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A bstract

W e present a class of num erical solutions to the SU (2) nonlinear -m odel
coupled to the E instein equations w ith coan ological constant 0 in soher—
ical sym m etry. T hese solutions are characterized by the presence of a reqular
static region which includes a center of symm etry. They are param eterized
by a dim ensionless \coupling constant" , the sign of the cosmn ological con—
stant, and an iInteger \excitation num ber" n. T he phenom enology we nd is
com pared to the corresponding solutions found for the E instein-Y ang-M ills
(EYM ) equationsw ith positive (EYM ). Ifwe choose positiveand xn,
we nd a fam ily of static spacetin es w ith a K illing horizon for 0 < max-
Asa lim iting solution for = [ .x we nd a gbkally static spacetin e w ith
= 0, the lowest excitation being the E Instein static universe. To interpret
the physical signi cance ofthe K illing horizon In the coan ological context, we
apply the concept of a trapping horizon as form ulated by Hayward. For an all
values of an asym ptotically de Sitter dynam ic region contains the static
region w ithin a K illing horizon of cosm ological type. For strong coupling the
static region contains an \eternal cosm ological black hol".

I.INTRODUCTION

Theam ofthispaper isto discuss the static soherically sym m etric solutions of the SU (2)
nonlinear -m odel coupled to the E instein equations with coan ological constant 0
(subsequently referred to as the E gy ) {model). The existence of such solutions was
suggested by the fact, that the E instein universe ] and the de Sitter spacetin e ] adm it the
existence of a discrete oneparam eter fam iy of static, spherically sym m etric reqular solutions
of the SU (2)— -m odel. These solutions are unstable, the num ber of unstable m odes equals
the \excitation index". T he static solutions on the de Sitter background corregoond to the
uncoupled Iim it, ie. vanishing coupling constant of the E gy ;) -m odel

G Iobally regular stationary \solitonic" solutions, if they exist, play a fundam ental role
n the dynam ics of gravitating system s. If they are stable, they provide possible end states



of evolution { and m odels for \stars" or \particles". Interest In solitonic solutions and the
subtleties of the interaction of m atter w ith gravity was revived by the surprising num erical
discovery of static solutions to the EYM system by Bartnk and M K nnon []. Tt was soon
found that these solutions are unstable ], but there is a link between this instability and
another surprise in GR :

In recent years the discovery of critical phenom ena at the threshold of black hole form a—
tion has Introduced a new tw ist Into the gravitational collapse problem . In the originalw ork
of Choptuik the interm ediate attractor that separates the two possible generic end-states of
a free scalar el { the form ation ofa black hole and com plete dispersion { is the selfsim ilar
\choptuon" which form s a naked singularity. However, as was discovered by Choptulk,
Chm ajand B izon ﬂ], also unstable solitons can serve as an Interm ediate attractor in critical
collapse. In particular they found that the rstBartnik-M K innon excitation actually form s
an Interm ediate attractor associated w ith type I critical collapse phenom ena { as opposed
to the type II originally found by Choptuik (both nam ed because of the correspondence to
phenom ena of statistical physics, for a recent overview on critical collapse phenom ena see
eg. Choptuk [)).

W hile both the free scalar eld and the EYM —system do not contain any din ension—
Jess param eters, the -m odels are sim ple system s with a din ensionless coupling constant.
T hus they provide a convenient fam ily of theories that is suitable to study genericity and
bifurcation phenom ena.

Tt isknow n that, apart from trivial solutions, the nonlinear -m odelsdo not adm it soliton
solutions In M Inkow ski space, and when coupled to gravity, there exist neither solitons nor
static black hole solutions that are asym ptotically at (see eg. [)). The presnce of a
positive coan ological constant changes this situation by introducing a length scale into the
m odel. From din ensional analysis one concludes that the behavior of the solutions depends
nonperturbatively on , and that only the sign of is signi cant.

W ithin the static spacetin es we restrict ourselves to spacetin es which possess a static
region that has a regular center and is bounded by at m ost one K illing horizon (as opposad
to two, such as In the Schwarzschild-de Sitter case).

In the coupled case we nd four qualitatively di erent types of solutions along each
\branch" de ned by the \excitation index". For an all coupling constant of the -m odel,
the solutions are globally reqular, and a K illing horizon separates a static region from an
asym ptotically de Sitter dynam ic region. For intermm ediate values of the coupling constant
the situation is sim ilar, but the region exterior to the coan ological horizon expands for som e
tin e, but eventually recollapses. For even higher values of the coupling constant the horizon
encloses a dynam ic region that undergoes collapse. T hus in som e sense the static region gets
tumed \Inside out".

Solutionsw ith a nite regular static region and positive coan ological constant only exist
for a coupling constant an aller than som e critical value which depends on the excitation
Index. The Im it is singular, but combining itwith a Iimit ! 0 yields solutionswhich are
globally reqular and static and have spatial topology S°.

For > Othe\ rststaticexcited states" exhibit one unstablem ode, so that our solutions
form a one param eter-fam ily of candidate solutions for type I Interm ediate attractors. T he
fiull Iinear stability analysis, that leads to this result, w ill be presented in a ssparate paper
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Sin ilar results have been found for the EYM  system , which has been studied in great
detail by Vokov et. al. ].

T he organization of this paper is as follow s: Tn Sec. we introduce our nonlinear -
m odel and discuss its basic properties. W e then specialize to soherical sym m etry using the
hedgehog ansatz for the SU (2)wvalued m atter eld and w rite out the spherically sym m etric

eld equations In a suitable gauge.

The problem of nding regular static solutions ofthe E gy o) problem is discussed in
Sec. [[I. T he static regions containing the soliton are con ned w ithin a K illing horizon, out—
side of w hich the tim elike K illing vector becom es spacelike and the spacetim es are dynam ical.
T he static regions are constructed by solving a boundary value problem asdescribed in Sec.
. The global structure of the spacetin es is then determ ined by evolving the static data
beyond the horizon. T his evolution problm is discussed In Sec. [IIIE|. T he phenom enology
of the solutions we nd is presented in Sec. [IV].

Finally, Sec. [/] gives a discussion of our results and com pares them to the results of
Vokov et. al. [ll] for the EYM -system .

C onventions are chosen as follow s: goacetin e indices are greek letters, SU (2) indices are
uppercase latin letters, the spacetin e signature is ( ;+ ;+ ;+ ), the Ricci tensor is de ned
asR =R , and the spead of light is set to unity, c= 1.

II.THE SU (2)- M ODEL IN SPHERICAL SYMM ETRY
A .Harm onic M aps as M atter M odels

Nonlinear -m odels are special cases of harm onic m aps from a spacetine M ;g ) into
som e target m aniold (N ;G .5 ) (Seeeg. [[1]]). For the SU (2)- -m odel, the target m anifold
istaken as S° with G,y the \round" m etric of constant curvature. H arm onicm apsX ® (x )
are extrem a of the sin ple geom etric action

Z
S = dmxp'_' @X*@XPGas X): 2.1)
By AB :
M
Their in portance for physics was pointed out in a review article by M isner [[3].
Variation of the m atter action €J)) with respect to the metric g  yilds the stress-
energy-tensor of the hamm onicm ap
A B C 1 A B C
T=(rXrXGAB(X)EngrXGAB(X)): 22)
T his stress-energy-tensor obeys the weak, strong and dom inant energy conditions.

Tn order to produce static con gurations attractive and repulsive forces have to be bal-
anced. In particular In at space the virial theorem in plies that the com ponents of the
stress-energy tensor cannot have a xed sign (see the discussion by G bbons EB]). For
static con gurations of any hamm onic m ap the sum of the principal pressures Ai: 1Ty Is
nonpositive everyw here [[3] (T3; denote the Soatial com ponents of the stressenergy tensor
w ith respect to an orthonomm al fram e). T he selfinteraction of any -m odel can therefore
be interpreted as attractive. In contrast for the Yang M ills eld the sum of the principal



pressures isnonnegative, which can be interpreted as a repulsive self-interaction. Both elds
therefore do not allow soliton solutionson a at background. But whilke the YangM ills eld
coupled to gravity adm its solitons by cancelling the repulsive force w ith gravity [[4], the
gravitating -m odel correspondingly does not (see eg. B]).

Thus we cannot expect static solutions to exist unless we add som e \repulsive force" —
or In the presence of nontrivial topology. A s an exam ple for the latter one could think of
a static spherical universe of topology S°, where there is a balance between the tendencies
to collapse tow ards either \center". A repulsive force on the other hand can be ntroduced
w ith a positive coan ological constant . T herefore we consider the total action

Z
p— 1

s= d'x I ® 2)+Lu) 23)

whereL, isgiven by the Lagrangian of {.). Thisaction gives rise to the E instein equations

1
R 5gR+g =8 GT ; (24)

aswellas to the eld equations of the ham onicm ap
g cr X*+ L. x")r XP’r X%)=0; 2.5)

where ~% . denote the Christo el symbols with respect to G 45 . The eld equations thus
allow a generalnonlinear dependence on the eldsX * through the Christo el sym bols and
they depend quadratically on the rst derivatives of the elds.

In units where ¢ = 1 the coupling constant  of the hamm onic m ap has din ension
m ass=length, whereas the gravitational constant G is of din ension length=m ass. Both
constants enter the equations only in the din ensionless product = 4 G , thereby de n—
Ing a oneparam eter fam ily of distinct gravitating m atter m odels. T he param eter plays
a di erent role, sihce it has din ension l=]eng’th2 . Thus, when the cosn ological constant
is nonzero, it provides the length scale of these theories. T herefore all theories w ith the
sam e value of are equivalent rrespective of the value of . If; on the other hand, = 0,
the eld equations are scale invariant. The gravitating SU (2)- -m odel w ith non-negative
coam ological constant thus corresponds to a twoparam eter fam ily of nequivalent theories,
param eterized by the continuous param eter and the discrete param eter sign( ).

B . Spherical Sym m etry

A spherically sym m etricm etric can be w ritten in the general form as the warped product
(eeeg. 3D

ds’=d 2+ R?( ;pd ?; 26)

where d 2 is a general two-din ensional Lorentzian line-elem ent and the area of the orbits
of SO (3) isgiven by 4 R?( ;b).C hoosing the coordinates tand orthogonalone can w rite
the m etrdic In the form



ds’= A (;df+ B ( ;6d %+ R?( ;vd 2: @.7)

In @.]) there is som e gauge freedom left, which can be used to elin inate one of the three
functionsA,B orR.

Oneway to x the gauge would be to use the function R asa coordinate. T his ispossible
aslongasr R & 0. Thisgauge is usually referred to as the Schwarzschild gauge. Here we
w il dealw ith the situation that r R becom es zero on som e m axin al two-sphere (which is
not a horizon), a phenom enon which we w ill discuss In detail below .

Follow ing Vokov et al. fl]we therefore choose a di erent gauge, which keeps close to the
standard Schwarzschild line elem ent in another way: we x A ( ;t) = 1=B ( ;b 0 ( ;0
and keep the area of the SO (3) orbits as the second free finction :

1
ds? = Q ( ;pdf + X .t)d 24+ R?( ;bd 2: 2 8)

Themetric 2.4) is regular where Q ( ;t) and R ( ;t) are regular functions on spacetin g,
except possibly at points where either Q ( ;t) or R ( ;t) vanish. The vanishing of Q ( ;t) is
related to the existence of horizons, which will also be discussed below .

For a reqular spacetinm e the vanishing of R ( ;t) is associated w ith the sihgularity of
Foherical coordinates at the axis of symm etry. Such a coordinate center does not necessarily
have to be present (eg. In a soherical worm holk), but we will require our spacetin es to
possess at least one reqular center { there m ay also be two, such as in the E instein static
universe w ritten in spherical coordinates. Tn the follow ing, several boundary conditions w i1l
be derived from regularity requirem ents, we w ill thereforem ake som e com m ents on reqularity
near the center of spherical symm etry for the m etric de ned in Eq. €.§) : W e assum e the
existence of four reqular meaning C! or C* as appropriate) coordinate fiunctions x, vy, z,
t on the m anifold. A 1l other functions are de ned as reqular if they can be expressed as
regular functions of x, y, z, t. Furthem ore, the relations between the functions R, ,
and x, vy, z are required to be the standard coordinate transform ation between C artesian
and spherical coordinates: x = Rsin sn ,y= Ros sih ,z= R cos . Note that the
oherical coordinates, In particular R, are not regular functions, but all even powers of R
are. Near the axis we choose the param eterization of the radial coordinate such that it
has the sam e reqularity features asR :

= RhR?);

where h isa reqular positive function { and thusalso itself is not reqular. A ny soherically
sym m etric function which is a regular function of x, v, z, t (or jast \regular" for short) can
therefore be w ritten as a regqular finction of 2 and t.

For any =xed tthe center R = 0 then is a regular point of spacetine, ifQ (0;t) = h(0).
W ithout restricting generality we can choose h (0) = 1 for convenience, such that

R(;0= (@1+0(%)
Q(;t)=1+0(?): 29)

In spherical symm etry it is possible to de ne a quasilocalm ass



I r Rr R); (2.10)
which reads
R 0\2
m = 1l — QORH): (2.11)

in our coordinate system @.d). For a recent discussion of the properties of the quasilocal
m ass In spherical symm etry see Hayward [[q].

The hammonic map eld con guration X * (x ) can be called spherically symm etric, if
the Lie derivatives of the energy-m om entum tensor w ith respect to the K illing vector elds
that generate the SO (3) action vanish. O ne possibility to achieve this, is to dem and that all

elds be functionsof and tonly. Thiswould leave usw ith a coupled system ofdi erential
equations for three elds and two m etric filnctions. Since the target m aniold (S°;G ) also
adm is SO (3) asan isom etry group, there isan altemative way to In pose spherical sym m etry
on the ham onicm ap, which isthe wellknown hedgehog ansatz. W e rst Introduce spherical
coordinates (f; ; ) on the target m anifold, writing the SU (2) line elem ent as

ds’ = df?+ sn’fd %+ sn®? d ?): 212)

T he hedgehog ansatz now ties the coordinates on the target m anifold to those on the base
m anifold:

ftx)=£(,;9; x )= 3 x)=": (2.13)

D ue to this ansatz two of the three coupled elds are already determ ined and only one eld
£ ( ;) enters the equations. Them atter eld equations ) are then reduced to the sihglke
nonlinear wave equation

sin (2f)
RZ

2f= ; (2.14)
where 2 is the wave operator of the spacetin e m etric.

R egularity of the hamm onicm ap w ithin this ansatz m eans that when expressing the eld
in tem s of reqular coordinates X # on SU (2), the X ® are reqular eldson spacetin e. Shee
X% x )= (E( ;b= )¥, where x* denote the Cartesian coordinates x;y;z on spacetin e,
the eld £ ( ;t) thushas to be of the form

f(;0= H (=10 +0(%); (2.15)

where H is a reqular function. T hus £ vanishes at the center, which m eans that the center
R = 0 ismapped to one of the poles of the target m anifold, that have been xed via the
hedgehog ansatz.



ITII.STATIC SOLUTION S
A . Static Field Equations

In addition to soherical symm etry we assum e that goacetin e adm its a hypersurface
orthogonal K illing vector eld @, which is tim elikke In som e neighborhood of the (regular)
center R = 0.

The combiations () () 2()and () () of the m ixed com ponents of E instein’s
equations plus them atter eld equation €.14) then yield the ollow ing set of coupled second
order autonom ous O D E s for the m etric functions Q ( );R ( ) and thematter eld £ ( ):

R?0%°= 2R7?; (3.1)
RO= Rf%; (32)
QR?f%°= s 2f: 33)

Furthem ore the above system of equations has a constant of m otion:
2 sin”f + R?( 0f%) + RQR%+ orR® 1= 0: (3.4)

T his expression can either be derived by integrating the system @B.J)-B3) and using the
reqularity conditions at the axis, or by using the ( ) com ponent of E instein’s equations.

Note that if £ isam atter eld solution, then so isalso k f for any integer k.

If is nonzero it sets the length sca]eij thus can b% elim inated In these equations
by using the dim ensionless quantities = and R = R . If, on the other hand,
vanishes, the equations are scale invariant, and thus invariant under rescalings = a and
R = aR . Furthem ore, in this case Eq. (8.) together w ith reqularity conditions at the axis
mplies Q 1.

If we Integrate the equations w ith the above boundary conditions from = 0 to larger
values of one of the follow ing four situations has to occur:

1. the static region \ends" in a singularity,

2. Integration m ight run Into a second (regqular) poke R = 0, which would m ean that the
resuting spacetim e has com pact slices of constant t and is globally static,

3. the static region m ight persist up to spatial in nity,

4. the static region m ight be surrounded by a K illing horizon beyond which spacetim e
becom es dynam ical.

The rst case can easily be produced by shooting o a regular center w ith arbitrary initial
data, it can be excluded by setting up a boundary value problem that enforces one of the
other three cases. T he second case can be discarded for ourm odelw ith positive coan ological
constant, since the existence of a static region w ith two regular centers is not com patible
w ith the eld equations: To see thisrecast Eq. (.)) into the integralform @21)). It is clear
then, that —~fornonzero -Q °diverges if R goes to zero a second tin e. For = 0 of course,
such solutionsm ay exist as eg. the static E instein universe .]), which will be discussed



In the next section. The third case can also be excluded if the coan ological constant is
positive: a static region can not be extended to goatial in nity, but rather a singular point
of the equationsQ ( 4 ) = 0, that corresponds to a horizon, has to develop. T his can be seen
as follow s: Suppose the solution existsup to ! 1 and R ism onotonically increasing —all
other assum ptions autom atically lead to one of the cases 1, 2 or 4 —then one can show , that
for positive Q °<  const= for large enough, which m eans that Q would be bounded
from above by a function that tendsto 1 as ! 1 . So again Q has to cross zero at
som e nite valie of

For positive coan ological constant we therefore m ay con ne ourselves to the cases w ith
horizon, and we w ill construct static regions as an ODE boundary value problem , where
the boundary conditions correspond to a regular center at = 0 and a regular horizon at

= g , where the determ ination of the value of 4 is part of the boundary value problam .
T he appropriate boundary conditions at the horizon w ill be determ ined in Sec. [[IIC], and
the boundary value problkm is described in Sec. .

G iven a static region, ie. a region of spacetim e w here the K illing vector @ is tin elike,
which is bounded by a K illing horizon, we can consider as a second step the tin e evolution
problem of the static data on the horizon into the dynam ic region where the K illing vector
@ is spacelike and the spacetim e is thus hom ogeneous. The tim e evolution problem thus
reduces to a systeam of ODEs which are solved as an iniial value problem as described in

Sec. [T .

B . Exact Solutions

Som e solutions of Egs. @B.J)-B.4) with a regular center can be given in closed form .
T hey do arise as certain lin its of the num erically constructed fam ily of solutions to be given
below .

Firstofall, for > 0, forthetrivialcasef 0Eq. ( hasthe solutionsR ( )= a + b.
In posing the regularity conditions @) this gives de Sitter spacetin e

For £ =2,R () isofthe sam e form as above. Forb= 0 we get

2
R()= ; 0()=1 2 —; £ E; 36)
which looks lke de Sitter for large but has a conical shgularity at the center if > 0.
Furthem ore the static region shrinks w ith increasing and ceases to exist for = 1=2. In
the Iim it of vanishing coupling constant = 0, where spacetim e is de Sitter, this solution
f =2 is still sihgular at the center w ith diverging energy density. N evertheless the total
energy is nite, and this solution m ay be viewed as the \high excitation” lin it of the reqular
solutions, that exist on de Sitter background [4].
Finall, or = 0 Eqg. (B.)), together with regularity conditions at the axis, yields
Q 1. For = 1 the ram aining equations can be solved analytically to give the static
E instein universe:



R()=snh ; Q() 1; £()= : 3.7)

N ote that the stressenergy tensor, which has the form ofa perfect uid in this case satis es
+ 3p= 0. Aswill be described in detail in Sec. the static E Instein universe arises
n the Iim it of m axin al coupling constant of the num erical constructed rst excitation i at
the same tine is set to zero.
For com plteness we m ention that there also exist exact solutions to Egs. GI){ G4),
that do not posses a regular center of spherical sym m etry, such as the N ariai spacetim e.

C . H orizons and global structure

In order to discuss the global structure of the spacetim e and in particular regularity
questions from which we derive the boundary conditions for our ODEs, it is helpfiil to
consider a coordinate system , which is reqular at the horizon. W e write them etric £.9) as

ds’= Q ()dw¥ 2dud + R ( ¥d ?; (3.8)

where the coordinate function and the m etric function Q ( ) coincide w ith those In the
m etric €.4), and the coordinate u is given as
Z
d
u=t — 39)
Q()

Note that the coordinates (8.§) cover only half of the m axin ally extended spacetin e.
In the follow ing, we w ill sim plify our discussion by only taking about the K illing horizon
contained in the portion of spacetin e covered here. A 11 statem ents m ade can be extended
trivially to the com plete spacetin e and in particular the second com ponent of the horizon
by tin e re ection. W e also rem ark that all solutions have the topology S° R.

The static K illing vector eld is @=@u = @=@t, where the latter is taken w ith respect to
the (t; ) coordinates. The metric (3.4) is reqular ifQ ( ) and R ( ) are regular functions,
exceptwhen R = 0, which corresponds either to the usual coordinate singularity of spherical
symm etry, which hasbeen discussed in Sec. (IIB|) or to a spacetin e singularity, as discussed
in Sec. (IIE]).

The K illing vector eld @,, which we have assum ed to be tin elke In som e neighborhood
of the (regular) center R = 0 need not necessarily be gblkally tin elike. Regions where it
becom es spacelike, ie. Q ( ) < 0, aredynam ic w ith hom ogeneous spacelike slices of constant
tine ,the spatialtopology being S? R . Such regions thus correspond to K antow ski-Sachs
m odels. At the boundary of static and dynam ic regions the m etric function Q ( ) vanishes,
such a surface of = const: is thus a null surface. Furthem ore the K illing vector eld @, is
null and tangent on this surface, which therefore is a K illing horizon.

In the presence of an asym ptotic in nity, such as in an asym ptotically at or asym ptot—
ically de Sitter spacetin e, one can use the asym ptotic region to classify event horizons, eg.
as black hole or cosn ological event horizons. Furthem ore one is provided a straightforw ard
de nition of \inward" and \outward" directions. In the cosm ological case these issues are
less clear. W e therefore follow the de nitions of Hayward []: He proposed a localde ni-
tion of a trapping horizon, a concept which does not m ake use of asym ptotic atness and



is therefore also suitable for m ore general situations. Intuitively, the physical interpretation
of the K illing horizon depends on whether the dynam ical region is collapsing or expanding
o the horizon, and whether this region is to be Interpreted as inside or outside. Both can
be formulated In temm s of the null expansions of ingoing and outgoing null rays from
two-surfaces. In spherical symm etry we consider R = const: surfaces, w ith null expansions

_ 1 2,
= ?L R%; (3.10)

where I is the Liederivative along the null directions

L =20 and 1 =20 Q@ (311)
respectively, so
R° R
. = 2— d = 20—: 312
= an Q = 3.12)

The rstuse of the expansions is to de ne a trapped surface in the sense of Penrose [l as a
com pact spatial surface for which + > 0. Ifone of the expansions vanishes, the surface
is called a m arginal surface. For a non—rapped surface and , have opposite signs, and
we calldirections in which the expansion is positive outward, and inward when it isnegative.

On theK illing horizon Q = 0, b-0o=Owhie ,3-06 O0Oand L, H-06 0 (except
when also R%= 0, which we exclude for the m om ent). In Hayward’s term nology E] such
a threesurface is called a trapping horizon. It is said to be outer if L, H-o < 0, Inner
ifL, H-0o< 0, future if , -0 < Oand pastif , H-o > 0. A future outer trapping
horizon provides a general de nition of a black hole, whilk a white hol has a past outer
horizon, and coan ological horizons are inner horizons.

IfRY )= 0 within the static region then

L, H-o< 0; s hoo< 0 (3.13)

and the surface Q = 0 is a future outer trapping horizon. O n the other hand if R ° vanishes
in the dynam icalregion or ism onotonic, then the signs in (3.13) are reversed and one speaks
of a past inner trapping horizon.

N ote, that at points where R? = 0, both = 0. However, this does not lad to
a (trapping) horizon since the expansions m erely change sign. The signi cance of such
m arginal surfaces is that the m eaning of inward and outward directions are reversed. A
typicalexam ple is an \equatorial" two-surface of a round three-gohere at am om ent of tin e
symm etry.

U sing the expansions . and 8I3) one can rewrite the quasilocalm ass @.1])
a 1 i ) (3.14)
m=—@>91+— : .
2 a "

U sing the above assignm ent of inward and outward direction the quasilocal m ass can be
Interpreted as the total m ass that is contained within any spatial three volum e, that is
bounded by the two-sphere w ith areal radius R . On the m argial surfaces, where R% = 0,
the quasilocalm ass equals R=2.
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D .The boundary value problem for the static region

The system of ODEs B.J){3) has sngular ponts forR = 0 and Q = 0. M aking use
of the In posed regularity conditions at the axis £.9) and @.I17) the equations dem and In

addition Q ®(0) = 2 =3. Note that solutions, that are reqular in a neighborhood of = 0
are determ ned by the value of the singke parameter ¢ £°(0).
T he other singular point occurs at the horizon, where Q ( 3 ) = 0. Formm al Taylor series
expansions around = y give
Q% 5)
0()=05( w)+=——( w)P+0(  a))
0 “(u) 2 3
R()=Rg +R (a)l n)t 5 ( a)”+ O (( a)’)
0 £P( ) 2 3
f()=Db+ £(u)l B )+ 5 ( )"+ O (( w)); (3.15)
w here
g; f(ug)=b R(g)=Ryz; 0% x)=0Qy (3.16)

are free shooting param eters. T he other coe cients are determ ined by the requirem ent that
Q and R be regular functions of . Consistency with Egs. [3d) — [34) then am ounts to the
conditions:

1 2 sih®b R?Z

RO = ; 317
(n) RHQﬁ ( )

0 0
00(y)= 22 lelle) o, 3.18)

Ry
0 )= sinZb 3.19)

Qo r2 '
sh 2b RO% 4)

£0 = + 2b+ : 320
TRz TR, T o) 020

In order to determ ine the spectrum of static solutions for a xed coupling constant , we
solve the boundary value problem Egs. G.)) { 83) with boundary conditions €.9), €.19)
and (3.3) between axis and horizon. W e use a standard two point shooting and m atching
m ethod (routine d02agfofthe NAG lbrary @]), w here the param eters £90); 4;f( 4 )Ry
and QY serve as shooting param eters.

For = 0 a discrete oneparam eter fam ily of solutions has already been discussed In
@]. m order to get good initial guesses for the shooting param eters for > 0, we ollow
one solution from = 0 up to higher values of , interpolating the values of the shooting
param eters at the present and last \ —step" to obtain values for the next \ -step".

E . Integration T hrough the H orizon

Since the singularity at the horizon is m erely a coordinate singularity, we can extend
spacetin e through the horizon and reintroduce the coordinates n @) i the dynam ic
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region beyond the horizon. The K illing vector eld @ becom es spacelike, and instead of t
the tin elke coordinate is . The coupled system of ODEs ) { ) together w ith initial
conditions 13) therefore constitute an initial value problm .

W hilke integrating forward in tine , essentially two things can happen according to the
behavior ofR ( ):

1. R ( ) Ismonotonically ncreasing forall > 0. Then tim e evolution existsforall > 0.
This can be seen by tuming Egs. 8.])- 83) into integral equations:

v4
Q%= 2 R%d 321)
- =
0
Z
R= 1 R £%d (3 22)
0
7
0 1 .
£0= = sin 2f)d : (323)

A1l rst derivatives are bounded as long as Q and R don’t go to zero. Beyond the

horizon Q cannot go to zero, shce Q%< 0 forall > 0Oand Q (4 )= 0. R cannot go
to zero since it is m onotonically ncreasing by assum ption and R (0) = 0. T herefore
Q;R and f stay nite forall nite

From Eq. §27) it ®llowsthat 0 < R? 1 forall 0,soR=0()r ! 1.

From Eq. §21) we get, that Q = O ( %) and from Eq. §23) we see that £ goes to
zero as ° and therefore £ goes to a constant at in nity.

2. R develops an extremum at some nite o > 0.ShceRP O0frall andRY )< 0
forall > o, which ollows from Eq. §27),R goesto zero at some nite g > 4 .
Herewe already excluded thecase s < g in Sec. [[II2], sihce thism eans a shgularity
in the static region.

For the sam e reasons as above, tin e evolution exists forall < . In thelmit !

s a spacetim e singularity occurs. This follow s from ingpection of the K retschm ann
nvariant:

1
R R = o7 4+ 4R2QPRE + R%Q™ +
+ R’ R’OR® R? +40% R®+ 2R°R™ (3.24)
Since by assum ption Q ( );Q0% ) and R( ) arenegative near s alltem sofEq. §24)

are non-negative and at least som e of them clearly have a nonzero num erator while
the denom nator vanishes w ith som e power of R .

The construction of solutions beyond the horizon consists of solving the initial value
problem , ie. we Integrate Egs. 8J)-B3) with mitial conditions 19) for > 4, where

12



the parameters 4 ;£ (5 );Ry and Qg are determ Ined by the solutions of the boundary
valie problem described in Sec. [IIID]. For num erical integration we used routine d02dbof of
the NAG lbrary [§].

IV.PHENOM ENOLOGY OF SOLUTIONS
A .Phenom enology of N um erically C onstructed Solutionswith > 0

For = 0theE 5y equationsdecouple nto Enstein’s vacuum equationsw ith and
them atter eld equation @.14) on the xed background. W ith our regqularity conditions at
the axis the solution to E instein’s equations is de Sitter space

Q()=1 —; R()= ; (4.1)

whereas the eld equation (J3)) adm its a discrete one param eter fam ily of reqular solutions
[A]. W ithin the static region these solutions oscillate around =2 where energy ncreases
w ith the num ber of the oscillations and is lim ited from above by the energy of the \singular"
solution £ =2. O utside the cosn ologicalhorizon at = 1 the solutions rem ain nite and
tend to a constant near in nity.

Increasing the coupling constant , the num erical analysis show s, that solutions of this
type persist as long as  does not get too large. T he qualitative behavior of the eld £ in
the static region is the sam e as in the uncoupled case, ie. the n—th excitation oscillates n
tin es around =2, whereas the behavior of the eld in the dynam ic region as well as the
behavior of the geom etry depend strongly on the value of the coupling constant

To sum m arize, we get the follow ing qualitative picture of solutions in dependence on the
coupling constant

Foranall ,0 orie (), the solutions are sin ilar to those of the uncoupled case
= 0, that is: the area of SO (3) orbits is m onotonically increasing with , beyond
the horizon the solutions persist up to an in nite value of the coordinate tine . Near
In niy the geom etry asym ptotes to the de Sitter geom etry, that isR = O ( ) and Q
tendsto 1 asO ( ?). A ccording to Hayward’s de nitions ] the horizon is an nner
past trapping horizon, separating the static region from an expanding dynam ic region.
The eld f shows the sam e qualitative behavior as in the uncoupled case = 0 (see

Figs.[] and f}).

For = i) the arealradius R ( ) still increases for all > 0 but this tim e goes
to a constant at In nity, that isR %1 )= 0. For even stronger coupling, i) <
< ), R develops a maxinum in the dynam ic region, ie. R% z) = 0 at some
nite tine 5 > 4 (e Fi. f}). Aswas discussed In Sec. R then decreases
and goes to zero gt som % nite coordinate tine ¢ { which corresponds to the nite
proper tine ¢ = HS d = Q (). This causes the geom etry to be singularat 5. The
horizon, which again is an inner past trapping horizon ssparates the static region from
an nitially expanding dynam ic region, which reaches its m axin al spatial extension
at g and then recollapses to a singularity at . Themaximum of the areal radius
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occurs at earlier and earlier tin es as the coupling constant is increased until it m erges
w Ith the location of the horizon when = n).

At = (n) the \maximaltwo sphere" coincides w ith the horizon, 5y = 4 . The
fact that R%( y ) = 0 at thisvalue of may be interpreted as exchanging the inward
and outward direction at the horizon: for am aller values of the static region was
surrounded by the inner past trapping horizon, whereas for larger values of the cou-
pling constant, n) < < nmaxy Where p <y, the static region encloses the
horizon, which becom es now an outer future trapping horizon. Beyond this horizon,
the dynam ic region undergoes com plete collapse at = .

Embedding diagram s of the static regions of the rst excitation for several values of
can be found In Fig. [§. W e note, that the \critical" valies of the coupling constant,
wit@); M) and L, .x (M) decrease w ith the excitation num bern. In Sec. wew illgive
an argum ent, that , .x (0) is a decreasing sequence, which is bounded from below by the
m axin al coupling constant , .x (1 ) = 1=2 for the \shgular" solution §4).
T he solutions described above exist in the presence of a positive coan ological constant
> 0.Aswillbedescribed in detailin the next section, Sec. [V BJthelm it ! ., yieds
regular solutions i one takesthe limit ! O appropriately as described in Sec.

B.Thelimit ! p.x@®)

Recall from Sec. that the coam ologicalconstant  sets the length scale in Egs. (§.1)

- B4 and thaEDIt can be elim I3;1(;1‘[601 from these equations, by ntroducing the dim ensionless
quantities = and R = R . This corresponds to m easuring all quantities that have
din ension of length, as eg. the energy E , the coordinate distance of the horizon y from
the origin, the radialgeom etrical distance of thﬁ horizon dy from the origin, the arealradius
Ry of the horizon, and 1=£%(0), in unitsof 1= . W e nd that all param eters, that have
din ension of length go to zero In thgijmlt ! L ax when measured w ith respect to this
length scale. This indicates that 1= is not the appropriate length scale for taking this
Iim it. W e therefore sw itch to the altemative viewpoint of y as our length scale, and we

X 5 = 1. Tn thissetup dependson and the excitation index n and goes to zero in

the init ! Lax.TheparametersE,dy and 1=£f°(0) attain nite values when m easured
in units of g, whereas Ry = 3 goes to zero. (See Fig. [§). This strongly suggests, that
there exists a solution with = ., which obeysEgs. B81)-B4) with = 0 and hastwo

centers of symm etry. In particular thism eans that the static region of this solution has no
boundary, since any t= const slice has topology S°.
Furthem ore, as can be seen from F ig. , the din ensionlessparam eter £ ( y ) forthe rst

excitation tendsto ,and R%( 4 ) tendsto 1inthelmit ! ,.x.Aswilbe shown in
the next section, Sec. [V.C|, = 0 mmpliessQ 1. The lin itihhg solution with = 0 will

therefore satisfy the regularity conditions £3) and @I3) not only at the axis = 0 but
also at the second zero of R, which m eans that such a solution is globally reqular w ith two
(regular) centers of soherical symm etry. In fact, for the rst excitation this lin iting solution
is just the static E insteln universe 8.]), which can be given in closed form .
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T hese obsarvations allow one to determ Ine the m axim al value of the coupling constant

max ) not as a lim iting procedure ! | 4y, but rather by solving the boundary value

problem Egs. BJ) - B3) with = 0 and with boundary conditions, that correspond to
tw o regular centers of sym m etry.

C .G lobally Static, regular Solutions for = 0

For = 0Eq. () can be solved inm ediately to give R 2Q = const. A ccording to the
regularity conditions at the axis £9) the constant has to vanish, which means that Q% 0
and therefore Q 1. The ram aining systam of equations is:

RP= RfEZ; 42)
R%£%9%= sin (2f) 3)

and
2 sn®f R’f2+ R® 1= 0: (4 .4)

N ote, that this system of O DE s is scale Invariant, that is any solution R ( );f ( ) leadsvia
rescaling to the one param eter fam ily of solutions given by aR (@ );f (@ ). Kesping this in
m ind, we can x the scale arbitrarily, eg. In setting the rst derivative of the el f equal
to one at the origh: £% = 0) = 1. Thereby any solution, that is reqular at the origin, is
determ Ined entirely by the value of the coupling constant

Regularity conditionsat the second \pok"R ( p ) = 0 arethe sam easat the origh, except
that £ either tends to , if its excitation num ber is odd, or to 0 if it has even excitation
num ber. This can be inferred from =2< £ () < fornoddand 0< £(45)< =2 forn
even forall < [ .x, Shoe this isthe case for = 0 and according to (3.1%) no crossing
of the zero-line or -line is allowed. N ote that this corresponds to all odd solutions having
w Inding num ber 1, whereas even solutions are in the topologically trivial sector.

T hese reqularity conditions together w ith the invariance of the equationsunder re ection
at the Jocation of them axin altwo-sphere R%( 5 ) = 0, causes globally reqular solutionsR ( )

tobesymm etricaround z whereasf ( ) =2 iseither antisym m etric forn odd or sym m etric
for n even.
For £ symm etric the form al power series expansions of R ( ) and £ ( ) around = g
gives
R()=R(g)+0( )
£() A R o S SR S ) 4.5)
= arcsin =2 + B— + ;
R (g)2 2 2! F
and for £ =2 antisym m etric we get
2 1 ( £ )? 4
R()=—— (2 1)————+0 ;
() F0( 4 )2 ( ) o (( E) )
f()=5+f0<E>( )+ 0 )) (46)



In order to solve the system @2), @ 3) we again use the shooting and m atching m ethod
on the Interval origin, r ]usihg the above Taylor series expansions to determ ine the bound-
ary conditions at = 5 . Shooting param eters are now  ;£%( ) and for odd solutions
and ;R (gy)and foreven solutions. The results are digplayed in Tablk[f.

Tt is clear from (4 .5) and @), that regqular solutions for = 0 can only exist if > 1=2.
A ssum Ing now , that our num erical observations concerming the rst few excitations extend
to higher excitations, we give the follow Ing argum ent: Since every "branch" ofthe " > 0
solutions" persists up to a m axim al value of beta, which can be com puted by solving the
boundary value problem ¢ 4) togetherw ith reqularity conditions at the two "poles" { which
Impliess > 1=2 { and shcewe know ,thatin thelimit ! O thereexistsan in nite num ber
of excitations [], we conclude that this whole fam ily of solutionswith > 0 persists up to
som e m axin al valie .« (0), which is greater than 1=2. In other words, for any < 1=2
there exists a countably In nie fam ily of solutionswih > 0, whereas for > 1=2 our
num erical analysis show s, that only a nite num ber of solutions exists. (See Tabl ﬂ) .

V.DISCUSSION AND OUTLOOK

W e have shown num erically that the SU (2)- -m odel coupled to gravity with a positive
coam ological constant adm its a discrete oneparam eter fam ily of static spherically sym m etric
reqular solutions. T hese solitonic solutions are characterized by an Integer excitation num ber
n. A given excitation will only exist up to a critical value of the coupling constant ; the
higher n, the lower the corresponding critical value. Our calculations indicate that the
In nite tower of solitons present on a de Sitter background persists at least up to a value
of = 1=2. Thus there exists a 1=2 beyond which the num ber of excitations is nite
and decreases w ith the strength of the coupling. A s m entioned, qualitatively the -m odel
under consideration show s striking sin ilarities to the EYM system as studied in detail by
Vokov etal. Them ain di erence being that the static solutions to the EYM —system depend
on the value of the cosn ological constant while in our case scales out from the equations
and plays the rok of a \bifurcation" param eter. A nother di erence concems the globally
regular static solutions w ith com pact spatial slices. For the EYM system these appear for
de nite values of (n) whilke for the -m odel the corresponding solutions exist only in the
(singular) lin it as goes to zero and de nite valuiesof . Thus In our case there are closed
static universes w ith vanishing coan ological constant, the low est excitation being the static
E Instein coam os. T his ispossible because in this case the stressenergy tensorofthe - eld is
ofthe form ofa perfect uid w ith the equation of statep = =3. A nother Interesting aspect
is the geom etry of a given excitation as a fiinction of the coupling strength : the static region
is always surrounded by a K illing horizon ssparating the static from a dynam ical region,
which for am all couplings becom es asym ptotically de Sitter. A s the coupling is increased
the two-spheres of symm etry beyond the horizon are rst past and then becom e future
trapped and a coan ological singularity develops. F inally, for even stronger couplings, again
the region beyond the horizon collapses, but w ithin the static region the in—and outgoing
directions (as de ned by the sign of the expansion for null geodesics) interchange.

An Inportant question to be answeraed is whether these solitons are stable under an all
radially symm etric tim e degpendent perturbations. In a forthcom ing publication we intend
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to present a detailed stability analysis. W e will show that for > 0 all excitations are
unstable w ith their num ber of unstable m odes Increasing with n. This was to be expected
at least for am all coupling. T he lowest excitation thus has a single unstable m ode and it is
known, from other m odels, that such a solution can play the rolk of a critical solution in a
full dynam ical treatm ent of spherically sym m etric collapse.
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TABLES

n  ax b= Op E=4 E=4 & |
1 1 3 =2 3=2

2 0.74255 6.74225 11.78039 1.74724
3 064931 12.10140 2243662 1.85405

TABLE I. Results for the rstthree excitationsfor = 0. SinceQ 1 the coordinate distance

p of the two regular \poles" equals the radial geom etrical distance dp . The energy density p

and energy E are given in units where £%(0) = 1. The ratio E =dp can be com pared to the results
for solutionswith > 0 and represents the lim i ! max for those solutions.
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FIGURES

FIG.1. The st three solutions for coupling constant = 03 < 4. Inside the horizon at
=gy = 1 the \nth" excitation crosses the =2-lhne n times. In the dynam ic region outside the
horizon the solutions evolve tow ards a constant.

FIG.2. The energy density , = Qn (flg)2 + sin? (fn )=Rg for the rst three excitations at
= 03. { denotes the frist, x the second and + the third excitation, all , have been nor—

m alized to unity at the axis. The corregponding total energies, m easured in units of 1= are
Ei=4 = 1%66621;E,=4 = 188082 and E3=4 = 1:956613.
FIG. 3. The area function R () for the rst excitation for near o (1),

0:470366 < i (1) < 0:470373. T he vertical Iine m arks the horizon at = 0:88761.

FIG. 4. T he rotational surfaces z (R) correspond to the embedding of a t = constslice
( = =2) nto R>. The upper and lower half part of the diagram resem bl the two static re-
glons causally ssparated by the horizon at z = 0. Shown is the geom etry of the rst excitation for
n the range 0 0913 <  ax. The sphere of unit radius for de Sitter space ( = 0) gets

m ore and m ore deform ed as  Increases.

FIG .5. Som e param eters w ith din ension length m easured in units of y . Excgpt Ry allof
them stay nitein thelimit !  ax.M oreover in the lin it the values tend to the corresponding
ones of the static E instein universe, as given in table E

FIG.6. The (dim ensionless) param eters £ ( g ) bandRO( g ) ofthe rstexcitation in depen-
dence of the coupling constant . £ (g ) tendsto nnthelmit ! ax and R% 4 ) tendsto 1
in this 1 it.
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