofR, which means that such a solution
globally regular with two~regular! centers of spherical sym
metry. In fact, for the first excitation this limiting solution i
just the static Einstein universe~3.7!, which can be given in
closed form.

These observations allow one to determine the maxi
value of the coupling constantbmax(n) not as a limiting pro-
cedureb→bmax, but rather by solving the boundary valu
problem Eqs.~3.1!–~3.3! with L50 and with boundary con
ditions, that correspond to two regular centers of symme

FIG. 5. Some parameters with dimensionlength measured in
units of rH . Except RH all of them stay finite in the limitb
→bmax. Moreover in the limit the values tend to the correspond
ones of the static Einstein universe, as given in Table I.

FIG. 6. The~dimensionless! parametersf (rH)[b and R8(rH)
of the first excitation in dependence of the coupling constantb.
f (rH) tends top in the limit b→bmax andR8(rH) tends to21 in
this limit.
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C. Globally static, regular solutions for LÄ0

For L50 Eq. ~3.1! can be solved immediately to giv
R2Q85const. According to the regularity conditions at th
axis ~2.9! the constant has to vanish, which means thatQ8
[0 and thereforeQ[1. The remaining system of equation
is

R952bR f82, ~4.2!

~R2f 8!85sin~2 f !, ~4.3!

and

2b sin2 f 2bR2f 821R822150. ~4.4!

Note, that this system of ODEs is scale invariant, that is a
solutionR(r), f (r) leads via rescaling to the one parame
family of solutions given byaR(ar), f (ar). Keeping this in
mind, we can fix the scale arbitrarily, e.g., in setting the fi
derivative of the fieldf equal to one at the origin:f 8(r50)
51. Thereby any solution, that is regular at the origin,
determinedentirely by the value of the coupling constantb.

Regularity conditions at the second ‘‘pole’’R(rP)50 are
the same as at the origin, except thatf either tends top, if its
excitation number is odd, or to 0 if it has even excitati
number. This can be inferred fromp/2, f (rH),p for n odd
and 0, f (rH),p/2 for n even for allb,bmax, since this is
the case forb50 and according to Eq.~3.15! no crossing of
the zeroline orp line is allowed. Note that this correspond
to all odd solutions having winding number 1, whereas ev
solutions are in the topologically trivial sector.

These regularity conditions together with the invarian
of the equations under reflection at the location of the ma
mal two sphereR8(rE)50, causes globally regular solution
R(r) to be symmetric aroundrE whereasf (r)2p/2 is ei-
ther antisymmetric forn odd or symmetric forn even.

For f symmetric the formal power series expansions
R(r) and f (r) aroundr5rE gives

R~r!5R~rE!1O@~r2rE!4#,
~4.5!

f ~r!5arcsinA1/2b1
2A121/2b

R~rE!2A2b

~r2rE!2

2!

1O@~r2rE!4#,

and for f 2p/2 antisymmetric we get

R~r!5
2b21

b f 8~rE!2
2~2b21!

~r2rE!2

2!
1O@~r2rE!4#,

~4.6!

f ~r!5
p

2
1 f 8~rE!~r2rE!1O@~r2rE!3#.

In order to solve the system~4.2!, ~4.3! we again use the
shooting and matching method on the interval@origin, rE#
using the above Taylor series expansions to determine
boundary conditions atr5rE . Shooting parameters are no
7-9
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rE , f 8(rE), andb for odd solutions andrE , R(rE), andb
for even solutions. The results are displayed in Table I.

It is clear from Eqs.~4.5! and~4.6!, that regular solutions
for L50 can only exist ifb.1/2. Assuming now, that ou
numerical observations concerning the first few excitatio
extend to higher excitations, we give the following arg
ment. Since every ‘‘branch’’ of the ‘‘L.0 solutions’’ per-
sists up to a maximal value of beta, which can be compu
by solving the boundary value problem~4.2! together with
regularity conditions at the two ‘‘poles’’—which impliesb
.1/2—and since we know, that in the limitb→0 there ex-
ists an infinite number of excitations@4#, we conclude that
this whole family of solutions withL.0 persists up to some
maximal valuebmax(n), which is greater than 1/2. In other
words, for anyb,1/2 there exists a countably infinite famil
of solutions withL.0, whereas forb.1/2 our numerical
analysis shows, that only a finite number of solutions ex
~see Table I!.

V. DISCUSSION AND OUTLOOK

We have shown numerically that the SU~2!-s model
coupled to gravity with a positive cosmological constant a
mits a discrete one-parameter family of static spherica
symmetric regular solutions. These solitonic solutions
characterized by an integer excitation numbern. A given
excitation will only exist up to a critical value of the cou
pling constantb; the highern, the lower the correspondin
critical value. Our calculations indicate that the infinite tow
of solitons present on a de Sitter background persists at
up to a value ofb51/2. Thus there exists ab>1/2 beyond
which the number of excitations is finite and decreases w

TABLE I. Results for the first three excitations forL50. Since
Q[1 the coordinate distancerP of the two regular ‘‘poles’’ equals
the radial geometrical distancedP . The energy densityrP and en-
ergy E are given in units wheref 8(0)51. The ratioE/dP can be
compared to the results for solutions withL.0 and represents th
limit b→bmax for those solutions.

n bmax rP5dP E/4pg E/4pgdP

1 1 p 3p/2 3/2
2 0.74255 6.74225 11.78039 1.74724
3 0.64931 12.10140 22.43662 1.85405
r,

f
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the strength of the coupling. As mentioned, qualitatively t
s-model under consideration shows striking similarities
the EYM system as studied in detail by Volkovet al. The
main difference being that the static solutions to the EY
system depend on the value of the cosmological cons
while in our caseL scales out from the equations andb
plays the role of a ‘‘bifurcation’’ parameter. Another differ
ence concerns the globally regular static solutions with co
pact spatial slices. For the EYM system these appear
definite values ofL(n) while for the s model the corre-
sponding solutions exist only in the~singular! limit as L
goes to zero and definite values ofb. Thus in our case there
are closed static universes with vanishing cosmological c
stant, the lowest excitation being the static Einstein cosm
This is possible because in this case the stress-energy te
of thes field is of the form of a perfect fluid with the equa
tion of statep52m/3. Another interesting aspect is the g
ometry of a given excitation as a function of the coupli
strength: the static region is always surrounded by a Kill
horizon separating the static from a dynamical region, wh
for small couplings becomes asymptotically de Sitter. As
coupling is increased the two spheres of symmetry bey
the horizon are first past and then become future trapped
a cosmological singularity develops. Finally, for even stro
ger couplings, again the region beyond the horizon collap
but within the static region the ingoing and outgoing dire
tions ~as defined by the sign of the expansion for null ge
desics! interchange.

An important question to be answered is whether th
solitons are stable under small radially symmetric tim
dependent perturbations. In a forthcoming publication we
tend to present a detailed stability analysis. We will sh
that for L.0 all excitations are unstable with their numb
of unstable modes increasing withn. This was to be expected
at least for small coupling. The lowest excitation thus ha
single unstable mode and it is known, from other mode
that such a solution can play the role of a critical solution
a full dynamical treatment of spherically symmetric collaps
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