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Multi-taper Spectral Analysis in Gravitational
Wave Data Analysis
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Spectral estimation plays a significant role in gravitational wave data
analysis. We provide a brief introduction to multi-taper methods which
use multiple orthogonal tapers (or windows) to provide spectral estima-
tors with excellent bias and variance properties. Multi-taper methods are
also extremely powerful for the estimation and removal of sharp spectral
peaks in the presence of noise such as arise due to power line harmonics
or suspension resonances. We present examples of these methods using
the grasp (Gravitational Radiation Analysis and Simulation Package)
software package.

KEY WORDS : Gravitational wave data analysis

1. INTRODUCTION

One of the most important areas of signal processing is that of the spectral
analysis of signals. Since the early 1980s there has been a revolution in
spectral analysis, due largely to a seminal paper by Thomson [7]. The
current paper serves to give a very brief introduction to the multi-taper
methods introduced by Thomson. Limitations of space mean that we shall
not attempt to be rigourous in our presentation; for a fuller and more
careful exposition of the subject the reader is recommended the excellent
book by Percival and Walden [4], to which we will frequently refer.
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We have implemented multi-taper methods as part of the grasp

(Gravitational Radiation Analysis and Simulation Package) software pack-
age [1]. These programs may be used to address issues relating to gravi-
tational wave detection, both for detector characterisation, for example:
• The characterisation of power line harmonics, and specific suspension

or pendulum modes. This can be used both for diagnostic purposes
(e.g., track contamination of the data set by the 5th line harmonic
at 300Hz) or to “clean up” the data (e.g., remove a known pendulum
resonance).

and for detection purposes, for example:
• The method may be trivially extended to the provide a high reso-

lution multi-taper spectral estimate of the (complex-valued) cross-
correlation spectrum x̃∗(f)ỹ(f) of the two input time-series x(t) and
y(t), see the grasp routine multitaper cross spectrum(), which is
particularly important in the detection of a stochastic gravitational
wave background.

2. SPECTRAL ESTIMATION

The power spectral density provides one of the most useful tools for
understanding a time series. However, the problem of estimating the
power spectral density from a finite observation is fraught with difficulty.
Many techniques have been developed; below we shall consider only a class
of non-parametric methods of power spectrum estimation since these are
most appropriate to gravitational wave data analysis.

2.1. The spectral density function

The most intuitive approach to estimating the power spectrum of a
signal is to compute the squared magnitude of the Fourier transform of
a segment of the signal. Let {xr} be any realisation of the (discrete)
stationary process {Xr} with zero mean (if the mean is initially non-zero
we work with the sequence with the mean subtracted) and for any N > 0
let

x̃(N)(f) = ∆t
N∑
r=1

xre
−2πifr∆t, (1)

where ∆t is the sampling interval. Then

∫ fny

−fny

x̃(N)(f)e2πifr∆t df =
{
xr 0 ≤ r ≤ N
0 otherwise

(2)
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where fny ≡ 1/(2∆t) is the Nyquist frequency, and so by Parseval’s theo-
rem

N∑
r=1

|xr|2 =
1

∆t

∫ fny

−fny

|x̃(N)(f) |2 df. (3)

This equation leads to the interpretation of |x̃(N)(f)|2/(∆t) as the contri-
bution to the energy per unit frequency of x1, x2 . . . xN from frequencies
near f .

If we take the limit as N → ∞, the energy per unit frequency
|x̃(N)(f)|2/(∆t) diverges since the process is stationary (so its energy is
infinite) but the power

lim
N→∞

|x̃(N)(f)|2
N∆t

(4)

is well-defined. This equation defines the power spectral density for the
particular realisation of the process. To define it for the process itself we
define

S(f) ≡ lim
N→∞

1
N∆t

E(|X̃(N)(f)|2). (5)

S(f) is the (two-sided) power spectral density of the process defined on
[−fny, fny]; for alternative (and more rigourous) definitions see Percival
and Walden.

Note that as our time-series is real, S(f) = S(−f). In the gravita-
tional wave community it is often standard to define the one-sided power
spectral density as

Sone−sided(f) = 2S(f)

= 2 lim
N→∞

1
N∆t

E(|X̃(N)(f)|2) on f ∈ [0, fny]. (6)

It will be more convenient for us to work with the two-sided power spectral
density and the conversion is clearly trivial.
2.2. The periodogram

If we have at our disposal only a finite number N of observations
X1, X2, . . . XN of the process it is natural to estimate the power spectral
density by

Ŝ(N)
p (f) ≡ 1

N∆t
|X̃(N)(f)|2 =

∆t
N

∣∣∣∣∣
N∑
r=1

Xre
−2πifr∆t

∣∣∣∣∣
2

. (7)

Ŝ
(N)
p (f) is called the periodogram and is defined on the interval [−fny, fny].
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Clearly as N →∞

lim
N→∞

E(Ŝ(N)
p (f) ) = S(f) ∀ f, (8)

that is, Ŝ(N)
p (f) is an asymptotically unbiased estimator. Unfortunately,

eq. (8) gives no measure of how large N must be for E(Ŝ(N)
p (f)) to be

close to S(f). It may be shown that

E(Ŝ(N)
p (f)) =

∫ fny

−fny

F (N)(f − f ′)S(f ′) df ′, (9)

where FN (f) is Fejér kernel

F (N)(f) =
∆t
N

∣∣∣∣∣
N∑
r=1

e2πifr∆t

∣∣∣∣∣
2

=
∆t
N

sin2(Nπf∆t)
sin2(πf∆t)

. (10)

10 log10(F (N)(f)) is plotted for N = 32 in Figure 1.

0

-50

0.5

Figure 1. 10 log10(F(N)(f)) for N = 32 and 0 ≤ f∆t ≤ 0.5. (From its definition it is
immediate that F(N)(f) is an even function of f .)

As N →∞ the Fejér kernel converges in a distributional sense to the
Dirac delta function giving rise to eq. (8). However, for finite N it has
the undesirable features that it has a broad central lobe and side-lobes
which only die off very slowly; for illustrative purposes, 10 log10(F (N)(f))
is plotted for N = 32 in Fig. 1. As a result eq. (9) shows that there is a
great deal of contamination in Ŝ

(N)
p (f) due to quite distant frequencies,
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i.e., there is a leakage of power from one part of S(f) to a distant part
of Ŝ(N)

p (f). This is a particularly acute problem for processes with broad
dynamic range where leakage from dominant frequencies can swamp the
true spectral density at less dominant frequencies. This effect is not limited
to small values of N , Thomson [7] cites examples where using sample
sizes exceeding one million points the periodogram gives extremely biased
estimates.

2.3. Tapering (windowing)

A standard solution to the problem of bias in the periodogram is that
data tapering (or windowing) which was introduced by Blackman and
Tukey [2]. The central idea of this approach is to replace the Fejér kernel
with a kernel with reduced side-lobes.

Assume, as before, that we have at our disposal only a finite number
N of observations X1, X2, . . . XN of the process. Let us weight these by
some weighting factors w1, w2, . . . wN , which we will normalise to satisfy

N∑
r=1

wr
2 =

1
∆t

∫ fny

−fny

|w̃(f)|2 df = 1, (11)

that is, that the total energy of the taper be 1. The idea of tapering is
not as radical as it may seem since in our periodogram approach we are
effectively weighting the observations X1, X2, . . . XN equally (with weight
factor 1/

√
N) and all other (potential) observations by weight factor 0.

Indeed the sharp edges of this taper contain a lot of power at high frequency
leading to significant power leakage.

The modified periodogram corresponding to the weighted series is
given by

Ŝ(N)
w (f) ≡ ∆t

∣∣∣∣∣
N∑
r=1

wrXre
−2πifr∆t

∣∣∣∣∣
2

. (12)

and so

E(Ŝ(N)
w (f)) =

∫ fny

−fny

W(N)(f − f ′)S(f) df, (13)

where W(N)(f) is given by

W(N)(f) = ∆t

∣∣∣∣∣
N∑
r=1

wre
2πifr∆t

∣∣∣∣∣
2

. (14)



390 Allen and Ottewill

The choice of normalisation (11) ensures that

∫ fny

−fny

E(Ŝ(N)
w (f)) df =

∫ fny

−fny

S(f) df. (15)

There are many standard choices for weighting factors which give a
significant improvement in terms of making the central lobe as narrow as
possible and making the side lobes fall off as rapidly as possible, see for
example, Press et al. [5]. In general, there is a trade-off between frequency
resolution and spectral variance.
2.4. Slepian tapers

Of particular importance to us is a class of tapers introduced by
Slepian [6]. These are constructed by first choosing a width W for the
central lobe and then demanding that the taper extremise the energy in
(−W,W )

EW ≡
1

∆t

∫ W

−W
|w̃(N)(f)|2 df, (16)

subject to the constraint (11) that the total energy be 1. In the time
domain this corresponds to extremising

N∑
r=1

N∑
s=1

wrArsws subject to
N∑
r=1

w2
r = 1, (17)

where

Ars =
sin 2πW (r − s)

π(r − s) . (18)

This is a standard extremisation problem whose solution is well known to
be given by the eigenvectors of the real symmetric matrix Ars:

Arsw
(k)
s = λ(k)w(k)

r . (19)

As Ars is a real symmetric matrix, the eigenvectors corresponding to it
are orthogonal so

N∑
r=1

w(j)
r w(k)

r = δjk . (20)

In this sense we talk of the Slepian tapers as being orthogonal.
The eigenvalue λ(k) gives the confined energy EW of the kth eigen-

vector w(k)
r and correspondingly satisfies 0 < λ(k) ≤ 1. In fact since our
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Figure 2. The first four Slepian tapers for N = 512, W = 4/(N∆t). These tapers were
computed by the grasp routine slepian tapers(). Note that, unlike most standard
choices for windowing functions, the Slepian tapers for k ≥ 1 assign negative weights
to some points.

-100

-50

0

Figure 3. The degree of energy confinement of the first four Slepian tapers of Fig. 2
measured by 10 log10(W

(N)
k (f)). The thin vertical line corresponds to frequency W .

The height of the side-lobes increases with k. The corresponding eigenvalues are λ(0) =
0.9999999997 λ(1) = 0.9999999693 , λ(2) = 0.9999984555, λ(2) = 0.9999482420 (10DP).

sequence is time-limited to 0, 1 . . . N there is no way to confine the en-
ergy to (−W,W ) if W < 1

2 so in this case λ(k) < 1. We may label the
eigenvalues so that

0 < λ(N−1) < . . . λ(1) < λ(0) < 1. (21)

Slepian has shown the remarkable property that the first 2NW∆t − 1
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eigenvalues are close to one and so provide excellent energy confinement
while thereafter they fall rapidly to zero.

The sequence of Slepian tapers lead to a sequence of spectral estima-
tors

Ŝ
(N)
k (f) ≡ ∆t

∣∣∣∣∣
N∑
r=1

w(k)
r Xre

−2πifr∆t

∣∣∣∣∣
2

, (22)

where according to the last paragraph we may expect only the first
(2NW∆t− 1) estimators to be useful.
2.5. Multi-taper methods

As its name implies, multi-taper methods apply multiple tapers to
the time series. In this way it is possible to achieve high resolution and
accuracy. To be specific, one employs the first K Slepian tapers where
K < (2NW∆t − 1) so that all the tapers have good energy confinement.
The simplest multi-taper spectral estimator is then defined as

Ŝ
(N)
mt (f) ≡ 1

K

K∑
k=1

Ŝ
(N)
k (f). (23)

This is equivalent to using a kernel

W(N)
mt (f) =

1
K

K∑
k=1

W(N)
k (f). (24)

(Alternative definitions are possible, for example, weighting each term in-
versely by the corresponding eigenvalue but these make little difference to
the basic picture and we shall deal solely with this simplest definition; see
Percival and Walden for a fuller discussion.)

As the tapers from which the different spectral estimators making
up the sum in eq. (23) are orthogonal the terms in the sum are pairwise
uncorrelated, that is, they provide independent spectral estimates. As a
consequence the variance of Ŝ(N)

mt (f) is smaller than that of each term in
the sum by a factor of order 1/K. In fact, under reasonable assumptions
S

(N)
k (f) is distributed like (S(f)/2)χ2

2, while Ŝ(N)
mt (f) will be distributed

like (S(f)/2K)χ2
2K .

The advantage of the multi-taper estimate is seen most clearly with
an example. We take a realisation of length N = 512 from the AR(4)
process

Xr = 2.7607Xr−1 − 3.8106Xr−2 + 2.6535Xr−3 − 0.9238Xr−4 +Nr , (25)
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-100

-50
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Figure 4. A graph of 10 log10(W
(N)
(mt)(f)) defined by eq. (24) with K = 4. The thin

vertical line corresponds to frequency W .

where Nr is Gaussian white noise with zero mean and unit variance. The
true spectrum is given by

S(f) = 2/|1− 2.7607e2πif + 3.8106e4πif

− 2.6535e6πif + 0.9238e8πif |2. (26)

Figure 5 shows a graph of this spectrum together with estimates of it based
on a realisation of it of length N = 512. Fig. 5(a) shows the severe bias
in the periodogram spectral estimate at high frequency due to leakage.
Fig. 5(b) shows the marked improvement in bias obtained by windowing
the data with a single Slepian taper. Fig. 5(c) shows the marked improve-
ment in the variance in the spectral estimator obtained by multi-tapering.

Multi-taper spectral estimates are implemented in grasp by the pro-
gram multitaper spectrum() which was used to generate Figs. 5(b) and
(c).

3. HARMONIC ANALYSIS

Multi-taper methods are also extremely well suited to determining
the magnitude and location of line features in the spectrum. Suppose for
simplicity that our signal consists of a pure harmonic of frequency f0 plus
noise:

X(t) = Aei2πf0t +N(t)m (27)

where A is the complex amplitude of the line. As before we suppose that
this signal is sampled at N discrete times at intervals ∆t. The obvious
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Figure 5. The spectrum of the AR(4) process defined by eq. (25) together with
estimates of it based on a realisation of it of length N = 512. (a) shows the periodogram
(b) the taper spectral estimator Ŝ

(512)
0 (f) based on a single Slepian taper, note the

improvement in the bias at high frequency, and (c) the multi-taper spectral estimate
based on K = 6, note the improvement in the variance at high frequency. The latter
two were calculated using the grasp routine multitaper spectrum().
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way to estimate A from the sequence x1, x2, . . . xN is to minimise the
spectral estimator of X(t) − Âei2πf0t at frequency f0. Using a windowed
periodogram we have

Ŝ(N)
w (f0) = ∆t

∣∣∣∣∣
N∑
r=1

wr(Xr − Âwei2πf0r∆t)e−2πif0r∆t

∣∣∣∣∣
2

(28)

= ∆t |J(f0)− w̃(N)(0)Âw|2, (29)

where

J(f) ≡
N∑
r=1

wrXre
−2πifr∆t and w̃(N)(0) =

N∑
r=1

wr . (30)

This is clearly minimised by taking

Âw =
J(f0)
w̃(N)(0)

. (31)

If we use the multi-taper spectral estimate and minimise

Ŝ
(N)
mt (f0) =

∆t
K

K∑
k=1

|Jk(f0)− w̃(N)
k (0)Âmt|2, (32)

we obtain

Âmt =

K∑
k=1

w̃
(N)
k (0)Jk(f0)

K∑
k=1

[w(N)
k (0)]2

, (33)

with the obvious notation that Jk(f0) refers to the quantities defined in
eq. (30) for the kth Slepian taper. (Note that, in fact, for k odd the Slepian
tapers are odd functions so that w(N)

k (0) = 0 for odd k.)
A principal advantage of this method is that the ratio of the variance

of the spectrum with the estimated line removed to the estimated power
in the line provides a concrete statistical test of whether the assumption
of the existence of a line component is justified. To be specific

F (f0) = (K − 1)
|Âmt|2

Ŝ
(N)
mt (f0)

, (34)
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where S(N)
mt (f0) is given by eq. (32), will have the F -distribution with 2

and 2K−2 degrees of freedom. To justify the assumption of a spectral line
at frequency f0 this statistic should exceed, for example, the 99% point of
the F2,2K−2 distribution.

If the F -test is significant, eq. (32) suggests [7] that we may reshape
the spectrum in the region [f0−W, f0 +W ] to remove the effect of the line
by defining

Ŝ
(N)
mt (f) =

∆t
K

K∑
k=1

|Jk(f)− w̃(N)
k (f − f0)Âmt|2, (35)

f0 −W < f < f0 +W.

Harmonic analysis is implemented within grasp by the program re-
move spectral lines(). This program tests every Fourier frequency for
the presence of a line component and returns a list of the frequencies where
spectral lines were found together with its amplitude and phase and the
corresponding value of the F-test. It also returns the data set with the
spectral lines subtracted (if desired) and provides both an ‘initial’ multi-
taper spectrum of the original data, and a ‘final’ multi-taper spectrum,
after line removal.

As an illustration, in Figure 6 we apply remove spectral lines() to
a realisation of length 512 of the time series

Xr = cos(2π(0.2)r) + 0.25 sin(2π(0.35)r) +Nr , (36)

where Nr is Gaussian white noise with zero mean and unit variance. Tak-
ing W = 4/(N∆t) and K = 6, remove spectral lines() estimates the
presence of two line features in the data:
line of amplitude 0.97 and phase 4.74 at freq 0.200024
(F-test value 136.30)
line of amplitude 0.30 and phase 94.63 at freq 0.350134
(F-test value 26.67)

These F -test values correspond to F2,10 percentage points of 6×10−8

and 1 × 10−4 for the probability of such features in the spectrum on the
basis of noise alone. Fig. 6 shows the multi-taper spectrum of the data and
the reshaped spectrum after accounting for the presence of these estimated
line features.
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Figure 6. The multi-taper spectral estimate of the time series (36) and the reshaped
spectrum (in bold) after the removal of the line features estimated in the data by
remove spectral lines().

4. CONCLUSION

We have endeavoured to give a simple presentation of multi-taper
methods and suggest their usefulness for gravitational wave data analysis
problems. For clarity we have presented simple models here to illustrate
these methods. The analysis on these models was performed using the
multi-taper methods contained the grasp (Gravitational Radiation Ana-
lysis and Simulation Package) software package [1]. For a detailed descrip-
tion of this package and examples of the application of these techniques to
data from the Caltech 40m prototype interferometer see the grasp man-
ual [1].
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