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Abstract. This contribution gives a personal view on recent attempts to 
find a unified framework for non-perturbative string theories, with special 
emphasis on the hidden symmetries of supergravity and their possible role 
in this endeavor. A reformulation of d = 11 supergravity with enlarged 
tangent space symmetry SO(1, 2) × SO(16) is discussed from this perspec- 
tive, as well as an ansatz to construct yet further versions with SO(1, 1) × 
SO(16)∞ and possibly even SO(1, 1)+ × ISO(16)∞ tangent space 
symmetry. It is suggested that upon “third quantization”, dimensionally 
reduced maximal supergravity may have an equally important role to play 
in this unification as the dimensionally reduced maximally super- 
symmetric SU(∞) Yang Mills theory. 
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1. Introduction 
 
Many theorists now believe that there is a unified framework for all string theories, 
which also accomodates d = 11 supergravity (Cremmer, Julia & Scherk 1978). Much 
of the evidence for this elusive theory, called “M-Theory” (Witten 1995; Townsend 
1995), is based on recent work on duality symmetries in string theory which suggests 
that all string theories are connected through a web of non-perturbative dualities 
(Font et al. 1990; Rey 1991; Sen 1993,94; Schwarz & Sen 1994; Duff & Khuri 1994; 
Giveon et al. 1994; Hull & Townsend 1995; Witten 1995; Kachru & Vafa 1995; 
Schwarz 1995, 96; Duff 1996; Horava 1996). Although it is unknown what M-theory 
really is, we can probably assert with some confidence 
 

(i) that it will be a pregeometrical theory, in which space-time as we know it will 
emerge as a secondary concept (which also means that it makes little sense to 
claim that the theory “lives” in either ten or eleven dimensions), and 

(ii) that it should possess a huge symmetry involving new and unexplored types of 
Lie algebras (such as hyperbolic Kac Moody algebras), and perhaps other exotic 
structures such as quantum groups. In particular, the theory should be back- 
ground independent and should be logically deducible from a vast generalization 
of the principles underlying general relativity.

 

According to a widely acclaimed recent proposal (Banks et al. 1997) M-Theory 
“is” the N → ∞ limit of the maximally supersymmetric quantum mechanical SU(N) 
matrix model (Claudson & Halpern 1985; Flume 1985; Baake, Reinicke & Rittenberg 
1985) (see deWit (1997), Banks (1997) and Bigatti & Susskind (1997) for recent 
reviews, points of view and comprehensive lists of references). This model had already 
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appeared in an earlier investigation of the d = 11 supermembrane (Bergshoeff, Sezgin 
& Townsend 1987; 1988) in a flat background in the light cone gauge (deWit, Hoppe 
& Nicolai 1988). Crucial steps in the developments leading up to this proposal 
were the discovery of Dirichlet p-branes and their role in the description of non- 
perturbative string states (Polchinski 1995) and the realization that the dynamics of an 
ensemble of such objects is described by dimensionally reduced supersymmetric 
Yang Mills theories (Witten 1996; Polchinski 1996). Although there are a host of 
unsolved problems in matrix theory, two central ones can perhaps be singled out: one 
is the question whether the matrix model admits massless normalizable states for any 
N (see Fröhlich & Hoppe 1997; Yi 1997; Sethi & Stern 1997; Porrati & Rozenberg 
1997; Hoppe 1997; Green & Gutperle 1997; Halpern & Schwarz 1997) for recent work 
in this direction); the other is related to the still unproven existence of the N → ∞ 
limit. This would have to be a weak limit in the sense of quantum field theory, 
requiring the existence of a universal function g = g(N) (the coupling constant of 
the SU(N) matrix model) such that the limit N → ∞ exists for all correlators. 
The existence of this limit would be equivalent to the renormalizability of the 
supermembrane (deWit, Hoppe & Nicolai 1988). However, even if these problems can 
be solved eventually, important questions remain with regard to the assertions made 
above: while matrix theory is pregeometrical in the sense that the target space coordi- 
nates are replaced by matrices, thus implying a kind of non-commutative geometry, the 
hidden exceptional symmetries of dimensionally reduced supergravities discovered 
long ago (Julia 1979) are hard to come by (see Elitzur et al. (1997) and references 
therein). 

In the first part of this contribution, I will report on work (Melosch & Nicolai 
1997), which was motivated by recent advances in string theory as well as the 
possible existence of an Ashtekar-type canonical formulation of d = 11 supergravity. 
Although at first sight our results, which build on the earlier work of (deWit & 
Nicolai 1985; Nicolai 1987), may seem to be of little import for the issues raised 
above, I will argue that they could actually be relevant, assuming (as we do) that the 
success of the search for M-Theory will crucially depend on the identification of its 
underlying symmetries, and that the hidden exceptional symmetries of maximal super- 
gravity theories may provide important clues as to where we should be looking. 
Namely, as shown in (deWit & Nicolai 1985; Nicolai 1987) the local symmetries of 
the dimensionally reduced theories can be partially “lifted” to eleven dimensions, 
indicating that these symmetries may have a role to play also in a wider context than 
that of dimensionally reduced supergravity. The existence of alternative versions of 
d = 11 supergravity, which, though equivalent on-shell to the original version of 
(Cremmer, Julia & Scherk 1978), differ from it off-shell, suggests the existence of a 
novel kind of “exceptional geometry” for d = 11 supergravity and the bigger theory 
containing it. This new geometry would be intimately tied to the special properties of 
the exceptional groups, and would be characterized by relations such as (3)–(5) 
below, which have no analog in ordinary Riemannian geometry. The hope is, of 
course, that one may in this way gain valuable insights into what the (surely 
exceptional) geometry of M-Theory might look like, and that our construction may 
provide a simplified model for it. After all, we do not even know what the basic 
physical concepts and mathematical “objects” (matrices, BRST string functionals, 
spin networks,...?) of such a theory should be, especially if it is to be a truly
pregeometrical theory of quantum gravity. 
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The second part of this paper discusses the infinite dimensional symmetries of 
d = 2 supergravities (Julia 1981; Julia 1982, 1984; Breitenlohner & Maison 1987; 
Breitenlohner, Maison & Gibbons 1988; Nicolai 1991; Julia & Nicolai 1996; Bernard 
& Julia 1997) and an ansatz that would incorporate them into the construction of 
(Melosch & Nicolai 1997; deWit & Nicolai 1985; Nicolai 1987). The point of view 
adopted here is that the fundamental object of M-Theory could well be a kind of 
“Unendlichbein” belonging to an infinite dimensional coset space (Ashtekar 1986), 
which would generalize the space GL(4, R) /SO(1, 3) of general relativity. This bein
would be acted upon from the right side by a huge extension of the Lorentz group, 
containing not only space-time, but also internal symmetries, and perhaps even local 
supersymmetries. For the left action, one would have to appeal to some kind of 
generalized covariance principle. An intriguing, but also puzzling, feature of the 
alternative formulations of d = 11 supergravity is the apparent loss of manifest 
general covariance, as well as the precise significance of the global E11-d symmetries 
of the dimensionally reduced theories. This could mean that in the final formulation, 
general covariance will have to be replaced by something else. 

The approach taken here is thus different from and arguably even more speculative 
than current ideas based on matrix theory, exploiting the observation that instead of 
dimensionally reducing the maximally extended rigidly supersymmetric theory to one 
dimension, one might equally well contemplate reducing the maximally extended 
locally supersymmetric theory to one (light-like ≡ null) dimension. While matrix 
theory acquires an infinite number of degrees of freedom only in the N → ∞ limit, 
the chirally reduced supergravity would have an infinite number from the outset, 
being one half of a field theory in two dimensions. The basic idea is then that upon 
quantization the latter might undergo a similarly far-reaching metamorphosis as the 
quantum mechanical matrix model, its physical states being transmuted into “target 
space” degrees of freedom as in string theory (Nicolai 1987). This proposal would 
amount to a third quantization of maximal (N = 16) supergravity in two dimensions, 
where by “third quantization” I mean that the quantum treatment should take into 
account the gravitational degrees of freedom on the worldsheet, i.e. its (super)moduli 
for arbitrary genus. The model can be viewed as a very special example of d = 2 
quantum cosmology; with the appropriate vertex operator insertions the resulting 
multiply connected d = 2 “universes” can be alternatively interpreted as multistring 
scattering diagrams (Mandelstam 1973; Giddings & Wolpert 1987). One attractive 
feature of this proposal is that it might naturally bring in E10 as a kind of non- 
perturbative spectrum generating (rigid) symmetry acting on the third quantized 
Hilbert space, which would mix the worldsheet moduli with the propagating degrees 
of freedom. A drawback is that these theories are even harder to quantize than the 
matrix model (see, however, Nicolai, Korotkin & Samtleben (1997) and references
therein). 
 

2. SO(1, 2) × SO(16) invariant supergravity in eleven dimensions 
 
In (deWit & Nicolai 1985; Nicolai 1987), new versions of d = 11 supergravity 
(Cremmer, Julia & Scherk 1985) with local SO(1, 3) × SU(8) and SO(1, 2) × SO(16) 
tangent space symmetries, respectively, have been constructed. Melosch & Nicolai 
(1997) develop these results further (for the SO(1, 2) × SO(16) invariant version of 
 



 

152 Hermann Nicolai 
 
(Nicolai 1987) and also discusses a hamiltonian formulation in terms of the new 
variables. In both versions the supersymmetry variations acquire a polynomial form 
from which the corresponding formulas for the maximal supergravities in four and 
three dimensions can be read off directly and without the need for complicated 
duality redefinitions. This reformulation can thus be regarded as a step towards the 
complete fusion of the bosonic degrees of freedom of d = 11 supergravity (i.e. the 
elfbein A

ME  and the antisymmetric tensor AMNP) in a way which is in harmony with the 
hidden symmetries of the dimensionally reduced theories. 

For lack of space, and to exhibit the salient features as clearly as possible I will 
restrict the discussion to the bosonic sector. To derive the SO(1, 2) × SO(16) invariant 
version of (Nicolai 1987; Melosch & Nicolai 1997) from the original formulation of 
d = 11 supergravity, one first breaks the original tangent space symmetry SO(1,10) 
to its subgroup SO(1, 2) × SO(8) through a partial choice of gauge for the elfbein, 
and subsequently enlarges it again to SO(1, 2) × SO(16) by introducing new gauge 
degrees of freedom. The symmetry enhancement of the transverse (helicity) group 
SO(9) ⊂ SO(1,10) to SO(16) requires suitable redefinitions of the bosonic and 
fermionic fields, or, more succinctly, their combination into tensors w.r.t. the new 
tangent space symmetry. The construction thus requires a 3 + 8 split of the d = 11 
coordinates and indices, implying a similar split for all tensors of the theory. It is 
important, however, that the dependence on all eleven coordinates is retained 
throughout. 

The elfbein and the three-index photon are thus combined into new objects 
covariant w.r.t. to the new tangent space symmetry. In the special Lorentz gauge 
preserving SO(1, 2) × SO(8) the elfbein takes the form 
 

  (1)
 
 

where curved d = 11 indices are decomposed as M = (μ, m) with μ = 0, 1, 2 and 
m = 3, ... , 10 (with a similar decomposition of the flat indices), and Δ := det a

me . In 
this gauge, the elfbein contains the (Weyl resealed) dreibein and the Kaluza Klein 
vector Bμ

m both of which will be kept in the new formulation. By contrast, the internal 
achtbein is replaced by a rectangular 248-bein ( m

IJe , m
Ae ) containing the remaining 

“matter-like” degrees of freedom, where ([IJ], A) label the 248-dimensional adjoint 
representation of E8 in the SO(16) decomposition. This 248-bein, which in the reduc- 
tion to three dimensions contains all the propagating bosonic matter degrees of freedom 
of d = 3, N = 16 supergravity, is defined in a special SO(16) gauge by 
 

(2) 
 
 

where the SO(16) indices IJ or A are decomposed w.r.t. the diagonal subgroup 
SO(8) ≡ (SO(8) × SO(8))diag of SO(16) (see Nicolai (1987) for details). Being the 
inverse densitized internal achtbein contracted with an SO(8) Г-matrix, this object is 
very much analogous to the inverse densitized triad in the framework of Ashtekar’s 
reformulation of Einstein’s theory (Ashtekar 1986). Note that, due to its rectangu- 
larity, there does not exist an inverse for the 248-bein (nor is one needed for the 
supersymmetry variations and the equations of motion!). In addition we need the 
composite fields ( IJQμ , AP ) and ( IJ

mQ , A
mP ), which together make up an E8 connection in 

 

µ
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eleven dimensions and whose explicit expressions in terms of the d = 11 coefficients 
of anholonomity and the four-index field strength FMNPQ can be found in (Nicolai 
1987). 

The new geometry is encoded into algebraic constraints between the vielbein 
components, which are without analog in ordinary Riemannian geometry because 
they rely in an essential way on special properties of the exceptional group E8. We 
have 
 

(3) 
and 
 

(4) 
 

where I
AAΓ  are the standard SO(16) Г-matrices and IJ

ABΓ ≡ (Г[I ГJ])AB , the minus 
sign in (3) reflects the fact that we are dealing with the maximally non-compact form 
E8(+8). While the SO(16) covariance of these equations is manifest, it turns out, 
remarkably, that they are also covariant under E8. Obviously, (3) and (4) correspond 
to the singlet and the adjoint representations of E8. More complicated are the 
following relations transforming in the 3875 representation of E8 
 
 
 

 
 

(5) 
 

The 248-bein and the new connection fields are subject to a “vielbein postulate” 
similar to the usual vielbein postulate stating the covariant constancy of the vielbein 
w.r.t. to generally covariant and Lorentz covariant derivative: 
 

 
 
 
 
 

(6) 
 
Like (3)–(5), these relations are E8 covariant. It must be stressed, however, that the 
full theory of course does not respect E8 invariance. A puzzling feature of (6) is that 
the covariantization w.r.t. an affine connection is “missing” in these equations, even 
though the theory is still invariant under d = 11 coordinate transformations. One can 
now show that the supersymmetry variations of d = 11 supergravity can be entirely 
expressed in terms of these new variables (and their fermionic partners). 

The reduction of d = 11 supergravity to three dimensions yields d = 3, N = 16 
supergravity (Marcus & Schwarz 1983), and is accomplished rather easily, since no 
duality redefinitions are needed any more, unlike in (Cremmer & Julia 1979). The 
propagating bosonic degrees of freedom in three dimensions are all scalar, and 
combine into a matrix (x) , which is an element of a non-compact E8(+8) /SO(16) 
coset space, and whose dynamics is governed by a non-linear σ-model coupled to 
d = 3 gravity. The identification of the 248-bein with the a-model field  ∈ E8 is
 

.
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given by 
 

(7) 
 
where XIJ and YA are the compact and non-compact generators of E8, respectively, 
and where the Zm for m = 3, . . ., 10 are eight non-compact commuting generators 
obeying Tr(ZmZn) = 0 for all m and n (the existence of eight such generators is a 
consequence of the fact that the coset space E8(+8)/S0(16) has real rank 8 and 
therefore admits an eight-dimensional maximal flat and totally geodesic submanifold 
(Helgason 1962). This reduction provides a “model” for the exceptional geometry, 
where the relations (3)–(6) can be tested by means of completeness relations for the 
E8 Lie algebra generators in the adjoint representation. Of course, this is not much of 
a test since all dependence on the internal coordinates is dropped in (7), and the terms 
involving mBμ

 disappear altogether. It would be desirable to find other “models” with 
non-trivial dependence on the internal coordinates. The only example of this type so
far is provided by the S7 truncation of d = 11 supergravity for the SO(1, 3) × SU(8) 
invariant version of d = 11. supergravity (deWit & Nicolai 1987). 
 

3. More symmetries 
 
The emergence of hidden symmetries of the exceptional type in extended super- 
gravities (Cremmer & Julia 1978) was a remarkable and, at the time, quite unexpected 
discovery. It took some effort to show that the general pattern continues when one 
descends to d = 2 and that the hidden symmetries become infinite dimensional (Julia 
1981; Julia 1982, 1984; Breitenlohner & Maison 1987; Breitenlohner Maison & 
Gibbons 1988; Nicolai 1991; Julia & Nicolai 1996; Bernard & Julia 1997) generaliz- 
ing the Geroch group of general relativity (Geroch 1972; Kinnersley & Chitre 1977). 
As we will see, even the coset structure remains, although the mathematical objects 
one deals with become a lot more delicate. The fact that the construction described 
above works with a 4 + 7 and 3 + 8 split of the indices suggests that we should be 
able to go even further and to construct versions of d = 11 supergravity with infinite 
dimensional tangent space symmetries, which would be based on a 2 + 9 or even a 
1 + 10 split of the indices. This would also be desirable in view of the fact that the 
new versions are “simple” only in their internal sectors. The general strategy is thus 
to further enlarge the internal sector by absorbing more and more degrees of freedom 
into it, such that in the final step corresponding to a 1 + 10 split, only an einbein is 
left in the low dimensional sector. Although the actual elaboration of these ideas has 
to be left to future work, I will try to give at least a flavor of some anticipated key 
features. 
 

3.1 Reduction to two dimensions 
 
Let us first recall some facts about dimensional reduction of maximal supergravity to 
two dimensions. Following the empirical rules of dimensional reduction one is led to 
predict E9 = )1(

8E  as a symmetry for the dimensional reduction of d = 11 super- 
gravity to two dimensions (Julia 1981). This expectation is borne out by the existence 
of a linear system for maximal N =  16 supergravity in two dimensions (Nicolai 
 



 

On M-Theory 155 
 
1987; Nicolai & Warner 1989) (see Maison (1978); Belinski & Zakharov (1978); 
Breitenlohner & Maison (1987) for the bosonic theory). The linear system requires 
the introduction of an extra “spectral” parameter t, and the extension of the σ-model 
matrix (x) to a matrix (x; t) depending on this extra parameter t, as is generally the 
case for integrable systems in two dimensions. An unusual feature is that, due to the 
presence of gravitational degrees of freedom, this parameter becomes coordinate 
dependent, i.e. we have t = t(x; w), where w is an integration constant, sometimes 
referred to as the “constant spectral parameter” whereas t itself is called the “variable 
spectral parameter”. 

Here, we are mainly concerned with the symmetry aspects of this system, and with 
what they can teach us about the d = 11 theory itself. The coset structure of the 
higher dimensional theories has a natural continuation in two dimensions, with the 
only difference that the symmetry groups are infinite dimensional. This property is 
manifest from the transformation properties of the linear system matrix , with a 
global affine symmetry acting from the left, and a local symmetry corresponding to 
some “maximal compact” subgroup acting from the right: 
 

(8) 
 

Here g(w) ∈ E9 with affine parameter w, and the subgroup to which h(x; t) belongs is 
characterized as follows (Julia 1982; Breitenlohner & Maison 1987). Let τ be the 
involution characterizing the coset space E8(+8)/SO(16): then h(t) ∈ SO ∞

ε)16(  is 
defined to consist of all  ∞ invariant elements of E9, where the extended involution 
 ∞ is defined by  ∞  (h(t)) = h  (    εt–1), with ε = + 1 (or –1) for a Lorentzian 
(Euclidean) worldsheet. For ε = 1, which is the case we are mainly interested in, we 
will write SO(16)∞ SO ∞

ε)16( . We also note that SO ∞
ε)16(  is different from the 

affine extension of SO(16) for either choice of sign. 
What has been achieved by the coset space description is the following: by 

representing the “moduli space of solutions”  (of the bosonic equations of motion 
of d = 11 supergravity with nine commuting space-like Killing vectors) as 
 

 
 (9) 

 
 

we have managed to endow this space, which a priori is very complicated, with a 
group theoretic structure, that makes it much easier to handle. In particular, the 
integrability of the system is directly linked to the fact that   possesses an infinite 
dimensional “isometry group” E9. The introduction of infinitely many gauge degrees 
of freedom embodied in the subgroup SO(16)∞ linearizes and localizes the action of 
this isometry group on the space of solutions. Of course, in making such statements, 
one should keep in mind that a mathematically rigorous construction of such spaces is 
a thorny problem. This is likewise true for the infinite dimensional groups* and their 
associated Lie algebras; the latter being infinite dimensional vector spaces, there are 
myriad ways of equiping them with a topology. We here take the liberty of ignoring 
 
 
* For instance, the Geroch group can be defined rigorously to consist of all maps from the complex
w plane to SL(2, R) with meromorphic entries. With this definition, one obtains all multisoliton
solutions of Einstein’s equations, and on this solution space the group acts transitively by
construction. 

τττ
τ
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these subleties, not least because these spaces ultimately will have to be “quantized” 
anyway. 

There is a second way of defining the Lie algebra of SO ∞
ε)16(  which relies on the 

Chevalley-Serre presentation. Given a finite dimensional non-compact Lie group G 
with maximal compact subgroup H, a necessary condition for this prescription to 
work is that dim H =  (dim G – rank G), and we will subsequently extend this 
prescription to the infinite Lie group. Let us first recall that any (finite or infinite 
dimensional) Kac Moody algebra is recursively defined in terms of multiple com- 
mutators of the Chevalley generators subject to certain relations (Bourbaki 1968; 
Kac 1930). More specifically, given a Cartan matrix Au and the associated Dynkin 
diagram, one starts from a set of sl(2, R) generators {ei, fi, h1}, one for each node 
of the Dynkin diagram, which in addition to the standard sl(2, R) commutation 
relations 
 
 

(10) 
 

Are subject to the multilinear Serre relations 
 

(11) 
 
where the commutators are (1 – Aij)-fold ones. The Lie algebra is then by definition 
the linear span of all multiple commutators which do not vanish by virtue of these 
relations. 

To define the subalgebra SO ∞
ε)16( , we first recall that the Chevalley involution θ is 

defined by 
 

(12) 
 
This involution, like the ones to be introduced below, leaves invariant the defining 
relations (18) and (19) of the Kac Moody algebra, and extends to the whole Lie 
algebra via the formula θ ([x, y]) = [θ (x), θ (y)]. It is not difficult to see that, for E8 (and 
also for sl(n, R)), we have τ = θ, and the maximal compact subalgebras defined 
above correspond to the subalgebras generated by the multiple commutators of the θ 
invariant elements (ei – fi ) in both cases. The trick is now to carry over this definition 
to the affine extension, whose associated Cartan matrix has a zero eigenvalue. To do 
this, however, we need a slight generalization of the above definition; for this purpose, 
we consider involutions ω that can be represented as products of the form 
 

(13) 
 
where the involution s acts as
 

(14)
 
with s i = ±1. It is important that different choices of si do not necessarily lead to 
inequivalent involutions (the general problem of classifying the involutive 
automorphisms of infinite dimensional Kac Moody algebras has so far not been 
completely solved, see e.g. (Levstein 1988; Bausch & Rousseau 1989)†). In particular
 
 
† I am very grateful to C. Daboul for helpful discussions on this topic.
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for E9, which is obtained from E8 by adjoining another set {e0, ƒ0, h0} of Chevalley
generators, we take si = 1 for all i ≥ 1, whereas s0 = ε, with ε as before, i.e.   = +1
(or –1) for Lorentzian (Euclidean) worldsheet. Thus, on the extended Chevalley 
generators, 
 

(15) 
 

With this choice, the involution ω coincides with the involutions defined before for 
the respective choices of ε, i.e. ω =    ∞, and therefore the invariant subgroups are the 
same, too. For ε = 1, the involution ω defines an infinite dimensional “maximal 
compact” subalgebra consisting of all the negative norm elements w.r.t. to the standard 
bilinear form 
 

(16) 
 

(the norm of any given multiple commutator can be determined recursively from the 
fundamental relation 〈[x, y]|ʐ〉 = 〈x|[y, ʐ]〉). The notion of “compactness” here is thus 
algebraic, not topological: the subgroup SO(16)∞ will not be compact in the topo- 
logical sense (recall the well known example of the unit ball in an infinite dimensional 
Hilbert space, which is bounded but not compact in the norm topology). On the other 
hand, for ε = –1, the group SO ∞

ε)16(  is not even compact in the algebraic sense, as 
e0 + ƒ0 has positive norm. However, this is in accord with the expectation that 
SO ∞

ε)16(  should contain the (non-compact) group SO(1,8) rather than SO(9) if one of 
the compactified dimensions is time-like. 
 

3.2 2 + 9 split 
 
Let us now consider the extension of the results described in section 2 to the situation 
corresponding to a 2 + 9 split of the indices. Elevating the local symmetries of 
N = 16 supergravity from two to eleven dimensions would require the existence of 
yet another extension of the theory, for which the Lorentz group SO(1,10) is replaced 
by SO(1, 1) × SO(16)∞; the subgroup SO(16)∞ can be interpreted as an extension of 
the transverse group SO(9) in eleven dimensions. Taking the hints from (1), we 
would now decompose the elfbein into a zweibein and nine Kaluza Klein vectors 

mBμ
 (with m = 2, . . . , 10). The remaining internal neunbein would have to be replaced 

by an “Unendlichbein” ( m
IJe (x; t), m

Ae (x; t)), depending on a spectral parameter t, 
necessary to parametrize the infinite dimensional extension of the symmetry group. 
However, in eleven dimensions, there is no anolog of the dualization mechanism, 
which would ensure that despite the existence of infinitely many dual potentials, there 
are only finitely many physical degrees of freedom. This indicates that if the 
construction works it will take us beyond d = 11 supergravity. 

Some constraints on the geometry can be deduced from the requirement that 
in the dimensional reduction to d = 2, there should exist a formula analogous to 
(7), but with  replaced by the linear system matrix , or possibly even the enlarged 
linear system of (Julia & Nicolai 1996). Evidently, we would need a ninth nilpotent 
generator to complement the Zm,s of (7); an obvious candidate is the central charge 
generator c, since it obeys 〈c|c〉 = 〈c|Zm〉 = 0 for all m = 3,. . . , 10. The parameter 
t, introduced somewhat ad hoc for the parametrization of the unendlichbein, 
must obviously coincide with the spectral parameter of the d 2 theory, and
 

τ

∋ 
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the generalized “unendlichbein postulate” should evidently reduce to the linear 
system of d = 2 supergravity in this reduction. To write it down, we need to 
generalize the connection coefficients appearing in the linear system. The latter are 
given by 
 

(17) 
 
with QIJ

μ and PAμ as before; the dots indicate t dependent fermionic contributions 
which we omit. A very important difference with section 2, where the tangent space 
symmetry was still finite dimensional, is that the Lie algebra of SO(16)∞ also 
involves the P’s, and not only the Q’s. More specifically, from the t dependence of the 
dimensionally reduced connections in (17) we infer that theconnections ( IJ

M (x; t), 
ƤA

M(x; t)) constitute an SO(16)∞ (and not an E
9
) gauge connection. This means that 

the covariantizations in the generalized vielbein postulate are now in precise corres- 
pondence with the local symmetries, in contrast with the relations (6) which look E8 
covariant, whereas the full theory is invariant only under local SO(16).

To write down an ansatz, we put 
 

(18) 
 
where the dots stand for terms involving derivatives of the Kaluza Klein vector fields. 
Then the generalization of (6) should read 
 
 
 
 
 
 

(19) 
 
Of course, the challenge is now to find explicit expressions for the internal 
components IJ

m(x; t) and ƤA
m(x; t), such that (19) can be interpreted as a d = 11 

generalization of the linear system of dimensionally reduced supergravity. Another 
obvious question concerns the fermionic partners of the unendlichbein: in two 
dimensions, the linear system matrix contains all degrees of freedom, including the 
fermionic ones, and the local N = 16 supersymmetry can be bosonized into a local 
SO(16)∞ gauge transformation (Nicolai & Warner 1989). Could this mean that there 
is a kind of bosonization in eleven dimensions or M-Theory? This idea may not be as 
outlandish as it sounds because a truly pregeometrical theory might be subject to a 
kind of “pre-statistics”, such that the distinction between bosons and fermions arises 
only through a process of spontaneous symmetry breaking. 
 

4. Yet more symmetries? 
 
In 1982, B. Julia conjectured that the dimensional reduction of maximal supergravity 
to one dimension should be invariant under a further extension of the E-series, 
namely (a non-compact form of) the hyperbolic Kac Moody algebra E10 obtained by 
adjoining another set {e–1,.f–1, h–1} of Chevalley generators to those of E9 (Julia
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1985)‡. As shown in Nicolai (1992), the last step of the reduction requires a null 
reduction if the affine symmetry of the d = 2 theory is not to be lost. The reason is 
that the infinite dimensional affine symmetries of the d = 2 theories always involve 
dualizations of the type 
 

(20) 
 
(in actual fact, there are more scalar fields, and the duality relation becomes non- 
linear, which is why one ends up with infinitely many dual potentials for each scalar 
degree of freedom). Dimensional reduction w.r.t. to a Killing vector ξμ amounts to 
imposing the condition ξμ ∂μ ≡ 0 on all fields, including dual potentials. Hence, 
 

(21) 
 
where ημ ≡ εμv ξv. If ξμ and ημ are linearly independent, this constraint would force 
all fields to be constant, which is clearly too strong a requirement. Hence we must 
demand that ξμ and ημ are collinear, which implies 
 

(22) 
 
i.e. the Killing vector must be null. Starting from this observation, it was shown in 
Nicolai (1992) that the Matzner Misner sl(2, R) symmetry of pure gravity can be 
formally extended to an sl(3, R) algebra in the reduction of the vierbein from four to 
one dimensions. Combining this sl(3, R) with the Ehlers sl(2, R) of ordinary gravity, 
or with the E8 symmetry of maximal supergravity in three dimensions, one is led to 
the hyperbolic algebra ℱ3 (Feingold & Frenkel 1993) for ordinary gravity, and to E10 
for maximal supergravity. The transformations realizing the action of the Chevalley 
generators on the vierbein components can be worked out explicitly, and the Serre 
relations can be formally verified (Nicolai 1992) (for E10, this was shown more 
recently in Mizoguchi (1970). 

There is thus some evidence for the emergence of hyperbolic Kac Moody algebras 
in the reduction to one null dimension, but the difficult open question that remains is 
what the configuration space is on which this huge symmetry acts. This space is 
expected to be much bigger than the coset space (9). Now, already for the d = 2 
reduction there are extra degrees of freedom that must be taken into account in 
addition to the propagating degrees of freedom. Namely, the full moduli space involve- 
ing all bosonic degrees of freedom should also include the moduli of the zweibein, 
which are not contained in (9). For each point on the worldsheet, the zweibein is an 
element of the coset space GL(2, R)/SO(1, 1); although it has no local degrees of 
freedom any more, it still contains the global information about the conformal structure 
of the world sheet ∑. Consequently, we should consider the Teichmüller space 
 

(23) 
 
as part of the configuration space of the theory (see Verlinde (1990) for a detailed 
description of Ƭ ). In fact, we should even allow for arbitrary genus of the worldsheet,
 
 
‡The existence of a maximal dimension for supergravity (Nahm 1978) would thus be correlated
with the existence of a “maximally extended” hyperbolic Kac Moody algebra, which might thus 
explain the occurrence of maximum spin 2 for massless gauge particles in nature.
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and replace  by the “universal Teichmüller space” . This infinite dimensional 
space can be viewed as the configuration space of non-perturbative string theory 
(Friedan & Shenker 1987). For the models under consideration here, however, even  
is not big enough, as we must also take into account the dilaton ρ and the non- 
propagating Kaluza Klein vector fields in two dimensions. For the former, a coset 
space description was proposed in Julia & Nicolai (1996). On the other hand, the 
Kaluza Klein vectors and the cosmological constant they could generate in two 
dimensions have been largely ignored in the literature. Even if one sets their field 
strengths equal to zero (there are arguments that the Geroch group, and hence infinite 
duality symmetries, are incompatible with a nonzero cosmological constant in two 
dimensions), there still remain topological degrees of freedom for higher genus world 
sheets. 

The existence of inequivalent conformal structures is evidently important for the 
null reductions, as the former are in one-to-one correspondence with the latter. Put 
differently, the inequivalent null reductions are precisely parametrized by the space 
(23). The extended symmetries should thus not only act on one special null reduction 
(set of plane wave solutions of Einstein’s equations), but relate different reductions. 
Indeed, it was argued in Mizoguchi (1997) that, for a toroidal worldsheet, the new 
sl(2, R) transformations associated with the over-extended Chevalley generators 
change the conformal structure, but only for non-vanishing holonomies of the Kaluza 
Klein vector fields on the worldsheet. This indicates that the non-trivial realization of 
the hyperbolic symmetry requires the consideration of non-trivial worldsheet 
topologies. The dimensionally reduced theory thereby retains a memory of its two- 
dimensional ancestor. It is therefore remarkable that, at least for isomonodromic 
solutions of Einstein’s theory, the d = 2 theory exhibits a factorization of the 
equations of motion akin to, but more subtle than the holomorphic factorization of 
conformal field theories (Korotkin & Nicolai 1995). In other words, there may be a 
way to think of the d = 2 theory as being composed of two chiral halves just as for 
the closed string. Consequently, a truncation to one null dimension may not be 
necessary after all if the theory factorizes all by itself.

In summary, what we are after here is a group theoretic unification of all these 
moduli spaces that would be analogous to (9) above, and fuse the matter and the 
topological degrees of freedom. No such description seems to be available for (23) (or 

), and it is conceivable that only the total moduli space  containing both  and 
 as well as the dilaton and the Kaluza Klein, and perhaps even the fermionic, 

degrees of freedom is amenable to such an interpretation. Extrapolating the previous 
results, we are thus led to consider coset spaces E10/H with SO(16)∞ ⊂ H ⊂ E10. As 
before, the introduction of the infinitely many spurious degrees of freedom associated 
with the gauge group H would be necessary in order to “linearize” the action of E10. 

What are the choices for H? One possibility would be to follow the procedure of 
the foregoing section, and to define H = SO(16)∞∞ ⊂ E10 in analogy with 
SO(16)∞ ⊂ E9 by taking its associated Lie algebra to be the linear span of all ω 
invariant combinations of E10 Lie algebra elements. To extend the affine involution to 
the full hyperbolic algebra, we would again invoke (13), setting ε = +1 in (15) (since 
we now assume the worldsheet to be Lorentzian), which leaves us with the two 
choices s_1 = ±1. For s_1 = +1 we would get the “maximal compact” subalgebra 
of E10, corresponding to the compactification of ten spacelike dimensions. A subtlety 
here is that a definition in terms of the standard bilinear form is no longer possible, 
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unlike for affine and finite algebras, as this would now also include part of the Cartan 
subalgebra of E10: due to the existence of a negative eigenvalue of the E10 Cartan 
matrix, there exists a negative norm element ∑i nihi of the Cartan subalgebra, which 
would have to be excluded from the definition of H (cf. the footnote on p. 438 of 
(Julia & Nicolai 1996). The alternative choice s–1 = –1 would correspond to 
reduction on a 9 + 1 torus. 

However, for the null reduction advocated here, physical reasoning motivates us to 
propose yet another choice for H. Namely, in this case, H should contain the group 
ISO(9) ⊂ SO(1, 10) leaving invariant a null vector in eleven dimensions (Julia &
Nivolai 1995). To identify the relevant parabolic subgroup of E10, which we denote 
by ISO(16)∞, we recall (Nicolai 1992) that the over-extended Chevalley generators
correspond to the matrices 
 
 

(24) 
 
 
in a notation where we only write out the components acting on the 0, 1, 2 
components of the elfbein, with all other entries vanishing. Evidently, we have 
h–1 = d –c– with 
 

 
(25) 

 
 
where d is the scaling operator on the dilaton ρ , and c– is the central charge, alias the 
“level counting operator” of E10, obeying [c–, e–1] = –e–1 and [c–, ƒ–1] = + ƒ–1 
(and having vanishing commutators with all other Chevalley generators). Writing
 
 

(26) 
 
 
we see that the first matrix on the right scales the conformal factor, generating Weyl 
transformations (called Weyl(∑) in (23)) on the zweibein, while the second generates 
the local SO(1,1) Lorentz transformations. In a lightcone basis, these symmetries 
factorize on the zweibein, which decomposes into two chiral einbeine. Consequently, 
Weyl transformations and local SO(1, 1) can be combined into two groups SO(1, 1)± 
with respective generators c±, and which act separately on the chiral einbeine. One of 
these, SO(1, 1)– (generated by c–), becomes part of E10. The other, SO(1, 1)+, acts 
on the residual einbein and can be used to eliminate it by gauging it to one. Since c± 
acts in the same way on the conformal factor, we also recover the result of Julia 
(1982). 

We wish to include both ISO(9) and SO(1, 1)– into the enlarged local symmetry 
H = ISO(16)∞, and thereby unify the longitudinal symmetries with the “transver- 
sal” group SO(16)∞ discussed before. Accordingly, we define ISO(16)∞ to be the 
algebra generated by the SO (16)∞ Lie algebra together with c– and e–1, as well as 
all their nonvanishing multiple commutators. The “classical” configuration space of 
M-Theory should then be identified with the coset space 
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(27) 
 
 

Of course, we will have to worry about the fate of these symmetries in the quantum 
theory. Indeed, some quantum version of the symmetry groups appearing in (27) must 
be realized on the Hilbert space of third quantized N = 16 supergravity, such that E10 
becomes a kind of spectrum generating (rigid) symmetry on the physical states, while 
the gauge group ISO(16)∞ gives rise to the constraints defining them. Because “third 
quantization” here is analogous to the transition from first quantized string theory to 
string field theory, the latter would have to be interpreted as multi-string states in 
some sense (cf. Witten (1986)) for earlier suggestions in this direction; note also that 
the coset space (27) is essentially generated by half of E10, so there would be no 
“anti-string states”. According to Font et al. (1990); Rey (1991); Sen (1993, 94); 
Schwarz & Sen (1994); Duff & Khuri (1994); Giveon et al. (1994); Hull & Townsend 
(1995); Witten (1995); Kachru & Vafa (1995); Schwarz (1995, 96); Duff (1996); 
Horava (1996) the continuous duality symmetries are broken to certain discrete 
subgroups over the integers in the quantum theory. Consequently, the quantum 
configuration space would be the left coset
 
 
 
and the relevant partition functions would have to be new kinds of modular forms 
defined on ℱ. However, despite recent advances (Bakas 1996; Sen 1995), the precise 
significance of the (discrete) “string Geroch group” remains a mystery, and it is far from 
obvious how to extend the known results and conjectures for finite dimensional duality 
symmetries to the infinite dimensional case (these statements apply even more to possible 
discrete hyperbolic extensions; see, however, (Mizoguchi 1997; Gebert & Mizoguchi 
1997). Moreover, recent work (Korotkin & Samtleben 1997) confirms the possible 
relevance of quantum groups in this context (in the form of “Yangian doubles”). 

Returning to our opening theme, more should be said about the 1 + 10 split, which 
would lift up the SO(1, 1)+ × ISO(16)∞ symmetry, and the “bein” which would 
realize the exceptional geometry alluded to in the introduction, and on which 
IS0(16)∞ would act as a generalized tangent space symmetry. However, as long as 
the 2 + 9 split has not been shown to work, and a manageable realization is not 
known for either E10 or ISO (16)∞, we must leave the elaboration of these ideas to the
future. It could well prove worth the effort. 
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