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We present a class of numerical solutions to thé2donlinearc model coupled to the Einstein equations
with a cosmological constant=0 in spherical symmetry. These solutions are characterized by the presence
of a regular static region which includes a center of symmetry. They are parametrized by a dimensionless
“coupling constant” B, the sign of the cosmological constant, and an integer “excitation numbeiThe
phenomenology we find is compared to the corresponding solutions found for the Einstein-Yan@&EVM$
equations with a positivA (EYMA). If we chooseA positive and fixn, we find a family of static spacetimes
with a Killing horizon for 0< 8< B,ax- As a limiting solution forB= B,.xWe find aglobally static spacetime
with A =0, the lowest excitation being the Einstein static universe. To interpret the physical significance of the
Killing horizon in the cosmological context, we apply the concept of a trapping horizon as formulated by
Hayward. For small values @8 an asymptotically de Sitter dynamic region contains the static region within a
Killing horizon of cosmological type. For strong coupling the static region contains an “eternal cosmological
black hole.”

PACS numbgs): 04.40—-b, 04.25.Dm, 04.70.Bw, 98.80.Hw

[. INTRODUCTION similar “choptuon” which forms a naked singularity. How-
ever, as was discovered by Choptuik, Chmaj, and B[z@dn

The aim of this paper is to discuss the static sphericallyalso unstable solitons can serve as an intermediate attractor
symmetric solutions of the S@) nonlinears model coupled in critical collapse. In particular they found that the first
to the Einstein equations with a cosmological constant Bartnik-McKinnon excitation actually forms an intermediate
=0 (subsequently referred to as the'§;)A mode). The  attractor associated with type | critical collapse
existence of such solutions was suggested by the fact that tihenomena—as opposed to the type Il originally found by
Einstein universg3] and the de Sitter spacetinid] admit  Choptuik(both named because of the correspondence to phe-
the existence of a discrete one-parameter family of staticpomena of statistical physics, for a recent overview on criti-
spherically symmetric regular solutions of the @WJo  cal collapse phenomena see, e.g., Chopi@lk
model. These solutions are unstable, the number of unstable While both the free scalar field and the EYM system do
modes equals the “excitation index.” The static solutions onnot contain any dimensionless parameters,d¢h@odels are
the de Sitter background correspond to the uncoupled limitsimple systems with a dimensionless coupling constant. Thus
i.e., the vanishing coupling constant of the &;)A model.  they provide a convenient family of theories that is suitable

Globally regular stationary “solitonic” solutions, if they to study genericity and bifurcation phenomena.
exist, play a fundamental role in the dynamics of gravitating It is known that, apart from trivial solutions, the nonlinear
systems. If they are stable, they provide possible end states-models do not admit soliton solutions in Minkowski
of evolution—and models for “stars” or “particles.” Inter- space, and when coupled to gravity, there exist neither soli-
est in solitonic solutions and the subtleties of the interactiorions nor static black hole solutions that are asymptotically
of matter with gravity was revived by the surprising numeri- flat (see, e.g., Refl9]). The presence of a positive cosmo-
cal discovery of static solutions to the Einstein-Yang-Mills logical constant changes this situation by introducing a
(EYM) system by Bartnik and McKinnofb]. It was soon length scale into the model. From dimensional analysis one
found that these solutions are unstallii§ but there is a link  concludes that the behavior of the solutions depends nonper-
between this instability and another surprise in general relaturbatively onA, and that only the sign oA is significant.
tivity (GR): Within the static spacetimes we restrict ourselves to space-

In recent years the discovery of critical phenomena at théimes which possess a static region that has a regular center
threshold of black hole formation has introduced a new twistand is bounded by at most one Killing horiz@s opposed to
into the gravitational collapse problem. In the original work two, such as in the Schwarzschild—de Sitter tase
of Choptuik the intermediate attractor that separates the two In the coupled case we find four qualitatively different
possible generic end-states of a free scalar field—the formdypes of solutions along each “branch” defined by the “ex-
tion of a black hole and complete dispersion—is the self-citation index.” For small coupling constant of tlkemodel,
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the solutions are globally regular, and a Killing horizon sepa-Their importance for physics was pointed out in a review
rates a static region from an asymptotically de Sitter dynamiarticle by Misner{12].

region. For intermediate values of the coupling constant the Variation of the matter actiori2.1) with respect to the
situation is similar, but the region exterior to the cosmologi-metric g, yields the stress-energy tensor of the harmonic
cal horizon expands for some time, but eventually recol-map
lapses. For even higher values of the coupling constant the
horizon encloses a dynamic region that undergoes collapse.
Thus in some sense the static region gets turned “inside
out.”

Solutions with a finite regular static region and positive
cosmological constant only exist for a coupling constant
smaller than some critical value which depends on the exci-
tation index. The limit is singular, but combining it with a This stress-energy-tensor obeys the weak, strong, and domi-
limit A—0O yields solutions which are globally regular and nant energy conditions.
static and have spatial topology. In order to produce static configurations attractive and

For A>0 the “first static excited states” exhibit one un- repulsive forces have to be balanced. In particular in flat
stable mode, so that our solutions form a one parametespace the virial theorem implies that the components of the
family of candidate solutions for type | intermediate attrac-stress-energy tensor cannot have a fixed &ge the discus-
tors. The full linear stability analysis, that leads to this result,sion by Gibbong13]). For static configurations of any har-
will be presented in a separate pap&0. Sir_nilar results  monic map the sum of the principal pressu@féle;; is
have been found for the EYM system, which has been ponpositive everywherfl3] (Ti; denote the spatial compo-
studied in great detail by Volkoet al. [1]. nents of the stress-energy tensor with respect to an orthonor-
~ The organization of this paper is as follows. In Sec. Il We 5| framg. The self-interaction of any- model can there-
introduce our nonlineasr model and discuss its basic prop- fore he interpreted as attractive. In contrast for the Yang
erties. We then specialize to spherical symmetry using thgyjjis field the sum of the principal pressures is nonnegative,
hedgehog ansatz for the 8)-valued matter field and write \yhich can be interpreted as a repulsive self-interaction. Both
out the spherically symmetric field equations in a suitablejig|gs therefore do not allow soliton solutions on a flat back-
gauge. o _ _ ground. But while the Yang-Mills field coupled to gravity

The problem of finding regular static solutions of the 5gmjts solitons by cancelling the repulsive force with gravity

Eosy)yA problem is discussed in Sec. lll. The static regions[1 4], the gravitatings model correspondingly does nétee,
containing the soliton are confined within a Killing horizon, ¢ 4 ' Ref[9]).

outside of which the timelike Killing vector becomes space- “Thys we cannot expect static solutions to exist unless we
like and the spacetimes are dynamical. The static regions atgyq some “repulsive force”—or in the presence of non-
constructed by solving a boundary value problem as deg;yial topology. As an example for the latter one could think
;cnbed in Sec._III D. The gIo_baI structure of the spacetimesys 5 static spherical universe of topolo§$, where there is a

is then determined by evolving the static data beyond thggjance between the tendencies to collapse towards either
horizon. This evolution problem is discussed in Sec. Il E.«capter.” A repulsive force on the other hand can be intro-

The phenomenology of the solutions we find is presented iRy, ceq with a positive cosmological constantTherefore we
Sec. IV. Finally, Sec. V gives a discussion of our results ang,ynsider the total action

compares them to the results of Volket al. [1] for the
EYMA system. 1

Conventions are chosen as follows. Spacetime indices are Szf d4x\/—_g(m(R—2A)+£M , (2.3
greek letters, S(2) indices are uppercase latin letters, the ™
spacetime signature is—(,+,+,+), the Ricci tensor is de-
fined astzRZM, and the speed of light is set to unity,
c=1.

T,= | V. XAV, XBGpg(X©)

1
—EgWV”XAVUXBGAB(XC) : (2.2

where Ly, is given by the Lagrangian of Eq2.1). This
action gives rise to the Einstein equations

Il. THE SU (2)-o MODEL IN SPHERICAL SYMMETRY R R+ Aglwzgﬂ-GT'w, (2.4

1

uv Egp.v
A. Harmonic maps as matter models
Nonlinearo models are special cases of harmonic map£s Well as to the field equations of the harmonic map
from a spacetime Nl,g,,) into some target manifold -
(N,Gap) (see e.g., Ref[11]). For the SU2)-o model, the g“' [V, V XA+ TE(XP)V, XBY XC]=0, (2.5
target manifold is taken a8° with G, the “round” metric
of constant curvature. Harmonic malé(x*) are extrema where1~“’§C denote the Christoffel symbols with respect to
of the simple geometric action Gag. The field equations thus allow a general nonlinear de-
pendence on the field§” through the Christoffel symbols

1 . : L
S= -5 yJMdmx\/@guvaMXAﬁvaGAB(x)_ (2.1) ﬁg%éhey depend quadratically on the first derivatives of the

044047-2



SU(2) COSMOLOGICAL SOLITONS PHYSICAL REVIEW D62 044047

In units wherec=1 the coupling constany of the har- requirements, we will therefore make some comments on
monic map has dimension mass/length, whereas the gravitaegularity near the center of spherical symmetry for the met-
tional constantG is of dimension length/mass. Both con- ric defined in Eq.(2.8): We assume the existence of four
stants enter the equations only in the dimensionless producegular(meaningC” or C as appropriatecoordinate func-
B=4xwGy, thereby defining a one-parameter family of dis-tionsx, y, z, t on the manifold. All other functions are defined
tinct gravitating matter models. The parameterplays a as regular if they can be expressed as regular functiows of
different role, since it has dimension 1/lengtifhus, when Y, z, t. Furthermore, the relations between the functiBns,
the cosmological constant is nonzero, it provides the lengtl) andx, y, zare required to be the standard coordinate trans-
scale of these theories. Therefore all theories with the samf®rmation between Cartesian and spherical coordinates:
value of 8 are equivalent irrespective of the value Af If, =Rsing¢sing, y=Rcos¢sind, z=Rcosd. Note that the
on the other hand\ =0, the field equations are scale invari- spherical coordinates, in particul® are not regular func-
ant. The gravitating S(2)-c model with non-negative cos- tions, but all even powers d® are. Near the axis we choose
mological constant thus corresponds to a two-parameter fanthe parametrization of the radial coordinatsuch that it has
ily of inequivalent theories, parametrized by the continuoughe same regularity features Rs
parameted and the discrete parameter sgn(

p=Rh(R?),
B. Spherical symmetry
whereh is a regular positive function — and thus ajsaself
is not regular. Any spherically symmetric function which is a
regular function ofx, y, z, t (or just “regular” for shor) can
d?=dr2+R%(p,1)dQ?, (2.6) therefore be written as a regular functiongf andt.

For any fixedt the centelR=0 then is a regular point of
whered7? is a general two-dimensional Lorentzian line ele- spacetime, ifQ(0t)=h(0). Without restricting generality
ment and the area of the orbits of @D is given by we can choosé(0)=1 for convenience, such that
47R?(p,t). Choosing the coordinatésindp orthogonal one

A spherically symmetric metric can be written in the gen-
eral form as the warped produee, e.g., Ref.15])

can write the metric in the form R(p,t)=p(1+0(p?),
(2.9
ds?=—A(p,t)dt>+ B(p,t)dp?+R%(p,t)dQ2. (2.7 Q(p,t)=1+0(p?).
In Eq. (2.7) there is some gauge freedom left, which can be |, spherical symmetry it is possible to define a quasilocal
used to eliminate one of the three functioksB, or R. mass
One way to fix the gauge would be to use the funcfon
as a coordinate. This is possible as longVgsR+0. This R
gauge is usually referred to as the Schwarzschild gauge. Here m= E(l—VMRV”R), (2.10

we will deal with the situation thaV ,R becomes zero on
some maximal two spher@vhich is not a horizop a phe-
nomenon which we will discuss in detail below.
Following Volkov et al.[1] we therefore choose a differ- .
ent gauge, which keeps close to the standard Schwarzschild m= E( 1— R——Q(R’)Z) 2.11)
line element in another way: we fiA(p,t)=1/B(p,t) 2 Q ' '
=Q(p,t) and keep the area of the &) orbits as the second
free function in our coordinate systerf2.8). For a recent discussion of the
properties of the quasilocal mass in spherical symmetry see
1 Hayward[16].
Q(p,t) The harmonic map field configuratio”(x*) can be
called spherically symmetric, if the Lie derivatives of the
The metric (2.8) is regular whereQ(p,t) and R(p,t) are  energy-momentum tensor with respect to the Killing vector
regular functions on spacetime, except possibly at point§ields that generate the $& action vanish. One possibility
where eitherQ(p,t) or R(p,t) vanish. The vanishing of to achieve this, is to demand that all fields be functionp of
Q(p,t) is related to the existence of horizons, which will andt only. This would leave us with a coupled system of
also be discussed below. differential equations for three fields and two metric func-
For a regular spacetime the vanishingRffp,t) is asso- tions. Since the target manifol®{,G) alsoadmits S@3) as
ciated with the singularity of spherical coordinates at the axisan isometry group, there is an alternative way to impose
of symmetry. Such a coordinate center does not necessarigpherical symmetry on the harmonic map, which is the well
have to be preser(e.g., in a spherical wormhalebut we  known hedgehog ansatz. We first introduce spherical coordi-
will require our spacetimes to possess at least one regularates {,0,d) on the target manifold, writing the SP) line
center—there may also be two, such as in the Einstein statielement as
universe written in spherical coordinates. In the following,
several boundary conditions will be derived from regularity ds?=df2+sir? f(dO%+sir? Odd?). (2.12

which reads

ds’=—Q(p,t)dt>+ dp?+R?%(p,1)dQ2. (2.9
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The hedgehog ansatz now ties the coordinates on the targeanishes, the equations are scale invariant, and thus invariant

manifold to those on the base manifold: under rescalingp=ap and R=aR. Furthermore, in this
case Eq(3.1) together with regularity conditions at the axis
f(x*)=f(p,t), O(x*)=6, D(x*)=¢. (2.13 impliesQ=1.
If we integrate the equations with the above boundary

Due to this ansatz two of the three coupled fields are already, . jitions fromp=0 to larger values of one of the fol-

determined and only one fieltl(p,t) enters the equations. |4ying four situations has to occufl) the static region
The matter field equation§2.5) are then reduced to the «gngs” in a singularity; (2) integration might run into a

single nonlinear wave equation second(regula) pole R=0, which would mean that the re-
) sulting spacetime has compact slices of constaahd is

fo sin(2f) (2.14 globally static;(3) the static region might persist up to spatial

R2 ' infinity; (4) the static region might be surrounded by a Kill-

ing horizon beyond which spacetime becomes dynamical.
wherel] is the wave operator of the spacetime metric. The first case can easily be produced by shooting off a regu-
Regularity of the harmonic map within this ansatz meandar center with arbitrary initial data, it can be excluded by
that when expressing the field in terms of regular coordinatesetting up a boundary value problem that enforces one of the
XA on SU2), the X* are regular fields on spacetime. Since other three cases. The second case can be discarded for our
XAx*)=[f(p,t)/p]x”, wherex? denote the Cartesian coor- model with positive cosmological constant, since the exis-
dinatesx,y,z on spacetime, the fielf(p,t) thus has to be of tence of a static region with two regular centers is not com-
the form patible with the field equations: To see this recast Bdl)
into the integral form(3.2J). It is clear then, that—for non-
f(p,t)y=pH(p?)=1'(0)p+0(p?), (2.19  zeroA—Q’ diverges ifR goes to zero a second time. For

. . . A =0 of course, such solutions may exist as, e.g., the static
whereH is a regular function. Thukvanishes at the center, Einstein universe3.7), which will be discussed in the next

which means that the cent&=0 is mapped to one of the goction The third case can also be excluded if the cosmo-
poles of the target manifold, that have been fixed via thqgical constant is positive: a static region can not be ex-

hedgehog ansatz. tended to spatial infinity, but rather a singular point of the
equationsQ(py) =0, that corresponds to a horizon, has to
lll. STATIC SOLUTIONS develop. This can be seen as follows: Suppose the solution
A. Static field equations exists up tOpﬁoo and R is_monotonically increasing—all
other assumptions automatically lead to one of the cases 1, 2,
In addition to spherical symmetry we assume that spacer 4—then one can show, that foA positive Q' <
time admits a hypersurface orthogonal Killing vector field — constp for p large enough, which means tr@atwould be
d;, which is timelike in some neighborhood of thegula)y bounded from above by a function that tends—tec as p
centerR=0. The combinations;—(5)—2(3) and (—(Y)  _.c. So againQ has to cross zero at some finite valugpof
of the mixed components of Einstein’s equations plus the For positive cosmological constant we therefore may con-
matter field equatiori2.14) then yield the following set of fine ourselves to the cases with horizon, and we will con-
coupled second order autonomous ODEs for the metric funcstruct static regions as an ordinary differential equation
tionsQ(p), R(p) and the matter field(p): (ODE) boundary value problem, where the boundary condi-
tions correspond to a regular centerpat 0 and a regular

2\ — 2

(RQ")"=—2AR", (3.1 horizon atp=p, where the determination of the value of

R'= — BRf'2 32 py is part of the boundary value problem. The appropriate

’ ' boundary conditions at the horizon will be determined in

(QRRf")" =sin 2. 3.3 222. IIIIII [C): and the boundary value problem is described in

Furthermore the above system of equations has a constant of GIVen a static region, i.e., a region of spacetime where the

motion: Killing vector ¢, is timelike, which is bounded by a Killing

horizon, we can consider as a second step the time evolution

2B st f+RY(A—BQf'2)+RQ'R' +QR'2—1=0. problem of the static data on the horizon into the dynamic

(3.9 region where the Killing vectod#; is spacelike and the space-
time is thus homogeneous. The time evolution problem thus
This expression can either be derived by integrating the syseduces to a system of ODEs which are solved as an initial
tem (3.1)—(3.3) and using the regularity conditions at the value problem as described in Sec. IIl E.
axis, or by using thefj) component of Einstein’s equations.
Note that iff is a matter field solution, then so is alker B. Exact solutions

+f for any integerk. _ Some solutions of Eqg3.1)—(3.4) with a regular center

If A is nonzero it sets the length scale, it thus can bean pe given in closed form. They do arise as certain limits
eliminated in these equations by using the dimensionlesgf the numerically constructed family of solutions to be
quantitiesp=\Ap andR=AR. If, on the other handA  given below.
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First of all, for A>0, for the trivial casef=0 Eq. (3.2  plete spacetime and in particular the second component of
has the solutionR(p) =ap+b. Imposing the regularity con- the horizon by time reflection. We also remark that all solu-

ditions (2.9) this gives de Sitter spacetime tions have the topolog$®x R.
Ay? The static Killing vector field isd/du=dldt, where the
R(p)=p, Q(p)=1— TP, f=0. 3.5 latter is taken with respect to thg, ) coordinates. The met-

ric (3.8) is regular ifQ(p) andR(p) are regular functions,
) except whenR=0, which corresponds either to the usual
For f=m/2, R(p) is of the same form as above. For  coordinate singularity of spherical symmetry, which has

=0 we get been discussed in Sec. Il B or to a spacetime singularity, as
A o2 discussed in Sec. Il E.
R(p)=p, Q(p)=1-2B— Tp’ fzg, (3.6) ~ The Killing vector fieldd, , which we have assumed to be
timelike in some neighborhood of theegulay centerR=0

need not necessarily ligobally timelike. Regions where it
becomes spacelike, i.6Q(p)<0, are dynamic with homo-
geneous spacelike slices of constant tim¢he spatial topol-

7 - e . _ ogy being S’XR. Such regions thus correspond to
=1/2. In the limit of vanishing coupling constar@=0, Kantowski-Sachs models. At the boundary of static and dy-

et o e i iran vty dorsy. Never M Fegons e metic funcio(y) vanihes, such
the?ess the total enerav is finitg zgnd thigysolutior}]/.ma b surface ofp=const is thus a null surface. Furthermore the

. L gy ISt A Y illing vector field ¢, is null and tangent on this surface,
viewed as the “high excitation” limit of the regular solu-

. : ; which therefore is a Killing horizon.
t'orllsih;m;t %ﬁ"}t 2% dsqs(gti; l?[g;l;?gglrj[\ﬂh regularity con- In the presence of an asymptotic infinity, such as in an
ditions at the axis, yield©=1. For =1 the remaining asymptotically flat or asymptotically de Sitter spacetime, one

. . . .~ . can use the asymptotic region to classify event horizons, e.g.,
gtqel:r?tluonril\?e(r:gg be solved analytically to give the static Em'as black hole or cosmological event horizons. Furthermore

one is provided a straightforward definition of “inward” and
R(p)=sinp, Q(p)=1, f(p)=p. 3.7y  “outward” directions. In the cosmological case these issues
are less clear. We therefore follow the definitions of Hay-

Note that the stress-energy tensor, which has the form of ward[2]: He proposed a local definition ofteapping hori-
perfect fluid in this case satisfigs+3p=0. As will be de- zon a concept which does not make use of asymptotic flat-
scribed in detail in Sec. IV C the static Einstein universeness and is therefore also suitable for more general
arises in the limit of maximal coupling constant of the nu- Situations. Intuitively, the physical interpretation of the Kill-
merical constructed first excitation if at the same timngs  ing horizon depends on whether the dynamical region is col-
set to zero. lapsing or expanding off the horizon, and whether this region

For completeness we mention that there also exist exad$ to be interpreted aisiside or outside Both can be formu-
solutions to Eqgs(3.1)—(3.4), that do not possess a regular lated in terms of the null expansior8. of ingoing and
center of spherical symmetry, such as the Nariai spacetimeutgoing null rays from two surfaces. In spherical symmetry
we consideR= const surfaces, with null expansions

which looks similar to de Sitter for large but has a conical
singularity at the center iB>0. Furthermore the static re-
gion shrinks with increasingd and ceases to exist fg8

C. Horizons and global structure

In order to discuss the global structure of the spacetime ®+=i£+R2, (3.10
and in particular regularity questions from which we derive TR T
the boundary conditions for our ODEs, it is helpful to con-
sider a coordinate system, which is regular at the horizonwhere£.. is the Lie-derivative along the null directions
We write the metria2.8) as
ds?=—Q(p)du?—2du dp+R(p)2 dQ?, (3.9 l+=d, andl-=20,~Qd,. (3.13

where the coordinate functiop and the metric function respectively, so

Q(p) coincide with those in the metri2.8), and the coor- , ,

. L R R
dinateu is given as @)Jr=2E and ©_= _ZQE' (3.12
dp
u=t— Q(_p)' (3.9 The first use of the expansions is to define a trapped surface

in the sense of Penro$&7] as a compact spatial surface for
Note that the coordinate€3.8) cover only half of the which ®_© >0. If one of the expansions vanishes, the
maximally extended spacetime. In the following, we will surface is called a marginal surface. For a nontrapped surface
simplify our discussion by only talking about the Kiling ®_ and ® . have opposite signs, and we call directions in
horizon contained in the portion of spacetime covered herewhich the expansion is positive outward, and inward when it
All statements made can be extended trivially to the comis negative.
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On the Killing horizon Q=0, O_[g_,=0 while
0,]g-0#0 andL,0 _|o_o#0 (except when als®’ =0,
which we exclude for the momentn Hayward'’s terminol-

ogy|[2] such a three-surface is called a trapping horizon. It is

said to be outer ifL © _|o_¢<0, inner if £, 0 _|5_,<0,
future if @, |g_0<<0, and past i® , |o_,>0. A future outer

PHYSICAL REVIEW B2 044047

where

f(pu)=b, R(pu)=Ry, Q'(PH):QQ

(3.16

PH

are free shooting parameters. The other coefficients are de-

trapping horizon provides a general definition of a blacktermined by the requirement th@ and R be regular func-
hole, while a white hole has a past outer horizon, and costions of p. Consistency with Eqs.3.1)—(3.4) then amounts

mological horizons are inner horizons.
If R"(p)=0 within the static region then
L,0_|g-0<0,

0 ]g-0<0 (3.13

and the surfac€ =0 is a future outer trapping horizon. On
the other hand iR’ vanishes in the dynamical region or is
monotonic, then the signs in E(.13 are reversed and one
speaks of a past inner trapping horizon.

Note, that at points wher@’ =0, both® . =0. However,
this does not lead to &rapping horizon since the expan-

sions merely change sign. The significance of such marginal

to the conditions

1-2Bsifb—RAA

surfaces is that the meaning of inward and outward direc-

tions are reversed. A typical example is an “equatorial” two
surface of a round three sphere at a moment of time symme-

try.
Using the expansion® , and® _ (3.12 one can rewrite
the quasilocal mas.11)

R2
1+Z®*)' (3.14

-

R (py)= , (3.19
(pH RyQl,
R/ !

Q" (pn)= —Z%W—ZA, (3.19
(o) = sin2b (3.19
QR '

sin2b R'(pn)
f"(py)= — +cos b+ .
P S s R Q' (pw)
(3.20

In order to determine the spectrum of static solutions for a
fixed coupling constani3, we solve the boundary value
problem Egs.(3.1)—(3.3) with boundary conditiong2.9),
(2.15, and(3.15 between axis and horizon. We use a stan-

Using the above assignment of inward and outward directiogjard two point shooting and matching methédutine

the quasilocal mass can be interpreted as the total mass thsgoacr of the NAG library [18]), where the parameters
is containedwithin any spatial three volume, that is bounded¢'(0), p,,, f(py), Ry, and Q/, serve as shooting param-

by the two-sphere with areal radiés On the marginal sur- giers.

faces, wherdR’' =0, the quasilocal mass equaté2. For =0 a discrete one-parameter family of solutions has
already been discussed jda]. In order to get good initial
guesses for the shooting parametersdor0, we follow one

The system of ODE$3.1)—(3.3) has singular points for solution from B=0 up to higher values o8, interpolating
R=0 andQ=0. Making use of the imposed regularity con- the values of the shooting parameters at the present and last
ditions at the axig2.9) and (2.15 the equations demand in ~ B Step” to obtain values for the nexts step.”
additionQ”(0)=—2A/3. Note that solutions, that are regu-
lar in a neighborhood gf=0 are determined by the value of

the single parametar=f’(0). . . . . . .
. ) . ince the singularity at the horizon is merel rdinat
The other singular point occurs at the horizon, where Since the singularity at the horizon is merely a coordinate

—0 F | Tavl : . singularity, we can extend spacetime through the horizon and
Si\(/gH)_ - Formal Taylor series expansions aroys py reintroduce the coordinates in E.8) in the dynamic re-

gion beyond the horizon. The Killing vector fietd becomes
spacelike, and instead ofthe timelike coordinate ig. The
coupled system of ODE$3.1)—(3.3) together with initial
conditions(3.15 therefore constitute an initial value prob-
" lem.

D. The boundary value problem for the static region

E. Integration through the horizon

Q"(pn)
2

Q(p)=Qfi(p—pn)+ (p—pn)>+O[(p—pn)],

(pw) S . L .
R(p)=Ry+R (pp)(p—pu) + (p—pp)? 'Whlle integrating forwgrd in timep, e;sentlally two
P . PRITPTPH 2 PP things can happen according to the behavioR(p).
.3 (1) R(p) is monotonically increasing for ap>0. Then
Ol =P, .19 time evolution exists for alp>0. This can be seen by turn-
(ppy) ing Egs.(3.1)—(3.3) into integral equations
, H
f(p)=b+1"(pr)(p—pr) + —5—(p=pp)? oA o
Q'=-—| Rbp, (3.21)
+O[(p—pn)°l, R2
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P —
R’=1—/5’J Rf'2dp, (3.22
0

f’—ifp in(2f)dip. (3.23
_QRZ Osm( )dp. .

All first derivatives are bounded as long @sandR do not
go to zero. Beyond the horizoQ cannot go to zero, since
Q’'<0 for all p>0 andQ(py)=0. Rcannot go to zero since
it is monotonically increasing by assumption aR¢0)=0.
ThereforeQ, R, andf stay finite for all finitep.

From Eq.(3.22) it follows that 0<R’<1 for all p=0, so
R=0(p) for p—w. From Eq. (3.2) we get, thatQ

=0(p?) and from Eq.(3.23 we see thaf’ goes to zero as -6 -4 -2 2
p~ % and thereford goes to a constant at infinity. log(p/pn)
(2) Rdevelops an extremum at some finitg,~>0. Since
R”=<0 for all p andR’ (p) <0 for all p> peyy, Which follows FIG. 1. The first three solutions for coupling constght 0.3
from Eq.(3.22, R goes to zero at some finijgs> py . < Bt~ Inside the horizon gt/p,=1 the “nth” excitation crosses
Here we already excluded the casg<py in Sec. Il A,  thew/2 line ntimes. In the dynamic region outside the horizon the
since this means a singularity in the static region. solutions evolve towards a constant.

For the same reasons as above, time evolution exists for

all p<ps. In the limit p— ps & spacetime singularity occurs. these solutions oscillate around2 where energy increases
This follows from inspection of the Kretschmann invariant \yith the number of the oscillations and is limited from above
by the energy of the “singular” solutioh= /2. Outside the
cosmological horizon gi=1 the solutions remain finite and
tend to a constant near infinity.

Increasing the coupling constgB the numerical analysis
+8QR'(R°Q'R"~R’) shows, that solutions of this type persist as longBadoes

2, 54 Yy not get too large. The qualitative behavior of the fieid the

FAQY(RH2RR™)]. (324 static region is the same as in the uncoupled case, i.e., the
nth excitation oscillates1 times aroundw/2, whereas the
behavior of the field in the dynamic region as well as the
gehavior of the geometry depend strongly on the value of the

RHVITR

nwvoT

1
Q[4+ 4R2Q12R/2+ R4er2

Since by assumptio®(p),Q’(p), andR’(p) are negative
nearpg all terms of Eq.(3.24 are non-negative and at least
some of them clearly have a nonzero numerator while th ;
denominator vanishes with some powerRof coupling const.anﬁ. . o :

The construction of solutions beyond the horizon consists To_ summarize, we get the followmg_ qualitative picture of
of solving the initial value problem, i.e., we integrate Eqs.SOIUtlons in dependence on the coupling consfant

S o For smallB, 0<B<pf.i(n), the solutions are similar to
(3.1)—(3.3) with initial conditions(3.15 for p>py, where crit .
the parameterpy, f(pr), Ry, andQl, are determined by those of the uncoupled cage=0, that is, the area of SB)

the solutions of the boundary value problem described inorb'ts is monotonically increasing with, beyond the hori-

Sec. Il D. For numerical integration we used routirecer é?nnattzeiirioeluml)\lnesarp?r:fsilr?ii ufhg’ 1”0;223"@%3%3tg{;gemc?ho;'
of the NAG library[18]. p- y g y asymp

de Sitter geometry, that R=0(p) and Q tends to—o as
O(p?). According to Hayward’s definition®] the horizon is

IV. PHENOMENOLOGY OF SOLUTIONS an inner past trapping horizon, separating the static region

A. Phenomenology of numerically constructed solutions from an e?(pe}nding dynamic_region. The fidicshows the
with A>0 same qualitative behavior as in the uncoupled ¢zs® (see
Figs. 1 and 2

For B=0 the Ersy)A equations decouple into Ein-
stein’s vacuum equations with and the matter field equa- < . -
i ! . ) p>0 but this time goes to a constant at infinity, that is
':jlpt_n (2.1? tc;]n the'ﬂxt?]d bacI:ktgroutndI.E\_/Vnth _OL,JI’ regul:ta_rlty c_on(; R'(x)=0. For even stronger coupling,B.y(n)<;
Sl'tltons at the axis the solution 1o EInstein's equations 1S e<,8*(n), R develops a maximum in the dynamic region, i.e.,
Iter space R’ (pg) =0 at some finite time>py (see Fig. 3. As was
Ap? discussed in Sec. Il R then decreases and goes to zero at
Q(p)=1- 3 R(p)=p, (4.2 some finite coordinate timgps—which corresponds to the
finite proper timefrs=f2idp/ VQ(p). This causes the geom-
whereas the field equatid.3) admits a discrete one param- etry to be singular aps. The horizon, which again is an
eter family of regular solutionp4]. Within the static region inner past trapping horizon separates the static region from

For 8= Bi(Nn) the areal radiuR(p) still increases for all
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FIG. 2. The energy density,=Q,(f/)2+ siré(f,)/RZ for the 51'5 1 05 ]% 05 ! L5
first three excitations g8=0.3. — denotes the firs the second,
and + the third excitation, alj,, have been normalized to unity at ~ FIG. 4. The rotational surfacegR) correspond to the embed-
the axis. The corresponding total energies, measured in units ¢fing of at=const slice ¢= /2) into R*. The upper and lower half
1JA are E /4mwy=1.66621,E,/47y=1.88082, and Esldmy part of the diagram resemble the two static regions causally sepa-
=1.956613. rated by the horizon at=0. Shown is the geometry of the first

excitation for 8 in the range 8 5<0.913<B,.x- The sphere of

an initially expanding dynamic region, which reaches itsunit radius for de Sitter spacg&0) gets more and more deformed
maximal spatial extension gtz and then recollapses to a asp increases.
singularity atpg. The maximum of the areal radius occurs at
earlier and earlier times as the coupling constant is increaseﬁjote, that the “critical” values of the coupling constant,
until it merges with the location of the horizon wheh BeiN), B, (N), and Badn) decrease with the excitation
=B (n). . . Y . numbern. In Sec. IV C we will give an argument, that

At B=p,(n) the “maximal two sphere” coincides with 5 ) is a decreasing sequence, which is bounded from
the horizonpg=py . The fact thatR’(py) =0 at this value  pglow by the maximal coupling constagt, (=)= 1/2 for
of B may be interpreted as exchanging the inward and outy,e “singular” solution (3.6).
ward direction at the horizon: for smaller values @fthe The solutions described above exist in the presence of a
static region wasurroundedby the inner past trapping ho- ositive cosmological constant>0. As will be described in
rizon, whereas for larger values of the coupling constangeta” in the next section, Sec. IV B the linst— s, vields

By (N) < B<Bmax, Wherepe<py,, the static regioencloses rgqylar solutions iff one takes the limkt—0 appropriately
the horizon, which becomes now awuter futuretrapping g5 described in Sec. IV B.

horizon. Beyond this horizon, the dynamic region undergoes
complete collapse gi=pg.
Embedding diagrams of the static regions of the first ex- B. The limit B— Brmax(n)

citation for several values g8 can be found in Fig. 4. We Recall from Sec. Il A that the cosmological constant

sets the length scale in Eq8.1)—(3.4) and that it can be
eliminated from these equations, by introducing the dimen-

sionless quantitiep=\/Ap andR=JAR. This corresponds
to measuring all quantities that have dimension of length,
such as, e.g., the enerdy, the coordinate distance of the
horizonpy from the origin, the radial geometrical distance of
the horizondy from the origin, the areal radiuR, of the

2

15

Rlp) 1t horizon, and 1’ (0), in units of 1A/A. We find that all pa-
rameters, that have dimension of length go to zero in the
limit B— Bmax When measured with respect to this length

05 -

scale. This indicates that{A is not the appropriate length
scale for taking this limit. We therefore switch to the alter-
native viewpoint ofp,; as our length scale, and we fix,
=1. In this setup\ depends o8 and the excitation index
and goes to zero in the limB— B The parameterg,
dy, and 1f'(0) attain finite values when measured in units
FIG. 3. The area functioR(p) for the first excitation fo3 near ~ Of py, whereasRy/py goes to zero(see Fig. 3. This
Berir(1), 0.470366< Bi(1)<0.470373. The vertical line marks the strongly suggests that there exists a solution VAtA Bay
horizon atp=0.88761. which obeys Eqs3.1)—(3.4) with A=0 and has two centers

0.0001 0.01 1 18402 16404
p
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6 - - ; . " T - - - C. Globally static, regular solutions for A=0
L For A=0 Eq. (3.1 can be solved immediately to give
3 R2Q’ =const. According to the regularity conditions at the
Al axis (2.9) the constant has to vanish, which means Qat
£(0)p =0 and therefor®=1. The remaining system of equations
_______________________ H .
3t e e IS
R"=—BRf'?, (4.2)
2 '——NE/”
) (R2t")" =sin(2f), 4.3
e Rulpn and
0 0.1 02 03 04 05 06 07 08 09 1 . 2
3 2B sir? f— BR?f'2+R'?—1=0. (4.9

FIG. 5. Some parameters with dimensitemgth measured in  Note, that this system of ODEs is scale invariant, that is any
units of py. ExceptRy all of them stay finite in the limit3 solutionR(p),f(p) leads via rescaling to the one parameter
— Bmax- Moreover in the limit the values tend to the correspondingfamily of solutions given byaR(ap),f(ap). Keeping this in
ones of the static Einstein universe, as given in Table I. mind, we can fix the scale arbitrarily, e.g., in setting the first

derivative of the field equal to one at the origirf’ (p=0)

of symmetry. In particular this means that the static region of=1. Thereby any solution, that is regular at the origin, is
this solution has no boundary, since anyconst slice has determinecentirely by the value of the coupling constagt
topology S°. Regularity conditions at the second “poldR(pp) =0 are
Furthermore, as can be seen from Fig. 6, the dimensiorthe same as at the origin, except thaither tends tar, if its
less parametef(py) for the first excitation tends tar, and ~ €xcitation number is odd, or to O if it has even excitation
R’ (py) tends to— 1 in the limit 8— Bmax. As will be shown  number. This can be inferred from2<f(py) < for n odd
in the next section, Sec. IV Q=0 impliesQ=1. The lim-  and 0<f(py)<w/2 for n even for all3< B, Since this is
iting solution with A =0 will therefore satisfy the regularity the case fop3=0 and according to Eq3.19 no crossing of
conditions(2.9) and(2.15 not only at the axip=0 but also  the zeroline orr line is allowed. Note that this corresponds
at the second zero &, which means that such a solution is to all odd solutions having winding number 1, whereas even
globally regular with two(regulaj centers of spherical sym- solutions are in the topologically trivial sector.
metry. In fact, for the first excitation this limiting solution is ~ These regularity conditions together with the invariance
just the static Einstein univer$8.7), which can be given in of the equations under reflection at the location of the maxi-
closed form. mal two spherdR’ (pg) =0, causes globally regular solutions
These observations allow one to determine the maximaR(p) to be symmetric arounge whereasf(p)— w/2 is ei-
value of the coupling constag®,,(n) not as a limiting pro-  ther antisymmetric fon odd or symmetric fon even.
cedure— Bmax, but rather by solving the boundary value  For f symmetric the formal power series expansions of
problem Eqgs(3.1)—(3.3) with A=0 and with boundary con- R(p) andf(p) aroundp=pe gives
ditions, that correspond to two regular centers of symmetry.
R(p)=R(pg)+OL(p—pe)*],

3H——————————— (4.5

2\1-1/28 (p—pe)®

3r f(p)=arcsiny1/2B8+

25 ’ Rpe?2p 2!
2 +0[(p—pe)*l,

1.57

X and for f — /2 antisymmetric we get

0.5 2p-1 (p—pe)®
R(p)=——— —(28—1)————+0[(p—pp)*],
ol (p Bt (pe)? (2B o1 [(p=pE)’]
0.5 (4.6
s L L L L L L 1 r
“b 01 02 03 04 o.g 06 07 08 09 1 f(p)=7 +1'(pe)(p—pe) + Ol(p—pe)*].
FIG. 6. The(dimensionlessparameters (py)=b andR’(py) In order to solve the systefd.2), (4.3 we again use the

of the first excitation in dependence of the coupling consfant ~ shooting and matching method on the interfaiigin, pe]
f(py) tends tor in the limit 8— Bax andR’ (py) tends to—1 in  using the above Taylor series expansions to determine the
this limit. boundary conditions gi= pg . Shooting parameters are now
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TABLE I. Results for the first three excitations far=0. Since  the strength of the coupling. As mentioned, qualitatively the
Q=1 the coordinate distangs> of the two regular “poles” equals  g-model under consideration shows striking similarities to
the radial geometrical distancl . The energy densityp and en-  the EYM system as studied in detail by Volket al. The
ergy E are given in units wheré’(0)=1. The ratioE/dp can be  main difference being that the static solutions to the EYM
compared to the results for solutions witf™>0 and represents the system depend on the value of the cosmological constant

limit B— Bmax for those solutions. while in our caseA scales out from the equations ayd
plays the role of a “bifurcation” parameter. Another differ-

n Bmax pp=dp Eldmy E/4mydp ence concerns the globally regular static solutions with com-

1 1 - 32 312 pact .spatial slices. For th_e EYM system these appear for
definite values ofA (n) while for the ¢ model the corre-

2 0.74255 6.74225 11.78039 174724 sponding solutions exist only in thesingulay limit as A

3 0.64931 12.10140 22.43662 1.85405

goes to zero and definite values®f Thus in our case there

are closed static universes with vanishing cosmological con-
stant, the lowest excitation being the static Einstein cosmos.
This is possible because in this case the stress-energy tensor

. : of the o field is of the form of a perfect fluid with the equa-
It is clear from Eqs(4.5) and(4.6), that regular solutions tion of statep= — u/3. Another interesting aspect is the ge-

for A=0 can only exist if3>1/2. Assuming now, that our ometry of a given excitation as a function of the coupling

numerical observations concerning the first few excitations ) . o -
) I . ; strength: the static region is always surrounded by a Killing
extend to higher excitations, we give the following argu-

) . " S horizon separating the static from a dynamical region, which
ment. Since every “branch” of the A>0 solutions” per- f . . ;

) ’ : r small couplings becomes asymptotically de Sitter. As the
sists up to a maximal value of beta, which can be computea0 ling is i d th h f b d
by solving the boundary value proble(.2) together with coupling s increased the two spheres of symmetry beyon
reqularity conditions at the two * oles”.—which imolie the horizon are first past and then become future trapped and
>£11/2—aynd since we know. that iﬁ the limit—0 thefe £(_ a cosmological singularity develops. Finally, for even stron-
ists an infinite number of excitatiorjg], we conclude that ger couplings, again the region beyond the horizon collapses,

) : . : . but within the static region the ingoing and outgoing direc-
this \.NhOIe family of SOIUt'O.nS W'tm>0 persists up to some tions (as defined by the sign of the expansion for null geo-
maximal valueB,.{Nn), which is greaterthan 1/2. In other desics interchange
words, for anyB<1/2 there exists a countably infinite family An important question to be answered is whether these
of solutions withA>0, whereas for3>1/2 our numerical

vsis sh that onlv a finit ber of soluti . tsolitons are stable under small radially symmetric time-
?snezy'ls':bfe)?\lvs' at only a finite numpber of solutions exIs %ependent perturbations. In a forthcoming publication we in-

tend to present a detailed stability analysis. We will show
that for A>0 all excitations are unstable with their number
V. DISCUSSION AND OUTLOOK of unstable modes increasing withThis was to be expected

We have shown numerically that the &o model at least for small coupling. The lowest excitation thus has a

coupled to gravity with a positive cosmological constant ad-Single unstable mode and it is known, from other models,

mits a discrete one-parameter family of static sphericall)}h?tllsémh a $°“|Jt'°n can pla]}/ thﬁ rc_)le"of a crltlcal_solultllon n
symmetric regular solutions. These solitonic solutions aré® ™!l dynamical treatment of spherically symmetric collapse.

characterized by an integer excitation numinerA given
excitation will only exist up to a critical value of the cou-
pling constantB; the highern, the lower the corresponding We thank J. Thornburg and M. Rer for computer assis-
critical value. Our calculations indicate that the infinite towertance and especially P. Bizon for helpful comments and his
of solitons present on a de Sitter background persists at leasiterest in this work. This research was supported in part by
up to a value of3=1/2. Thus there exists 4=1/2 beyond FWF as Project No. P12754-PHY and the Fundacion Fe-
which the number of excitations is finite and decreases withlerico.

pe, f'(pg), andp for odd solutions an@e, R(pg), andg
for even solutions. The results are displayed in Table I.
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