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Abstract

The asymptotic form of a SU(3) matrix theory groundstate is found by showing that
a recent ansatz for a supersymmetric wavefunction is non-trivial (i.e. non-zero).

February 2000



Maximally supersymmetric SU(N) gauge quantum mechanics [1] in d = 9 has in recent
years received much attention due to its close relation1 to the eleven-dimensional super-
membrane [3] in the N → ∞ limit, its description of the dynamics of N D0 branes in
superstring theory [4], as well as the M theory proposal of [5]. In these physical interpre-
tations the existence of a unique normalizable zero-energy groundstate [6] is an important
consistency requirement. An explicit construction of the vacuum state, though highly de-
sirable, appears to be quite difficult. Another approach is to study the behavior of the
wavefunction far out at infinity where the degrees of freedom in the Cartan-subalgebra
become free and the remaining degrees of freedom form the zero energy vacuum state
of supersymmetric harmonic oscillators [7, 8]. The full asymptotic groundstate was con-
structed for the SU(2) model in [8], here we consider the SU(3) case. Assuming that the
Cartan-subalgebra degrees of freedom are asymptotically governed by a set of free effective
supercharges Qα a proposal was recently made [9] as to which of the harmonic wavefunc-
tions constructed in [10] is annihilated by the Qα. In this letter we prove the non-triviality
of this ansatz.

The asymptotic supersymmetry charge for the d = 9 SU(3) model reads

Qα = −iΓa
αβ

(

θ1
β

∂

∂xa
1

+ θ2
β

∂

∂xa
2

)

(1)

where xa
1, x

a
2 (a = 1, . . . , 9) are the bosonic and θ1

α, θ2
α (α = 1, . . . , 16) are the fermionic

degrees of freedom of the Cartan sector; we work with a real, symmetric representation of
the Dirac matrices and our charge conjugation matrix equals unity. It is advantageous to
go to the complex variables

λ = 1√
2
(θ1 + iθ2) za = 1√

2
(xa

1 + ixa
2)

λ† = 1√
2
(θ1 − iθ2) z̄a = 1√

2
(xa

1 − ixa
2) . (2)

Note that we have now divided the fermions into creation and annihilation operators,
obeying the algebra

{λα, λ†
β} = δαβ , (3)

and we define the fermionic vacuum |−〉 by λα |−〉 = 0. The completely filled state is de-
noted by |+〉 = 1

16!
ǫα1...α16 λ†

α1
. . . λ†

α16
|−〉. Clearly |−〉 and |+〉 are SO(9) singlets. However,

there is a third SO(9) singlet state

|1〉 = (λ†Γabλ†) (λ†Γbcλ†) (λ†Γcdλ†) (λ†Γdaλ†) |−〉 (4)

in the half-filled sector. It can be shown [10] that there are no further SO(9) singlets. A
further symmetry group acting on these states is the Weyl group, the discrete asymptotic
remnant of the continous SU(3) of the full system. The Weyl group for SU(3) may be
generated by two elements P and C [10], which act on the complex fermions λ and λ† as

P : λ → λ† λ† → λ

C : λ → e−
2πi
3 λ λ† → e

2πi
3 λ† . (5)

1based on [2]
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As P interchanges |+〉 and |−〉, leaves the eight fermion sector invariant and the three
SO(9) singlets are known to form one two dimensional irreducible representation under the
Weyl group and one singlet [9] the state |1〉 has to be Weyl invariant. This is consistent
with C transforming |±〉 into exp(∓2πi

3
) |±〉. So |1〉 is the unique SO(9) and Weyl invariant

state.
In the complex variables the supersymmetry charge (1) reads Qα = −i(∂/λ)α − i(∂̄/λ†)α,

where ∂a = d/d za and ∂̄a = d/d z̄a. We seek for an asymptotic groundstate |Ψ〉 obeying
Qα|Ψ〉 = 0. Note that while Qα squares to −∂ · ∂̄, the condition ∂ · ∂̄ |Ψ〉 = 0 does not
imply Qα |Ψ〉 = 0 due to the purely asymptotic considerations, i.e. |Ψ〉 not being square
integrable caused by its singularity at the origin.

Consider now the ansatz for |Ψ〉

|Ψ〉 = ǫα1...α16 Qα1
. . . Qα16

1

(z · z̄)8
|1〉 . (6)

|Ψ〉 is obviously annihilated by Qα, as Qα squares to the Laplacian ∂ · ∂̄ which in turn
annihilates the harmonic function (z · z̄)−8. Note that |Ψ〉 is SO(9)×Weyl invariant by
construction. What remains to be shown, however, is that |Ψ〉 is non-vanishing.

For this we consider the matrix element

〈−|Ψ〉 = ǫα1...α16 〈−| [(∂/λ)α1
+ (∂̄/λ†)α1

] . . . [(∂/λ)α16
+ (∂̄/λ†)α16

]

(λ†Γabλ†) (λ†Γbcλ†) (λ†Γcdλ†) (λ†Γdaλ†) |−〉
1

(z · z̄)8
, (7)

which we now need to normal order by making use of the anticommutator relation

{(∂/λ)α, (∂̄/λ†)β} = δαβ ∂ · ∂̄ + Γab
αβ ∂a ∂̄b . (8)

From the 216 terms generated from expanding out the brackets in the first line of (7) only
those containing 4 (∂̄/λ†) and 12 (∂/λ) survive. Normal ordering of these terms then yields

〈−|Ψ〉 ∼ ǫα1...α16 Γa1a2

α1α2
∂̄a1

∂a2
Γa3a4

α3α4
∂̄a3

∂a4
Γa5a6

α5α6
∂̄a5

∂a6
Γa7a8

α7α8
∂̄a7

∂a8

〈−| (∂/λ)α9
. . . (∂/λ)α16

(λ†Γabλ†) (λ†Γbcλ†) (λ†Γcdλ†) (λ†Γdaλ†) |−〉
1

(z · z̄)8
,

and the final contractions then result in

〈−|Ψ〉 ∼ ǫα1...α16 Γa1a2

α1α2
∂̄a1

∂a2
Γa3a4

α3α4
∂̄a3

∂a4
Γa5a6

α5α6
∂̄a5

∂a6
Γa7a8

α7α8
∂̄a7

∂a8

(∂/Γab∂/)α9α10
(∂/Γbc∂/)α11α12

(∂/Γcd∂/)α13α14
(∂/Γda∂/)α15α16

1

(z · z̄)8
, (9)

where the precise (non-zero) combinatorial coefficient in this relation is not of interest, as
we only need to show the non-vanishing of 〈−|Ψ〉. In order to proceed we note that

(∂/Γab∂/)[αβ] = Γab
αβ ∂ · ∂ + 4 ∂[a Γb]c

αβ ∂c . (10)
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Hence (9) may be reduced to a differential operator in ∂a and ∂̄a of degree 16 acting on
(z · z̄)−8 provided we know the precise form of the 16 index tensor t a1...a16

(16)

t a1...a16

(16) = ǫα1...α16 Γa1a2

α1α2
Γa3a4

α3α4
. . .Γa15a16

α15α16
. (11)

Clearly t a1...a16

(16) must be expressable in form of a large string of space-indexed δ-functions,
the ǫa1...a9 symbol cannot appear. Interestingly enough this tensor also appears in the
leading one-loop quantum correction to the M-theory effective action contracted with four
Riemann tensors [11]. Its precise form can be computed [12] and is most conveniently
written down in a form contracted with an antisymmetric auxiliary tensor Xab

t a1...a16

(16) Xa1a2 . . .Xa15a16 = 105 · 219
[

−5 (trX2)4 + 384 trX8 − 256 trX2 trX6

+72 (trX2)2 trX4 − 48 (trX4)2
]

(12)

where the product of X is to be understood in the matrix sense.
The knowledge of t a1...a16

(16) now enables us to finally evaluate (9) using (10), which is still
rather involved and most effectively done with the help of the computer algebra system
FORM [13]. Our final result reads

〈−|Ψ〉 ∼ (∂2)4
[

(∂ · ∂̄)2 − ∂2 ∂̄2
]2 1

(z · z̄)8
= (∂2)6 (∂̄2)2 1

(z · z̄)8
, (13)

which is non-vanishing and completes the proof of the non-triviality of (6).
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