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1. Introduction

The fundamental supermembrane [1] has many features that make it an attrac-

tive candidate for a fundamental description of M-Theory at the microscopic level

(see e.g. [2] for many further references). As special limits, it contains the type-II

superstrings [3] as well as the d = 11 superparticle [4] and is thereby also related to

maximal d = 11 supergravity [5]. Furthermore, matrix theory can be obtained as a

regularization of the fundamental supermembrane [6]. The theory thus sits atop the

main contenders for a unified theory of quantum gravity, but actually possesses even

more degrees of freedom. This is obvious for the superparticle, where one retains

only the degrees of freedom corresponding to the d = 11 supermultiplet, discarding

all internal excitations of the membrane. In the superstring truncation, which can

be obtained at the kinematical level by a simple procedure called double-dimensional

reduction [7], one keeps the infinite tower of perturbative excited superstring states,

but loses the true M-Theory degrees of freedom. However, one still recovers in this

way both the IIA and IIB superstrings if one keeps the winding modes and associ-

ated BPS multiplets [8, 9]. Finally, maximally supersymmetric matrix theory, which

was proposed as a candidate for M-Theory in the light cone gauge [10, 11], does
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capture the non-perturbative degrees of freedom, but only finitely many (and misses

the winding states of the membrane). At least in the opinion of the present authors,

the successes of the matrix theory proposal are really rooted in the supermembrane

origin of the theory. In particular, supermembrane theory naturally accounts for

all aspects related to longitudinal degrees of freedom, which have to be guessed in

matrix theory because supersymmetric-Yang-Mills theory does not “know” about an

11-th dimension.

Why is it, then, that supermembrane theory has not gained wider acceptance,

despite all its appealing features? One obvious reason is the intrinsic nonlinearity of

the theory that makes it much harder to deal with than the superstring, and that

has until now blunted all attempts to make meaningful calculations at the quantum

level (of course, there is much work on classical and semiclassical aspects of the

d = 11 supermembrane, see e.g. [12]). The supersymmetric SU(N)-matrix theory,

on the other hand, does have the advantage of being rigorously defined as a model of

quantum mechanics (for finite N), and at the same time being an intrinsically non-

perturbative approximation, but it, too, suffers from a host of unsolved problems,

especially concerning the existence and precise nature of the N → ∞ limit. All
matrix theory calculations performed so far are consequently limited in scope; for

instance, scattering amplitudes have only been calculated in the eikonal regime where

no longitudinal momentum transfer is allowed [13, 14]. A recent test of the R4

corrections has failed to reproduce the structures predicted by string theory [15].

A further difficulty with supermembrane theory is that we have at present very

little idea of what the sensible objects are to consider and the relevant quantities

to compute. This question is related to our lack of understanding as to what the

fundamental supermembrane degrees of freedom really are. Owing to the continuity

of the supermembrane spectrum [16] (independently realized in [17]) there appears

to be no analog of the perturbative excited superstring states, even though the su-

permembrane has far more degrees of freedom. A crucial insight, occasioned by the

matrix proposal, was that the excitations of the theory are to be associated with

multi-particle rather than one-particle states [10]. The degeneracy of the membrane

with regard to string-like deformations suggests a similar picture [18]. The only sen-

sible one-particle-like excitations of the theory appear to be the ones associated with

the massless d = 11 supermultiplet. However, it does not seem to be possible to

set up the usual perturbative scheme based on Fock space quantization, or even to

assign a definite “membrane number” to a given supermembrane configuration.

In this paper we take a step in the direction of making supermembrane theory

“more computable”. By generalizing previous work on superstring theory [3] and the

more recent construction of the d = 11 superparticle vertex operators [19], we have

succeeded in identifying the supermembrane vertex operators that are expected to

govern the emission of the massless d = 11 multiplet from the supermembrane. By

construction, our vertex operators contain all previous ones, but they also furnish new
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Figure 1: The hierarchy of theories.

information. Namely, as a byproduct of the present construction, we are able to solve

two outstanding and closely related problems of matrix theory: the construction of

matrix vertex operators and the coupling of the matrix model to a non-trivial d = 11

supergravity background in the light cone gauge. In this way, we are now in a position

to investigate how the various presently available results on superstring and matrix

model amplitudes as well as the non-perturbative results of [20, 21, 19] embed into

supermembrane theory.

The figure displays how the various theories and their vertex operators are con-

tained in the supermembrane. The embedding of vertex operators corresponding to

the dashed lines was already studied in [19].

2. The supermembrane as a supersymmetric gauge theory of

area preserving diffeomorphisms

Supermembrane theory was originally formulated as a covariant theory coupled to an

arbitrary background satisfying the equations of motion of d = 11 supergravity [1].

There are eleven bosonic target space coordinates XM = (Xa, X±) (where indices
a, b, . . . = 1, . . . , 9 label the transverse dimensions), and 32 fermionic fields Θ, which

transform as SO(1, 10) spinors, but are world-volume scalars. All of these fields

depend on the membrane world-volume coordinates (τ, σ1, σ2). Like with superstring

theory, the supermembrane action simplifies dramatically when one imposes the light

cone gauge X+ = p+τ and Γ+Θ = 0 (in the following we shall set p+ = 1 for

simplicity, moreover Γ± = (Γ10 ± Γ0)/√2). These conditions reduce the number of
bosonic degrees of freedom to the nine transverse ones, and halve the number of

fermionic degrees of freedom to the 16 components of an SO(9) spinor θ.

An important property of the light cone gauge fixed theory is its invariance under

a residual infinite-dimensional group, the group of area preserving diffeomorphisms
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(APDs) [22] (whose analog for string theory simply consists of the constant shifts

along the space-like world-sheet coordinate σ1). The canonical constraint associated

with the APDs is actually necessary to eliminate one further bosonic degree of free-

dom in order to balance the number of bosonic and fermionic degrees of freedom on

shell, as is required for a supersymmetric theory. For any two functions A(σ1, σ2)

and B(σ1, σ2) on the membrane the APD Lie bracket is given by

{A,B} := εrs∂rA∂sB , (2.1)

where ∂r := ∂/∂σr. In this interpretation, one views the coordinates (σ1, σ2) not

as providing coordinates for the membrane, but rather as a parametrization of the

APD Lie algebra elements.

This residual invariance can be exploited to reformulate the light cone super-

membrane theory as a supersymmetric gauge theory of area preserving diffeomor-

phisms [6], thereby establishing the link between the supermembrane and maximally

extended supersymmetric-Yang-Mills theory. To this aim one introduces (by hand)

an APD gauge field ω, such that in the gauge ω = 0 one reobtains the original

supermembrane action in the light cone gauge. The resulting theory coincides with

the dimensional reduction of maximally supersymmetric-Yang-Mills theory to one

(time) dimension, i.e. a model of supersymmetric quantum mechanics, but with an

infinite-dimensional gauge group (for finite dimensional gauge groups, these models

were originally derived in [23]). The APD gauge field ω then coincides with the time

component of the gauge field of dimensionally reduced super-Yang-Mills theory.

The supersymmetric lagrangian of the APD gauge theory reads

L = 1
2
(DXa)2 − iθDθ − 1

4

{
Xa, Xb

}2 − iθ γa{Xa, θ} , (2.2)

where

DO = ∂0O − {ω,O} (2.3)

and where the infinitesimal area preserving diffeomorphisms

σr −→ σr + εrs∂s ξ(σ) (2.4)

act on the fields as δXa = {ξ,Xa}, δθ = {ξ, θ} and δω = ∂0ξ + {ξ, ω}.
The lagrangian (2.2) is invariant under the supersymmetry variations

δXa = −2ε γaθ ,
δθ = iDX · γ ε− i

2

{
Xa, Xb

}
γabε+ η ,

δω = −2εθ . (2.5)

As expected from the d = 11 origin of the model, there are still 32 supersymmetry

parameters. These are split into two 16-component SO(9) spinors η and ε. Following
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established usage, we will refer to them as linear supersymmetry (parametrized by η)

and non-linear supersymmetry (parametrized by ε) transformations, respectively.

The linear supersymmetry transformations obviously affect only the zero modes.

The equations of motion that follow from the above action are

0 = D2Xa − {{Xa, Xb
}
, Xb
}− i{θ, γaθ} , (2.6)

0 = Dθ + {γ ·X, θ} , (2.7)

0 = {DXa, Xa} − i{θ, θ} . (2.8)

The last of these equations, obtained by varying the gauge field ω, is the constraint

associated with the APD gauge invariance on the membrane.

As shown in [6], the above model can be approximated by a supersymmetric

SU(N)-matrix model, such that the full theory is (formally) recovered by taking the

limit N → ∞. The essential ingredient here is the result that the group of APDs
can be approximated by SU(N). This statement, first established for spherical mem-

branes in [22] and for toroidal ones in [24, 25], actually holds for membranes of arbi-

trary topology [26]. The prescription for obtaining a matrix model from the above la-

grangian is simple: just replace the target space fields by SU(N) matrices according to

Xa
(
τ, σ1, σ2

) −→ Xa
mn(τ) ≡

∑
A

XaA(τ) Y A
mn ,

θα
(
τ, σ1, σ2

) −→ θαmn(τ) ≡
∑
A

θAα (τ) Y
A
mn (2.9)

with m,n = 1, . . . , N labeling the entries of the N × N -hermetian matrices Xa and

θα, and a (hermitian and orthonormal) basis {Y A | A = 1, . . . , N2−1} of the SU(N)
Lie algebra. Furthermore, the APD Lie bracket gets replaced by a matrix commuta-

tor {· , ·} → i [· , ·]. This is all that is needed to get the matrix model, proposed as a
candidate for a microscopic description of M-Theory in the light cone gauge [10]. We

will return to matrix theory in section 5, to show how our results can be exploited

to derive vertex operators for the matrix model, and to couple the matrix model to

a non-trivial d = 11 background.

An equally important property of the supermembrane is that it contains the

superstring as a special truncation. The embedding is achieved by identifying the

membrane target space coordinate X9 with the world-volume coordinate σ2, a pro-

cedure called “double-dimensional reduction” [7]. Setting X9 = σ2 and letting all

other fields only depend on σ1, with i, j labeling the first eight transverse directions,

the action (2.2) collapses to1

LDDR = 1
2

(
∂0X

i
)2 − 1

2

(
∂1X

i
)2 − i θ∂0 θ + i θγ9∂1θ (2.10)

1Since σ2 ∈ [0, R), there are also the winding modes associated with the compactification on
the circle.

5



J
H
E
P
0
5
(
2
0
0
0
)
0
0
7

which is just the Green Schwarz light cone lagrangian of the IIA superstring.2 As

we will see, the superstring vertex operators can be recovered from those of the

supermembrane by an analogous procedure.

3. The vertex operators

The massless states of the supermembrane (and the supersymmetric matrix model)

are expected to yield a massless multiplet of d = 11 supergravity, containing the

graviton, the three-form gauge potential and the gravitino (see [27] for progress in

establishing the existence of such states). We are therefore interested in constructing

candidates for vertex operators that would describe the emission of these massless

states from the supermembrane (due to the continuity of the supermembrane mass

spectrum, there appear to be no discrete excited supermembrane states). Clearly,

an essential consistency requirement for such operators is that they should coincide

with the corresponding ones of the d = 11 superparticle [19], as well as with the

full superstring vertex operators upon double-dimensional reduction. We note in

passing that the leading θ contribution to the (covariant) gravitino vertex operator

has already been used in computations of membrane instanton effects in [28].

To arrive at closed expressions for the vertex operators, we follow the strategy

that was already successfully employed in the construction of superstring vertex op-

erators [3], and more recently the construction of vertex operators for the d = 11

superparticle [19]. Namely, one exploits the fact that under the above supersymme-

tries the vertex operators should vary into one another, such that the transformations

can be thrown onto the corresponding variations of the polarizations as they follow

from d = 11 supergravity. Schematically, we thus have

δVh = Vδψ[h] ,

δVC = Vδψ[C] ,

δVψ = Vδh + VδC (3.1)

up to total derivatives (while the total derivatives in [19] were always derivatives w.r.t.

time, they here appear both as D(· · ·) and {· , ·}). The variations to be performed
on the l.h.s. of these expressions are the ones of the supersymmetric APD gauge

theory given in (2.5) above, whereas the variations on the r.h.s. are those induced

by d = 11 supergravity on the various polarizations. By δψ[h] and δψ[C] we here

2For the SO(9) Clifford algebra, we choose the following representation:

γ9 =

(
1 0

0 −1
)
, γi =

(
0 Γi

Γ̄i 0

)
,

where Γi
αβ̇
and Γ̄iα̇β are the standard SO(8) Γ-matrices.
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designate the terms in the gravitino variation depending on the graviton and three-

form polarizations h and C, respectively. A detailed explanation of the general

procedure can for instance be found in [19].

An alternative route to arrive at our results would be to start from the covari-

ant d = 11 supermembrane [1], whose background coupling is explicitly known in

superspace. This approach would yield the fully covariant vertices, which should then

reduce to the vertices presented above in the light cone gauge. However, obtaining

the component form of this action by constructing the superspace vielbein and ten-

sor gauge field in terms of the component fields to all orders in θ appears to be a

prohibitively difficult task: to date the expansion is only known up to order θ2 for

general backgrounds [30] (incidentally, the fully covariant vertex operators are not

even known for the GS superstring or the superparticle). The light-cone approach

adopted here proves to be far more efficient because the expansion in θ already ter-

minates at order five — as opposed to order 32 for the covariant expressions. This

demonstrates again the drastic simplification of the fermion sector in the light-cone

gauge, already seen for the flat background action.

Let us now present the results, and then comment on their derivation and the

various consistency checks which we have performed to ascertain the correctness of

these expressions. All vertex operators come with a factor exp(−ik ·X) exp(ik−τ),
where ka is the (transverse) momentum of the state emitted. Following standard

practice in string theory [29], we will set k+ ≡ k− = 0 in order to avoid the appear-
ance of the longitudinal target space coordinate X−(τ, σ1, σ2) in the exponential.3

Furthermore we shall often disregard the extra factor exp(ik−τ) in our considera-
tions, except in those places where it gives extra contributions from integrating by

parts the time derivative operator D.

The vertex operators are contracted with the polarizations corresponding to the

massless states of d = 11 supergravity. Choosing the gauge conditions ha− = h−− =
h+− = 0, Cab− = Ca+− = 0, ψ− = ψ̃− = 0, and splitting the remaining polarizations
according to their longitudinal content, we have

graviton : (hab, ha+, h++) ,

three-form : (Cabc, Cab+) ,

gravitino :
(
ψa, ψ+; ψ̃a, ψ̃+

)
. (3.2)

Note that again we have 32 spinor components in accordance with the d = 11 origin

of the model, namely 16 components for ψ and ψ̃ each. We will also use the gauge

3We are aware that this choice of frame is somewhat questionable, although widely adopted:

with it, the transverse momentum components must become complex. In addition, there are inverse

factors of 1/k+ in some of the compensating transformations; fortunately, these drop out due to

the gauge invariance of the vertices.
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invariant combinations

Fabcd := 4k[aCbcd] , Fabc+ := 3k[aCbc]+ + k+Cabc . (3.3)

The polarizations are subject to the following physical state constraints [19]:

kahab = haa = 0 = k
aCabc ,

γa ψ̃a = γ
bkb ψ̃a = k

a ψ̃a = 0 = k
a ψa ,

γa ψa = ψ̃+ , kbγb ψa = k
−ψ̃a . (3.4)

For the bilinears in the sixteen-component real spinors θ we introduce the notation

Rabc =
1

12
θ γabcθ , Rab =

1

4
θ γabθ . (3.5)

The key SO(9) Fierz identity for θ reads

θα θβ =
1

2
δαβ δ

(2)(0) +
1

32
γabαβ θγab θ +

1

96
γabcαβ θγabcθ . (3.6)

The singular δαβ δ
(2)(0) term here arises if one assumes the standard canonical an-

ticommutation relations for the fermionic operators θα. Fortunately, however, this

term drops out in all the manipulations performed in this work and is thus irrelevant

to our final expressions.

Let us now state the main results of this paper and describe its derivation in the

next chapter. The graviton vertex operator is given by

Vh = hab

[
DXaDXb − {Xa, Xc} {Xb, Xc

}− iθγa {Xb, θ
}−

− 2DXaRbc kc − 6{Xa, Xc}Rbcd kd + 2R
acRbd kc kd

]
e−ik·X , (3.7)

Vh+ = −2ha+
(
DXa −Rabkb

)
e−ik·X , (3.8)

Vh++ = h++ e
−ik·X . (3.9)

For the vertex operator corresponding to the three-form potential, we find

VC = −CabcDXa
{
Xb, Xc

}
e−ik·X +

+Fabcd

[(
DXa − 2

3
Rae ke

)
Rbcd − 1

2

{
Xa, Xb

}
Rcd−

− 1
96

{
Xe, Xf

}
θγabcdefθ

]
e−ik·X , (3.10)

VC+ = Cab+
({
Xa, Xb

}
+ 3Rabc kc

)
e−ik·X . (3.11)
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Finally, for the gravitino vertex operators, we obtain

VΨ = ψa

[(
DXa − 2Rab kb + γc {Xc, Xa}

)
θ
]
e−ik·X +

+ψ̃a

[
γ ·DX

(
DXa − 2Rab kb + γc {Xc, Xa}

)
θ +

+
1

2
γbc
{
Xb, Xc

} (
DXa − {Xa, Xd

}
γd
)
θ +

+ 8γbθ
{
Xb, Xc

}
Rcad kd +

5

3
γbcθ
{
Xb, Xc

}
Rad kd +

+
4

3
γbcθ
({
Xa, Xb

}
Rcd +

{
Xc, Xd

}
Rab
)
kd + (3.12)

+
2

3
i
(
γbθ{Xa, θ}γbθ − θ{Xa, θ}θ

)
+
8

9
γbθ RacRbd kc kd

]
e−ik·X ,

VΨ+ = −
[
ψ+θ + ψ̃+

(
γaDXa +

1

2
γab
{
Xa, Xb

})
θ

]
e−ik·X . (3.13)

Concerning the above vertices one should keep in mind that relaxing the frame

choice k+ = 0, we would have to cope with extra terms involving the longitudinal

component k+X− not only in the exponential, but also in the prefactors multiplying
the exponential. Secondly, when passing to the quantum theory we must be prepared

to modify the vertices by extra “renormalizations” as would be the case for composite

operators in any interacting quantum field theory (such as QCD). However, such

modifications are very tightly constrained in that they must not only preserve the

symmetry properties to be discussed below, but also reduce to the standard normal-

ordering prescription in the superstring limit.

4. Consistency checks

The complete expressions given above were arrived at by exploiting a number of

constraints and consistency requirements. There are altogether four of these, which

follow from (i)-gauge invariance, (ii)-dimensional reduction, (iii)-linear supersym-

metry, and (iv)-non-linear supersymmetry. We will now discuss these in turn. A

further (and quite tedious) check, which we have not performed, would be to verify

the covariance of the vertices under Lorentz boosts in eleven dimensions, using the

supermembrane boost generators constructed in [25].

4.1 Gauge invariance

Gauge invariance of the vertices requires that they be left unchanged under the

following transformations,

δhab = k(aξb) , δha+ =
1

2
(kaξ+ + k+ξa) , δh++ = k+ξ+ , (4.1)
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δCabc = 3k[aξbc] , δCab+ = 2k[aξb]+ + k+ξab , (4.2)

δψa = kaε , δψ̃a = kaη ,

δψ+ = k+ε , δψ̃+ = k+η (4.3)

which are induced on the polarization tensors by the corresponding gauge symme-

tries of d = 11 supergravity. The transformations listed, respectively, correspond to

(linearized) coordinate transformations (with parameter ξa), to tensor gauge transfor-

mations (with parameter ξab = −ξba), and to the inhomogeneous (field independent)
part of the supersymmetry transformations. Gauge invariance holds only on-shell,

because in order to establish it, we will have to make use of the equations of mo-

tion (2.6), (2.7) and (2.8).

The invariance under tensor gauge transformations is manifest in the transverse

sector, except for the first term in VC , which transforms as

δξVC =
[
−ξbc k ·DX

{
Xb, Xc

}− 2ξbcDXb {Xc, k ·X}
]
e−ik·X+ik

−τ =

= −k− ξbc
{
Xb, Xc

}
e−ik·X+ik

−τ (4.4)

upon partial integration. This precisely cancels the variation of VC+ as

δξVC+ = 2i ξb+

{
e−ik·X+ik

−τ , Xb
}
+ k− ξab

{
Xa, Xb

}
e−ik·X+ik

−τ , (4.5)

where the first term in (4.5) is a total derivative.

The graviton vertex requires a little more work: replacing hab by k(aξb) in (3.7)

we see that several terms drop out by antisymmetry. For the remaining ones, we get

δξVh =

[
D(k ·X) (D(ξ ·X)−Rabξakb

)− {k ·X,Xc}{ξ ·X,Xc} × (4.6)

× 3{k ·X,Xc}Rabcξakb − i

2
θξaγ

a{k ·X, θ} − i

2
θkaγ

a{ξ ·X, θ}
]
e−ik·X .

Next we integrate by parts the terms involving k ·X; this yields

δξVh = ie−ik·X
[
−D2(ξ ·X) + {Xc, {Xc, ξ ·X}}+ i

2
{θ, ξaγaθ}

+
1

2
Dθγabθ ξa kb − 1

2
θk · γ {ξ ·X, θ}+ 1

2
{Xc, θ}γabcθ ξa kb

]
+k−

(
D(ξ ·X)−Rabξakb

)
e−ik·X . (4.7)

The terms in the first two lines vanish by making use of the equations of motion

of Xa (2.6) and θ (2.7), whereas the last term is seen to cancel with the gauge

transformations of the longitudinal graviton vertices

δξVh+ = −
[
ξ− k− + k−

(
D(ξ ·X)− Rabξakb

) ]
e−ik·X , (4.8)

δξVh++ = ξ− k− e−ik·X . (4.9)
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For the gravitino vertex again several terms drop out by antisymmetry, and we

are left with

δξVΨ = −iηe−ik·X
[
Dθ + γa{Xa, θ}

]
+ k− ηθ e−ik·X +

+ εe−ik·X
[
γaDXa

(
D(k ·X) + γb {Xb, k ·X}) θ +

+
1

2
γab
{
Xa, Xb

}
(D(k ·X)− {k ·X,Xc}γc) θ

]
+

+
2

3
ie−ik·X

[
εθ θ{k ·X, θ} − εγaθ θγa{k ·X, θ}

]
. (4.10)

The first line is just the fermionic equation of motion plus a term that cancels against

the gauge transformation of VΨ+ . The remaining terms can likewise be shown to

vanish on shell after some integrations by part, and use of the Fierz identity:

εγa{θ, θ}θ − ε{θ, θ}θ = 1
2
εθ {θ, θ} − 1

2
εγaθ {θ, γaθ} . (4.11)

4.2 Reductions

There are two reductions which provide stringent consistency checks. The first arises

from the comparison of our vertex operators with those of the superparticle recently

determined in [19]. In this truncation one stays in eleven dimensions, but discards

all internal degrees of freedom, such that the variables (Xa, θ) no longer depend on

the coordinates (σ1, σ2), but only on τ . Accordingly, one simply drops the terms

involving the APD Lie bracket {·, ·} in all expressions. Although this looks like a
rather trivial truncation, it still yields a good deal of the information required; in

particular, quartic and quintic fermionic terms are not affected by it at all, as they

are independent ofXa. This allows us to take over the pertinent expressions from [19]

and thereby to fix many terms without further ado.

To check the agreement of our vertices with those of superstring theory (which

are also listed in [19]) after double-dimensional reduction is more subtle, not least

because some “obvious” guesses turn out to be incorrect. In this truncation one

retains the infinite tower of (perturbative) massive superstring states together with

the BPS states (the winding states of the membrane), but d = 11 covariance is lost.

Demanding the doubly reduced vertices to agree with those of superstring theory

then fixes the terms involving the APD Lie brackets, which cannot be determined

from the superparticle vertex operators. It is most remarkable that, despite the ab-

sence of any factorization in eleven dimensions, our vertices do factorize in precisely

the required way after dimensional reduction. Furthermore, they combine the con-

tributions originating from the R ⊗ R and the NS ⊗ NS sectors, which superstring
theory treats separately, into unified expressions.

As already mentioned, upon double-dimensional reduction, the APD brackets

either vanish, or become derivatives w.r.t. the remaining string worldsheet coordinate

11
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σ ≡ σ1, such that

{X i, Xj} = 0 , {X i, X9} = ∂1X i . (4.12)

Adopting the gauge ω = 0, we must then regroup all terms containing derivatives

∂0 and ∂1 in such a way that the derivatives appear only in the left- or right-moving

combinations ∂± ≡ ∂0 ± ∂1, as required by consistency. The SO(9) spinors θ must
be decomposed into SO(8) spinors according to

θ(τ, σ) =

(
Sα(τ, σ)

S̃α̇(τ, σ)

)
. (4.13)

From the equations of motion (2.7), or from the reduced action (2.10), it im-

mediately follows that ∂−S = ∂+S̃ = 0. Therefore, in the reduction the spinor

θ decomposes into the the left- and right-moving free fermions of IIA superstring

theory. It is easy to see that

Rij =
1

4
SΓijS +

1

4
S̃ΓijS̃ , Ri9 =

1

2
S̃ΓiS , (4.14)

Rijk =
1

6
SΓijkS̃ , Rij9 =

1

12
SΓijS − 1

12
S̃ΓijS̃ (4.15)

in terms of SO(8) spinors. Let us emphasize once more that the superparticle re-

duction ensures that quartic and quintic fermionic terms work by themselves, so the

tests performed below concern only terms containing the APD bracket.

For the d = 10 graviton hij , an NS ⊗ NS field, the double-dimensional reduc-
tion gives

(Vh)DDR = hij

[
∂0X

i∂0X
j − ∂1X i∂1X

j − 1
2
∂0X

i
(
SΓjmS + S̃ΓjmS̃

)
km +

+
1

2
∂1X

i
(
SΓjmS − S̃ΓjmS̃

)
km +

1

4
SΓimS S̃ΓjnS̃kmkn

]
e−ik·X =

= hij

(
∂+X

i − 1
2
SΓimSkm

)(
∂−Xj − 1

2
S̃ΓjnS̃kn

)
e−ik·X . (4.16)

This is the desired result, see e.g. [19, section 4.1]. For the R ⊗ R vector field hi9,
we obtain

hi9

[
−iθγi∂1θ + 2∂0X iRm9km + ∂1X

jRijmkm + 2R
imR9nkmkn

]
e−ik·X . (4.17)

Again the quartic terms are easily seen to agree. To get rid of the derivatives on θ,

which are absent in the superstring vertices, we make use of the superstring equations

of motion ∂1S = ∂0S and ∂1S̃ = −∂0S̃, and integrate the resulting expression by
parts. After a little algebra we arrive at the desired result:

kihj9

[
SΓijΓkS̃ ∂−Xk − SΓkΓijS̃ ∂+Xk

]
e−ik·X . (4.18)
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The three-form Cabc gives rise to the R⊗R field Cijk and the NS⊗NS field Cij9
in the reduction to ten dimensions, and the corresponding vertices must again be

checked separately. Dimensional reduction of (3.10) yields

(VC)DDR = −Cij9 ∂0X i∂1X
j e−ik·X +

+Fijk9

[
3

4

(
∂0X

i − 2
3
Rimkm

)
Rjk9 − 1

6
R9mRijkkm − 1

4
∂1X

iRjk

]
e−ik·X +

+Fijkl

[(
∂0X

i − 2
3
Rimkm

)
Rjkl − 1

48
∂1X

m θ γijklm9θ

]
e−ik·X . (4.19)

The superstring vertices involving the R⊗R field Cijk can be deduced from the formu-
las listed in [19, section 4.1]. They are given by (dropping the quartic fermion terms)

1

48
Fijkl

[
SΓijklΓmS̃ ∂−Xm + S̃ΓijklΓmS ∂+X

m
]
e−ik·X =

= Fijkl

[
1

6
∂0X

l SΓijkS̃ − 1
24
∂1X

m SΓijklmS̃

]
e−ik·X (4.20)

which indeed agrees with the result derived before. The agreement for the NS ⊗NS
vertex involving Cij9 is verified similarly.

More work is required to check the gravitino vertex. Most of the terms can be

guessed correctly by making the “obvious” substitutions, such as

(
∂±X i (ΓiS̃)α

∂∓X i
(
Γ̄iS
)
α̇

)
−→
(
γaDXa ± 1

2
γab
{
Xa, Xb

})
θ . (4.21)

The substitutions for the terms cubic in θ and containing an APD bracket are more

tricky. Under double-dimensional reduction

6ψ̃aγb θ R
acdkc

{
Xb, Xd

} −→
−→ 1
2

(
ψ̃iαΓ

j

αβ̇
S̃β̇ + ψ̃iα̇Γ

j
α̇βSα

)(
SΓimS − S̃ΓimS̃

)
×

×km ∂1Xj +
(
ψ̃iαSα − ψ̃iα̇S̃α̇

)
SΓijmS̃km ∂1X

j . (4.22)

Only the terms on the first line of the r.h.s. agree with the corresponding ones for

the superstring. To eliminate the unwanted terms, we must add two further terms

to the gravitino vertex, viz.

ψ̃aγbc θ R
adkd
{
Xb, Xc

}
(4.23)

and

ψ̃aγbc θ
(
Rcd
{
Xa, Xb

}
+Rab

{
Xc, Xd

})
kd (4.24)
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and, by a judicious choice of coefficients try to cancel them. This is indeed possible,

if one makes use of the following SO(8) Fierz identities

ψ̃iαSα SΓ
imjS̃km ∂1X

j = −1
2
ψ̃iαΓ

j

αβ̇
S̃β̇ SΓ

imSkm ∂1X
j + (4.25)

+
1

4
ψ̃iαΓ

j

αβ̇
S̃β̇

(
SΓijS k · ∂1X + SΓjmSkm ∂1X i

)

and

ψ̃iαΓ
j

αβ̇
S̃β̇ S̃Γ

imS̃km ∂1X
j =
1

3
ψ̃iαΓ

j

αβ̇
S̃β̇

(
S̃ΓijS̃ k · ∂1X + S̃ΓjmS̃km ∂1X i

)
. (4.26)

To summarize: the comparison with the d = 11 superparticle and d = 10 superstring

vertices constrains the possible terms so tightly that we are left with unique expres-

sions for the supermembrane vertex operators. The final test is then provided by

supersymmetry.

4.3 Linear supersymmetry

The first consistency check under supersymmetry involves the variation of the vertex

operators (3.7), (3.10) and (3.12) under the linear transformations

δXa = δω = 0 and δθ = η (4.27)

which should induce the homogenous supergravity variations (neglecting longitudinal

polarizations) [19]

δhab = −ψ̃(aγb)η , δha+ = − 1√
2
ψaη , (4.28)

δCabc =
3

2
ψ̃[aγbc]η , δCab+ =

√
2ψ[aγb]η , (4.29)

δψa = kb hca γ
bcη +

1

72

(
γa
bcde Fbcde − 8γbcd Fabcd

)
η ,

δψ̃+ = −
√
2

72
γabcd η Fabcd , δψ+ = δψ̃a = 0 = δh++ (4.30)

of the polarizations. As before we work in the kinematical sector where k+ = 0.

Performing the variation (4.27) on the transverse graviton vertex (3.7) yields

δVh = kb hcaη γ
bc
[
DXa − 2Rad kd − γd

{
Xa, Xd

}
θ
]
e−ik·X −

−hab
[
{Xa, k ·X} ηγbθ + iηγa {Xb, θ

} ]
e−ik·X = −Vδψ[h] , (4.31)

where the two terms in the second line cancel via a partial integration.
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Next we turn to the transverse 3-from vertex whose variation yields

δVC = Fabcd

[
1

6

(
DXa − 2

3
Rae ke

)
ηγbcdθ − 1

36
η γaeθ θγbcdθ ke −

− 1
4

{
Xa, Xb

}
η γcdθ − 1

48

{
Xe, Xf

}
ηγabcdefθ

]
e−ik·X =

= Fabcd

[
1

6
DXa η γbcdθ − 1

4

{
Xa, Xb

}
ηγcdθ − 1

48

{
Xe, Xf

}
η γabcdefθ

]
e−ik·X −

− 1
36
Raf kf

[
ηγa

bcdeθ Fbcde + 8η γ
bcdθ Fabcd

]
e−ik·X , (4.32)

where we have made use of the Fierz identity

Fabcd η γ
aeθ θγbcdθke = −Fabcd

[
η γabcθ θγdeθ ke +

1

4
θγabcdeη θγefθ kf

]
(4.33)

on the terms of order θ3. This result is to be compared with the vertex operators of

the varied gravitino polarizations

Vδψa +
1√
2
Vδψ̃+ =

1

72

(
η γa

bcde Fbcde + 8η γ
bcdθ Fabcd

)
×

×
(
DXa − 2Rab kb − γc {Xa, Xc}

)
θ −

− 1
72
Fabcd ηγ

abcd

(
γ ·DX + 1

2
γab
{
Xa, Xb

})
θ e−ik·X (4.34)

which is easily shown to equal (4.32).

Finally we examine the linear supersymmetry variation of the gravitino vertex,

which due to its size and the required heavy use of Fierz rearrangements in the

computation is considerably more involved.

The variation of the ψa vertex yields

δVψ = ψa

[
η DXa − γbη

{
Xa, Xb

}− ηRab kb − 3γbη Rabc kc

]
, (4.35)

where we made use of the Fierz identity

ψaθ θγ
abη kb = −ψaη Rab kb + 3ψaγbη R

abc kc (4.36)

ignoring longitudinal polarizations. From the longitudinal supergravity variations

(4.28) and (4.29) and the Vh+ and VC+ vertices of (3.8) and (3.11) we see that (4.35)

reads δVψ = −(Vδh+ + VδC+)/
√
2 as expected.

For the more involved ψ̃a vertex let us analyze the resulting terms order by order

in θ to keep the resulting expressions in a manageable size. At zeroth order in θ

one finds

δVψ̃

∣∣∣
θ0
= ψ̃(aγb)η

[
DXaDXb − {Xa, Xc}{Xb, Xc

}]
+

+
3

2
ψ̃[aγbc]η DX

a
{
Xb, Xc

}
+ ψ̃aη DX

b
{
Xb, Xa

}
. (4.37)
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In the first line we can already recognize the θ independent terms of the transverse

graviton and three-form vertex.

For the terms quadratic in θ let us first look at the term which survives the

particle reduction already discussed in [19]

δ
[
−2ψ̃a γ ·DX θRab kb

]
= −2ψ̃(aγb)η DXaRbc kc − 6k[aψ̃bγcd]ηDXaRbcd −
−ψ̃aγbη Rab k ·DX − 3ψ̃aη RabcDXb kc (4.38)

while for the remaining genuine membrane-like terms involving the APD bracket

one finds

δ

[
8ψ̃aγbθ

{
Xb, Xc

}
Rcad kd +

5

3
ψ̃aγbcθ

{
Xb, Xc

}
Rad kd +

+
4

3
ψ̃aγbcθ

({
Xa, Xb

}
Rcd +

{
Xc, Xd

}
Rab
)
kd +

+
2

3
iψ̃a

(
γbθ {Xa, θ}γbθ − θ {Xa, θ}θ

)]
=

= −6ψ̃(aγb)η {Xa, Xc} Rbcd kd + 3k[a ψ̃bγcd]η
{
Xa, Xb

}
Rcd −

−1
2
ka ψ̃bγcdeη

({
Xa, Xb

}
Rcde − 3{Xb, Xc

}
Rdea −

− 3 {Xe, Xa}Rbcd − 3{Xd, Xe
}
Rabc
)
+

+3ψ̃aγbη {k ·X,Xc}Rabc + iψ̃aγbη θγ
b{θ,Xa}+

+2k[aψ̃b]η {Xa, Xc}Rbc − iψ̃aη {θ,Xa} , (4.39)

where we made use of several Fierz rearrangements, in which one also invokes the

physical state constraints (3.4) of the gravitino. Now the first line of the variations

in (4.38) and (4.39) respectively together produce two of the three θ3 terms in the

transverse graviton (3.7) and 3-from (3.10) vertex. Moreover the missing θ3-term

of the three-from vertex is actually given by the second line of the right hand side

of (4.39) as

δFabcd

(
− 1
96

{
Xe, Xf

}
θγabcdefθ

)
=

= − 1
16
ka ψ̃bγcdη

{
Xe, Xf

}
θγabcdefθ =

= − 1
48
ka ψ̃bγabcdefgη

{
Xc, Xd

}
θγefgθ =

= −1
2
ka ψ̃bγcdeη

({
Xa, Xb

}
Rcde − 3{Xb, Xc

}
Rdea −

− 3 {Xe, Xa}Rbcd − 3{Xd, Xe
}
Rabc
)
, (4.40)

where we first dualized the gamma matrices and thereafter reduced ka ψ̃bγabcdefgη to

expressions with three index gamma matrices via the physical state constraints of
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the gravitino (3.4). The missing term −iθγ(a{Xb), θ} of the graviton vertex is found
from (4.38) and (4.39) by first partially integrating the first term of the last line

of (4.39)

3ψ̃aγbη{k ·X,Xc}Rabc e−ik·X =

=

[
− i
2
ψ̃aγbη θγ

abγc{θ,Xc}+ iψ̃[aγb]η θγa
{
θ,Xb

}]
e−ik·X , (4.41)

where we have also made use of the identity γabc = γabγc − 2γ[a δb]c. Now adding
the second term of the last line of (4.39) to (4.41) yields the desired symmetrized

expression iψ̃(aγb)η θγ
a{θ,Xb}. What remains to be shown, however, is that the first

term in (4.41) cancels. This is achieved by again partially integrating the first term

of the second line of (4.38)

−ψ̃aγb η Rab k ·DX e−ik·X =
i

2
ψ̃aγbη θ γ

abDθ e−ik·X − k− ψ̃aγbη Rab e−ik·X (4.42)

which thus cancels the first term in (4.41) upon using the equation of motions for θ

of (2.7).

Putting it all together we arrive at the final result

δVΨ = −Vδh − VδC − 1√
2
Vδh+ −

1√
2
VδC+ +

+ψ̃aη DX
b
{
Xb, Xa

}− 2k[a ψ̃b]η Rac
{
Xb, Xc

}− iψ̃aη θ{θ,Xa} −

−3ψ̃aη RabcDXb kc +
4

3
ψ̃aη R

abcRbd kc kd − k− ψ̃aγbη Rab . (4.43)

The remaining terms in the second and third line are associated with the longitudinal

parts of the vertex operators whose polarization components vanish by our gauge

choices: for instance, it is easy to see that the terms multiplying ψ̃aη arise in the

d = 11 supersymmetry variation of Ca+− and therefore belong to the vertex operator
for Ca+− which may now be read off as

VC+− = Ca+−

[
DXb

{
Xb, Xa

}− iθ{θ,Xa} − 3RabcDXbkc + (4.44)

+ {Xa, Xc}Rcdkd − i

2
θ γac{θ,Xc}+ 4

3
RabcRbdkckd

]
e−ik·X .

Also, the gauge invariance of VC+− may be checked easily. It is important to realize

that these longitudinal operators do appear in the variations even if their polariza-

tions have been set to zero. Compensating gauge transformations are not relevant

here, as the vertex operators are inert under these transformations.
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4.4 Non-linear supersymmetry

The non-linear supersymmetry transformations on the vertex operators give fur-

ther consistency checks. They constitute the ε dependent transformations as given

in (2.5). We restate them here, and denote the transformations as δ̃. The APD

brackets play a major role in the non-linear supersymmetry of the supermembrane

coordinates and mark a difference from the superparticle. This also makes these

transformations non trivial.

δ̃Xa = −2εγaθ , δ̃θ = iDX · γ ε− i

2

{
Xa, Xb

}
γabε ,

δ̃DXa = −2εγaDθ + 2{εθ,Xa} . (4.45)

The corresponding transformations for supergravity wave functions are [19]4

δ̃hab = εγ(aψ b) , (4.46)

δ̃ψa = −k[+h b]aγbε , (4.47)

δ̃ψ̃a = k[ch b]aγ
cbε+

1

72

(
γbcdea Fbcde + 24γ

bcdkbCacd + 4γ
bcdkaCbcd

)
ε , (4.48)

δ̃Cabc =
3

2
εγ[abψ c] . (4.49)

We have quoted the transformations of the transverse components only, as we shall

only need those in the following discussion. In fact, here we present only the trans-

formation of the transverse graviton vertex, and show that the terms remarkably

combine to give the expected gravitino vertices and total derivative terms. The

graviton vertex (3.7) under non-linear supersymmetry gives:

δ̃Vh = hab

[
4 (−εγaDθ + {εθ,Xa})DXb + 4 ({εγaθ,Xc}+ {Xa, εγcθ}) {Xb, Xc

}−
− 2{Xb, DXc

}
εγcγaθ − {Xb,

{
Xe, Xf

}}
εγefγaθ −

− iDXa

(
DXeεγe +

1

2

{
Xe, Xf

}
εγef
)
γbcθkc −

− i{Xa, Xc}
(
DXeεγe +

1

2

{
Xe, Xf

}
εγef
)
γbcdkdθ

]
e−ik·X +

+ihabδ̃θγ
a
{
Xb, e−ik·X

}
θ + 2iεk · γθ Vh . (4.50)

We ignore terms of order θ3 for simplicity at present. The terms in the third and

fourth line of the above equation yield most of the relevant terms. They can be

combined as:

−ihab
(
DXeεγe +

1

2

{
Xe, Xf

}
εγef
)
γbdkd (DX

a + γc {Xc, Xa}) θ −

−ihab
{
Xb, e−ik·X

}
δ̃θγaθ . (4.51)

4We stress once more that the compensating gauge transformations considered in [19], which

are singular in k+, are redundant as they vanish when contracted into the corresponding vertex

operators by the gauge invariance of the latter.
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After a few manipulations in which we commute the γbd to the left to contract it

with εhab, we get the following from (4.51):

iha[bkd ]εγ
db

(
DX · γ + 1

2

{
Xe, Xf

}
γef
)(

DXa + γc {Xc, Xa}
)
θ +

+ 2ihabk
−εγb
(
DXa + γc {Xc, Xa}

)
θ −

− 2habεγaD
[(
DXb + γc {Xc, Xa}

)
θe−ik·X

]
+

+ hab

[
4εγaDθDXb − 2εγaγc{Xb, DXc} − 4{εγaθ,Xc}{Xb, Xc

}−
− 4{Xa, εγcθ}{Xb, Xc

}− 2iεk ·
· γ
(
DXaDXb − {Xa, Xc}{Xb, Xc

})
θ +

+ 2
{
Xa,
{
Xc, Xb

}}
εγcθ − 2{Xe, {Xa, Xc}}εγebcθ

]
e−ik·X +

+ 4habε θDX
a
{
e−ik·X , Xb

}− ihab {Xb, e−ik·X
}
δ̃θγaθ − ∂rW ′r . (4.52)

Here ∂rW
′r comes from the partial integration of terms proportional to {Xa, e−ik·X},

where W ′r = 2εrshab(εγbγeθ∂sXeDXa + εγeγbγcθ∂sX
e {Xc, Xa})e−ik·X. Unlike the

superparticle case considered in [19], where θ̇ = Ẍ = 0 the total derivative term in

the second line of (4.52) involves quite a few terms proportional to Dθ,D2X and

{DX,X} not present for the superparticle, and it is remarkable that the non-linear
supersymmetry variation of the supermembrane yields all the required derivatives.

We use the equations of motion given in (2.8) extensively in the above and in par-

ticular, we take D2Xa + {Xc, {Xa, Xc}} = 0 at this order in θ. Substituting (4.52),
in (4.50), we get

δ̃Vh = δ̃ψa (DX
a + γc {Xc, Xa}) θ +

+δ̃ψ̃a

(
DX · γ + 1

2

{
Xb, Xc

}
γbc
)(

DXa + γd
{
Xd, Xa

})
θ +

+habε
[
− {Xa,

{
Xe, Xf

}}
γefb − 2{Xe,

{
Xa, Xf

}}
γebf
]
θ −

−εDW 0 − ε∂rW r . (4.53)

The term in the third line of (4.53) is easily seen to vanish by Jacobi identity.

The gravitino vertex given in (3.12) is also clearly recovered to this order in θ

(from (4.47) and (4.48), δ̃ψ ∝ k−habγbε, δ̃ψ̃ ∝ k[dhb]aγ
bdε). Also, W r = W ′r −

4habε
rs∂sX

aDXbεθ. The functions

W 0 = 2habγ
a
(
DXb + γc

{
Xc, Xb

})
θe−ik·X ,

W r = 2εrshabεγ
eγa∂sX

e
(
DXb + γc

{
Xc, Xb

})
θe−ik·X (4.54)
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are also expected to obey certain transformation properties under supersymmetry as

given for the superparticle in [19]. However, we have not checked for them, and it

shall be interesting to investigate them in the future.

The variation of the graviton vertex into the gravitino vertex to order θ3 involves

more tedious computations, and we refrain from checking for all the terms. However,

it is easy to see that the following terms arises in the variation

hab
(
4εγaDθRbckc + 2εγ

aθθγbcDθkc − 4iεγaθDX · kRbckc
)
e−ik·X .

This term can be combined into a total derivative and the variation of ψ, as

δ̃ψa(−2θRac kc)e
−ik·X +D

(
4habεγ

aθRbc kc e
−ik·X

)
.

Thus the vertex for ψa is recovered to all orders in θ here.

5. Applications to M(atrix) theory

Our results immediately imply two important applications to matrix theory. Firstly,

we now have the lagrangian for the light cone supermembrane in a weak background,

as the vertex operators represent nothing but the linear coupling of the background

fields to the supermembrane coordinates Xa and θ. Hence

Lweak = L+ Vh(X) + Vh+(X) + Vh++(X) + VC(X) + VC+(X) + VΨ(X) + VΨ+(X) , (5.1)
where L denotes the supermembrane lagrangian in flat space (2.2) and where one
writes the vertex operators of (3.7)–(3.13) in configuration space, e.g.

Vh+(X) = −2
(
DXa −Rab ∂

∂Xb

)
ha+(X) (5.2)

for the linear coupling to the background field h+a(X). We stress that we now

know this action to all orders in θ, which is to be contrasted with the results on

the covariant supermembrane in general background fields [30] where the action

was derived to all orders in the background fields, but only up to order θ2 in the

membrane fermions.5 Clearly our results immediately carry over to matrix theory:

one needs only repeat the usual matrix model regulation [22, 6] of the light-cone

supermembrane using the prescription of (2.9)

Xa(τ, σ1, σ2) −→ Xa
mn(τ) , θα(τ, σ1, σ2) −→ θαmn(τ) (5.3)

with n,m = 1, . . . , N labeling the entries of the N×N hermitian matrices Xa and θα.

Moreover the APD Lie bracket gets replaced by a matrix commutator {· , ·} → i[· , ·].
5In [31] the covariant membrane action for the AdS4 × S7 and AdS7 × S4 backgrounds was

obtained to all orders in θ. It would be interesting to compare these results to ours by taking the

action of [31] to the light-cone.
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The only subtlety in replacing world-space integrals by traces occurs in expressions of

higher than second order in the matrices DXa, θa, [Xa,Xb], [θ,Xb] and exp[−i k ·X],
where we must deal with ordering ambiguities under the trace. However, in order to

maintain the defining transformation properties of the vertex operators under gauge

symmetry and supersymmetry discussed in section 3 for the matrix theory regulation

it is sufficient to replace the world-space integral by a symmetrized trace, i.e.

1

4π

∫
d2σ(· · ·) −→ 1

N
STr[· · ·] , (5.4)

where it is understood that the symmetrization in the trace is to be performed

over the set of matrices (DXa, θa, [Xa,Xb], [θ,Xb], exp[−i k · X]). The vertex
operators obtained in this way may be compared to the results of Taylor and Van

Raamsdonk [32], who derived certain expressions for the energy-momentum tensor,

the membrane current and supercurrent of matrix theory up to quadratic order in

θ and (partially) up to linear order in transverse space derivatives ∂a (related to

the ka in the momentum picture). Their results are based on a one-loop matrix

theory computation for general block-diagonal matrix backgrounds. Happily, we

find agreement with their results to the order that they have computed.6 However,

there are additional operators in the matrix theory picture of [32] coupling to the

background fields ha−, h−−, Cab−, Ca+−, Ψ−, which we have gauged to zero.7

Besides the background field matrix theory action obtained above, we believe

that another interesting application of the supermembrane vertex operators lies in a

new definition of scattering amplitudes in matrix theory. Conventionally these are

evaluated by computing an effective background field action through a fluctuation

expansion around diagonal matrix backgrounds obeying the classical equations of

motion. The obtained effective action is then Fourier transformed and sandwiched

between polarization states in order to obtain genuine S-matrix element in momen-

tum space [14]. This approach only allows for the computation of amplitudes in

the eikonal (zero momentum transfer) limit. Moreover it completely neglects bound-

state effects as it models the complicated-matrix theory ground state by semiclassical

diagonal-matrix configurations.

With the matrix theory vertex operators at hand a much more natural definition

of n-particle scattering amplitudes is given by the path integral

AH1...Hn =
〈

n∏
j=1

∫
dτj STr

(
VHj [X

a(τj), θ(τj)]
)〉
=

=

∫
D[Xa, θ]

n∏
j=1

∫
dτj STr

(
VHj [X

a(τj), θ(τj)]
)
ei SMT [X,θ] , (5.5)

6But there seems to be a mismatch in one order θ2 term in the three-form vertex (membrane

current).
7Our result for VC+− of (4.44) also agrees with [32] to the order that they have computed.
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where Hj denotes the polarization and momentum of the j-th particle. It remains to

be seen whether a (perturbative) evaluation of (5.5) makes sense, because in contrast

to the superstring or the superparticle we are now dealing with the computation of

expectation values of composite operators in an interacting theory. However, the

definition (5.5) overcomes the restriction to the eikonal sector of the conventional

approach, it should include large-N and bound state effects and manifestly obeys

supersymmetric Ward identities, which is far from obvious in the conventional ap-

proach. Also at least for the further reduction to the zero-dimensional IKKT matrix

model of IIB theory [33] a numerical evaluation of scattering amplitudes along the

lines of [34] may now become feasible.

6. Outlook

In this paper we have demonstrated that the supermembrane and the associated

supersymmetric APD gauge theory contain the type-II superstrings and the matrix

model not only at the level of the action, but also at the level of the vertex operators

expected to describe various physical processes. Although a full quantum treatment

of the supermembrane or the equivalent supersymmetric APD gauge theory still

seems difficult, we can now explore the theory much further at the dynamical level

by matching it in the appropriate domains with the simpler subtheories that must be

consistently contained in it. In particular, we have in mind the following comparisons:

• The d = 11 superparticle reduction has been used in [20] to determine the
non-perturbative contributions to the R4 corrections to the effective string ac-

tion in terms of non-holomorphic Eisenstein series (also computed in [21]).

Remarkably, this calculation makes use of only a single term in the graviton

vertex (3.7), namely the zero mode of habR
acRbdkckd (the coefficient of the

fermionic quadrilinear is easily seen to coincide with the linearized Riemann

tensor). The resulting infinite sum over D instanton contributions can be alter-

natively viewed as a sum over BPS multiplets [35]. However, in order to arrive

at a finite result a divergent term must be discarded “by hand” [19, 35]. This

infinity should disappear when the M-theory degrees of freedom are properly

taken into account.

• As already pointed out in the foregoing section, the matrix theory vertex op-
erators afford an entirely novel approach to the computation of scattering am-

plitudes. In particular, it should now be possible to determine these beyond

the eikonal regime. The computation of R4 corrections within the framework

of matrix theory will have to be re-examined.

• Superstring amplitudes should emerge in the superstring limit. While the ma-
trix theory scattering amplitude (5.5) is one way to approximate the APD
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gauge theory path integral∫
D[Xa, θ]

∏
j

∫
dτj d

2σjVHj [X
a(τj , σj), θ(τj , σj)]e

i SAPD , (6.1)

the superstring amplitudes are obtained in a very different limit of the same

expression. In that approximation one looks at the regions where the membrane

degenerates into a multi-string configuration, and the vertex operator insertions

reduce to superstring vertex operators, as we have shown. In this way, one

should also be able to recover multi-string vertex operators (see e.g. [36] and

references therein) from the quantum supermembrane.

Finally, we would like to emphasize once more the intrinsic multi-particle nature

of the theory, which is the main conceptual difference between supermembrane and

superstring theory: it appears to be impossible to tackle supermembrane theory

by first defining one-particle excitations, and subsequently second-quantizing it so

as to obtain its multi-particle states. Therefore, unlike for superstring theory, the

conventional Fock space quantization breaks down. An interesting consequence of

this conclusion is that there should not exist any analog of the vertex operators

corresponding to excited (massive) string states.
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