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Is the squeezing of relic gravitational waves produced by inflation detectable?
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Grishchuk has shown that the stochastic background of gravitational waves produced by an inflationary
phase in the early Universe has an unusual property: it is not a stationary Gaussian random process. Because
of squeezing, the phases of the different waves are correlated in a deterministic way, arising from the process
of parametric amplification that created them. The resulting random process is Gaussian but non-stationary.
This provides a unique signature that could in principle distinguish a background created by inflation from
stationary stochastic backgrounds created by other types of processes. We address the question: could this
signature be observed with a gravitational wave detector? Sadly, the answer appears to be no: an experiment
which could distinguish the non-stationary behavior would have to last approximately the age of the Universe
at the time of measurement. This rules out direct detection by ground and space based gravitational wave
detectors, but not indirect detections via the electromagnetic cosmic microwave background radiation.

PACS numbes): 04.80.Nn, 07.05.Kf, 95.85.Sz

[. INTRODUCTION several reasons. First, they solve two outstanding problems
of modern cosmology, the horizon and flatness problems.
The physical processes that took place early in the historypecond, they can be described and understood with simple
of the Universe are well understood at characteristic time@nalytical models. Third, they make minimal assumptions.
t=1 sec, wheré denotes proper time after the big bang, in And, finally, they make very definite observational predic-
the rest frame of the cosmological fluid. However, the pro-tions about the present-day properties of the Universe. In
cesses that took place at times much earlier than this, in wh&€"ain cases, for example in their predictions about the tem-
is often called the “very early Universe,” are not well un- peratu.re amsotroples in the ‘cosmic background rad!atlon,
derstood 1]. these |nf[at|onary models are in excellent agreement with the
A number of theoretical models of the very early Uni- Observational datg3]. However, other models of the early
verse have been constructed which differ significantly fromUniverse, such as the cosmic string model, are also in good
each other. In many of these models, phase transitions th@greement with this dafat]. _
take place as the Universe codts supercoolsplay an im- One of the ways in which different models of the very
portant role. While it can be difficult to calculate the obser-€arly Universe carfat least in principlebe distinguished is
vational properties of a given model, when this can be dond? the predictions that they make about the stochastic back-
their parameters can often be chosen so that, at late times, t§éound of gravitational radiatiofb,6]. This is a weak back-
resulting cosmology is consistent with the known observagdround of gravitational radiation, typically isotropic in its
tional properties of the present-day Universe. A significandistribution, which is produced at very early times either by
problem is that there is often no way to distinguish betweerthe large-scale motions of mass and energy in the cosmologi-
these different models based on strictly objective observacal fluid, or by the process of parametric amplification en-
tional criteria. gendered by the expansion of the Universe. Because gravi-
One of the most successful models of the very early Unjfational forces couple so weakly, this radiation typically
verse is the so-called inflationary model. Among the manygvolves fr(_ae of dls_turblng_ influences, and at the pres_ent time,
variations of this basic idea, the most generic and well studLS Properties provide a picture of the state of the Universe at
ied is the canonical model of “slow-roll inflationf1,2]. In ~ Very early times. To emphasize this point, consider that the
this model, the stress-energy tensor of the very early UniPresent age of the Universe is approximately
verse is dominated by a vacuum energy term, which results
in an extended epoch of exponenti@r near-exponential
power-law expansion. During this epoch, the visible part of T :zH—l (1.1
. 0 0 .
the Universe becomes extremely homogeneous and smooth, 3
because the initial fluctuations in the energy density are red-
shifted into insignificance.
Inflationary models have been extremely successful fowhere the Hubble expansion rate today is
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Ho=100 kmsec! Mpc thjg compared to the age of the Universe at the time of the mea-
18 . surement, which rules out the possibility of measuring the
=3.2<10 ™ sec " hygp. (1.2 non-stationarity with future ground-based and space-based

gravitational wave detectors. The reason is a combination of
Here h,o¢~0.65 is a dimensionless parameter. The cosmidwo effects. First, the statistical properties of the background
microwave background radiati¢@MBR) provides us with a today vary over a frequency scateT, 12107 Hz, and
picture of the structure of the Universe at a time abbut any practical experimeritvhose duration is of the order of a
~100000 years3x 102 sec after the big bang. This few years or lesswill have a frequency resolution which is
should be compared to the present tifiae=3x 10" sec. On  coarse compared t@,'. Second, there is an inherent and
general grounds, the generation of ground-based gravitamnavoidable limitation in the accuracy of our measurement
tional wave detectors currently approaching completiorof statistical properties of a random process, due to the sto-
might be able to detect a relic background of gravitationalchastic nature of the random process. This limitation is
waves produced arourie= 10”22 sec after the big bang, pro- analogous to what is called “cosmic variance” in measure-
viding us with a picture of the very early Univerfg]. ments of CMBR anisotropies.

Of particular interest to us are the two Laser Interferomet- We also show that even in a gedanken experiment lasting
ric Gravitational Wave Observatof}.IGO) detectors, which long enough to distinguish between the stationary and non-
will begin engineering shakedown within the next y&a, stationary background, there does not appear to be any way
and the European VIRG(Q8] and GEO-600 project§9].  to exploit the latter to make the integrated signal to noise
These ground-based detectors are sensitive in the frequengyow faster than the square root of the integration tjif.
range from~ 10* Hz to ~10° Hz; long baseline detectors in We note in passing that it may be possible in the future to
space such as the proposed Laser Interferometer Space Aprobe the squeezed nature of relic gravitons, albeit indirectly.
tenna(LISA) [10] project would extend the frequency range Sakharov oscillations in the angular spectrum of temperature
downwards by about four orders of magnitude tofluctuations in the CMBR are produced by a combination of
~10 3 Hz. The exciting prospect is to use these instrument$ensor perturbation&ravitational wavesand scalar pertur-
to learn something about the physical processes that todkations. The existence of these Sakharov oscillations is di-
place in the very early Universe. rectly related to the squeezed nature of the tensor and scalar

Models of the very early Universe typically predict a relic perturbation$17]. If it is possible in the future to disentangle
background of gravitational waves which is stochastic, in thehe scalar and tensor contributions to the CMBR anisotropies
sense that the gravitational strain at any point in the Universéperhaps using polarization informatiph8]), it may be pos-
is a non-deterministic function of time which can only be sible to confirm that the gravitational waves are indeed
characterized in a probabilistic way. Often, the gravitationalsqueezed. However, it appears that will not be possible with
strain arises from the sum of a large number of independerthe upcoming Microwave Anisotropy Prob@MAP) and
processes and so the central limit theorem implies that thBLANCK experiment$19]. Note that the possibility of such
resulting random process is Gaussian. In addition, in manp measurement is consistent with our analysis, since CMBR
models the stochastic background is stationary to a googhotons effectively “measure” the gravitational perturba-
approximation. tions over a time larger than or of the order of the age of the

Grishchuk has shown that the stochastic gravitationalUniverse at recombination.
wave background produced by inflation is Gaussian, but is The paper is organized as follows. In Appendix A we
not stationary{11-13. This is because, in inflationary mod- review the predictions of general inflationary models for the
els, the gravitational waves are produced by a process dftatistical properties of relic gravitational waves. In Sec. Il A
parametric amplification of vacuum fluctuations, resulting inwe extract the cogent features of those predictions in the
a squeezed quantum state today. While Grishchuk’s derivazontext of a simple model problem, a scalar field if 1
tion used the language and formalism of quantum optics, thdimensions, and describe the differences betvstationary
non-stationarity has also been derived using the standam@hd squeezedandom processes in this context. In the re-
methods of curved spacetime quantum field theddd;15. mainder of Sec. Il and in Appendixes B and C we analyze in

The non-stationarity of relic waves from inflation is sig- detail measurements that take place at one point in space. We
nificant for two reasons. First, one calculation indicates thashow that in order to distinguish between gtationaryand
it might make the background easier to detect, because ttejueezegrocesses in this context, a necessary but in general
integrated signal-to-noise ratio can be made to rise fastarot sufficient condition is that individual modes need to be
than the square root of the observation tifié], which is  resolved with a precision that can only be achieved with an
how it would rise for a stationary and Gaussian backgrounagxperiment lasting a substantial fraction of the age of the
[11]. Second, it provides in principle a definite test of infla- Universe. The arguments do not rely on any specific infla-
tion: if the squeezing is observed, then it provides additionationary model. Similar conclusions were reached in work by
evidence in favor of inflation, and if the background is ob-Polarski and Starobinskip. 389 of[14]).
served to be not squeezed, then it falsifies the theory. In Sec. Ill we present a more detailed analysis that relaxes

In this paper we present a detailed analysis of the detecthe assumptions of our simplified analysis of Sec. Il. We
ability of the non-stationary statistical properties of relic consider an explicit model of slow-roll inflation, and calcu-
gravitational waves. We show that, unfortunately, the effeclate the two-point correlation function C(t,t’)
cannot be observed in an experiment whose duration is sho#t (h,(t)h,(t")) of detector strain at two different sites. This
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is the quantity that will be measured in the upcoming gen- *

eration of experiments in searches for a stochastic back- Nstationarf 1, X) = > rocod|nft+nx+ey). (2.3
ground[5,6]. We are able to obtain and confirm the main n=-=
results of Ref[11]: because of the squeezing, non—stationary.l.
terms(not functions oft —t’) arise inC(t,t’). Unfortunately
we also show that the non-stationary terms are averag

away in any observation which is short compared'o In stricting the unit vecton to have two allowed values, and by

?gg't-'fgg:obn; t?:eixi)r?;tlt t?])ép.rﬁtses'?gtg;tg.e gg{rga::g.géuga'?sing a discrete instead of a continuous mode normalization.
lon | Integ '9 : Fere the quantities,, and ¢, for n=+*1,=2, ... areran-

optimum filtering should grow with the square root of the : o . .
integration time16] and not faster. dom variables whose statistical properties are given by

Of course it is a dangerous game to claim that something rne n=x,+iy,, (2.4
is not possible. The history of physics is full of “no-go”
theorems that have been circumvented by clever experiwherex, andy, are independent, zero-mean Gaussian ran-
ments. But our work does show that identifying the squeezedom variables withx2) = (y2)= o2/2. The variancer, can
nature of the gravitational waves produced in an inflationarydepend om in an arbitrary way, but typically in inflationary
Universe is probably not possible with ground and spacenodelso,, has a power law dependence over a broad range

his solution to the wave equatid@.2) describes a particu-
lar type of stochastic random process. It can can be obtained
om Eq. (A7) below by dropping the second term, by re-

based gravitational wave detectors. of wave numbers or frequencies;,= a|n|? for some con-
stantsa and B. It follows from Eq. (2.4) that ther,’s and
Il. SIMPLIFIED DETECTABILITY ANALYSIS ¢,'s are all independent, that thig's are Rayleigh distrib-

uted, and that thep,’s are uniformly distributed over the
interval[ 0,27).

The statistical properties of relic gravitational waves, as What Grishchuk has shown is that inflation leads to a
predicted by inflationary models, are summarized in Appenslightly different random process, one which to very good
dix A. In this section we present an analysis of the detectapproximation can be written as
ability of the non-stationarity in the following simplified .
context. Consider a flat (£1)-dimensional spacetime with
topology Rx S!, with spatial circumference 2L, and met- hscaueeze(itJ():n;oc J2r,cognt)cognx+ ¢,), (2.5
ric

A. Stationary and squeezed random processes

where ther’'s and ¢,,'s are distributed as before. The factor
of 2 ensures that the processes;ionary@Nd Nsqueezedrave
where the periodic spatial coordinate [ 0,277) andt is now %hrf/ Srgrr?deoanmz-ri\(l:irsasge\?g ?snei;?/ér?::t&m d%?tiggi;g]sistta“on'
a dimensionless time coordinate. We assume a compact sp_-At of the origin of the time coordinate, but that the

tial topology for technical convenience only; the discrete .
TSN : squeezed random procg@sb) is not. In Sec. Ill and Appen-
mode normalization is simpler than the corresponding Condiwae show that in inflation models, the simple fofens)

tinuum normalization. As a model of gravitational wave per-. achieved when one chooses a particular origin for the con-
turbations, consider solutions to the scalar massless way@ : : X P . 9 :
formal time coordinate during the inflationary epoch. Again,

ds?=L2(—dt?>+dx?), (2.1

equation Eq. (2.5 can be obtained from E@A7) below by restricting
2P the unit vectorn to have two allowed values, by using a
( - 4 _> h=0 (2.2)  discrete instead of a continuous mode normalization, by tak-
% gx2 ing x(k) =0, and by specializing the limit of large squeezing
[>1.

. . . . . k
in the spacetimg2.1). The periodic nature of the spatial ~ Note that we can rewrite the squeezed random process
sections means that solutions to the wave equation are pelip 5) as

odic in time' and have discrete frequencies. The frequencies
are separated b f=1/(27L). ” _

The analogue in this context of a stationary, Gaussian hsqueezetlt, X) = >, V2T codnticognx+¢,), (2.6)
stochastic backgrounéhe naive prediction of inflationary n=t

model3 is a scalar field of the forf where now the sum is only over positive valuesnpand

rpeén=r.en+r_.e ¢n 2.7
IModulo the uninteresting solutions which are linear functions of
time and independent of.gWe shall restrict our attention to the It follows from Egs.(2.4) and(2.7) that
periodic solutions, and consequently without loss of generality we
can also restrict the range of the time coordinatéd¢0,27) and
imagine that the Universe has topologyx St. — — . .
2Then=0 terms have no gravitational wave analogue and shouldVhe€reéx, andy, are independent, zero-mean Gaussian ran-
be excluded from all formulas. dom variables withx2)=(y2)=¢2. Thus the squeezed ran-

Toeln=x +iy, (2.9
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dom process can be described by half as many independel ¢ 6
random variables as the stationary one. We also note that , ) ‘
solution to the two-dimensional wave equation is completely ,

specified byh andh at some instant in time, where the over-

dot denotesd/dt. Thus, given the two functiond (x) 0 0 - .

:hstationar)(ovx) and g(x):hstationary(ovx) one can uniquely -2 LR 2

determiner, and ¢, . The functionhgyee,elas only half the - .

number of degrees of freedom, and it is easy to show that il ] .

is a solution to the wave equation determined entirély T 0 5 R 0 5
Stationary Squeezed

f(x)= hsqueeze(io X). ) _ ]
Below we shall be concerned with observations at a fixed g, 1. The distribution of the complex vectors of a mode with

point in space, which without loss of generality we can take;2— 1 in the stationaryand in thesqueezeaase(from a total of

to be the poink=0. The two random processes evaluated at o3 points.

x=0 yield
o R R R,= \/E |;n|
hstationar)(tvo):nz_:l [Xncognt)+y,sin(nt)] .
B 0 if x,>0,
T I x,<O.
Nequeezett 0)= 2, V2Xqco8nt), (2.9 "
It is convenient to think of each mode as a vector in the
where complex plane having lengtR,, and phase&,,. This allows
one to perform calculations using complex exponentials —
>A<=Xn+X7n which is easier — and also to have a useful pictorial repre-

sentation of what the field is. In theationarycase, it can be
oo seen from Eq(2.12 that the phase$,, are uniformly dis-
Yn="YntY_n. (2.10 , : .
tributed on the intervdl0,27). In thesqueezedase, instead,
e the phases can only have two values, namely @rofThis
Erorp Eqs.£2.7), (2'8? and(2.10 the random varlablt'esn, __means that whereas the mode vectors forstiadionarycase
Yns Xn andzyn are all independent, zero mean Gaussians withyre randomly pointing in any direction in the complex plane,
varianceo, . in the squeezedase they all lie on the real axisee Fig. L
Another convenient way of representing the processeshs is the origin of the name “squeezed.” Also the distri-
Nstationark t,0) @NdNsgueezefit,0) is to go from the time domain  pytion of the amplitudesR, is quite different in the two
representation of these fields to their frequency domain repeases, as can be seen from Fig. 2.
resentation, through the Fourier transformation equations.
The signals of Eq942.9) can be expressed as a superposition .
of a discrete infinite set of cosine functions:

E’ Stationary Case
=] 0 - %
h(t,00= >, R,cognt+6,)=Re>, R,&M+ ) S
n=1 n=1 =
21y o
defined, for every frequenay, by the Fourier amplitudeR, 0 1 2 3 4 5
and phased,. These are what we shall refer to as “the R;

Universe modes.” The relations between the coefficients ap-
pearing in Eq(2.11) and those in Eq(2.9) are, for thesta- .
tionary case,

Squeezed Case

Ro= X+

6,=ard X, +iy,], (2.12

Probability

where the range of arg [9,27), and for thesqueezedase:

FIG. 2. Histogram of amplitudeR,, for the stationary (upper
31t is determined up to an overall multiplicative constant, exceptpane) and squeezedlower panel cases for a mode witb—ﬁ=1,
on a set of measure 0 of initial conditions. from a total of 18 points.
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B. Distinguishing between C. Distinguishing between
the two random processes in principle the two random processes in practice

The question that must be addressed is this: what experi- Consider now realistic measurements of the stochastic
ment can we perform that will in practice be able to distin-background. Such measurements will be subject to three key
guish between these two different random proces2e3 constraints:
and (2.5? In other words, can we construct some observa- (i) The functionh(t,x=0) can only be observed over a
tional statistic that will enable us to determine with high limited range of timeT,<7<T.+ Ty, Where 7=Lt is
confidence which of these two random processes is presergroper time, the starting tim€s is essentially the age of the
given a single realization? Universe Ty, and the durationT s of the measurement is

To appreciate this issue a bit more clearly, consider thatnuch smaller thaff,. In practice the longest possible obser-
both hgtationary @Nd Nsgueezeq @re solutions to the two- vation times will beT,e=1 year=3x 10" sec.
dimensional wave equatiof2.2). This fact can help us to (i) The detectors available to us cannot observe all of the
compare the properties of these two random processemodes, but just afairly narrow) range in frequencyf
Roughly speaking, the standard prochsgionaryis @ sum of e[ f,,fy+ Af] where typicallyf,~Af~100 Hz for ground
left and right moving waves with arbitrary amplitudes andbased detectors, aniy~10"* Hz,Af~10 2 Hz for space
phases: based detectors.

(i) The detectors that measuh€t,0) are intrinsically
noisy, limiting the accuracy of our measurements.

We now show that the short observation time constraint
(Tops<T,) alone makes it impossible to distinguish between
+roscogn(t—=x)+¢é_,l}. (2.14  stationaryand squeezedin order to show this, we will de-
rive the relation between the Universe modes and the ob-
served modes that we actually measure. We will show that
the latter are a weighted superposition of the former ones,

Nstationarf 1 X) = ngl {rncogn(t+x)+ ¢y

In contrast to this, the Grishchuk procésgce,edS @ sum of
standing waves:

iy and that the process of superposition makes it impossible to
h t,x)= " rcosn(t+x)+ & trace back the phase coherence of $heeezedase.
saueezett X) Z \/E{ 1 )F Our analysis in this section will be limited to observations

_ made at a single point in space. This assumption is of course
+cogn(t—x)— o]}, (2.19  not realistic, as realistic measurements will involve cross-
) ) ) _correlating between spatially separated detectors. We present
for which the left and right moving waves have equal ampli-3 more complete analysis which relaxes this restriction in
tudes and correlated phases. Sec. Il below.

Now suppose that we ask the following question: could v start by making a convenient change in our represen-
we distinguish between these two possible form$1@x)  tation of the stochastic background. So far, we have treated
based on unrestricted observations? The answer is obvious|fe stochastic background as a continuous function-efa
yes. We WOL_JId simply observe the evolution _and see if thergzndom procesh(t,0) — whose frequency representation is
was a standing wave pattern or not: a standing-wave patteffiscrete due to the assumed infrared cuteffatial periodic-
would imply Rsqueezea @nything else would falsify inflation. ) we now switch to a discrete representation of the sto-

A slightly more difficult question is the following: sup- chastic background in the time domain, by modeling the
pose that instead we can only observe the function at a singlg;ckground as a set &f numbers:

point in spaceh(t,x=0). Again, could we distinguish be-
tween these possibilities? Once again, the answer is clearly hj=h(jAt), (2.19
yes. By observing the procekét,0) for 0<t<2s and Fou-
rier transforming, we can recover the complex coefficient
R,exdif,] in the expansion(2.11). If any of these coeffi-
cients have non-zero imaginary parts, then the process m
be stationary rather than squeezed, by EBd3.

However, our assumption of spatial periodidityhich en-
sures the periodicity in timeis just a computational device
— essentially an infrared cutoff. We must at the end of our
calculation let this cutoff go to infinity to obtain physical ot _
results. In this limit, the measurement discussed above cor- h;= kZO e?mikNp, | (2.17)
responds to a measurement of the random process over an N
infinite time, since the proper-time duration of the measure-
ment is 2L which diverges as —<. So the conclusion so whose inverse is
far is that it would be possible to distinguish between the
stationary and squeezecprocesses, provided that one had N
complete knowledge of the functidm(t,x=0) over the en- hk:£ E
tire time history of the Universe. N j

Yor 0<j=N-1 whereNAt=27. Thus, we have effectively
imposed an ultraviolet cutoff. At the end of our calculation

e can letAt—0 and obtain a result that is independent of
At [cf. Eqg. (B20) below]. The discrete Fourier transform
(DFT) of the sequencé€2.16) is given by the relation

1
, e~ 2mIkINR, | (2.18
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We will also assume that the statistical properties of the

PHYSICAL REVIEW D 61 024024

guantities ﬁj are the same as those of the quantities

Rnexdi6,] of Eqg. (2.11) above, namely
((Reh))2)=(1+¢)o?
((Imh)?=(1-s)o7, (2.19

wheree =0 in the stationary case ard=1 in the squeezed
case. Equatio2.19 will not be exactly true but will be true
to an adequate approximation.

Lets now take our measurement to consist of the quanti-

ties
(2.20

for 0sAs<M -1, wheres andM are fixed integers with 0

<s<N and 0<M=N-s. Thus, the starting proper time of
the measurement i§;=sLAt and the duration of the mea-
surement isT ,,c= MLAt. Henceforth capital Roman indices

Ha=hgya

(A,B,C, ...) will be measurement indices that run over _ 1o

0,1,... M—1, while lowercase Roman indices j,k, . ..)
will run over 0,3, ... N—1. The DFT

M—-1
HA: BZO eZWIAB/MHB

(2.20)

of the quantities(2.20 defines the amplitudes of what we
will call the measured modes.

We can compute the relation between the measured mode

amplitudes(2.21) and the Universe mode amplitudéxs17)
by inserting Egs(2.18 and (2.20 into Eg. (2.21), which
gives

N—-1
HA= 2 WAphp .
p=0

(2.22
Here the coefficient®,, are given by
1 M-1
WAp:Ne_ZmpS/N BZO e2m(A/M—p/N)B (2.23)
_ a—2m@pMIN
:i e—ZWIpS/N 1e— . (224)
N l_GZm(A/pr/N)

Equations(2.22 and(2.24) say that the complex vectors

H, (amplitudes of the observed modékat define the DFT
from the shorter time baselin@.20 are a weighted sum of

the vectorsﬁp (amplitudes of the Universe modethat de-
fine the DFT from the longer time baselin@.16. The

Em
2

8

FIG. 3. This plot shows the behavior piV, /| as a function of
A—A’ for the caseM =10N=500. The maximum value iM/N

500"

This variable can take values from O kd—1, as does the
indexA, but is not an integer. It measures the position of the
points p on the A axis. In terms of this new variable the
weights take the form

WAA,:ie—2|7-rA's/Me|Tr(A—A’)(1—1/M) sir’{:(A—A’)]
SI M(A—A )}
(2.26

Note that whenA’ is an integer, we havé’/VAA,=V\/Z,A,

which is necessary since the random sequehgesnd H
are real. Also we can write

M .
WAA’:NfM(lA_AIDeI‘PAN (2.27)
with
sinmXx
fu(0=—"-, (2.28
Msmmx

which shows that the absolute values of the weights depend
only on the distanceA—A') betweenA and p. Figure 3
shows the magnitudedV,,/| of the weights for the case
M=10N=500. This figure makes it clear that the Universe
modes that contribute the most to a given observed mode, in
the sum(2.22, are those which are nearest to it. It also

weights are complex numbers whose magnitudes depenshows that for any measured moflethe amplitudes of the

only on the distance in frequency betwemndp. In order

Universe modes to the right éf (i.e. modes withA’ >A) are

to make this statement clearer, let us take a closer look ateighted in the same way as the modes to its left (

W, and introduce a new index variable

A’_AM 2.2
=AN" (2.29

<A), which follows from|W a;aal =IWa a-aal-

The crucial property of the weighting factorg, 5, is that
they contain oscillations on two different frequency scales.
First, there is the above-discussed oscillation in the magni-
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tude|W, /| with characteristic frequency sca‘reTgbls. Sec- These two concerns are addressed and resolved in.Apper_]dix
ond, there is in addition a variation in the phasevef B, where we demonstrate that the effect of squeezing is in-

encoded in the factor ekp2mA'SM] in Eq. (2.26), with deed not observable. .
L -1 For completeness, we now consider the long measurement
characteristic frequency scateT .

; . . regimeT,,>Ts, although as explained in the Introduction
We can now give the ke)i argument. Consider a p"’“t'cm""fhis regime cannot be realized in practice. In this regime, the
measured mode amplitudel,, which corresponds to a oscillation in the phase ofW,, due to the factor
physical frequencyf,=A/(MLAt). This mode amplitude exg—2mA’'sM]in Eq.(2.26 is negligible. There is a phase
results from a vectorial sur2.22 of Universe mode ampli- oscillation due to the factor ekpi(A—A’)(1—1/M)] in Eq.

tudesh;. The Universe modeb;_ya v Which contribute  (2.26), which gives a total change of phase of order unity
significantly toH , all lie with a frequency interval arounic, over the frequency interval. The resulting observed mode

of width ~T,,%, because of the oscillations W/ |. Now, amplitudeH » is thus not constrained to be real. It turns out

if the weighting factor$\,, were all real in this frequency that the probability distribution for its phase Afg is ex-
interval, then, since in the squeezed case the Universe modétly uniform in the case when the spectrum is white, i.e.,

amplitudesh; are all real, the resulting measured mode amWWhena;= const. When the spectrum is colored, the detect-
ability of the squeezing depends on how larbgis com-

plitude H, obtained from the surf2.22) would also be real. areq to a correlation time determined by the specteym
Hence, the observed mode amplitude would share with th(’see Appendix B

original Universe mode amplitudes that property that its

phase is constrained to be 0 ar, and so the squeezing

would be easily observable. lll. TWO-DETECTOR CORRELATION EXPERIMENTS
Thus, we see that the crucial point is the extent to which

the weighting factors can be treated as real in the frequency . . _

interval of width ~T_.. around the central frequendy,. In thl§ section we extenq the_ anaIyS|s of Sec. Il of the

Consider first the short-measurement regifmg.<T.. In  detectability of the non-stationarity to incorporate a number

this regime, the phase &%, winds around between 0 and ©f complicating effects, including the effect of having mea-

27 roughly To/ T, 1 times in the frequency interval, due Surements at more than one point in space. We restrict atten-

to the factor exp—2mA'SM] in Eq. (2.26), and so cannot be tion in this section to the realistic case of short observations,

treated as real. In this case the observed mdgdehas a Tops<Ts.

X ) T . The standard method which will be used to detect a sto-
phase that is very nearly uniformly distributed oy€r2s); . o :
. chastic gravitational-wave background is based on correlat-
the vectorial sun(2.22 almost completely erases the pecu-

. ) ) - . .ing two widely separated detectors. In the standard treat-
liar phase behavior of the non-stationary process. This is in " . . )

; ments of this technique, one considers a stochastic
part due to the fact that the vectorial sum entangles phas[()e

and amplitude information and that the amplitudes of the ackground which is stationary and Gaussian. In this case it

Universe modegalthough not the phasgare stochastic. In is easy to show that the integrated two-detector correlation
Appendix B below we demonstrate this by deriving the dis-2nising from the stochastic background is proportional to the

tributions of the phase and amplitude of the observed ampli'—nteqratlon time, whereas the _terms arising from tas-
~ sumed uncorrelatgddetector noise are proportional to the
tudeH,. _ square roof16] of the integration time.

So far, we have argued that the effect of the squeezing on - as stressed by Grishchuk, the stochastic background pro-
the statistical properties of each observed mbideis very  duced by an inflationary epoch in the early Universe is in a
small in the regimé ,,«<<T4. This gives the essential reason squeezed quantum state produced by the period of rapid ex-
why the squeezing is not observable. However, we still neeghansion. The statistical properties of this state are Gaussian,
to close two loopholes in the argument. First, we have nobut not stationary. Unfortunately the non-stationary behavior
yet shown that the effect of squeezing is unobservable, as wgoes not make the stochastic background produced by infla-
have not addressed the question of how accurately the statigon easier to observe than a similar background which is
tical properties of each mode can be measured. In the case sfationary and GaussidriWe show this in Sec. Il B below
the CMBR, for example, the anisotropies are smaller than they deriving an expression for the correlation function for the
homogeneous background CMBR by a factor of,19et  detector strains at two separated sites. We show that, in con-
those anisotropies are still observable and carry a great de@hst with the correlation function for a stationary Gaussian
of information. We need to show that the intrinsic limitations
in the possible accuracy of measurement of the statistical———
properties of each modgcosmic variance’) are larger than
the effect of squeezing on each mode. Second, it is insuffi-I . ) e

ow-roll inflationary models, current observational limits on the

cient to perforrr~1 an analysis that focuses on each individu MBR imply that the gravitational wave stochastic background of
measured model , one at a time, as the individual measuredinflationary models would be too weak to detect with either the
modes are not statistically independent, and we need to shogvrrent LIGO-I or planned upgrade LIGO-II detector, and is just
that squeezing cannot be observed in any measurement thailow the limits of sensitivity of the proposed LISAQ] experi-
combines information from all the measured mod&ae]. ment.

A. Introduction

4Recent work by Turnef21] has shown that within the context of
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backgroundwhich depends only upot+1t'), the squeezed ds?=a?(n)[—dn?+ (Sap+ hab)dx""dxb] (3.2

nature of the inflationary background gives rise to an extra

term in the correlation function. This extra term explicitly

manifests the non-stationary nature of the squeezed state:tf{e strain at sité is given by

is not a function oft—t’ alone. Thus Grishchuk is entirely

correct that the squeezed quantum state has different proper-

ties than a stationary and Gaussian background. However, 1

we show that observing this extra non-stationary term re- hi(t)= —hab(t,xi)(f(f‘f(it’—???it’) (3.3

quires a frequency resolution of the order of 10Hz. Such 2

incredible frequency resolution is only obtainable in a gedan-

ken experiment lasting as long as the present-day age of the R R

Universe. wherex; is the spatial location of thih site andX® andY?
The calculation in this section makes frequent use of reare unit-length spatial vectoravith respect to the metric

sults from two references. The first reference examines thé,;,) along the directions of the orthogonal detector arms at

gravitational waves produced by an inflationary epoch in thesitei. Our model of the Universe is specified via the cosmo-

early Univers€[22], and calculates the correlation function logical scale factola(#) given as a function of conformal

of the temperature anisotropies that they induce in the CBRime 7 by Eq.(3.7). Note that we frequently use cosmologi-

The frequency range of the waves influencing the observableal timet rather than conformal time as a coordinate; they

part of the CBR anisotropy is between T6Hz and are related bydt=a(7)d7.

10 ¢ Hz today. But the methods of Ref22] can also be To compute the correlation function, we need an expres-

applied (as we do herneto calculate the properties of the sion for the metric perturbatioh,,. This quantity is not

waves at much higher frequencies: the 1®z relevant to  deterministic. In classical calculations, it may be treated as a

space-based or the 46z relevant to ground-based real stochastic random variable with certain statistical prop-

gravitational-wave detectors. The second reference that werties. For inflationary cosmological models, a slightly dif-

make use of is a review article on how correlation techniquegerent approach is useful, in whidh,, is replaced by the

may be used to detect a stochastic backgrd@idA reader  field operatoth,, of the linearized gravitational field. To see

wishing to follow our calculations in detail is advised to havehy this is both simple and useful, it is helpful to briefly

copies of these two papers in hand. review the fundamental mechanism through which inflation-
The calculation done in this section is for an explicit ary models erase the effects of the conditions present before

model of slow-roll inﬂation, in the limit that the resulting the inflation begins and give rise to a Spa“a”y flat and ho-

spectrum is “flat” and not tilted. After completing the eX- mogeneous universe today.

pllClt calculation of the correlation function, it is Straightfor- In inﬂationary mode|s’ the Universe undergoes a period of

ward to show that in more general inflationary models,(nearly exponential expansion of the scale factoDuring

which produce a “tilted” spectrum, the same general con-this period, the energy density of any matter or radiation is

clusion holds: the non-stationary behavior cannot be obred shifted away exponentially quickly. For massless par-

served in any practical experiment. ticles, the energy of a particle is proportional @6* and
hence the energy-density in massless patrticles redshifts as
B. Calculation of the correlation function C(t,t") a~* For massive particles, any kinetic energy is quickly

The most direct way to understand how the squeezinéed'smft_ed away, leaving only the rest mass behind_ This
energy is diluted by the expansion of the spatial three-

produced in an inflationary model affects the correlation be-

tween separated detectors is to examine the two-point corrdluUme, so thatitahe energy density of massive particles red-
lation function for the gravitational wave straim at two ~ SNifts away asa°. What is left behind after the period of
detector sites. This is defined by exponential inflation is just the vacuum energy associated

with the cosmological constant; it is the dominant form of
C(t,t")=(hy(t)hy(t")) (3.1  energy at the end of an inflationary epoch.
The perturbations away from absolute uniformity in infla-
tionary models are dominated by the effects of the zero-point
where the subscripts 1 and 2 refer to the detector sitest andracuum fluctuations of the fields at the start of inflatiaa].
andt’ denote the time at these sites. The anglular bracketSwenty five years ago Grishchuk showed that during the
can be given two possibl@quivalent meanings. They can subsequent expansion of the Universe, the quantum zero-
denote the average over a statistical ensemble of many dipoint fluctuations of the gravitational field modes are para-
ferent inflationary universes, each starting from somewhafnetrically amplified[24]. This prediction has been subse-
different initial conditions, but made statistically similar by a quently confirmed in many different ways, and the process of
long period of exponential inflation. Equivalently, they can parametric amplification, which applies to both scalar and
denote the expectation value in a quantum state that is a goadnsor perturbations, is one explanation of how the early
approximation to the present-day state of the Universe.  Universe can generate a spectrum of perturbations.
The detector strains are given in terms of the metric per- The above discussion, combined with E@s1) and(3.3),
turbations of a Friedmann-Robertson-WalkERW) cosmo-  implies that the correlation function today is well approxi-
logical model. Denoting the space-time metric by mated by the vacuum expectation value
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N Lo T W 1da 1 da
C(tt ):§<0|hab(tvxl)hcd(t X2) + heg(t’,X2) hap(t,x1)]0) Ho=lz a3 ~\22dn
today 7 today
(K3 VIR 579, @4 B
I (70)- (3.9
o™ 72

where |0) is the (unique Hadamard—de Sitter-invariant

guantum vacuum state of the inflationary univel@g], and  Here 7, is the present-day value of the conformal time and

h,p is the Hermitian field operator of the linearized gravita- 772 is the value of the conformal time at the beginning of the

tional field. matter-dominated phase of expansion. The redshift at
The correlation functiorn(3.4) can be calculated exactly, which the matter and radiation energy densities are equal is

but since space and ground based detectors will only be sen-

sitiveigo gravitational waves in th_e .frequency. ran_ge 1+ Zeg= a(7o) 25(770/7]24r 1)2~10". (3.9

e[1073,10°] Hz, a number of simplifying approximations a(ny) 4

can be made. We do this by approximating the field operator

within this frequency range. In general, the field operator igience; is about two orders of magnitude greater than
given by Ref[22] as and the Hubble constant today, E®.8), is well approxi-

mated by
Nap(7,%)= f A e [ eqp(k) pr(7,K)aR(K) Hom 2 a~Y(pg)~10"1% Haz, (310
0

+eX(k Ka (k)]+H.c], (3. _ i .
a(K) (7 k)ac (k)] ] 39 Having specified the cosmological model, one may now ap-
where H.c. means Hermitian conjugate. This is a sum oveProximate the field operatdr,y,.

wave vectorglabeled byk) of left- and right-circularly po- We Wi_II be makin_g approximations valid for the range of
larization tensorse,, and e%, and wave functions frequencies that might be observed by ground- or space-

. r(mK)expik-x). To approximate the field operator we based detectors. It follows from Ed8.6) and(3.10 thatk is
need to relate present-day frequernfcyo k=|k|= kK. related to the present-day frequerfdyy

Sincek always appears in the form exk(x), from the form 4rf
of the metric(3.2) one can see that the frequerfcioday is ~ . (3.11
related tok by 7oHo
In the frequency range of interestyo~4mwf/Hy=10% is
f= K _ (3.6) much larger than unityk7,>1. From examination of Eq.
2ma(no) (3.9 this implies that one hak#,=10'* sokz,>1. Fi-

nally, from Egs.(4.2) and(4.3) of Ref.[22], if the period of
We will now express this relationship betweérand k in inflation creates sufficient cosmological expansion to solve
terms of the present-day Hubble expansion tdtge which  the horizon and flatness problems, then
will yield Eq. (3.11). This leads to relation&3.13 needed to
approximate the field operat¢8.5) and to evaluate the two- o 1+7

_ : . . <108 (312
p?mt ctorrelanon function(3.4) in the frequency range of M2 1+Zgng
interest.
The inflationary cosmological model is defined by theHere Z.,s=10? is the redshift at the end of the inflationary
scale factora(#) in Eq. (4.1) of Ref.[22]: epoch. Hencéz; <10 ° is much smaller than unityk 7,
<1. To summarize, we will approximate the field operator
4 )\t ) in the frequency regime where
2——| a(mn) —wo<p<py; de Sitter,
7 k770> 1,
n .
a(n)={ o -alm) m<n<7, radiation, Ky,
1 2
“l1e 2] 724 ) <7 matter. kmp>1. (3.13
\ 4 72/ M

(3.7 A physical interpretation of these constraints will be given
shortly.
This scale factor describes three epochs: a de Sitter inflation- Any present-day detector correlation experiment will ob-
ary phase, followed by a radiation-dominated and then &erve the correlation functio@(t,t’) at the present timet
matter-dominated phase. Lettinde the cosmological time and t’ are in the matter-dominate¢present-day epoch.
defined bydt=a(#)d#, the Hubble constant today is given From the definition of the correlation functig8.4) and of
by the field operato(3.5) this means that we need an expression
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for the mode functiong(7,k) in the present-daymatter-

dominated epoch, which is given by the final line of Eq.

(4.17 of [22]:

d(1,K) =L r(7.K)=a d\(7.K) + B ¢l (7.K).

The mode functions in the present-day matter-dominated

phase are given by E@4.7) of [22]:

S K) = B (1.k)

= —4j ip_dsk?dz 2 hSZ)[k(77+ 772)]
37 pp” T2 Kt )

(3.19

PHYSICAL REVIEW D 61 024024

ag(k)—e "Mag(k),

a (k) —e "Ma (k),

bk, m)— €k, 7), (3.18

where (k) is an arbitrary function ofk. The de Sitter
vacuum state is invariant under this transformation, since it

is defined byag(k)|0)=a, (k)|0)=0. Hence without loss of
generality we may multiply the mode functid.17) by a
k-dependent phase; the final physical results will not be af-
fected by such a transformation. Changing this phase is
analogous to multiplying the wave function of a quantum

in terms of a spherical Hankel function of the second kindmechanical harmonic oscillator by a pure phase: it has no

h{*). The Planck density is denoted by =c’/#G>.
The Bogoliubov coefficientsr and 8 are given in terms

observable effects. In particular, changing the phasenot
equivalent to changing in the argument of the cos appearing

of the corresponding coefficients for the transition betweerin Eqg. (3.17). _ _ N
the de Sitter— and radiation-dominated phases and the tran- The expressions for the Bogoliubov Coefflc_leni&l6)_
sition between the radiation- and matter-dominated phases &d the mode function.17) have a number of interesting

o ol 25
B* o* - :8* a* . B*

Sincek7,<1 andk#,>1, one may make use of Eq¢.12
and (4.14) of Ref.[22] to obtain

i*) . (319
mat

gk(m1+72)

a~ — P —
P 2k? 75

(3.16

Finally, making use of the definition Qf)ﬁnJra{ given in Eq.
(3.14), one obtains

- 8 pg -
=k 5= ol 1+ 72)~*cosk(n— 1)
8
~41k %24/ 3 —’;15772 70 2cosk 7

(3.17

properties:

(i) The quantity] 8|2 is the (very large number of quanta
created by the “external” large-scale expansion of the Uni-
verse (or, equivalently, by the parametric amplification of
zero-point fluctuations[26]. This is how inflation gives rise
to a potentially-observable stochastic background of gravita-
tional waves today25].

(i) The gravitons are created in particle-antiparticle pairs.
Since the antiparticle of a graviton is just a graviton of op-
posite momentum and helicity, gravitons are always created
in oppositely-moving pair§27,28.

(iii ) Since the amplitudes of these oppositely moving pairs
of gravitons are exactly equal and their momenta are oppo-
site[27,28, they give rise to a pattern of standing waves.

(iv) This pattern of standing waves is apparent in the form
of the mode functionp, whose complex phase ot a func-
tion of time (since ¢ is pure imaginary.

These are precisely the conclusions reached by Grishchuk
following Eq. (7) of Ref.[11].

The argumenk(z— 74) of the cosine in Eq(3.17) has a
simple physical interpretation. The number of cyaleé of a
wave in the time intervaldt at time t is dN=f(t)dt
=f(n)a(n)dn=kdn/27. This means that(n— n4)/27 is

wherepqs is the constant energy density during the inflation-the number of cycles of oscillatiofin time) that the wave
ary de Sitter phase of expansion gndlis the Planck energy with wave numbek has undergone since the end of the de
density. In deriving this expression we have made two apSitter phase at timep,. For frequencies observable by
proximations. During any period of observation lasting onlyground- and space-based detectors, the teym<1 and can

a few years g+ 7,)~(79+ 7). Also

e X [
(2)(y)y= — — |~
hi”(x) ” (1 )
sincex=k(n+ 7,)~k(ny+ 175)>1.

Note that the field operatai3.5) is invariant under the
combined transformations

be neglected. See also Appendix A below. Later in this sec-
tion, we will encounter terms of the forik( = 7').

Before completing the calculation of the two-point corre-
lation function, it is useful to make a short digression. We
will calculate the energy density in gravitational waves using
this formalism. The result illustrates precisely the effect pre-
dicted in Sec. Il C: it is not possible to distinguish the the
stationary and squeezedstates in local short-time observa-
tions. The energy density in gravitational waves is given by
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dpgw Note thatQ,(f) depends upon the time: if the statistical
PgW:j de properties of the state were stationary, it would be time in-
dependent. For a single mode, the energy density is an oscil-
lating function of time, exactly what we would expect for a
0> standing wave, but without any spatial dependence. Roughly
speaking, this is because, for every member of the statistical
ensemble, there is another member, spatially displaced by an
= lim 1 1 i arbitrary amount.
,32wG a(p)a(n’) dn It is useful to compare the resul8.20 with the result
K normally quoted for the spectrufy,(f) produced in infla-

d— d—p
ahab(ﬂyx)ﬁh (7',%)

im0
~M3orG

t—t’

n—

d — — tion (which is sometimes derived by assuming stationarity
X_,<O|hab(ﬂ!x)hab(n,!X”O)' [5]
dn

The last term of the expression above, which is the two-point f dp

function of the field operator, may be derived from the plane- [ gl ) Istationan™ — —gw

wave expansion of the field operat@.5) and the canonical pc df

commutation relations given by E(.17) of [22]. Doing so 16 py

yields -5 p—s(1+ Zep L (3.2D)
P

(O[hap(7,¥)heq(7",x)[0)
. It is easy to see that in any practical experiment, one cannot
Zf d*k e p(p,k) p* (7' k) discriminate between these two possibilities: E§s20 and
(3.21). The reason is simple. In a practical experiment lasting
X[eap(k)ety(k) +ex (k)eg(k)], (3.19 (say one year, the smallest frequency resolutitinthat can
__ be attained is of ordedi f~1/yr~10 8 Hz. This means that
since the vacuum staf@) is annihilated by the operatos;  the energy density3.20 is resolvable in frequency bins not
anda, . Note that this quantity also appears in the definitionsmaller thardf. Hence the outcome of @oise fre¢ experi-
of C(t,t’) and will be referred to later in this section. Mak- ment would be a measure pf,, averaged over a range kf
ing use of the relationship between cosmological and conforfor which dk=4mdf/nH,. Even over this tiny range of
mal timedt=a(#)d» and of the definition$2.22—(2.26 of ~ frequencydf, the argument of the squared cosine passes
[22], one obtains an expression for the energy density in théhrough a rangel(k») =4mdf/H,~10". The consequence
stochastic gravitational wave background valid for the rangés that in any practical experiment, the &gs) is averaged

of frequencies observable by ground- and space-based deteser approximately 18 cycles, after which it is indistin-
tors: guishable from 1/2. Thus the stationary and non-stationary

cases cannot in practice be distinguished: the inflationary
prediction of non-stationarity cannot be falsified.

Let us now return to the main line of reasoning and con-
tinue the calculation of the two-point correlation function
It is conventional to express this energy density as a dimenand see if a two-point correlation experiment may be able to
sionless spectral functiof,,(f) which is the ratio of the distinguish between the stationary and non-stationary back-
energy density in gravitational waves in a logarithmic fre-grounds. For this purpose it is helpful to compare the infla-
qguency interval divided by the critical energy densjly  tionary model to a fictitious model universe in which the
= (3/8m)H3 required to close the Universe particles werenot created in perfectly correlated pairs but

were instead formed by a stationary random process which
Qo f)= l dng: 3_2P_ds(1+z )~ 1coky did not correlate particles moving in opposite directions. In
ow p. df 9 pp €a this case the wave functions have a time-dependent phase
and are given by

2
64 pgs M2

=P | klcoky dk.
Pov=37 pp néa(no)zf 7

32
~5 ‘;_"S(l+zeq)’lco§[27rf(t+2To)]-
P

1 - / 8 pyg _
(320 [ &( n:k)]StationaryN" E‘“ k52 ﬁ p_:ﬂz Mo 2k,

SMany of the “standard” treatments of gravitational wave pro-
duction by slow-roll inflation would imply that the energy density
in gravitational waves is zero. This is a misapplication of the stan- ®These are not normalized modes, since they do not correspond to
dard consistency relation between the scalar and tensor amplitudesgcuum fluctuations. Instead, they are modes containing the same
because in this non-tilted model the standard treatments imply thanergy density as in the inflationary case, but without the correla-
the energy density in scalar perturbations is infinite. tions between the oppositely moving quanta.

024024-11



ALLEN, FLANAGAN, AND PAPA PHYSICAL REVIEW D 61 024024

where we have assumed thaandt’ are in the present ep-
och, replacingk(z—7") by 2#f(t—t’) andk(n+ ') by
2mf(t+t'+4Ty). As mentioned earlier, the number of
cycles of a wave during the infinitesimal time interetl at
timetis dN=f(t)dt=kd#»/2#. Hence, provided thay and
n' are not too far apafin the cosmological sengehen one
has k(n—#n')~2=f(t—t’). This holds provided thatt
—t’|<H51. Note that, while it is tempting to repladern
with 27ft, itis incorrect. In fact, provided that the inflation-
ary phase is not too long, one hamday kzn=~2wxf(t
+2T,), whereTy=2/3H, is the present cosmological age.
The "“additional cycles” arise because as one goes towards
the past, the frequency of the wave increases due to blue-
shifting, so for exampl&(n+ »')~27f(t+t'+4T,).

. ‘ ‘ ‘ . In the stationary case, which lacks correlation between the
o0 e T e ™ amplitudes of the opposite-momentum modes, one would
find that the correlation function is given by

02

1)

FIG. 4. The overlap reduction functiop(f) for the LIGO-
Hanford and LIGO-Livingston sites. The left graph has a linear

8
frequency scale; the right graph has a logarithmic scale. C(t,t")= m(lJr Zeq)_lpds

H2
pp 0

These “modes” should be compared with the ones given in
Eq. (3.1'7). They lead t'o same average energy density in Xf df y(f)f 3cos2rf(t—t'). (3.25
gravitational waves as in the squeezed-state case.

The two-detector correlation functio(t,t’) for the in-
ﬂationary mode' can now be derived S|mp|y by SubstitutingThiS iS identical to the inﬂationary case, except that the non-
the two-point function of the field operat¢8.19 into the  stationary term depending updr-t’ is absent. These ex-
correlation function(3.4): pressions are valid provided thit—T,| and |t'—T,| are
both very small compared t6,.

In a more complicated model of the early Universe, where
the energy-density during the inflationary epoch was not ex-
actly constant as here, but was instead a slowly varying func-

- 2 tion of time, one would obtain an almost-identical result. The
% R{ fo df (D Ln(1).k(1)] only difference is that one would find an extra, slowly vary-
ing power law factor of “ in 4,(f), and in the integrand of

X[ 1 (4 C(t,t"), where a is the so-called “tilt” of the spectrum.
AL )’k(f)]} 3.23 This slowly varying factor would have no effect on our ar-

guments or conclusions.

8m
C(t,t")=—¢[2ma(70)]*

where the overlap reduction functiogr(f) is a real function

determined entirely by the relative separation and orientation )

of the two detector sites and is defined by E2}30 of Ref. C. Are the non-stationary terms observable?

[6] (this function was originally defined and computed in It is now easy to answer the original question: could a
Ref.[29]). The overlap functiony(f) for the two LIGO sites  correlation experiment carried out with two interferometric

is shown in Fig. 4. The functior(f) is unity for coincident gravitational wave detectors distinguish between the non-

and co-aligned detectors. stationary squeezed-state stochastic background produced by
Inserting the mode function®.17) yields’ inflation and a stationary background with the same average
8 ) energy density? The answer is no. The reason is the same as
_1Pds _ i i
C(tt')= 1+7 1_H2J' df v(F)f 3 that given following Eq«(3.21). Suppose that there were no
tr) 157 ( o pp ° 70 significant detector noise to contend with and that we were

only trying to distinguish between the two possible correla-
tion functions(3.24) and(3.25. In an experiment of realistic
(3.249  length(say, one yearthe smallest range of frequencies that
would be observable is a bandwidili= 108 Hz. Consider
now the extra integral termfdf y(f)f 3cos 2rf(t+t’
"The apparent divergence of this integral fas0 is due to the +4Tg) which distinguishes the two cases. The timet’

approximation made in its derivation that the frequehisybetween T 4To that appears in this integral is approximately 6 times
~1 mHz and~1 kHz. The exact expression is free of infrared the total age of the Universe, in other words, abouf sec.

divergences, but would give the same functiort @hdt’ for any ThUSS, even if the range of intggrqtion . iS' restricted to
practical experiment, since the measured correlation function i§0"° Hz, the cosine factor appeanng in this integral u.nder-
given by the integral restricted to the bandpass of the detector. goes more than P0cycles. Since all of thether factors in

X[cos 2rf(t—t')+cos 2rf(t+t'+4Tp)],
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the integral are smoothly varying over the range of integrawherea,b run over spatial indicesy is conformal time, and

tion, the resulting integral vanishes, in comparison with thea(#) is the scale factor. For the gravitational wave modes

integral containing the stationary contribution ce$@—t').28  relevant to ground and space based detectors, it is a good
The same conclusion is reached when one uses the resudipproximation to take( ») to be constant at sufficiently late

and notations of Refl11]. The strong dependence on fre- and sufficiently early times:

guency of the integrand appearing in Efj4) of Ref.[11] is

due to the ca$2mi(t—t,)] factor, and not on the slowly de- & s,

caying v?#*! factor. (The 2wt of Ref.[11] corresponds to a(n)= ( ar, 7>, (A2)

k#z in our notation and Zvt, to kn;.) We have already

shown that Zrvt,=k7,<1. However, in the other terinis  for somes; and 7; . For simplicity and without loss of gen-

the cosmological age of the Universe, andriz=kgp,  erality we will takea;=1. We definea,, 8y to be the Bo-

>10'%is (27 time9 the number of cycles that the wave has goliubov coefficients for the differential equation

undergone since the beginning of the Universe. Thus one

cannot approximate the integral by taking its value at the W () +

lower limit of frequency, which is precisely the approxima-

tion that appears to make the non-stationary nature of the .

process visible even in year-long experiments in [Ref]. In other words e and B are such that ifu(7) =exp(kz)
Finally we note that even if it were magically possible to for 7=7i, then u(7)=aexp(kz)+pexp(-ikz) for 7

observe the gravitational wave correlation over a sufficiently™ 7t - _ )

narrow bandwidth for the second integral to contribute sig- The metric perturbatio,, for > 7 can be expanded

nificantly, the best that one could possibly do with optimal &S

filtering is to add a factor of 2 to the total correlation. This -

means that, even if the optimal filtering strategy for this non- hab(ﬂax):f df e‘2””’7f d2Q,

stationary signal could be implemented, the most one would —e

add to the total signal would be a factor of 2. The total noise

would remain the same. Hence, even if there were no prob- XE Sp () 271X egg,”. (A4)

lems related to the short observation tife®@mpared to the A ’

age of the Universe it would not be possible to claim that 2 _ .

the signal-to-noise ratio grows faster as a function of integrati€re /d°Q2, denotes the integral over solid angles param-

tion time for the squeezed background than for the standar@trized by the unit vectam, A runs over the two polarization
one. components, and the tensce&" are the usual transverse

traceless polarization tensors, normalized according to
53¢sPdel"e'=25,5. We specialize to a circular polariza-
tion basis for whiche® "= (e*"*. The quantitiess, ,(f)
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wherek=27f and §°(n,m) is the delta function on the unit

sphere. If one drops the second term in &p), one obtains
APPENDIX A: GRAVITATIONAL WAVE PREDICTIONS a stationary, Gaussian stochastic background with

OF INFLATIONARY MODELS
4

In this appendix we review the predictiofs2,14 of in- Qu(f)= B2 (AB)
gw .

flationary models for the statistical properties of relic gravi-
tational waves. We write the spacetime metric as

2
T Pc

Here(q,(f) is the usual energy density per logarithmic fre-
B ) ) anb quency in units of the closure energy dengity The second
ds’=a(7)*{—dn*+[Sap+hap(7,X)1dx*dx°}, (AL)  term in Eq.(A5) encapsulates the non-stationarity.
The stochastic background will be dominated by modes
for which the number of quanta created per mogg? is
8Note that in optimal filtering schemes to search for a stochastidarge compared to unity, which for typical inflation models
background, one is mostly concerned with timesidt’ for which ~ means all modes with frequenciésn the range 108 Hz
|t—t’| =50 msec. =<f=<1 MHz. For such modes the ratio of the coefficients of
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the first and second terms in EG\5) is very nearly a pure N-1
phase, sincéa,|?—|B/?>=1. So we can write O(v))= > ol[A4lvj|?+2e (Vi+vi?)], (B2
j=0
(san(f)sg m(f’)*);M Sapl 8(f—f£')8%(n,m) andvy, ... vy are arbitrary complex numbers. As before,
' ’ 472 f|3 e=0 is the stationary case ard=1 is the squeezed case.

We can derive the corresponding characteristic function for
the measured modeEA by using Egs.(2.22 and (B1),
where as befor&=2nf and the phase(k) is given by  Which yields
exdix(k)]=ai/B; . Hence, each inflationary model is char- M—1 1
<ex;{i >=exp{—§®(vj)

+eXO§(f+£)62(n,—m)], (A7)

acterized, in the large squeezing limit, by two functions of S (saHa+stAY)
frequency: the spectrurfy,(f) and the phasg(k). Note = TAATTATIA

that under changeg— n—A 7 in the origin of conformal (B3)
time, x(k) transforms asy(k)— x(k)+2kA 7. Also the )
phasey(k) satisfiesy(—k)=— (k). where nowsg, ... ,Sy are arbitrary complex numbers and

In Sec. Il above we show that in a specific inflationary Where on the right-hand sids is given by
model, y (k) ~2k#,, where, is a specific value of confor-
mal time around the inflationary epoch, and tkat <1 for
modes that are relevant for ground and space based detectolgf. o -
. R : ere and below it is assumed that repeated lower case indi-
Thus we may take(k)~0. This conclusion is valid for all esi k are summed over 0.1. . N—1, and uppercase
inflationary models. If one uses the method of calculation o eshK, - - U X bp

- . dicesA,B, ... are summed over Q,1.. M —1 (see Sec.
Ref. [32] to approximately evaluatey, and By, one finds n . .
that [up]to adgigive correc{ions of orger unﬁyk Il C above. Now combining Eqs(B2) and (B4) yields

Vj:WAjSA' (B4)

Y(K)~2K 7, & (A8) O =4T ppSaSg + 2¢[ xaBSaSe+ XaBSASE ],  (B5)
where 7 g is the conformal time at which modes with wave where
numberk re-enter the horizon, at which point

[ag= 2 W W2 B6
k=a'la. (A9) AB ; O WakVWpk (B6)

For the relevant modes which re-enter during the radiatioris a Hermitian matrix, and
dominated eray, g is independent of the details of the in-
flationary dynamics, and from EdqA9) is given by 7y g 2
= no+ 1Kk, where 7, is the conformal time such thai( ) XAB:EKD i WaWek (B7)
o« — 7 during radiation dominatiori.e. the extrapolated
zero crossing ofa(7)]. Thus from Eq.(A8) we find that  is a symmetric matrix.
x(k)~2+2kno. We can neglect the constant first term, and  The difference between the stationary and squeezed cases
we can choose the origin of conformal time so thgt=0, s due to the matrixyag. It follows from the formulagB3)
thus giving x(k)=0. This conclusion is used in Sec. Il and(B5) that wheny,g=0, the joint probability distribution
above, where we use a discretized version of . with for the variablesH, ..., is exactly the same in the
x(k) set to zero. squeezed and stationary cases; in particular the phase of each
H, is uniformly distributed over the circle.
APPENDIX B: DETECTABILITY OF SQUEEZING We now show that for a purely white stochastic back-
IN A SIMPLE MODEL ground with oj=const, the matrixyag=0 and thus the

In this appendix, we analyze the detectability of the non-Sdueezing ha$10~effecton the statistical properties of the
stationarity in the context of the simple model of Sec. Il. Ourmeasured modebl,, irrespective of the values dfy and
starting points are Eq2.19, which describes the statistical Tops. First, using the formul&2.23 for the weightsw,; we
properties of the Universe modes, and H@22 and(2.23), can obtain the formula foF pg:
which describe the relationship between the Universe modes

and the measured modes. 1 B " B L
We can summarize the information in EG.19 in terms 1ﬂAB:W ;3 g?m(AC=BD)/M ZO gje 2m(C-D)N,
of a characteristic function: ’ . (B9)
N-1
~ ~ 1 i i i
<exp{i E (vjhj+v}* hj*) > =exp{ B §®(Vi) . (BY) which can be approximately evaluated to yield
j=0
I‘AB% M 5AB 0"2_ . (Bg)
where N j=(N/M)A
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For the matrixy,g we find from Egs.(2.23 and (B7) the  whereAf=1/(2wL) andA7=27wL/N=LAt. Now by com-
formula bining Egs.(B13) and(B15) we can evaluate the sum ovier
that appears in the formul@10) for yag:

1
- 271(AC+BD)/M

XAB= 2 e . 1 ..

N° €D zj: 012972W|(23+C+D)]/N=ENZCh[ZTS'i‘(C+D)AT].
N—-1

_ . B16

< ZO 0_j2 e74mjs/Nefzm(C+D)]/N. (BlO) ( )
= The quantity(B16) will be small onceTg is much larger

Now in the caser; = const of a white spectrum, the sum over than the correlation timer, of Cy,, that is, the time over

j in the formula(B10) can be written as which Cp(7)~C(0). This correlation timer, will be

roughly the reciprocal of the shortest frequency scale over
N-1 N which S,(f) has appreciable variation. The “high fre-

2 al= 11—’ (B1y quency” structure in the spectru,(f) will presumably be

1=0 “« dominated by the “breaks” in the spectru®,(f) corre-
sponding to transitions from one cosmological epoch to an-

where other (e.g., inflation to radiation dominatipnHowever, the
o= ext] — 21 (2js+C+D)IN]. (B12) physical time for such transitions to take place cannot be

shorter than a local Hubble time. Hence, the corresponding
correlation timer, will always be much shorter than the
present day age of the Universg,, and consequently al-

) ways much smaller tharmg for realistic measurements.
the. Universe[33]. Also we can assume that+ 2M <N, Hence the matrixyag and consequently the effect of the
which corresponds {ds+2Teps<L, since we should take gq,6ezing on observational data will be very small.

L— at the end of our calculation anyway. It then follows Turn, now, to the question of how accurately the matrix

from Egs.(B11) and (B12) that x,g=0. L Xag Can be measured, i.e., to the fundamental limitations on
Thus, the effect of the squeezing on the statistical propefmeasurement accuracy imposed by “cosmic variance.” To

ties of the measured modek, depends on the spectrum)  address this question, we apply the analysis of Appendix C

of the stochastic background. Let us now turn to the case deduce the conditions under which the squeezing is de-

when the spectrum is colored. In this case it turns out that theectable. Note that this analysis allows for the possibility of

matrix yag is small, and consequently the effects of thecombining the measurements of all the different mode am-

squeezing are small, whenever the observation starting timglitudes. Let us define the real random vector

T, is large compared to a correlation time that characterizes. ReH,, ... ,Rédy ,ImAy, ... ImH,,). Then, from Egs.

the spectrum of the sto_chastlc backg_rognd. In othgr words(Bg) and (BS), the analysis of Appendix C applies directly

the effect of the squeezing on the statistical properties of thgii,

stochastic background is time dependent; the effect is strong

We can assume tha>0, which corresponds td@ >0,
since measurements today must hayeof order the age of

neart=0, where the modes are all synchroniZ&3], but ReI' ImT
becomes weaker and weaker at later times. 3.=4 (B17)
To see this, it is convenient to transform back to a con- —ImI' Rel
tinuum representation of the stochastic background. The
spectrumS,(f) of the backgroundh(t) is related to the and
quantitieso; by [34] Rex —Imy
22_21: . (818)
1 —Imy —Rey
afzzNzAfSh(jAf), (B13)

It then follows from Eq(C9) that the difference between the
whereAf=1/(2mL). We define the quantiy e woonary cases s only detectable n the re-

Culm)= f :df e 2m1T S (f). (B14) A=t (x-T7Y (x:T™H] (B19)

is large compared to unity. We can approximately evaluate
the quantityA by substituting Eqs(B9), (B10), and (B16)

Then the real part of is the usual correlation function
p n(7) into Eq. (B19). This yields, in the limitL—« andAt—0,

(h(t)h(t+ 7)) (in the stationary caseThe discrete form of

Eq. (B14) is 2

2Tobs 27T s ¢
o . d7e ™7 obsCy (T + 7)

1
) e~ 2mjkiN Sh(kAf), (B15) AN]ZO Sh(j/TobS)Z . (BZO)

z

2
N2 (&

Cn(jAn) =
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We now analyze the implications of the final req@20). P} Dy
First, it follows from the formula(B20) together with the = el (C4
definition (B14) that in the regimé ,,< T, we always have
A=<1, irrespective of the nature of the spectrusp(f), where
which proves the claims made in the body of the paper. In
the other regime wherg,,«~ T, we can see that <1 once

T is much larger than the correlation time af of Cy,. As
argued abover, will be much smaller than the present day
age of the UniverseT,. Hence, experiments today would
have difficulty detecting the non-stationarity even if they last

A P(2)
p(x|1)

and p(x|1) is the probability thatx is observed assuming
case 1, etc. It is clear that the difference between cases 1 and

(CH

a time ~T. 2 is detectable in the regim&>1, but not in the regime
A~1.
APPENDIX C: DISTINGUISHING BETWEEN Inserting Gaussian probability distributions into EG5)
TWO DIFFERENT DISTRIBUTIONS we find that
OF A GAUSSIAN RANDOM VECTOR
. . . o 1 1
[n thIS' appgndlx we addres; the folloyvlng statistical issue, A= EXT_ [21’1—2;1]~x+ Eln det(21~22’1). (C6)
which arises in Sec. Il C and in Appendix B above. Suppose
thatx=(xq, ... Xy) iS @ zero-mean, Gaussian random vec- _
tor which satisfies either Let us now assume that case 2 actually applies, so that the
expected value ok;x; is given by Eq.(C2). Then, typical
(XX =21 jj (C1)  values of A will be close to the expected value of the
which is
(case 1 or
(XX )=2 i (C2 ! 1y 1 -1
iXj 2 ij <A>=—§tl’[l—22'21 ]—Elndet(Ez-El ). (C7)

(case 2. Thus, there are two possible variance-covariance

matrices,¥, and3,. In our application we will take case 2 Now suppose that the eigenvaluesXy- 3, * are 1+ \; for

to correspond to a squeezed stochastic background, and célse j<N. This yields that

1 to a stationary stochastic background. Suppose now that

we have one measuremenbofHow well can we distinguish 1

between the two possibilities? (M)=3 > [N In(1+a)]. (C
We now show that, whely, —3,,<3,, and when case 2 =

actually applies, the two cases can be distinguished with hig

probability only in the regime where the quantity It each| | is smail compared to unity, then to & good ap-

proximation we have

Sl 3 172 (c3) 1Y
2 ' (M)=7 >\
j=1

is large compared to unity, and not when this quantity is of
order unity.

It is easiest to address the question using the Bayesian
approach. Let the experimenter’s prior probability for case 2
be p,. Then after the measurement her probability for case 2n our application we use the formul€9) which should be

=3tr[(2 317 (C9)
2 2 1 .

will be revised top;, where a good approximation to the exact formyfa?).
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