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Abstract

We apply numerical and analytic techniques to the study of Yang-Mills

integrals with orthogonal, symplectic and exceptional gauge symmetries. The

main focus is on the supersymmetric integrals, which correspond essentially

to the bulk part of the Witten index for susy quantum mechanical gauge

theory. We evaluate these integrals for D = 4 and group rank up to three,

using Monte Carlo methods. Our results are at variance with previous find-

ings. We further compute the integrals with the deformation technique of

Moore, Nekrasov and Shatashvili, which we adapt to the groups under study.

Excellent agreement with all our numerical calculations is obtained. We also

discuss the convergence properties of the purely bosonic integrals.
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I. INTRODUCTION

Recent attempts to describe D-branes through effective actions have revealed the exis-
tence of a new class of gauge-invariant matrix models. These models are related to (−1)-
branes. They differ from the classic systems of random matrices, which have been extensively
studied ever since Wigner’s and Dyson’s work in the 1950’s. The models consist in matrix
integrals of D non-linearly coupled matrices. They are obtained by complete dimensional re-
duction of D-dimensional Euclidean continuum (susy) Yang-Mills theory to zero dimensions,
and we term them quite generally Yang-Mills integrals.

The supersymmetric D = 4, 6, 10 integrals with SU(N) symmetry have already found
several important applications. They are relevant to the calculation of the Witten index of
quantum mechanical gauge theory [1], [2], and to multi-instanton calculations [3], [4] of four-
dimensional SU(∞) susy conformal gauge theory. The D = 10 integrals are furthermore
the crucial ingredient in the so-called IKKT model [5], which possibly provides a non-
perturbative definition of IIB superstring theory. Finally, it remains to be seen whether
Yang-Mills integrals contain information on the full, unreduced field theory through the
Eguchi-Kawai mechanism [6] as the size of the matrices gets large. Some very interesting
recent considerations along these lines can be found in [7].

Yang-Mills integrals are ordinary, not functional integrals. Despite this tremendous
simplification, no systematic analytic tools for their investigation are known to date. We
have developed [8], [9], [10], [11] accurate and reliable Monte Carlo methods which allow to
study the new matrix models as long as the dimension of the gauge group is not too large.
We have found, e.g., that supersymmetry is generically not necessary for the existence of the
integrals [9]. We also computed their asymptotic eigenvalue distributions, which we found
to qualitatively differ between the susy and bosonic case as the size of the gauge group gets
large [10]. For related, complementary studies see [12].

To date all existing studies have focused on the case where the gauge group is SU(N).
In the present paper we generalize to the cases of all other semi-simple compact Lie groups
of rank r ≤ 3. These are, (besides the already known cases SU(2), SU(3), SU(4)) the groups
SO(3), SO(4), SO(5), SO(6), SO(7), Sp(2), Sp(4), Sp(6), and G2, for which we compute
the susy D = 4 partition functions. We were motivated in part by a recent paper of Kac
and Smilga [13] which presented conjectures about the values of the bulk part of the Witten
index (and therefore for the corresponding integrals). Intriguingly, our results are at variance
with their predictions in most cases, indicating that the index calculations for these groups
are even more subtle than the corresponding considerations for SU(N), where the approach
of [13] agrees with the known values.

Moore, Nekrasov and Shatashvili [14] recently employed sophisticated deformation tech-
niques to evaluate the SU(N) susy bulk index for all N and D = 4, 6, 10. The method
apparently leads to the correct result for all SU(N) [8], [9]. Below, we adapt the technique
to the more general groups, and we find again excellent agreement with the Monte Carlo
calculation. This further indicates that the deformation method is indeed reliable.
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II. YANG-MILLS INTEGRALS FOR SEMI-SIMPLE COMPACT GAUGE

GROUPS

For a general semi-simple compact Lie group G we define supersymmetric or bosonic
Yang-Mills integrals as

ZN
D,G :=

∫ dim(G)
∏

A=1

(

D
∏

µ=1

dXA
µ√

2π

)(

N
∏

α=1

dΨA
α

)

exp
[

1

4g2
Tr [Xµ, Xν ][Xµ, Xν ] +

1

2g2
Tr Ψα[Γµ

αβXµ, Ψβ]
]

,

(1)

where dim(G) is the dimension of the Lie group and the D bosonic matrices Xµ = XA
µ TA and

the N fermionic matrices Ψα = ΨA
αTA are anti-hermitean and take values in the fundamental

representation of the Lie algebra Lie(G), whose generators we denote by T A. The integral
eq.(1) depends on the gauge coupling constant in a trivial fashion, as we can immediately
scale out g. Nevertheless, there is a natural convention for fixing g: For an orthogonal set
of generators we should pick g according to their normalization: Tr T ATB = −g2δAB. This
convention is imposed by the index calculations of the next section. In the bosonic case we
simply drop the fermionic variables.

The supersymmetric integrals can formally be defined in D = 3, 4, 6, 10, which corre-
sponds to N = 2, 4, 8, 16 real supersymmetries. We are not aware of a mathematically
rigorous investigation of their convergence properties. However, our numerical studies indi-
cate that they are absolutely convergent in D = 4, 6, 10 (but not in D = 3) for all semi-simple
compact gauge groups. The convergence properties of the bosonic (N = 0) integrals are
discussed in section 6. The variables ΨA

α are real Grassmann-valued and can be integrated
out, leading to a bosonic integral with very special measure:

ZN
D,G =

∫ dim(G)
∏

A=1

D
∏

µ=1

dXA
µ√

2π
exp

[

1

4g2
Tr [Xµ, Xν ][Xµ, Xν ]

]

PD,G(X). (2)

PD,G(X) is a homogeneous Pfaffian polynomial of degree 1
2
N dim(G) given by

PD,G = PfMD,G with (MD,G)AB
αβ = −ifABCΓµ

αβXC
µ , (3)

where the structure constants 1 are defined through the real Lie algebra
[

TA, TB
]

= fABCTC .

Explicit expressions for the Gamma matrices Γµ
αβ and further details on PD,G(X) may be

found in [8].

III. GROUP VOLUMES AND BULK INDICES

It is well known that the susy Yang-Mills integrals eq.(2) naturally appear when one
computes the Witten index of quantum mechanical gauge theory (i.e. the reduction of the

1Note that in [8] we used hermitean generators but defined the structure constants through
[

TA, TB
]

= ifABCTC , so eq.(3) remains valid.
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field theory to one, as opposed to zero, dimension) by the heat kernel method. For the
details of the method we refer to [1], [2]. Specifically, the integrals are related to the bulk
part indD

0 (G) of the index as

indD
0 (G) = limβ→0Tr (−1)F e−βH =

1

FG
ZN

D,G. (4)

The total Witten index “indD(G)” is then the sum of this bulk part and a boundary con-
tribution “indD

1 (G)”: indD(G) = indD
0 (G) + indD

1 (G). The constant FG relating the bulk
index indD

0 and the Yang-Mills integral is independent of D and can be interpreted as

FG =
1

(2π)
1
2
dim(G)

Volume
[ G

ZG

]

, (5)

i.e. essentially the volume of the true gauge group, which turns out to be the quotient group
G/ZG, with ZG the center group of G. In practice, great care has to be taken in using
the relation eq.(5), as the volume depends on the choice of the local metric on the group
manifold. For the present purposes we simply adapted our method for computing FSU(N)

(see [9]) to the relevant gauge groups. An invariant average over the group allows to project
onto gauge invariant states and to derive eq.(4) from the quantum mechanical path integral.
In the ultralocal limit, the quantum mechanics of D− 1 matrices turns into an integral over
D matrices. Then, this integration is over the anti-hermitean generators of the group

DU → 1

FG

dim(G)
∏

A=1

dXA
D√

2π
. (6)

The normalized Haar measure DU on the group elements U ∈ G simplifies significantly
if we restrict attention to the Cartan subgroup of G. A beautiful result of Weyl allows to
explicitly write down the restricted measure. If we parametrize the Cartan torus T by angles
−π ≤ θ1 ≤ π, . . ., −π ≤ θr ≤ π, where r =rank(G), the measure reads

DU → DT =
1

|WG|

(

r
∏

i=1

dθi

2π

)

|∆G|2, (7)

where |WG| is the order of the Weyl group WG of G, and |∆G|2 the squared modulus of the
Weyl denominator:

∆G =
∏

α>0

[

e
i

2
(θ,α) − e−

i

2
(θ,α)

]

. (8)

Here the product is over the set of positive roots of the Lie algebra Lie(G). In the vicinity
of the identity in G the angles θi are small and we can approximate the measure eq.(7) by

1

|WG|

(

r
∏

i=1

dθi

2π

)

∏

α>0

[1

2
(θ, α) − 1

2
(θ, α)

]2
. (9)

Now restricting the flat measure on Lie(G) on the right hand side of eq.(6) to the Cartan
modes θi we get
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dim(G)
∏

A=1

dXA
D√

2π
→ FG

(2π)r

|ZG|
|WG|

(

r
∏

i=1

dθi

)

∏

α>0

[1

2
(θ, α) − 1

2
(θ, α)

]2
. (10)

An important subtlety is that we needed to multiply the measure eq.(10) by an additional
factor |ZG| of the order of the center group ZG of G, as the averaging over the group manifold
localizes on |ZG| points. Finally, the constant FG in eq.(10) is fixed by noting that the flat
measure on Lie(G) is normalized with respect to Gaussian integration

∫

( dim(G)
∏

A=1

dXA
D√

2π

)

exp
[

− 1

2

∑

A

(XA
D)2

]

= 1. (11)

The Gaussian integration of the right hand side of eq.(10) leads to Selberg-type integrals,
see e.g. [15]. Explicit details on how to implement the above procedure for the groups under
study can be found in the appendices. With our conventions for the normalization of the
generators (SO(N): Tr T ATB = −2δAB and Sp(2N), G2: TrTATB = −1

2
δAB) one finds

FSO(N) =
1

2CN

π
N

2

2
N(N−5)

4
∏N

j=1 Γ(j/2)
, (12)

where C2N = 2 and C2N+1 = 1, as well as

FSp(2N) =
1

2

22N2+ N

2 π
N

2

∏N
j=1 Γ(2j)

(13)

and finally

FG2 =
36864

√
3 π

5
. (14)

IV. DEFORMATION METHOD

In [14] it was suggested that the original susy Yang-Mills integrals eq.(1) may be vastly
simplified by a deformation technique. It consists in adding a number of terms to the action
which break the number of supersymmetries from N = 2, 4, 8, 16 to N = 1. Keeping one of
the supersymmetries means that the partition function is “protected” and should not change
under the deformation. This gives the correct result2 for SU(N) and D = 4, 6, 10. The final
outcome is a much simpler integral involving only a single Lie-algebra valued matrix. The
remaining integral is still invariant under the gauge group, and one can therefore pass from
the full algebra to the Cartan subalgebra degrees of freedom. This was derived in [14] in
detail for SU(N) but should carry over immediately to other gauge groups. For D = 4
(N = 4) one finds, in the notation of the previous section (here the product is over all roots
α of Lie(G))

2For unclear reasons it fails for D = 3.
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indD=4
0 (G) =

|ZG|
|WG|

1

Er

∫

(

r
∏

i=1

dxi

2πi

)

∏

α

[

1
2
(x, α) − 1

2
(x, α)

]

[

1
2
(x, α) − 1

2
(x, α) − E

] . (15)

This r-dimensional integral (r =rank(G)) is divergent. There are divergences due to the
poles of the denominator of eq.(15), as well as at infinity, where the integrand tends to one.
These divergences are present since the method starts from the partition sums eq.(1) with
Minkowski signature, i.e. with the Wick-rotated versions of our integrals. The Minkowski in-
tegrals are divergent without a prescription. The poles are regulated by giving an imaginary
part to the parameter E. The singularity at infinity is regulated by interpreting the integrals
as contour integrals3. It would be interesting to complete the arguments by demonstrating
that the Wick-rotation leads to precisely these prescriptions. Very encouraging signs for the
consistency of this method are that the final result neither depends on the location of the
parameter E nor on whether the contours are closed in the upper or the lower half plane
(it is important though that all r contours are closed in the same way). For D = 6, 10
expressions very similar to eq.(15) can be found in [14].

We now present the explicit form of the contour integrals eq.(15) for the groups studied
in the present work (see appendices for details)

indD=4
0 (SO(2N + 1)) =

1

2NN !

1

EN

∮ N
∏

i=1

dxi

2πi

N
∏

i<j

(x2
i − x2

j )
2

[

(xi − xj)2 − E2
][

(xi + xj)2 − E2
]×

×
N
∏

i=1

x2
i

x2
i − E2

(16)

indD=4
0 (SO(2N)) =

2

2N−1N !

1

EN

∮ N
∏

i=1

dxi

2πi

N
∏

i<j

(x2
i − x2

j)
2

[

(xi − xj)2 − E2
][

(xi + xj)2 − E2
] (17)

indD=4
0 (Sp(2N)) =

2

2NN !

1

EN

∮ N
∏

i=1

dxi

2πi

N
∏

i<j

(x2
i − x2

j )
2

[

(xi − xj)2 − E2
][

(xi + xj)2 − E2
]×

×
N
∏

i=1

x2
i

x2
i − (E

2
)2

(18)

3This interpretation furthermore necessitates the inclusion of the factors of i in the measure of

eq.(15) which would not be present in an ordinary integral over a real Lie algebra.
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indD=4
0 (G2) =

1

12

1

E2

∮

dx1

2πi

dx2

2πi

(x1 − x2)
2(x1 + x2)

2x2
1x

2
2

[

(x1 − x2)2 − E2
][

(x1 + x2)2 − E2
][

x2
1 − E2

][

x2
2 − E2

]×

× (2x1 + x2)
2(x1 + 2x2)

2

[

(2x1 + x2)2 − E2
][

(x1 + 2x2)2 − E2
] (19)

They are easily evaluated for low rank, and we present the results in table 1. We
highlighted the cases which were not already indirectly known due to the standard low-rank
isomorphisms so(3) = sp(2) = su(2), so(4) = su(2) ⊕ su(2), so(6) = su(4). Note, however,
that these identities, as well as the final semi-simple Lie algebra isomorphism so(5) = sp(4),
constitute non-trivial consistency checks on the expression eq.(15), as the precise form of
the corresponding contour integrals is different in all these cases. It would be interesting to
compute eqs. (16),(17),(18),(19) for arbitrary rank, as has been done in the case of SU(N)
in [14]. We also checked that the analogous, more complicated D = 6 contour integrals lead
to the same bulk indices, as one expects.

For the groups not related by an isomorphism to SU(N) the rational numbers in table 1
differ from the ones proposed in [13]. I would be important to understand why. We also
do not see how the arguments of section 8 of [14], which seemed to furnish a shortcut
explanation of the SU(N) results, could be adapted to reproduce the numbers highlighted
in table 1.

We next turn to numerical verification of these proposed bulk indices.

Table 1: D = 4 and D = 6 bulk indices for the orthogonal, symplectic and exceptional
groups of rank ≤ 3

Group rank indD=4,6
0

SO(3) 1 1/4
SO(4) 2 1/16
SO(5) 2 9/64
SO(6) 3 1/16
SO(7) 3 25/256

Sp(2) 1 1/4
Sp(4) 2 9/64
Sp(6) 3 51/512

G2 2 151/864

V. MONTE CARLO EVALUATION OF YANG-MILLS INTEGRALS

As in previous works [8,9], we evaluate the Yang-Mills integrals using Monte Carlo meth-
ods. Both the Pfaffian polynomial PD,G and the action S = − 1

4g2 Tr [Xµ, Xν ][Xµ, Xν ] in eq.(2)

are homogeneous functions of the XA
µ

XA
µ → αXA

µ (∀µ ; A) ⇒











P({XA
µ }) → α

1
2
Ndim(G) P({XA

µ })

S({XA
µ }) → α4 S({XA

µ })
. (20)
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We introduce polar coordinates (X1
1 , . . . , X

D
dim(G)) = (Ωd, R), with d = Ddim(G) the total

dimension of the integral. As an example, P(Ω, 1) and S(Ωd, 1) denote the value of the
Pfaffian polynomial and the action, respectively, for a configuration (X1

1 , . . . , X
D
dim(G)) on

the surface of the d−dimensional unit hyper-sphere, with polar coordinates (Ωd, R = 1)).
Eq.(20) allows us to to perform the R-integration analytically for each value of Ωd, and

to express the Yang-Mills integral as an expectation value over these angular variables:

ZN
D,G =

∫ DΩd zG(Ωd)
∫ DΩd

, (21)

with

zG(Ωd) = 2−d/2−1
Γ
(

d
4

+ N
8
dim(G)

)

Γ
(

d
2

) × P(Ω, 1)
[

S(Ωd, 1)
]d

4
+N

8
dim(G)

. (22)

As discussed previously, the integrand zG(Ωd) is too singular to be obtained by direct
sampling of random points on the surface of the unit hyper sphere. Slightly modifying our
procedure from [9], we therefore write

ZN
D,G =

[

∫ DΩd z × zα1−1

∫ DΩd z

]−1[
∫ DΩd zα1 × zα2−α1

∫ DΩd zα1

]−1[
∫ DΩd zα2 × z−α2

∫ DΩd zα2

]−1

. (23)

Each of the terms [ ] in eq.(23) is computed in a separate run. For example, the second
quotient in eq.(23):

∫ DΩd zα1 × zα2−α1

∫ DΩd zα1
=
〈

zα2−α1

〉

α1

, (24)

is simply the average of zα2−α1 for points Ωd on the unit hyper-sphere distributed according to
the probability distribution π(Ωd) ∼ zα1(Ωd) (As it stands, eq.(24) is immediately applicable
to D = 4, where the integrand z is positive semi-definite [8,7]. In the general case, we have
to sample with |zα1(Ωd)| (cf. [8])).

We sample angular variables Ωd according to zα1 with a Metropolis Markov-chain
method, which we now explain: At each iteration of the procedure, two distinct indices
(A1, µ1) and (A2, µ2), and an angle 0 < φ < 2π are chosen randomly. An unbiased trial
move Ωd → Ω′

d is then constructed by modifying solely the coordinates XA1
µ1

and XA2
µ2

:







XA1
µ1

XA2
µ2





→







XA1
µ1

XA2
µ2







′

=
√

(XA1
µ1

)2 + (XA2
µ2

)2







sin(φ)

cos(φ)





 , (25)

all other elements of {XA
µ } remaining unchanged. The trial move eq.(25) preserves the

norm R of the vector {XA
µ }, i. e. keeps the configuration on the surface of the unit sphere.

Furthermore, it is unbiased (the probability to propose Ωd → Ω′
d is the same as for the

reverse move).
Finally, the move (for the example in eq. (24)) is accepted according to the Metropolis

acceptance probability

8



P (Ω → Ω′) = min
(

1,
zα1(Ω′)

zα1(Ω)

)

. (26)

Empirically, we found the values α1 = 0.95, α2 = 0.6 to be appropriate. Each of the
averages in eq.(23) was computed within between a few hours and more than a thousand
hours of computer time (on a work station array), corresponding to a maximum of 5 × 109

samples. Results are presented in the table below.

Table 2: Direct evaluation of Yang-Mills integrals

Group Monte Carlo result Exact
G ZN=4

D=4,G

SO(3) 1.255 ± 0.003 1.2533. . .
SO(4) 0.197 ± 0.004 0.1963. . .
SO(5) 0.589 ± 0.004 0.589. . .
SO(6) 0.0407 ± 0.0007 0.04101. . .
SO(7) 0.0169 ± 0.0003 0.01708. . .

Sp(2) 1.253 ± 0.001 1.2533. . .
Sp(4) 18.65 ± 0.2 18.849. . .
Sp(6) 279.2 ± 9.7 285.59. . .

G2 6943 ± 120 7011.4. . .

Dividing the Monte Carlo results for ZN=4
D=4,G by the corresponding group volume factors

(cf. eqs (12), (13), and (14)) we arrive at our numerical predictions for the bulk indices
indD=4

0 (G), which we compare below to the proposed analytical values.

Table 3: Monte Carlo results for the D = 4 bulk index

Group Monte Carlo Exact
G indD=4

0 (G) (Table 1)

SO(3) 0.2503 ± 0.0006 0.25 (1/4)
SO(4) 0.0627 ± 0.0013 0.0625 (1/16)
SO(5) 0.1406 ± 0.001 0.1406 (9/64)
SO(6) 0.0620 ± 0.001 0.0625 (1/16)
SO(7) 0.0966 ± 0.0017 0.0976 (25/256)

Sp(2) 0.2500 ± 0.0002 0.25 (1/4)
Sp(4) 0.139 ± 0.0015 0.1406 (9/64)
Sp(6) 0.0973 ± 0.003 0.0996 (51/512)

G2 0.173 ± 0.003 0.1747 (151/864)

Agreement between the Monte Carlo results and theory is excellent, both in cases where
rigorous results are known (SO(3), SO(4), Sp(2)) and where the deformation technique was
applied. Among the latter cases, we again indicate in bold type new values, which had not
been obtained before.
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VI. BOSONIC CONVERGENCE FOR ORTHOGONAL, SYMPLECTIC AND

EXCEPTIONAL INTEGRALS

Our qualitative Monte Carlo method (cf. [9], [10], [11]) allows us to determine the con-
vergence properties of the bosonic Yang-Mills integrals ZN=0

D,G . We have found the following:

ZN=0
D,SO(N=3,4)

ZN=0
D,Sp(2)











< ∞ for D ≥ 5

ZN=0
D,SO(N≥5)

ZN=0
D,Sp(4,6,...)

ZN=0
D,G2































< ∞ for D ≥ 3

(27)

All other bosonic integrals diverge. We thus obtain conditions which are fully consistent
with the group isomorphisms discussed in the appendix. Let us note that we also performed
the same qualitative computations for the susy integrals, as an important check of the
convergence of the underlying Markov chains during the simulation.

VII. CONCLUSIONS AND OUTLOOK

In this paper we provided further evidence that Yang-Mills integrals encode surprisingly
rich and subtle structures, which may prove to have important bearings on gauge and string
theory.

The chief result of the present paper was to demonstrate that Yang-Mills integrals,
as well as the methods to study them, can be naturally generalized from the previously
studied special unitary symmetries to other gauge symmetries. We numerically evaluated the
partition functions for all semi-simple gauge groups of rank r ≤ 3 and compared the results
to conjectured exact values, which were obtained by a generalization of certain contour
integrals derived from a supersymmetric deformation procedure. The connection between
the Yang-Mills integrals and the bulk indices is provided by the group volumes, that we
computed explicitly. We provided details on these very subtle calculations. Agreement
between the approaches is perfect within the tight error margins left by our Monte Carlo
technique.

It would be very interesting to gain a simpler understanding of the rational numbers
collected in table 1, although it is already evident that the bulk indices of the groups in
question are more complicated than those of the special unitary case. In particular it would
be nice to find general formulas for arbitrary rank.

In the present paper we have focused on D = 4 since this is the case where our numerical
approach is most accurate. One should clearly study the dimensions D = 6 and, especially,
D = 10 as well. It is straightforward, if more involved, to work out the predictions of the
deformation method for these cases, at least for low rank gauge groups. In [13] exact values
for the total (bulk plus boundary) Witten index indD(G) were proposed. In D = 4, 6 one
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should have indD=4,6(G) = 0 while for D = 10 it is argued to be a positive integer which, for
groups other than SU(N), can be larger than one. It is important to check the arguments
by computing the index from the path integral. The results in the present paper indicate
that the bulk contributions indD

0 (G) are correctly reproduced by the defomation method;
however, we still lack a reliable method for computing the boundary terms indD

1 (G).
Since the deformation method of [14] successfully reproduces the partition functions, it is

natural to ask whether it can be extended to calculate correlation functions of the ensembles
eq.(1), such as the quantities studied numerically (so far only for SU(N)) in [10], [11], [7].
This would likely lead to new insights both in string theory [5] and gauge theory [6], [7].

Numerically, it might be interesting to compare SU(N), SO(N) and Sp(2N) for large
values of N , as in the standard large N → ∞ limit of ‘t Hooft these groups are expected to
lead to identical results.
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APPENDIX A: DETAILS AND CONVENTIONS FOR SO(N)

The Lie algebra so(N) has 1
2
N(N − 1) generators which we choose to be the following

standard anti-symmetric matrices T pq (i.e. the index A becomes a double index pq)

(T pq)jk = δp
j δ

q
k − δp

kδ
q
j

where p < q (p, q = 1, 2, . . . , N). The Lie algebra reads then

[T pq, T rs] = δqrT ps − δqsT pr − δprT qs + δpsT qr =
∑

t<u

f pq,rs,tuT tu.

In this basis the generators are normalized as Tr T pqT rs = −2δpq,rs and the structure con-
stants are given through f pq,rs,tu = −1

2
Tr
(

T pq[T rs, T tu]
)

. The gauge potentials are then

Xµ =
∑

p<q Xpq
µ T pq and the SO(N) Yang-Mills integrals in these conventions read

ZN
D,SO(N) =

∫

1
2
N(N−1)
∏

p<q

D
∏

µ=1

dXpq
µ√

2π
exp

[

1

8
Tr [Xµ, Xν ][Xµ, Xν]

]

PD,N(X), (A1)

where PD,N is the Pfaffian as defined in eq.(3). These conventions are such that, in view of
the isomorphism so(3) = su(2) we have for all N (i.e. N = 0, 4, 8, 16)

ZN
D,SO(3) = ZN

D,SU(2) = ZN
D,Sp(2), (A2)

where the sympletic case is discussed in appendix B. One checks that in these normalizations
the isomorphism so(4) = so(3) ⊕ so(3) results in

11



ZN
D,SO(4) = 2−

3
2
(D− 1

2
N )
(

ZN
D,SO(3)

)2
, (A3)

while the isomorphism so(6) = su(4) leads to

ZN
D,SO(6) = 2−

15
4

(D− 1
2
N )ZN

D,SU(4), (A4)

where the SU(4) integral is defined as in [8]. Finally, the isomorphism so(5) = sp(4) trans-
lates into

ZN
D,SO(5) = 2−

5
2
(D− 1

2
N )ZN

D,Sp(4), (A5)

where the Sp(4) integral is defined in appendix B. One verifies that these isomorphisms are
in perfect agreement with the results of the present paper as well as with [9].

We next provide the details necessary for verifying the group volume factor FSO(N) of
eq.(12). The natural Cartan subalgebra is spanned by the generators T 12, T 34, . . .. The
corresponding maximal compact tori are given for SO(2N + 1) by the (2N + 1) × (2N + 1)
matrix

T =



















rotθ1

rotθ2

. . .

rotθN

1



















(A6)

while for SO(2N) one has the 2N × 2N matrix

T =













rotθ1

rotθ2

. . .

rotθN













(A7)

Here rotθi are the 2 × 2 rotation matrices

rotθi =

(

cos θi sin θi

− sin θi cos θi

)

(A8)

and matrix elements with no entries are zero. The corresponding reduced, normalized Haar
measure on SO(2N + 1) (i.e. eq.(7)) reads

DT =
22N2

2NN !

N
∏

i=1

dθi

2π

N
∏

i<j

sin2
(θi − θj

2

)

sin2
(θi + θj

2

)

N
∏

i=1

sin2
(θi

2

)

(A9)

while for SO(2N) one has

DT =
22N(N−1)

2N−1N !

N
∏

i=1

dθi

2π

N
∏

i<j

sin2
(θi − θj

2

)

sin2
(θi + θj

2

)

. (A10)

Eqs.(A9),(A10) may also be used to work out the detailed form of the contour integrals
eqs.(16),(17) of section 4: One simply expands the Haar measure around θi ∼ 0.

Finally we recall the center groups of SO(N): One has ZSO(2N+1) = {1} and ZSO(2N) =
{1,−1} and therefore |ZSO(2N+1)| = 1 and |ZSO(2N)| = 2.
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APPENDIX B: DETAILS AND CONVENTIONS FOR SP(2N)

The Lie algebra sp(2N) has 2N2 + N generators which we choose as follows. Define the
N × N matrices Epq (p, q, j, k = 1, 2, . . . , N)

(Epq)jk = δp
j δ

q
k

Then we define the N × N matrix generators T a,pq for p < q by

T 0,pq =
1

2
√

2

(

Epq − Eqp 0
0 Epq − Eqp

)

T 1,pq =
1

2
√

2

(

0 i(Epq + Eqp)
i(Epq + Eqp) 0

)

T 2,pq =
1

2
√

2

(

0 (Epq + Eqp)
−(Epq + Eqp) 0

)

T 3,pq =
1

2
√

2

(

i(Epq + Eqp) 0
0 −i(Epq + Eqp)

)

and the remaining generators are (p = 1, . . . , N)

T 1,pp =
1

2

(

0 iEpp

iEpp 0

)

T 2,pp =
1

2

(

0 Epp

−Epp 0

)

T 3,pp =
1

2

(

iEpp 0
0 −iEpp

)

In this basis the generators are normalized as Tr T ATB = −1
2
δAB and the structure constants

are given through fABC = −2Tr TA[TB, TC] where A is the multi-index (a, pq). The Cartan
subalgebra is spanned by the generators T 3,pp with p = 1, . . . , N . The corresponding maximal
compact torus is given by the matrix

T =

























eiθ1

. . .

eiθN

e−iθ1

. . .

e−iθN

























(B1)

The corresponding normalized Haar measure reads

DT =
22N2

2NN !

N
∏

i=1

dθi

2π

N
∏

i<j

sin2
(θi − θj

2

)

sin2
(θi + θj

2

)

N
∏

i=1

sin2 θi (B2)

The center of Sp(2N) is the group ZSp(2N) = {1,−1} and thus |ZSp(2N)| = 2.
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APPENDIX C: DETAILS AND CONVENTIONS FOR G2

The Lie algebra G2 has 14 generators. For the fundamental representation we choose
them as the following explicit 7 × 7 matrices (see e.g. [16]). Define

(Xp,q)jk = δp
j δ

q
k − δp

kδ
q
j

(Y p,q)jk = i(δp
j δ

q
k + δp

kδ
q
j )

Then

T 1 = (X1,2 + X3,4)
1

2
√

6
+ (X5,6 + X6,7)

1

2
√

3

T 2 = (Y 1,2 + Y 3,4)
1

2
√

6
+ (Y 5,6 + Y 6,7)

1

2
√

3

T 3 = (X1,7 − X4,5)
1

2
√

2

T 4 = (Y 1,7 + Y 4,5)
1

2
√

2

T 5 = (X1,6 + X4,6)
1

2
√

3
+ (−X2,7 − X3,5)

1

2
√

6

T 6 = (Y 1,6 − Y 4,6)
1

2
√

3
+ (−Y 2,7 + Y 3,5)

1

2
√

6

T 7 = (X1,3 + X2,4)
1

2
√

2

T 8 = (Y 1,3 + Y 2,4)
1

2
√

2

T 9 = (−X1,5 + X4,7)
1

2
√

6
+ (X2,6 − X3,6)

1

2
√

3

T 10 = (−Y 1,5 − Y 4,7)
1

2
√

6
+ (Y 2,6 + Y 3,6)

1

2
√

3

T 11 = (−X2,5 − X3,7)
1

2
√

2

T 12 = (−Y 2,5 + Y 3,7)
1

2
√

2
(C1)

Finally, the matrices T 13 and T 14 are diagonal matrices with elements:

T 13 = diag(
i

2
√

6
;
−i

2
√

6
;

i

2
√

6
;
−i

2
√

6
;

i√
6
; 0;

−i√
6
) (C2)

T 14 = diag(
i

2
√

2
;

i

2
√

2
;
−i

2
√

2
;
−i

2
√

2
; 0; 0; 0) (C3)

In this basis the generators are normalized as Tr T ATB = −1
2
δAB and the structure

constants are given through fABC = −2Tr T A[TB, TC ]. The Cartan subalgebra is spanned
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by the generators T 13 and T 14. The corresponding maximal compact torus is given by the
matrix

T =



























eiθ1

e−iθ2

eiθ2

e−iθ1

ei(θ1+θ2)

1
e−i(θ1+θ2)



























(C4)

The normalized Haar measure on G2 with respect to this torus reads

DT =
212

12

dθ1

2π

dθ2

2π
sin2

(θ1

2

)

sin2
(θ2

2

)

sin2
(θ1 − θ2

2

)

sin2
(θ1 + θ2

2

)

sin2
(2θ1 + θ2

2

)

sin2
(θ1 + 2θ2

2

)

(C5)

The center of G2 is trivial: ZG2 = {1} and thus |ZG2| = 1.
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