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Is the squeezing of relic gravitational waves produced by inflation detectable?
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Grishchuk has shown that the stochastic background of gravitational waves produced by an inflationary
phase in the early Universe has an unusual property: it is not a stationary Gaussian random process. Because
of squeezing, the phases of the different waves are correlated in a deterministic way, arising from the process
of parametric amplification that created them. The resulting random process is Gaussian but non-stationary.
This provides a unique signature that could in principle distinguish a background created by inflation from
stationary stochastic backgrounds created by other types of processes. We address the question: could this
signature be observed with a gravitational wave detector? Sadly, the answer appears to be no: an experiment
which could distinguish the non-stationary behavior would have to last approximately the age of the Universe
at the time of measurement. This rules out direct detection by ground and space based gravitational wave
detectors, but not indirect detections via the electromagnetic cosmic microwave background radiation.

PACS number~s!: 04.80.Nn, 07.05.Kf, 95.85.Sz
to
e

in
ro
h
-

i-
om
th

r
on
,

va
an
e

rv

n
n
ud

n
u
l
of
oo
re

fo

ems
ms.

ple
ns.
ic-
. In
em-
ion,
the
y
ood

ry

ck-

s
by
logi-
n-
avi-
lly
me,

at
the
I. INTRODUCTION

The physical processes that took place early in the his
of the Universe are well understood at characteristic tim
t*1 sec, wheret denotes proper time after the big bang,
the rest frame of the cosmological fluid. However, the p
cesses that took place at times much earlier than this, in w
is often called the ‘‘very early Universe,’’ are not well un
derstood@1#.

A number of theoretical models of the very early Un
verse have been constructed which differ significantly fr
each other. In many of these models, phase transitions
take place as the Universe cools~or supercools! play an im-
portant role. While it can be difficult to calculate the obse
vational properties of a given model, when this can be d
their parameters can often be chosen so that, at late times
resulting cosmology is consistent with the known obser
tional properties of the present-day Universe. A signific
problem is that there is often no way to distinguish betwe
these different models based on strictly objective obse
tional criteria.

One of the most successful models of the very early U
verse is the so-called inflationary model. Among the ma
variations of this basic idea, the most generic and well st
ied is the canonical model of ‘‘slow-roll inflation’’@1,2#. In
this model, the stress-energy tensor of the very early U
verse is dominated by a vacuum energy term, which res
in an extended epoch of exponential~or near-exponentia
power-law! expansion. During this epoch, the visible part
the Universe becomes extremely homogeneous and sm
because the initial fluctuations in the energy density are
shifted into insignificance.

Inflationary models have been extremely successful
0556-2821/99/61~2!/024024~17!/$15.00 61 0240
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several reasons. First, they solve two outstanding probl
of modern cosmology, the horizon and flatness proble
Second, they can be described and understood with sim
analytical models. Third, they make minimal assumptio
And, finally, they make very definite observational pred
tions about the present-day properties of the Universe
certain cases, for example in their predictions about the t
perature anisotropies in the cosmic background radiat
these inflationary models are in excellent agreement with
observational data@3#. However, other models of the earl
Universe, such as the cosmic string model, are also in g
agreement with this data@4#.

One of the ways in which different models of the ve
early Universe can~at least in principle! be distinguished is
in the predictions that they make about the stochastic ba
ground of gravitational radiation@5,6#. This is a weak back-
ground of gravitational radiation, typically isotropic in it
distribution, which is produced at very early times either
the large-scale motions of mass and energy in the cosmo
cal fluid, or by the process of parametric amplification e
gendered by the expansion of the Universe. Because gr
tational forces couple so weakly, this radiation typica
evolves free of disturbing influences, and at the present ti
its properties provide a picture of the state of the Universe
very early times. To emphasize this point, consider that
present age of the Universe is approximately

T05
2

3
H0

21 , ~1.1!

where the Hubble expansion rate today is
©1999 The American Physical Society24-1
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H05100 km sec21 Mpc21 h100

53.2310218 sec21 h100. ~1.2!

Here h100'0.65 is a dimensionless parameter. The cos
microwave background radiation~CMBR! provides us with a
picture of the structure of the Universe at a time about
'100 000 years'331012 sec after the big bang. Thi
should be compared to the present timeT0'331017 sec. On
general grounds, the generation of ground-based gra
tional wave detectors currently approaching complet
might be able to detect a relic background of gravitatio
waves produced aroundt'10222 sec after the big bang, pro
viding us with a picture of the very early Universe@5#.

Of particular interest to us are the two Laser Interferom
ric Gravitational Wave Observatory~LIGO! detectors, which
will begin engineering shakedown within the next year@7#,
and the European VIRGO@8# and GEO-600 projects@9#.
These ground-based detectors are sensitive in the frequ
range from;101 Hz to ;103 Hz; long baseline detectors i
space such as the proposed Laser Interferometer Space
tenna~LISA! @10# project would extend the frequency rang
downwards by about four orders of magnitude
;1023 Hz. The exciting prospect is to use these instrume
to learn something about the physical processes that
place in the very early Universe.

Models of the very early Universe typically predict a re
background of gravitational waves which is stochastic, in
sense that the gravitational strain at any point in the Unive
is a non-deterministic function of time which can only b
characterized in a probabilistic way. Often, the gravitatio
strain arises from the sum of a large number of independ
processes and so the central limit theorem implies that
resulting random process is Gaussian. In addition, in m
models the stochastic background is stationary to a g
approximation.

Grishchuk has shown that the stochastic gravitatio
wave background produced by inflation is Gaussian, bu
not stationary@11–13#. This is because, in inflationary mod
els, the gravitational waves are produced by a proces
parametric amplification of vacuum fluctuations, resulting
a squeezed quantum state today. While Grishchuk’s der
tion used the language and formalism of quantum optics,
non-stationarity has also been derived using the stan
methods of curved spacetime quantum field theory@14,15#.

The non-stationarity of relic waves from inflation is si
nificant for two reasons. First, one calculation indicates t
it might make the background easier to detect, because
integrated signal-to-noise ratio can be made to rise fa
than the square root of the observation time@16#, which is
how it would rise for a stationary and Gaussian backgrou
@11#. Second, it provides in principle a definite test of infl
tion: if the squeezing is observed, then it provides additio
evidence in favor of inflation, and if the background is o
served to be not squeezed, then it falsifies the theory.

In this paper we present a detailed analysis of the det
ability of the non-stationary statistical properties of re
gravitational waves. We show that, unfortunately, the eff
cannot be observed in an experiment whose duration is s
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compared to the age of the Universe at the time of the m
surement, which rules out the possibility of measuring
non-stationarity with future ground-based and space-ba
gravitational wave detectors. The reason is a combinatio
two effects. First, the statistical properties of the backgrou
today vary over a frequency scale;T0

21;10217 Hz, and
any practical experiment~whose duration is of the order of
few years or less! will have a frequency resolution which i
coarse compared toT0

21. Second, there is an inherent an
unavoidable limitation in the accuracy of our measurem
of statistical properties of a random process, due to the
chastic nature of the random process. This limitation
analogous to what is called ‘‘cosmic variance’’ in measu
ments of CMBR anisotropies.

We also show that even in a gedanken experiment las
long enough to distinguish between the stationary and n
stationary background, there does not appear to be any
to exploit the latter to make the integrated signal to no
grow faster than the square root of the integration time@16#.

We note in passing that it may be possible in the future
probe the squeezed nature of relic gravitons, albeit indirec
Sakharov oscillations in the angular spectrum of tempera
fluctuations in the CMBR are produced by a combination
tensor perturbations~gravitational waves! and scalar pertur-
bations. The existence of these Sakharov oscillations is
rectly related to the squeezed nature of the tensor and s
perturbations@17#. If it is possible in the future to disentangl
the scalar and tensor contributions to the CMBR anisotrop
~perhaps using polarization information@18#!, it may be pos-
sible to confirm that the gravitational waves are inde
squeezed. However, it appears that will not be possible w
the upcoming Microwave Anisotropy Probe~MAP! and
PLANCK experiments@19#. Note that the possibility of such
a measurement is consistent with our analysis, since CM
photons effectively ‘‘measure’’ the gravitational perturb
tions over a time larger than or of the order of the age of
Universe at recombination.

The paper is organized as follows. In Appendix A w
review the predictions of general inflationary models for t
statistical properties of relic gravitational waves. In Sec. II
we extract the cogent features of those predictions in
context of a simple model problem, a scalar field in 111
dimensions, and describe the differences betweenstationary
and squeezedrandom processes in this context. In the r
mainder of Sec. II and in Appendixes B and C we analyze
detail measurements that take place at one point in space
show that in order to distinguish between thestationaryand
squeezedprocesses in this context, a necessary but in gen
not sufficient condition is that individual modes need to
resolved with a precision that can only be achieved with
experiment lasting a substantial fraction of the age of
Universe. The arguments do not rely on any specific in
tionary model. Similar conclusions were reached in work
Polarski and Starobinsky~p. 389 of@14#!.

In Sec. III we present a more detailed analysis that rela
the assumptions of our simplified analysis of Sec. II. W
consider an explicit model of slow-roll inflation, and calc
late the two-point correlation function C(t,t8)
5^h1(t)h2(t8)& of detector strain at two different sites. Th
4-2
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IS THE SQUEEZING OF RELIC GRAVITATIONAL . . . PHYSICAL REVIEW D 61 024024
is the quantity that will be measured in the upcoming g
eration of experiments in searches for a stochastic ba
ground @5,6#. We are able to obtain and confirm the ma
results of Ref.@11#: because of the squeezing, non-station
terms~not functions oft2t8) arise inC(t,t8). Unfortunately
we also show that the non-stationary terms are avera
away in any observation which is short compared toT0. In
addition, from the explicit expression of the correlation fun
tion it can be seen that the integrated signal to noise a
optimum filtering should grow with the square root of th
integration time@16# and not faster.

Of course it is a dangerous game to claim that someth
is not possible. The history of physics is full of ‘‘no-go
theorems that have been circumvented by clever exp
ments. But our work does show that identifying the squee
nature of the gravitational waves produced in an inflation
Universe is probably not possible with ground and sp
based gravitational wave detectors.

II. SIMPLIFIED DETECTABILITY ANALYSIS

A. Stationary and squeezed random processes

The statistical properties of relic gravitational waves,
predicted by inflationary models, are summarized in App
dix A. In this section we present an analysis of the dete
ability of the non-stationarity in the following simplified
context. Consider a flat (111)-dimensional spacetime wit
topologyR3S1, with spatial circumference 2pL, and met-
ric

ds25L2~2dt21dx2!, ~2.1!

where the periodic spatial coordinatexP@0,2p) andt is now
a dimensionless time coordinate. We assume a compact
tial topology for technical convenience only; the discre
mode normalization is simpler than the corresponding c
tinuum normalization. As a model of gravitational wave pe
turbations, consider solutions to the scalar massless w
equation

S 2
]2

]t2
1

]2

]x2D h50 ~2.2!

in the spacetime~2.1!. The periodic nature of the spatia
sections means that solutions to the wave equation are
odic in time1 and have discrete frequencies. The frequenc
are separated byD f 51/(2pL).

The analogue in this context of a stationary, Gauss
stochastic background~the naive prediction of inflationary
models! is a scalar field of the form2

1Modulo the uninteresting solutions which are linear functions
time and independent ofx. We shall restrict our attention to th
periodic solutions, and consequently without loss of generality
can also restrict the range of the time coordinate totP@0,2p) and
imagine that the Universe has topologyS13S1.

2Then50 terms have no gravitational wave analogue and sho
be excluded from all formulas.
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hstationary~ t,x!5 (
n52`

`

r ncos~ unut1nx1fn!. ~2.3!

This solution to the wave equation~2.2! describes a particu
lar type of stochastic random process. It can can be obta
from Eq. ~A7! below by dropping the second term, by r
stricting the unit vectorn to have two allowed values, and b
using a discrete instead of a continuous mode normalizat
Here the quantitiesr n and fn for n561,62, . . . areran-
dom variables whose statistical properties are given by

r neifn5xn1 iyn , ~2.4!

wherexn and yn are independent, zero-mean Gaussian r
dom variables witĥ xn

2&5^yn
2&5sn

2/2. The variancesn can
depend onn in an arbitrary way, but typically in inflationary
modelssn has a power law dependence over a broad ra
of wave numbers or frequencies:sn5aunub for some con-
stantsa and b. It follows from Eq. ~2.4! that ther n’s and
fn’s are all independent, that ther n’s are Rayleigh distrib-
uted, and that thefn’s are uniformly distributed over the
interval @0,2p).

What Grishchuk has shown is that inflation leads to
slightly different random process, one which to very go
approximation can be written as

hsqueezed~ t,x!5 (
n52`

`

A2 r ncos~nt!cos~nx1fn!, ~2.5!

where ther n’s andfn’s are distributed as before. The facto
of A2 ensures that the processeshstationaryandhsqueezedhave
the same time-averaged energy density. Note that the sta
ary random process~2.3! is invariant under changest→t
2Dt of the origin of the time coordinate, but that th
squeezed random process~2.5! is not. In Sec. III and Appen-
dix A we show that in inflation models, the simple form~2.5!
is achieved when one chooses a particular origin for the c
formal time coordinate during the inflationary epoch. Aga
Eq. ~2.5! can be obtained from Eq.~A7! below by restricting
the unit vectorn to have two allowed values, by using
discrete instead of a continuous mode normalization, by t
ing x(k)50, and by specializing the limit of large squeezin
ubku@1.

Note that we can rewrite the squeezed random proc
~2.5! as

hsqueezed~ t,x!5 (
n51

`

A2 r̄ ncos~nt!cos~nx1f̄n!, ~2.6!

where now the sum is only over positive values ofn, and

r̄ nei f̄n5r neifn1r 2ne2 if2n. ~2.7!

It follows from Eqs.~2.4! and ~2.7! that

r̄ nei f̄n5 x̄n1 i ȳ n ~2.8!

where x̄n and ȳn are independent, zero-mean Gaussian r
dom variables witĥ x̄n

2&5^ ȳn
2&5sn

2 . Thus the squeezed ran

f

e

ld
4-3
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dom process can be described by half as many indepen
random variables as the stationary one. We also note th
solution to the two-dimensional wave equation is complet
specified byh andḣ at some instant in time, where the ove
dot denotes]/]t. Thus, given the two functionsf (x)
5hstationary(0,x) and g(x)5ḣstationary(0,x) one can uniquely
determiner n andfn . The functionhsqueezedhas only half the
number of degrees of freedom, and it is easy to show th
is a solution to the wave equation determined entirely3 by
f (x)5hsqueezed(0,x).

Below we shall be concerned with observations at a fix
point in space, which without loss of generality we can ta
to be the pointx50. The two random processes evaluated
x50 yield

hstationary~ t,0!5 (
n51

`

@ x̂ncos~nt!1 ŷnsin~nt!#

hsqueezed~ t,0!5 (
n51

`

A2 x̄ncos~nt!, ~2.9!

where

x̂5xn1x2n

ŷn52yn1y2n . ~2.10!

From Eqs.~2.7!, ~2.8! and ~2.10! the random variablesx̄n ,
ȳn , x̂n andŷn are all independent, zero mean Gaussians w
variancesn

2 .
Another convenient way of representing the proces

hstationary(t,0) andhsqueezed(t,0) is to go from the time domain
representation of these fields to their frequency domain
resentation, through the Fourier transformation equatio
The signals of Eqs.~2.9! can be expressed as a superposit
of a discrete infinite set of cosine functions:

h~ t,0!5 (
n51

`

Rncos~nt1un!5Re(
n51

`

Rnei (nt1un),

~2.11!

defined, for every frequencyn, by the Fourier amplitudesRn
and phasesun . These are what we shall refer to as ‘‘th
Universe modes.’’ The relations between the coefficients
pearing in Eq.~2.11! and those in Eq.~2.9! are, for thesta-
tionary case,

Rn5Ax̂n
21 ŷn

2

un5arg@ x̂n1 i ŷ n#, ~2.12!

where the range of arg is@0,2p), and for thesqueezedcase:

3It is determined up to an overall multiplicative constant, exc
on a set of measure 0 of initial conditions.
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Rn5A2 ux̄nu

un5H 0 if x̄n.0,

p if x̄n,0.
~2.13!

It is convenient to think of each mode as a vector in t
complex plane having lengthRn and phaseun . This allows
one to perform calculations using complex exponentials
which is easier — and also to have a useful pictorial rep
sentation of what the field is. In thestationarycase, it can be
seen from Eq.~2.12! that the phasesun are uniformly dis-
tributed on the interval@0,2p). In thesqueezedcase, instead
the phases can only have two values, namely 0 orp. This
means that whereas the mode vectors for thestationarycase
are randomly pointing in any direction in the complex plan
in thesqueezedcase they all lie on the real axis~see Fig. 1!.
This is the origin of the name ‘‘squeezed.’’ Also the distr
bution of the amplitudesRn is quite different in the two
cases, as can be seen from Fig. 2.

t

FIG. 1. The distribution of the complex vectors of a mode w
sn

251 in the stationaryand in thesqueezedcase~from a total of
103 points!.

FIG. 2. Histogram of amplitudesRn for the stationary ~upper
panel! and squeezed~lower panel! cases for a mode withsn

251,
from a total of 105 points.
4-4
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B. Distinguishing between
the two random processes in principle

The question that must be addressed is this: what exp
ment can we perform that will in practice be able to dist
guish between these two different random processes~2.3!
and ~2.5!? In other words, can we construct some obser
tional statistic that will enable us to determine with hig
confidence which of these two random processes is pres
given a single realization?

To appreciate this issue a bit more clearly, consider t
both hstationary and hsqueezed are solutions to the two
dimensional wave equation~2.2!. This fact can help us to
compare the properties of these two random proces
Roughly speaking, the standard processhstationaryis a sum of
left and right moving waves with arbitrary amplitudes a
phases:

hstationary~ t,x!5 (
n51

`

$r ncos@n~ t1x!1fn#

1r 2ncos@n~ t2x!1f2n#%. ~2.14!

In contrast to this, the Grishchuk processhsqueezedis a sum of
standing waves:

hsqueezed~ t,x!5 (
n51

`
r̄ n

A2
$cos@n~ t1x!1f̄n#

1cos@n~ t2x!2f̄n#%, ~2.15!

for which the left and right moving waves have equal amp
tudes and correlated phases.

Now suppose that we ask the following question: co
we distinguish between these two possible forms ofh(t,x)
based on unrestricted observations? The answer is obvio
yes. We would simply observe the evolution and see if th
was a standing wave pattern or not: a standing-wave pa
would imply hsqueezed; anything else would falsify inflation.

A slightly more difficult question is the following: sup
pose that instead we can only observe the function at a si
point in space:h(t,x50). Again, could we distinguish be
tween these possibilities? Once again, the answer is cle
yes. By observing the processh(t,0) for 0<t,2p and Fou-
rier transforming, we can recover the complex coefficie
Rnexp@iun# in the expansion~2.11!. If any of these coeffi-
cients have non-zero imaginary parts, then the process m
be stationary rather than squeezed, by Eqs.~2.13!.

However, our assumption of spatial periodicity~which en-
sures the periodicity in time! is just a computational devic
— essentially an infrared cutoff. We must at the end of o
calculation let this cutoff go to infinity to obtain physica
results. In this limit, the measurement discussed above
responds to a measurement of the random process ove
infinite time, since the proper-time duration of the measu
ment is 2pL which diverges asL→`. So the conclusion so
far is that it would be possible to distinguish between
stationary and squeezedprocesses, provided that one h
complete knowledge of the functionh(t,x50) over the en-
tire time history of the Universe.
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C. Distinguishing between
the two random processes in practice

Consider now realistic measurements of the stocha
background. Such measurements will be subject to three
constraints:

~i! The functionh(t,x50) can only be observed over
limited range of timeTs<t<Ts1Tobs, where t5Lt is
proper time, the starting timeTs is essentially the age of th
UniverseT0, and the durationTobs of the measurement is
much smaller thanT0. In practice the longest possible obse
vation times will beTobs'1 year'33107 sec.

~ii ! The detectors available to us cannot observe all of
modes, but just a~fairly narrow! range in frequencyf
P@ f 0 , f 01D f # where typicallyf 0;D f ;100 Hz for ground
based detectors, andf 0;1024 Hz,D f ;1022 Hz for space
based detectors.

~iii ! The detectors that measureh(t,0) are intrinsically
noisy, limiting the accuracy of our measurements.

We now show that the short observation time constra
(Tobs!Ts) alone makes it impossible to distinguish betwe
stationaryand squeezed. In order to show this, we will de-
rive the relation between the Universe modes and the
served modes that we actually measure. We will show t
the latter are a weighted superposition of the former on
and that the process of superposition makes it impossibl
trace back the phase coherence of thesqueezedcase.

Our analysis in this section will be limited to observatio
made at a single point in space. This assumption is of cou
not realistic, as realistic measurements will involve cro
correlating between spatially separated detectors. We pre
a more complete analysis which relaxes this restriction
Sec. III below.

We start by making a convenient change in our repres
tation of the stochastic background. So far, we have trea
the stochastic background as a continuous function oft — a
random processh(t,0) — whose frequency representation
discrete due to the assumed infrared cutoff~spatial periodic-
ity!. We now switch to a discrete representation of the s
chastic background in the time domain, by modeling t
background as a set ofN numbers:

hj5h~ j Dt !, ~2.16!

for 0< j <N21 whereNDt52p. Thus, we have effectively
imposed an ultraviolet cutoff. At the end of our calculatio
we can letDt→0 and obtain a result that is independent
Dt @cf. Eq. ~B20! below#. The discrete Fourier transform
~DFT! of the sequence~2.16! is given by the relation

h̃ j5 (
k50

N21

e2pı jk/Nhk , ~2.17!

whose inverse is

hk5
1

N (
j 50

N21

e22pı jk/Nh̃j . ~2.18!
4-5
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We will also assume that the statistical properties of
quantities h̃ j are the same as those of the quantit
Rnexp@iun# of Eq. ~2.11! above, namely

^~Reh̃ j !
2&5~11«!s j

2

^~ Im h̃ j !
2&5~12«!s j

2 , ~2.19!

where«50 in the stationary case and«51 in the squeezed
case. Equation~2.19! will not be exactly true but will be true
to an adequate approximation.

Lets now take our measurement to consist of the qua
ties

HA5hs1A ~2.20!

for 0<A<M21, wheres and M are fixed integers with 0
,s,N and 0,M<N2s. Thus, the starting proper time o
the measurement isTs5sLDt and the duration of the mea
surement isTobs5MLDt. Henceforth capital Roman indice
(A,B,C, . . . ) will be measurement indices that run ov
0,1, . . . ,M21, while lowercase Roman indices (i , j ,k, . . . )
will run over 0,1, . . . ,N21. The DFT

H̃A5 (
B50

M21

e2pıAB/MHB ~2.21!

of the quantities~2.20! defines the amplitudes of what w
will call the measured modes.

We can compute the relation between the measured m
amplitudes~2.21! and the Universe mode amplitudes~2.17!
by inserting Eqs.~2.18! and ~2.20! into Eq. ~2.21!, which
gives

H̃A5 (
p50

N21

WAph̃p . ~2.22!

Here the coefficientsWAp are given by

WAp5
1

N
e22pıps/N (

B50

M21

e2pı(A/M2p/N)B ~2.23!

5
1

N
e22pıps/N F 12e22pıpM/N

12e2pı(A/M2p/N)G . ~2.24!

Equations~2.22! and ~2.24! say that the complex vector
H̃A ~amplitudes of the observed modes! that define the DFT
from the shorter time baseline~2.20! are a weighted sum o
the vectorsh̃p ~amplitudes of the Universe modes! that de-
fine the DFT from the longer time baseline~2.16!. The
weights are complex numbers whose magnitudes dep
only on the distance in frequency betweenA andp. In order
to make this statement clearer, let us take a closer loo
WAp and introduce a new index variable

A85A
M

N
. ~2.25!
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This variable can take values from 0 toM21, as does the
indexA, but is not an integer. It measures the position of
points p on the A axis. In terms of this new variable th
weights take the form

WAA85
1

N
e22ıpA8s/Meıp(A2A8)(121/M )

sin@p~A2A8!#

sinF p

M
~A2A8!G

~2.26!

Note that whenA8 is an integer, we haveWAA85WA8A
* ,

which is necessary since the random sequenceshj and HA
are real. Also we can write

WAA85
M

N
f M~ uA2A8u!eiwAA8 ~2.27!

with

f M~x!5
sinpx

Msin
p

M
x

, ~2.28!

which shows that the absolute values of the weights dep
only on the distance (A2A8) betweenA and p. Figure 3
shows the magnitudesuWAA8u of the weights for the case
M510,N5500. This figure makes it clear that the Univer
modes that contribute the most to a given observed mode
the sum ~2.22!, are those which are nearest to it. It al
shows that for any measured modeA, the amplitudes of the
Universe modes to the right ofA ~i.e. modes withA8.A) are
weighted in the same way as the modes to its left (A8
,A), which follows fromuWA A1DAu5uWA A2DAu.

The crucial property of the weighting factorsWAA8 is that
they contain oscillations on two different frequency scal
First, there is the above-discussed oscillation in the mag

FIG. 3. This plot shows the behavior ofuWAA8u as a function of
A2A8 for the caseM510,N5500. The maximum value isM /N

5
10

500.
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tudeuWAA8u with characteristic frequency scale;Tobs
21 . Sec-

ond, there is in addition a variation in the phase ofWAA8 ,
encoded in the factor exp@22pıA8s/M# in Eq. ~2.26!, with
characteristic frequency scale;Ts

21 .
We can now give the key argument. Consider a particu

measured mode amplitudeH̃A , which corresponds to a
physical frequencyf A5A/(MLDt). This mode amplitude
results from a vectorial sum~2.22! of Universe mode ampli-

tudes h̃ j . The Universe modesh̃ j 5NA8/M which contribute

significantly toH̃A all lie with a frequency interval aroundf A

of width ;Tobs
21 , because of the oscillations inuWAA8u. Now,

if the weighting factorsWAA8 were all real in this frequency
interval, then, since in the squeezed case the Universe m

amplitudesh̃ j are all real, the resulting measured mode a

plitude H̃A obtained from the sum~2.22! would also be real.
Hence, the observed mode amplitude would share with
original Universe mode amplitudes that property that
phase is constrained to be 0 orp, and so the squeezin
would be easily observable.

Thus, we see that the crucial point is the extent to wh
the weighting factors can be treated as real in the freque
interval of width ;Tobs

21 around the central frequencyf A .
Consider first the short-measurement regimeTobs!Ts . In
this regime, the phase ofWAA8 winds around between 0 an
2p roughly Ts /Tobs@1 times in the frequency interval, du
to the factor exp@22pıA8s/M# in Eq. ~2.26!, and so cannot be
treated as real. In this case the observed modeH̃A has a
phase that is very nearly uniformly distributed over@0,2p);
the vectorial sum~2.22! almost completely erases the pec
liar phase behavior of the non-stationary process. This i
part due to the fact that the vectorial sum entangles ph
and amplitude information and that the amplitudes of
Universe modes~although not the phases! are stochastic. In
Appendix B below we demonstrate this by deriving the d
tributions of the phase and amplitude of the observed am
tude H̃A .

So far, we have argued that the effect of the squeezing
the statistical properties of each observed modeH̃A is very
small in the regimeTobs!Ts . This gives the essential reaso
why the squeezing is not observable. However, we still n
to close two loopholes in the argument. First, we have
yet shown that the effect of squeezing is unobservable, a
have not addressed the question of how accurately the s
tical properties of each mode can be measured. In the ca
the CMBR, for example, the anisotropies are smaller than
homogeneous background CMBR by a factor of 105, yet
those anisotropies are still observable and carry a great
of information. We need to show that the intrinsic limitatio
in the possible accuracy of measurement of the statis
properties of each mode~‘‘cosmic variance’’! are larger than
the effect of squeezing on each mode. Second, it is ins
cient to perform an analysis that focuses on each individ
measured modeH̃A one at a time, as the individual measur
modes are not statistically independent, and we need to s
that squeezing cannot be observed in any measuremen
combines information from all the measured modes@20#.
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These two concerns are addressed and resolved in Appe
B, where we demonstrate that the effect of squeezing is
deed not observable.

For completeness, we now consider the long measurem
regimeTobs@Ts , although as explained in the Introductio
this regime cannot be realized in practice. In this regime,
oscillation in the phase ofWAA8 due to the factor
exp@22pıA8s/M# in Eq. ~2.26! is negligible. There is a phas
oscillation due to the factor exp@pı(A2A8)(121/M )# in Eq.
~2.26!, which gives a total change of phase of order un
over the frequency interval. The resulting observed mo
amplitudeH̃A is thus not constrained to be real. It turns o
that the probability distribution for its phase ArgH̃A is ex-
actly uniform in the case when the spectrum is white, i
whens j5 const. When the spectrum is colored, the dete
ability of the squeezing depends on how largeTs is com-
pared to a correlation time determined by the spectrums j
~see Appendix B!.

III. TWO-DETECTOR CORRELATION EXPERIMENTS

A. Introduction

In this section we extend the analysis of Sec. II of t
detectability of the non-stationarity to incorporate a numb
of complicating effects, including the effect of having me
surements at more than one point in space. We restrict a
tion in this section to the realistic case of short observatio
Tobs!Ts .

The standard method which will be used to detect a s
chastic gravitational-wave background is based on corre
ing two widely separated detectors. In the standard tre
ments of this technique, one considers a stocha
background which is stationary and Gaussian. In this cas
is easy to show that the integrated two-detector correla
arising from the stochastic background is proportional to
integration time, whereas the terms arising from the~as-
sumed uncorrelated! detector noise are proportional to th
square root@16# of the integration time.

As stressed by Grishchuk, the stochastic background
duced by an inflationary epoch in the early Universe is in
squeezed quantum state produced by the period of rapid
pansion. The statistical properties of this state are Gauss
but not stationary. Unfortunately the non-stationary behav
does not make the stochastic background produced by in
tion easier to observe than a similar background which
stationary and Gaussian.4 We show this in Sec. III B below
by deriving an expression for the correlation function for t
detector strains at two separated sites. We show that, in
trast with the correlation function for a stationary Gauss

4Recent work by Turner@21# has shown that within the context o
slow-roll inflationary models, current observational limits on t
CMBR imply that the gravitational wave stochastic background
inflationary models would be too weak to detect with either t
current LIGO-I or planned upgrade LIGO-II detector, and is ju
below the limits of sensitivity of the proposed LISA@10# experi-
ment.
4-7
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background~which depends only upont2t8!, the squeezed
nature of the inflationary background gives rise to an ex
term in the correlation function. This extra term explicit
manifests the non-stationary nature of the squeezed sta
is not a function of t2t8 alone. Thus Grishchuk is entirel
correct that the squeezed quantum state has different pro
ties than a stationary and Gaussian background. Howe
we show that observing this extra non-stationary term
quires a frequency resolution of the order of 10217 Hz. Such
incredible frequency resolution is only obtainable in a ged
ken experiment lasting as long as the present-day age o
Universe.

The calculation in this section makes frequent use of
sults from two references. The first reference examines
gravitational waves produced by an inflationary epoch in
early Universe@22#, and calculates the correlation functio
of the temperature anisotropies that they induce in the C
The frequency range of the waves influencing the observ
part of the CBR anisotropy is between 10218 Hz and
10216 Hz today. But the methods of Ref.@22# can also be
applied ~as we do here! to calculate the properties of th
waves at much higher frequencies: the 1023 Hz relevant to
space-based or the 102 Hz relevant to ground-base
gravitational-wave detectors. The second reference tha
make use of is a review article on how correlation techniq
may be used to detect a stochastic background@6#. A reader
wishing to follow our calculations in detail is advised to ha
copies of these two papers in hand.

The calculation done in this section is for an expli
model of slow-roll inflation, in the limit that the resultin
spectrum is ‘‘flat’’ and not tilted. After completing the ex
plicit calculation of the correlation function, it is straightfo
ward to show that in more general inflationary mode
which produce a ‘‘tilted’’ spectrum, the same general co
clusion holds: the non-stationary behavior cannot be
served in any practical experiment.

B. Calculation of the correlation function C„t,t8…

The most direct way to understand how the squeez
produced in an inflationary model affects the correlation
tween separated detectors is to examine the two-point co
lation function for the gravitational wave strainh at two
detector sites. This is defined by

C~ t,t8!5^h1~ t !h2~ t8!& ~3.1!

where the subscripts 1 and 2 refer to the detector sites, at
and t8 denote the time at these sites. The anglular brac
can be given two possible~equivalent! meanings. They can
denote the average over a statistical ensemble of many
ferent inflationary universes, each starting from somew
different initial conditions, but made statistically similar by
long period of exponential inflation. Equivalently, they c
denote the expectation value in a quantum state that is a g
approximation to the present-day state of the Universe.

The detector strains are given in terms of the metric p
turbations of a Friedmann-Robertson-Walker~FRW! cosmo-
logical model. Denoting the space-time metric by
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ds25a2~h!@2dh21~dab1hab!dxadxb# ~3.2!

the strain at sitei is given by

hi~ t !5
1

2
hab~ t,xi !~X̂i

aX̂i
b2Ŷi

aŶi
b! ~3.3!

wherexi is the spatial location of theith site andX̂i
a andŶi

a

are unit-length spatial vectors~with respect to the metric
dab) along the directions of the orthogonal detector arms
site i. Our model of the Universe is specified via the cosm
logical scale factora(h) given as a function of conforma
time h by Eq. ~3.7!. Note that we frequently use cosmolog
cal timet rather than conformal timeh as a coordinate; they
are related bydt5a(h)dh.

To compute the correlation function, we need an expr
sion for the metric perturbationhab . This quantity is not
deterministic. In classical calculations, it may be treated a
real stochastic random variable with certain statistical pr
erties. For inflationary cosmological models, a slightly d
ferent approach is useful, in whichhab is replaced by the
field operatorh̄ab of the linearized gravitational field. To se
why this is both simple and useful, it is helpful to briefl
review the fundamental mechanism through which inflatio
ary models erase the effects of the conditions present be
the inflation begins and give rise to a spatially flat and h
mogeneous universe today.

In inflationary models, the Universe undergoes a period
~nearly! exponential expansion of the scale factora. During
this period, the energy density of any matter or radiation
red shifted away exponentially quickly. For massless p
ticles, the energy of a particle is proportional toa21 and
hence the energy-density in massless particles redshift
a24. For massive particles, any kinetic energy is quick
red-shifted away, leaving only the rest mass behind. T
energy is diluted by the expansion of the spatial thr
volume, so that the energy density of massive particles r
shifts away asa23. What is left behind after the period o
exponential inflation is just the vacuum energy associa
with the cosmological constant; it is the dominant form
energy at the end of an inflationary epoch.

The perturbations away from absolute uniformity in infl
tionary models are dominated by the effects of the zero-p
vacuum fluctuations of the fields at the start of inflation@23#.
Twenty five years ago Grishchuk showed that during
subsequent expansion of the Universe, the quantum z
point fluctuations of the gravitational field modes are pa
metrically amplified@24#. This prediction has been subs
quently confirmed in many different ways, and the process
parametric amplification, which applies to both scalar a
tensor perturbations, is one explanation of how the ea
Universe can generate a spectrum of perturbations.

The above discussion, combined with Eqs.~3.1! and~3.3!,
implies that the correlation function today is well approx
mated by the vacuum expectation value
4-8
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C~ t,t8!5
1

8
^0uh̄ab~ t,x1!h̄cd~ t8,x2!1h̄cd~ t8,x2!h̄ab~ t,x1!u0&

3~X̂1
aX̂1

b2Ŷ1
aŶ1

b!~X̂2
cX̂2

d2Ŷ2
cŶ2

d!, ~3.4!

where u0& is the ~unique Hadamard–de Sitter-invarian!
quantum vacuum state of the inflationary universe@25#, and
h̄ab is the Hermitian field operator of the linearized gravit
tional field.

The correlation function~3.4! can be calculated exactly
but since space and ground based detectors will only be
sitive to gravitational waves in the frequency rangef
P@1023,103# Hz, a number of simplifying approximation
can be made. We do this by approximating the field opera
within this frequency range. In general, the field operato
given by Ref.@22# as

h̄ab~h,x!5E d3k@eik•x@eab~k!fR~h,k!āR~k!

1eab* ~k!fL~h,k!āL~k!#1H.c.#, ~3.5!

where H.c. means Hermitian conjugate. This is a sum o
wave vectors~labeled byk) of left- and right-circularly po-
larization tensors eab and eab* and wave functions
fL,R(h,k)exp(ık•x). To approximate the field operator w
need to relate present-day frequencyf to k5uku5Akaka.
Sincek always appears in the form exp(ık•x), from the form
of the metric~3.2! one can see that the frequencyf today is
related tok by

f 5
k

2pa~h0!
. ~3.6!

We will now express this relationship betweenf and k in
terms of the present-day Hubble expansion rateH0, which
will yield Eq. ~3.11!. This leads to relations~3.13! needed to
approximate the field operator~3.5! and to evaluate the two
point correlation function~3.4! in the frequency range o
interest.

The inflationary cosmological model is defined by t
scale factora(h) in Eq. ~4.1! of Ref. @22#:

a~h!55
S 22

h

h1
D 21

a~h1! 2`,h,h1 de Sitter,

h

h1
a~h1! h1,h,h2 radiation,

1

4 S 11
h

h2
D 2h2

h1
a~h1! h2,h matter.

~3.7!

This scale factor describes three epochs: a de Sitter infla
ary phase, followed by a radiation-dominated and the
matter-dominated phase. Lettingt be the cosmological time
defined bydt5a(h)dh, the Hubble constant today is give
by
02402
n-

or
s

er

n-
a

H05S 1

a

da

dt D
today

5S 1

a2

da

dh D
today

5
2

h01h2
a21~h0!. ~3.8!

Hereh0 is the present-day value of the conformal time a
h2 is the value of the conformal time at the beginning of t
matter-dominated phase of expansion. The redshiftZeq at
which the matter and radiation energy densities are equa

11Zeq5
a~h0!

a~h2!
5

1

4
~h0 /h211!2'104. ~3.9!

Henceh0 is about two orders of magnitude greater thanh2
and the Hubble constant today, Eq.~3.8!, is well approxi-
mated by

H0'
2

h0
a21~h0!'10218 Hz. ~3.10!

Having specified the cosmological model, one may now
proximate the field operatorh̄ab .

We will be making approximations valid for the range
frequencies that might be observed by ground- or spa
based detectors. It follows from Eqs.~3.6! and~3.10! thatk is
related to the present-day frequencyf by

k'
4p f

h0H0
. ~3.11!

In the frequency range of interest,kh0'4p f /H0*1016 is
much larger than unity:kh0@1. From examination of Eq
~3.9! this implies that one haskh2*1014, so kh2@1. Fi-
nally, from Eqs.~4.2! and~4.3! of Ref. @22#, if the period of
inflation creates sufficient cosmological expansion to so
the horizon and flatness problems, then

h1

h2
5

11Zeq

11Zend
&10223. ~3.12!

HereZend*1027 is the redshift at the end of the inflationar
epoch. Hencekh1&1029 is much smaller than unity:kh1
!1. To summarize, we will approximate the field opera
in the frequency regime where

kh0@1,

kh1!1,

kh2@1. ~3.13!

A physical interpretation of these constraints will be giv
shortly.

Any present-day detector correlation experiment will o
serve the correlation functionC(t,t8) at the present time:t
and t8 are in the matter-dominated~present-day! epoch.
From the definition of the correlation function~3.4! and of
the field operator~3.5! this means that we need an express
4-9
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for the mode functionf(h,k) in the present-day~matter-
dominated! epoch, which is given by the final line of Eq
~4.17! of @22#:

f~h,k!5fL,R~h,k!5a fmat
(1)~h,k!1b fmat

(2)~h,k!.

The mode functions in the present-day matter-domina
phase are given by Eq.~4.7! of @22#:

fmat
(1)~h,k!5fmat

(2)* ~h,k!

524iA 8

3p

rds

rP
k3/2h1

2h2

h1
(2)@k~h1h2!#

k~h1h2!
,

~3.14!

in terms of a spherical Hankel function of the second k
h1

(2) . The Planck density is denoted byrP5c7/\G2.
The Bogoliubov coefficientsa andb are given in terms

of the corresponding coefficients for the transition betwe
the de Sitter– and radiation-dominated phases and the
sition between the radiation- and matter-dominated phase

S a b

b* a* D 5S a b

b* a* D
rad

S a b

b* a* D
mat

. ~3.15!

Sincekh1!1 andkh2@1, one may make use of Eqs.~4.12!
and ~4.14! of Ref. @22# to obtain

a'2b* '
eık(h11h2)

2k2h1
2

. ~3.16!

Finally, making use of the definition offmat
(1) given in Eq.

~3.14!, one obtains

f~h,k!'4ık25/2A 8

3p

rds

rP
h2~h01h2!22cosk~h2h1!

'4ık25/2A 8

3p

rds

rP
h2h0

22coskh ~3.17!

whererds is the constant energy density during the inflatio
ary de Sitter phase of expansion andrP is the Planck energy
density. In deriving this expression we have made two
proximations. During any period of observation lasting on
a few years (h1h2)'(h01h2). Also

h1
(2)~x!52

e2 ix

x S 12
i

xD'2
e2 ix

x

sincex5k(h1h2)'k(h01h2)@1.
Note that the field operator~3.5! is invariant under the

combined transformations
02402
d

n
n-
as

-

-

āR~k!→e2 ic(k)āR~k!,

āL~k!→e2 ic(k)āL~k!,

f~k,h!→eic(k)f~k,h!, ~3.18!

where c(k) is an arbitrary function ofk. The de Sitter
vacuum state is invariant under this transformation, sinc
is defined byāR(k)u0&5āL(k)u0&50. Hence without loss of
generality we may multiply the mode function~3.17! by a
k-dependent phase; the final physical results will not be
fected by such a transformation. Changing this phase
analogous to multiplying the wave function of a quantu
mechanical harmonic oscillator by a pure phase: it has
observable effects. In particular, changing the phasec is not
equivalent to changing in the argument of the cos appea
in Eq. ~3.17!.

The expressions for the Bogoliubov coefficients~3.16!
and the mode functions~3.17! have a number of interestin
properties:

~i! The quantityubu2 is the~very large! number of quanta
created by the ‘‘external’’ large-scale expansion of the U
verse ~or, equivalently, by the parametric amplification
zero-point fluctuations! @26#. This is how inflation gives rise
to a potentially-observable stochastic background of grav
tional waves today@25#.

~ii ! The gravitons are created in particle-antiparticle pa
Since the antiparticle of a graviton is just a graviton of o
posite momentum and helicity, gravitons are always crea
in oppositely-moving pairs@27,28#.

~iii ! Since the amplitudes of these oppositely moving pa
of gravitons are exactly equal and their momenta are op
site @27,28#, they give rise to a pattern of standing waves

~iv! This pattern of standing waves is apparent in the fo
of the mode functionf, whose complex phase isnot a func-
tion of time ~sincef is pure imaginary!.

These are precisely the conclusions reached by Grishc
following Eq. ~7! of Ref. @11#.

The argumentk(h2h1) of the cosine in Eq.~3.17! has a
simple physical interpretation. The number of cyclesdN of a
wave in the time intervaldt at time t is dN5 f (t)dt
5 f (h)a(h)dh5kdh/2p. This means thatk(h2h1)/2p is
the number of cycles of oscillation~in time! that the wave
with wave numberk has undergone since the end of the
Sitter phase at timeh1. For frequencies observable b
ground- and space-based detectors, the termkh1!1 and can
be neglected. See also Appendix A below. Later in this s
tion, we will encounter terms of the formk(h6h8).

Before completing the calculation of the two-point corr
lation function, it is useful to make a short digression. W
will calculate the energy density in gravitational waves us
this formalism. The result illustrates precisely the effect p
dicted in Sec. II C: it is not possible to distinguish the t
stationary and squeezedstates in local short-time observa
tions. The energy density in gravitational waves is given
4-10
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rgw5E d f
drgw

d f

5 lim
t→t8

1

32pG K 0U d

dt
h̄ab~h,x!

d

dt8
h̄ab~h8,x!U0L

5 lim
h→h8

1

32pG

1

a~h!a~h8!

d

dh

3
d

dh8
^0uh̄ab~h,x!h̄ab~h8,x!u0&.

The last term of the expression above, which is the two-po
function of the field operator, may be derived from the plan
wave expansion of the field operator~3.5! and the canonica
commutation relations given by Eq.~2.17! of @22#. Doing so
yields

^0uh̄ab~h,x!h̄cd~h8,x8!u0&

5E d3k eık•(x2x8)f~h,k!f* ~h8,k!

3@eab~k!ecd* ~k!1eab* ~k!ecd~k!#, ~3.19!

since the vacuum stateu0& is annihilated by the operatorsāR

andāL . Note that this quantity also appears in the definiti
of C(t,t8) and will be referred to later in this section. Mak
ing use of the relationship between cosmological and con
mal timedt5a(h)dh and of the definitions~2.22!–~2.26! of
@22#, one obtains an expression for the energy density in
stochastic gravitational wave background valid for the ran
of frequencies observable by ground- and space-based d
tors:

rgw5
64

3p

rds

rP

h2
2

h0
4a~h0!2E k21cos2kh dk.

It is conventional to express this energy density as a dim
sionless spectral functionVgw( f ) which is the ratio of the
energy density in gravitational waves in a logarithmic fr
quency interval divided by the critical energy densityrc

5(3/8p)H0
2 required to close the Universe5:

Vgw~ f !5
f

rc

drgw

d f
5

32

9

rds

rP
~11Zeq!

21cos2kh

'
32

9

rds

rP
~11Zeq!

21cos2@2p f ~ t12T0!#.

~3.20!

5Many of the ‘‘standard’’ treatments of gravitational wave pr
duction by slow-roll inflation would imply that the energy densi
in gravitational waves is zero. This is a misapplication of the st
dard consistency relation between the scalar and tensor amplitu
because in this non-tilted model the standard treatments imply
the energy density in scalar perturbations is infinite.
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Note thatVgw( f ) depends upon the time: if the statistic
properties of the state were stationary, it would be time
dependent. For a single mode, the energy density is an o
lating function of time, exactly what we would expect for
standing wave, but without any spatial dependence. Roug
speaking, this is because, for every member of the statis
ensemble, there is another member, spatially displaced b
arbitrary amount.

It is useful to compare the result~3.20! with the result
normally quoted for the spectrumVgw( f ) produced in infla-
tion ~which is sometimes derived by assuming stationar!
@5#:

@Vgw~ f !#Stationary5
f

rc

drgw

d f

5
16

9

rds

rP
~11Zeq!

21. ~3.21!

It is easy to see that in any practical experiment, one can
discriminate between these two possibilities: Eqs.~3.20! and
~3.21!. The reason is simple. In a practical experiment last
~say! one year, the smallest frequency resolutiond f that can
be attained is of orderd f'1/yr'1028 Hz. This means that
the energy density~3.20! is resolvable in frequency bins no
smaller thand f . Hence the outcome of a~noise free! experi-
ment would be a measure ofrgw averaged over a range ofk
for which dk54pd f /h0H0. Even over this tiny range o
frequencyd f , the argument of the squared cosine pas
through a ranged(kh)54pd f /H0;1010. The consequence
is that in any practical experiment, the cos2(kh) is averaged
over approximately 1010 cycles, after which it is indistin-
guishable from 1/2. Thus the stationary and non-station
cases cannot in practice be distinguished: the inflation
prediction of non-stationarity cannot be falsified.

Let us now return to the main line of reasoning and co
tinue the calculation of the two-point correlation functio
and see if a two-point correlation experiment may be able
distinguish between the stationary and non-stationary ba
grounds. For this purpose it is helpful to compare the infl
tionary model to a fictitious model universe in which th
particles werenot created in perfectly correlated pairs b
were instead formed by a stationary random process wh
did not correlate particles moving in opposite directions.
this case the wave functions have a time-dependent p
and are given by6

@f~h,k!#Stationary'
1

A2
4ık25/2A 8

3p

rds

rP
h2h0

22eıkh.

~3.22!

-
es,
at

6These are not normalized modes, since they do not correspon
vacuum fluctuations. Instead, they are modes containing the s
energy density as in the inflationary case, but without the corr
tions between the oppositely moving quanta.
4-11



i
i

ng

tio

in

-

f

-

e.
rds
lue-

the
uld

on-
-

re
ex-
nc-
he
y-

r-

a
ric
on-
d by
age
e as
o
ere
la-

at

es

to
er-

d

n
.

a

ALLEN, FLANAGAN, AND PAPA PHYSICAL REVIEW D 61 024024
These ‘‘modes’’ should be compared with the ones given
Eq. ~3.17!. They lead to same average energy density
gravitational waves as in the squeezed-state case.

The two-detector correlation functionC(t,t8) for the in-
flationary model can now be derived simply by substituti
the two-point function of the field operator~3.19! into the
correlation function~3.4!:

C~ t,t8!5
8p

5
@2pa~h0!#3

3ReF E
0

`

d f g~ f ! f 2f@h~ t !,k~ f !#

3f* @h8~ t8!,k~ f !#G ~3.23!

where the overlap reduction functiong( f ) is a real function
determined entirely by the relative separation and orienta
of the two detector sites and is defined by Eq.~3.30! of Ref.
@6# ~this function was originally defined and computed
Ref. @29#!. The overlap functiong( f ) for the two LIGO sites
is shown in Fig. 4. The functiong( f ) is unity for coincident
and co-aligned detectors.

Inserting the mode functions~3.17! yields7

C~ t,t8!5
8

15p2 ~11Zeq!
21

rds

rP
H0

2E d f g~ f ! f 23

3@cos 2p f ~ t2t8!1cos 2p f ~ t1t814T0!#,

~3.24!

7The apparent divergence of this integral asf→0 is due to the
approximation made in its derivation that the frequencyf is between
'1 mHz and'1 kHz. The exact expression is free of infrare
divergences, but would give the same function oft and t8 for any
practical experiment, since the measured correlation functio
given by the integral restricted to the bandpass of the detector

FIG. 4. The overlap reduction functiong( f ) for the LIGO-
Hanford and LIGO-Livingston sites. The left graph has a line
frequency scale; the right graph has a logarithmic scale.
02402
n
n

n

where we have assumed thatt and t8 are in the present ep
och, replacingk(h2h8) by 2p f (t2t8) and k(h1h8) by
2p f (t1t814T0). As mentioned earlier, the number o
cycles of a wave during the infinitesimal time intervaldt at
time t is dN5 f (t)dt5kdh/2p. Hence, provided thath and
h8 are not too far apart~in the cosmological sense!, then one
has k(h2h8)'2p f (t2t8). This holds provided thatut
2t8u!H0

21. Note that, while it is tempting to replacekh
with 2p f t, it is incorrect. In fact, provided that the inflation
ary phase is not too long, one has~today! kh'2p f (t
12T0), whereT052/3H0 is the present cosmological ag
The ‘‘additional cycles’’ arise because as one goes towa
the past, the frequency of the wave increases due to b
shifting, so for examplek(h1h8)'2p f (t1t814T0).

In the stationary case, which lacks correlation between
amplitudes of the opposite-momentum modes, one wo
find that the correlation function is given by

C~ t,t8!5
8

15p2 ~11Zeq!
21

rds

rP
H0

2

3E d f g~ f ! f 23cos 2p f ~ t2t8!. ~3.25!

This is identical to the inflationary case, except that the n
stationary term depending upont1t8 is absent. These ex
pressions are valid provided thatut2T0u and ut82T0u are
both very small compared toT0.

In a more complicated model of the early Universe, whe
the energy-density during the inflationary epoch was not
actly constant as here, but was instead a slowly varying fu
tion of time, one would obtain an almost-identical result. T
only difference is that one would find an extra, slowly var
ing power law factor off a in Vgw( f ), and in the integrand of
C(t,t8), where a is the so-called ‘‘tilt’’ of the spectrum.
This slowly varying factor would have no effect on our a
guments or conclusions.

C. Are the non-stationary terms observable?

It is now easy to answer the original question: could
correlation experiment carried out with two interferomet
gravitational wave detectors distinguish between the n
stationary squeezed-state stochastic background produce
inflation and a stationary background with the same aver
energy density? The answer is no. The reason is the sam
that given following Eq.~3.21!. Suppose that there were n
significant detector noise to contend with and that we w
only trying to distinguish between the two possible corre
tion functions~3.24! and~3.25!. In an experiment of realistic
length ~say, one year! the smallest range of frequencies th
would be observable is a bandwidthd f51028 Hz. Consider
now the extra integral term*d f g( f ) f 23cos 2pf(t1t8
14T0) which distinguishes the two cases. The timet1t8
14T0 that appears in this integral is approximately 6 tim
the total age of the Universe, in other words, about 1018 sec.
Thus, even if the range of integration is restricted
1028 Hz, the cosine factor appearing in this integral und
goes more than 109 cycles. Since all of theother factors in

is

r
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the integral are smoothly varying over the range of integ
tion, the resulting integral vanishes, in comparison with
integral containing the stationary contribution cos2pf(t2t8).8

The same conclusion is reached when one uses the re
and notations of Ref.@11#. The strong dependence on fr
quency of the integrand appearing in Eq.~14! of Ref. @11# is
due to the cos2@2pn(t2tn)# factor, and not on the slowly de
cayingn2b11 factor. ~The 2pnt of Ref. @11# corresponds to
kh in our notation and 2pntn to kh1.! We have already
shown that 2pntn5kh1!1. However, in the other termt is
the cosmological age of the Universe, and 2pnt5kh0
.1016 is (2p times! the number of cycles that the wave h
undergone since the beginning of the Universe. Thus
cannot approximate the integral by taking its value at
lower limit of frequency, which is precisely the approxim
tion that appears to make the non-stationary nature of
process visible even in year-long experiments in Ref.@11#.

Finally we note that even if it were magically possible
observe the gravitational wave correlation over a sufficien
narrow bandwidth for the second integral to contribute s
nificantly, the best that one could possibly do with optim
filtering is to add a factor of 2 to the total correlation. Th
means that, even if the optimal filtering strategy for this no
stationary signal could be implemented, the most one wo
add to the total signal would be a factor of 2. The total no
would remain the same. Hence, even if there were no p
lems related to the short observation time~compared to the
age of the Universe!, it would not be possible to claim tha
the signal-to-noise ratio grows faster as a function of integ
tion time for the squeezed background than for the stand
one.

ACKNOWLEDGMENTS

B.A. thanks Leonid Grishchuk for many useful and stim
lating discussions about these and related topics, and
Thorne for some wise counsel. M.A.P. thanks the Calt
LIGO project for its gracious hospitality while this paper w
being written. B.A. and M.A.P. also acknowledge valuab
advice from Riccardo DeSalvo. E.F. thanks the Institute
Theoretical Physics in Santa Barbara for its hospitality, a
acknowledges the support of the Alfred P. Sloan foundat
This work has been supported by NSF grants PHY97287
PHY9507740, PHY 9722189, and PHY 9407194.

APPENDIX A: GRAVITATIONAL WAVE PREDICTIONS
OF INFLATIONARY MODELS

In this appendix we review the predictions@12,14# of in-
flationary models for the statistical properties of relic gra
tational waves. We write the spacetime metric as

ds25a~h!2$2dh21@dab1hab~h,x!#dxadxb%, ~A1!

8Note that in optimal filtering schemes to search for a stocha
background, one is mostly concerned with timest andt8 for which
ut2t8u&50 msec.
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wherea,b run over spatial indices,h is conformal time, and
a(h) is the scale factor. For the gravitational wave mod
relevant to ground and space based detectors, it is a g
approximation to takea(h) to be constant at sufficiently lat
and sufficiently early times:

a~h!5H ai , h<h i ,

af , h.h f ,
~A2!

for someh i andh f . For simplicity and without loss of gen
erality we will takeaf51. We defineak ,bk to be the Bo-
goliubov coefficients for the differential equation

m9~h!1S k22
a9

a Dm~h!50. ~A3!

In other words,ak and bk are such that ifm(h)5exp(ikh)
for h<h i , then m(h)5akexp(ikh)1bkexp(2ikh) for h
>h f .

The metric perturbationhab for h.h f can be expanded
as

hab~h,x!5E
2`

`

d f e22p i f hE d2Vn

3(
A

sA,n~ f ! e2p i f n•x eab
A,n . ~A4!

Here *d2Vn denotes the integral over solid angles para
etrized by the unit vectorn, A runs over the two polarization
components, and the tensorseA,n are the usual transvers
traceless polarization tensors, normalized according
dacdbdeab

A,necd
B,n52dAB . We specialize to a circular polariza

tion basis for whicheA,2n5(eA,n)* . The quantitiessA,n( f )
are Gaussian random processes withsA,n(2 f )5sA,n( f )*
and whose statistical properties are given by@30,31#

^sA,n~ f !sB,m~ f 8!* &5
2

p
uku ubku2dABd~ f 2 f 8!d2~n,m!

1
2

p
uku ak* bkdABd~ f 1 f 8!d2~n,2m!,

~A5!

wherek52p f andd2(n,m) is the delta function on the uni
sphere. If one drops the second term in Eq.~A5!, one obtains
a stationary, Gaussian stochastic background with

Vgw~ f !5
k4

p2rc

ubku2. ~A6!

HereVgw( f ) is the usual energy density per logarithmic fr
quency in units of the closure energy densityrc . The second
term in Eq.~A5! encapsulates the non-stationarity.

The stochastic background will be dominated by mod
for which the number of quanta created per modeubku2 is
large compared to unity, which for typical inflation mode
means all modes with frequenciesf in the range 10218 Hz
& f &1 MHz. For such modes the ratio of the coefficients

ic
4-13
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the first and second terms in Eq.~A5! is very nearly a pure
phase, sinceuaku22ubku251. So we can write

^sA,n~ f !sB,m~ f 8!* &5
rcVgw~ u f u!

4p2u f u3
dAB@d~ f 2 f 8!d2~n,m!

1eix(k)d~ f 1 f 8!d2~n,2m!#, ~A7!

where as beforek52p f and the phasex(k) is given by
exp@ix(k)#5ak* /bk* . Hence, each inflationary model is cha
acterized, in the large squeezing limit, by two functions
frequency: the spectrumVgw( f ) and the phasex(k). Note
that under changesh→h2Dh in the origin of conformal
time, x(k) transforms asx(k)→x(k)12kDh. Also the
phasex(k) satisfiesx(2k)52x(k).

In Sec. III above we show that in a specific inflationa
model,x(k)'2kh1, whereh1 is a specific value of confor
mal time around the inflationary epoch, and thatkh1!1 for
modes that are relevant for ground and space based dete
Thus we may takex(k)'0. This conclusion is valid for all
inflationary models. If one uses the method of calculation
Ref. @32# to approximately evaluateak and bk , one finds
that, up to additive corrections of order unity,

x~k!'2k hk,E ~A8!

wherehk,E is the conformal time at which modes with wav
numberk re-enter the horizon, at which point

k5a8/a. ~A9!

For the relevant modes which re-enter during the radia
dominated era,hk,E is independent of the details of the in
flationary dynamics, and from Eq.~A9! is given by hk,E
5h011/k, whereh0 is the conformal time such thata(h)
}h2h0 during radiation domination@i.e. the extrapolated
zero crossing ofa(h)#. Thus from Eq.~A8! we find that
x(k)'212kh0. We can neglect the constant first term, a
we can choose the origin of conformal time so thath050,
thus giving x(k)50. This conclusion is used in Sec.
above, where we use a discretized version of Eq.~A7! with
x(k) set to zero.

APPENDIX B: DETECTABILITY OF SQUEEZING
IN A SIMPLE MODEL

In this appendix, we analyze the detectability of the no
stationarity in the context of the simple model of Sec. II. O
starting points are Eq.~2.19!, which describes the statistica
properties of the Universe modes, and Eqs.~2.22! and~2.23!,
which describe the relationship between the Universe mo
and the measured modes.

We can summarize the information in Eq.~2.19! in terms
of a characteristic function:

K expF i (
j 50

N21

~v j h̃ j1v j* h̃ j* !G L 5expF2
1

2
Q~v j !G , ~B1!

where
02402
f

ors.

f

n

-
r

es

Q~v j !5 (
j 50

N21

s j
2@4uv j u212« ~v j

21v j*
2!#, ~B2!

and v1 , . . . ,vN are arbitrary complex numbers. As befor
«50 is the stationary case and«51 is the squeezed case
We can derive the corresponding characteristic function
the measured modesH̃A by using Eqs.~2.22! and ~B1!,
which yields

K expF i (
A50

M21

~sAH̃A1sA* H̃A* !G L 5expF2
1

2
Q~v j !G ,

~B3!

where nows1 , . . . ,sM are arbitrary complex numbers an
where on the right-hand sidev j is given by

v j5WA jsA . ~B4!

Here and below it is assumed that repeated lower case
cesj ,k, . . . are summed over 0,1, . . . ,N21, and uppercase
indicesA,B, . . . are summed over 0,1, . . . ,M21 ~see Sec.
II C above!. Now combining Eqs.~B2! and ~B4! yields

Q54 GABsAsB* 12«@xABsAsB1xABsA* sB* #, ~B5!

where

GAB5(
k

sk
2 WAkWBk* ~B6!

is a Hermitian matrix, and

xAB5(
k

sk
2 WAkWBk ~B7!

is a symmetric matrix.
The difference between the stationary and squeezed c

is due to the matrixxAB . It follows from the formulas~B3!
and~B5! that whenxAB50, the joint probability distribution
for the variablesH̃1 , . . . ,H̃M is exactly the same in the
squeezed and stationary cases; in particular the phase of
H̃A is uniformly distributed over the circle.

We now show that for a purely white stochastic bac
ground with s j5const, the matrixxAB50 and thus the
squeezing hasno effecton the statistical properties of th
measured modesH̃A , irrespective of the values ofTs and
Tobs. First, using the formula~2.23! for the weightsWA j we
can obtain the formula forGAB :

GAB5
1

N2 (
C,D

e2pı(AC2BD)/M (
j 50

N21

s j
2e22pı(C2D) j /N,

~B8!

which can be approximately evaluated to yield

GAB'
M

N
dAB s j 5(N/M )A

2 . ~B9!
4-14
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For the matrixxAB we find from Eqs.~2.23! and ~B7! the
formula

xAB5
1

N2 (
C,D

e2pı(AC1BD)/M

3 (
j 50

N21

s j
2 e24pı js/Ne22pı(C1D) j /N. ~B10!

Now in the cases j5const of a white spectrum, the sum ov
j in the formula~B10! can be written as

(
j 50

N21

a j5
12aN

12a
, ~B11!

where

a5exp@22pı~2 js1C1D !/N#. ~B12!

We can assume thats.0, which corresponds toTs.0,
since measurements today must haveTs of order the age of
the Universe@33#. Also we can assume thats12M,N,
which corresponds toTs12Tobs,L, since we should take
L→` at the end of our calculation anyway. It then follow
from Eqs.~B11! and ~B12! that xAB50.

Thus, the effect of the squeezing on the statistical prop
ties of the measured modesH̃A depends on the spectrums j
of the stochastic background. Let us now turn to the c
when the spectrum is colored. In this case it turns out that
matrix xAB is small, and consequently the effects of t
squeezing are small, whenever the observation starting
Ts is large compared to a correlation time that character
the spectrum of the stochastic background. In other wo
the effect of the squeezing on the statistical properties of
stochastic background is time dependent; the effect is str
near t50, where the modes are all synchronized@33#, but
becomes weaker and weaker at later times.

To see this, it is convenient to transform back to a co
tinuum representation of the stochastic background.
spectrumSh( f ) of the backgroundh(t) is related to the
quantitiess j by @34#

s j
25

1

2
N2D f Sh~ j D f !, ~B13!

whereD f 51/(2pL). We define the quantity

Ĉh~t!5E
0

`

d f e22pı f t Sh~ f !. ~B14!

Then the real part ofĈh(t) is the usual correlation function
^h(t)h(t1t)& ~in the stationary case!. The discrete form of
Eq. ~B14! is

Ĉh~ j Dt!5
2

N2 (
k50

N21

e22pı jk/N Sh~kD f !, ~B15!
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whereD f 51/(2pL) andDt52pL/N5LDt. Now by com-
bining Eqs.~B13! and~B15! we can evaluate the sum overj
that appears in the formula~B10! for xAB :

(
j

s j
2e22pı(2s1C1D) j /N5

1

2
N2Ĉh@2Ts1~C1D !Dt#.

~B16!

The quantity~B16! will be small onceTs is much larger
than the correlation timet* of Ĉh , that is, the time over
which Ĉh(t);Ĉh(0). This correlation timet* will be
roughly the reciprocal of the shortest frequency scale o
which Sh( f ) has appreciable variation. The ‘‘high fre
quency’’ structure in the spectrumSh( f ) will presumably be
dominated by the ‘‘breaks’’ in the spectrumSh( f ) corre-
sponding to transitions from one cosmological epoch to
other ~e.g., inflation to radiation domination!. However, the
physical time for such transitions to take place cannot
shorter than a local Hubble time. Hence, the correspond
correlation timet* will always be much shorter than th
present day age of the Universe,T0, and consequently al
ways much smaller thanTs for realistic measurements
Hence the matrixxAB and consequently the effect of th
squeezing on observational data will be very small.

Turn, now, to the question of how accurately the mat
xAB can be measured, i.e., to the fundamental limitations
measurement accuracy imposed by ‘‘cosmic variance.’’
address this question, we apply the analysis of Appendi
to deduce the conditions under which the squeezing is
tectable. Note that this analysis allows for the possibility
combining the measurements of all the different mode a
plitudes. Let us define the real random vectorx
5(ReH̃1 , . . . ,ReH̃M ,ImH̃1 , . . . ,ImH̃M). Then, from Eqs.
~B3! and ~B5!, the analysis of Appendix C applies direct
with

S154F ReG Im G

2Im G ReG
G ~B17!

and

S22S154F Rex 2Im x

2Im x 2Rex
G . ~B18!

It then follows from Eq.~C9! that the difference between th
squeezed and stationary cases is only detectable in the
gime where the quantity

L5tr@~x•G21! ~x•G21!†# ~B19!

is large compared to unity. We can approximately evalu
the quantityL by substituting Eqs.~B9!, ~B10!, and ~B16!
into Eq. ~B19!. This yields, in the limitL→` andDt→0,

L;(
j 50

` U E
0

2Tobs
dt e2pı j t/TobsĈh~Ts1t!U2

Sh~ j /Tobs!
2

. ~B20!
4-15
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We now analyze the implications of the final result~B20!.
First, it follows from the formula~B20! together with the
definition~B14! that in the regimeTobs!Ts , we always have
L&1, irrespective of the nature of the spectrumSh( f ),
which proves the claims made in the body of the paper
the other regime whereTobs;Ts , we can see thatL!1 once
Ts is much larger than the correlation time oft* of Ĉh . As
argued above,t* will be much smaller than the present da
age of the Universe,T0. Hence, experiments today wou
have difficulty detecting the non-stationarity even if they la
a time;T0.

APPENDIX C: DISTINGUISHING BETWEEN
TWO DIFFERENT DISTRIBUTIONS

OF A GAUSSIAN RANDOM VECTOR

In this appendix we address the following statistical iss
which arises in Sec. II C and in Appendix B above. Supp
that x5(x1 , . . . ,xN) is a zero-mean, Gaussian random ve
tor which satisfies either

^xixj&5S1 i j ~C1!

~case 1! or

^xixj&5S2 i j ~C2!

~case 2!. Thus, there are two possible variance-covaria
matrices,S1 andS2. In our application we will take case
to correspond to a squeezed stochastic background, and
1 to a stationary stochastic background. Suppose now
we have one measurement ofx. How well can we distinguish
between the two possibilities?

We now show that, whenS12S2!S1, and when case 2
actually applies, the two cases can be distinguished with h
probability only in the regime where the quantity

1

2
tr @~S2•S1

2121!2# ~C3!

is large compared to unity, and not when this quantity is
order unity.

It is easiest to address the question using the Baye
approach. Let the experimenter’s prior probability for cas
bep2. Then after the measurement her probability for cas
will be revised top28 , where
y
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12p28
5

p2

12p2
eL, ~C4!

where

eL5
p~xu2!

p~xu1!
~C5!

and p(xu1) is the probability thatx is observed assuming
case 1, etc. It is clear that the difference between cases 1
2 is detectable in the regimeL@1, but not in the regime
L;1.

Inserting Gaussian probability distributions into Eq.~C5!
we find that

L5
1

2
xT
•@S1

212S2
21#•x1

1

2
ln det~S1•S2

21!. ~C6!

Let us now assume that case 2 actually applies, so tha
expected value ofxixj is given by Eq.~C2!. Then, typical
values ofL will be close to the expected value of theL
which is

^L&52
1

2
tr @12S2•S1

21#2
1

2
ln det~S2•S1

21!. ~C7!

Now suppose that the eigenvalues ofS2•S1
21 are 11l j for

1< j <N. This yields that

^L&5
1

2 (
j 51

N

@l j2 ln~11l j !#. ~C8!

If each ul j u is small compared to unity, then to a good a
proximation we have

^L&'
1

4 (
j 51

N

l j
2

5
1

2
tr @~S2•S1

2121!2#. ~C9!

In our application we use the formula~C9! which should be
a good approximation to the exact formula~C7!.
,
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Note also that the frequencyf is a physical frequency and no
a coordinate frequency.
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