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Abstract. We study stationary axisymmetric configurations ofhis model has since been the basis of our understanding of
a star model consisting of two barotropic fluids, which are urthe glitch behavior and the subsequent post—glitch relaxation
formly rotating at two different rotation rates. Analytic approxebserved in pulsars (Anderson & Itoh 1975; Alpar efal. 1984
imate solutions in the limit of slow rotation are obtained witlisedrakian et al. 1995b; Link & Epstein 1996).
the classical method of Chandrasekhar, which consists of an ex-Apart from being inviscid and therefore forming an inde-
pansion of the solution in terms of the rotation rate, and whigiendent fluid component, a superfluid is moreover constrained
is generalized to the case of two fluids in order to apply it to the be in a state of irrotational flow, and consequently its rota-
present problem. This work has a direct application to neutrban can only be achieved by the presence of quantized vortices.
star models, in which the neutron superfluid can rotate at a dithiese vortices will interact with the fluid of charged compo-
ferent speed than the fluid of charged components. Two casegts (Feibelmah 1971; Sauls et [al. 1982; Epstein & Baym
are considered, the case of two non—interacting fluids, and ##88; Jones 1990, 1991; Link & Epstein 1991; Sedrakian &
case of an interaction of a special type, corresponding to the vBedrakian 199%a), giving rise to an effective friction force on a
tices of the neutron superfluid being completely pinned to theoving vortex, and they can even be completely pinned to the
second fluid. The special case of the equation of sfate p> Coulomb lattice of nuclei that forms the crust of the neutron
is solved explicitly as an illustration of the foregoing results. star. A consequence is, that the vortices will not corotate with
the superfluid and will therefore be subject to the Magnus force
Key words: hydrodynamics — stars: neutron — stars: rotationorthogonal to their relative velocity with respect to the super-
fluid. These forces will balance each other, which leads to an
effective interaction between the two fluids.
) The long—term slowdown of the neutron star’s rotation rate,
1. Introduction which is caused by the loss of energy in form of electromagnetic

More than 30 years after the discovery of the pulsar phenomerigfliation, has many important consequences. The global slow-
and its identification with rotating neutron stars (Gold 1968ylown tends to decrease the ellipticity of the equilibrium shape
there exists today a considerable body of observational d8fghe neutron star. This leads to the buildup of stress forces in
(Lyne & Graham—Smith 1998), but also still a number of urthe solid crust, which can get suddenly released in form of a
certainties and open questions about the theoretical model $§rduake. This has been proposed by Ruderman|(1969) as one
pulsars, mainly due to the extremely dense (and therefore podtythe first models in order to explain glitches, and has since
known) state of matter implied (Glendenning 1997). been a subject of great interest, directly as a model for glitches
One of the generally agreed characteristics of neutron stEB@ym & Pines 19/1; Heintzmann etal. 1973; Ruderman 1991;
is the existence of a superfluid neutron component. This is hdfk et al..1998), or at least as a trigger for some other glitch—
only predicted by calculations from nuclear physics (AinsworfReéchanism via the energy liberated in such a starquake event
et al.[1989), but also agrees with observed features of puléafk & Epsteinl1996). Another aspect of the global slowing
behavior, like the very long relaxation times, from months ugown has been pointed out by Reisenegger (1995): the decrease
to years, after a glitch (a sudden increase of angular velocity@the centrifugal force leads to a global compression of the neu-
the order ofAQ/Q < 10~°). All the charged parts of a neutrontfon star matter (consisting of neutrons, protons and electrons).
star (nuclei, protons and electrons) can be treated as a sirgjiéthe equilibrium composition (with respectgaeactions) of
normal fluid, and are predicted to be “locked” together in a stafgis Plasma depends on the density, and so a global compression
of corotation (Eassdn 1979) on sufficiently long timescales. fives the plasma out of equilibrium. This has some possibly ob-
contrast, the neutron superfluid can have a different rotatidfrvable consequences, e.g., on the emission of neutrinos and
even on very long timescales, and so one is naturally led@B the evolution of the temperature of neutron stars.
consider a neutron star model consisting of two independent These consequences have been examined from the point of
fluids, an approach that was first adopted by Baym efal. (1969gW of a global slowdown of the whole neutron star, but it
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has to be noted that in the two—fluid model, it is primarily th@ble 1. The system of the chosen “natural” unif3,and po are re-
fluid of charged components that gets slowed down, while theectively the radius and the central density of the non—rotating con-
superfluid neutrons will significantly lag behind and continuéguration

to turn at a faster rotation rate. It has been remarked recently.

(Carter et al. 1999), that this could lead to a new mechanismQgantity Unit
induce stress forces in the crust, due to an increasing deficit ehgth R
centrifugal buoyancy. The model for the driven deviation frormensity 00
chemical equilibrium also has to be refined according to tféne 1/y/4rGpo
two—fluid picture. Not only is there a global compression, bfirequency VAT Gpo
also a relative displacement of the two mass distributions withpss _ PoRi
respect to each other, as the difference of their rotation rajd&ment of Inertia polt

Gravitational Potential 47GpoR?

increases. For example, when the two fluids have beenh irbressure AnCo2 R
equilibrium in the state of corotation, the slowdown of one ﬂuig ular Momentum \/ﬁ) 3/2 ps
changes its ellipticity and therefore moves volume elementslp?.}?ce/\/olume 47er2’;%

0

that fluid to regions with a different equilibrium composition, se

that they are no longer in a state of equilibrium with the second

fluid. 2. The two—fluid model
The purpose of this paper is to study the consequences of\We

. : . ) .~ We want to describe a star consisting of two independent fluids
two fluids having different rotation rates on the mass distribution . o T :
in Newtonian gravitation. We distinguish a fluid denoted by

of the star. Even in the case of a single rotating, self—gravitatiﬂ% subscriptc, that will represent the globally neutral fluid

fluid, it is impossible to obtain exact analytic solutions, and .
. : f charged components of a neutron star (nuclei of the crust,
one has to rely either on numerical treatments or on analy%c

approximations (e.g., see Tassoul 1978). In the present w rrk)ton_s and e_Iectrons), and ajlwd denoted by the sub;nrlpt

: L . . that will describe the superfluid of free neutrons. We will also
we will develop a generalization of the analytic approxmanorn fer to the fluid of charaed components as the “normal fluid”
of Chandrasekhar (Chandrasekhar 1933; Tassoul 1978) to the ged comp . - '

. : : . as opposed to the superfluid. So the basic description of our
case of a barotropic two—fluid star. This method consists of an . . L
. . . : . _model consists of the Euler equations for the two fluids:

expansion of the rotating solution around the static solution in
terms of the rotation rate. Using this method, we will obtain g\, (9,v% + vgvjvi) = —V'P, — p,Vip + fi,
expression for the stationary mass distribution of a barotropic Ot LIVl = —VIP. — p.Vid+ fi 1
two—fluid star up to second order in the two rotation rates. Tréé( e + e Vive) e = peVIOH Lo, @)
obvious limitations of this approach are that the rotation ratesiere d; denotes the partial derivative with respect to time,
have to be small compared to their “natural” scale, and that bgth, P,, v}, and f, are the respective mass density, pressure,
have to be of the same order of magnitude. These conditiofedocity and force per volume of each of the two fluids, arid
are in general satisfied in the case of neutron stars. The fdng “chemical index”§ = s, ¢). ¢ is the gravitational potential,
that we considered stationary solutions is no real restrictigrich is related to the total density= p. + p, by Poisson’s
either, as the slowdown of pulsars takes place on very loaguation
timescales. Therefore it should be possible to describe it a%g

. . . . . = 477'G'p7 (2)
quasi—stationary process, passing through a series of stationar

states. whereG is Newton’s constant.

The plan of this paper is the following. In Sedt. 2 we define \We consider only stationary axisymmetric configurations,
the Newtonian general model of a barotropic two—fluid star, aggth the two fluids rotating uniformly with respective angular
in Sect[ 8 we further specialize this general model in the conteéjocities(2.. and,, i.e.,v,, = Q, x r. Inthe subsequent anal-
of neutron stars. In Se€l. 4 we generalize and apply the classigas we work with dimensionless quantities, measuring length
method of Chandrasekhar to this two—fluid star, which allovggales in units of the radiug, densities in units of the central
us to reduce the problem to a set of ordinary differential equgensity, of the non—rotating configuration and time in units
tions. Secf.lb is devoted to the boundary conditions necessangft® /,/4xG), . Tabld1 shows a summary of the employed fun-
obtain the complete solution, which is given in SELt. 6. $&ctddmental and derived units.
is concerned with some consequences of the solution, like the |n order to avoid unnecessary complications of notation, we
change in ellipticity and moment of inertia. In Sédt. 8 we discuggl| in the following keep the same symbols for the dimension-
an effect that we call “rotational coupling”, which is the fact thakss variables, with the exception of the rotation rétgswhich
changes of the rotation speed of one fluid influence the rotatig@ will now denotes,,. This is in order to emphasize the fact
of the other fluid via the gravitational potential, even if the twghat we are consideringlow rotationswith respect to the nat-
fluids are supposed to be strictly non—interacting. Sect. 9 giv@al scale of (see Tabl&ll; this scale is in general still bigger
an illustration of the foregoing results in the completely anghan the Keplerian rotation raf®?. = 47G5/3, wherep is the

lytically solvable case of a special polytropic equation of statgean density), and therefore represents a small parameter,
SectID summarizes this work. ie.,e, < 1.
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The rescaled Euler equation$ (1) take the form The fact that there is no temperature—dependence in the bulk
1 4 1 1 EQOS is an excellent approximation in the neutron—star context,
—V'P,+ V' (¢ — ieﬁwg) = —fs, as the actual temperatures (for not extremely young neutron

s Ps stars) are some orders of magnitudes below the Fermi tempera-
ivipc + V(¢ — }53w2) _ 1 i (3) ture. Additionally, as we assume two independently conserved
Pe 2 Pe barotropes, we also neglect possible “chemical interactions” be-
wherew is the cylindrical radius, and Poisson’s equat(dn (2) ifyveen the two fluids vig reactions, which transform neutrons
the new variables reads into protons and electrons and vice versa=£ p + e + ).

) But the nature of the involved reactions in neutron star matter
Vig=p. (4)  (namely modified Urca) seems to be rather slow, i.e., the chem-

icgl equilibration timescales are of the order of several years for
not very young neutron stars (Haerisel 1992) and therefore much
"longer than the dynamical timescales under consideration. So
the above approximation should be rather viable as long as we
do not consider evolutions on very long timescales, where in-
[P dp evitable effects of transfusion would have to be included in the
Yo = / pa(p) ®) analysis _(e.g., see Langlois et(al. 1998). _ _ ‘
. . . . We still need to specify the nature of the interaction fofte
As we will work in the approximation of" = 0, the quantity e conditions of stationarignddifferent rotation rates do not
—%ais equivalentto the enthalpy per mass unitand to the cheg,, 5 gissipative interaction between the superfluid vortices
ical potential per mass unit, and in our subsequent analysis iy the normal fluid, so we are basically left with two possi-
will play the role of an effective potential. ble types of interaction, the case of complefgilynedvortices,
e.g., as obtained by Epstein & Baym (1988), and the case of
3. The two—fluid model for neutron stars guasifreevortices, as suggested by the results of Jdnes (1991).
E@;e pinned case should still be a good approximation even if

The fundamental assumption in our treatment is that each
the two fluids obeys harotropicequation of state (EOS), i.e.
P, = P,(ps). This allows us to write the tern§*P,, /p,, in
() as the gradient of a functiony,,, say, that is defined as

In the present section we will specialize the general two—fl
model of the previous section to the case of a neutron star.
“normal” fluid of charged componentg)(is supposed to be
corotating with the crust on short timescales, because of I

rtex—creep is effective (that is, the vortices jump from pinning
Site to pinning site, as they are pushed by the Magnus force),
henever the creep-timescale is long compared to the dynam-
& timescale, so that the quasi—stationary mass distribution in

tsrt]rong rr:agEnetlc flellg7tgatﬂl10d.<sd all cf;argted comporﬂints Re creep case should not differ from the pinned case. The pinned
€ crus ( asson. 1= ): e Indepen en_cor_npomez @ . case leads to an interaction caused to the Magnus force acting
perfect fluid that coexists with the normal fluid without any vis-

cous interaction, but we will allow for an indirect interactionOn the vortices, which is given by
via the superfluid vortices. We neglect all magnetic and thermgl, = p, (s, — £.)e,Viw?. (7)
influences, as we are mainly interested in the effects of rotation.
While the assumption of uniform rotation is probably quite real-his supposes a parallel lattice of vortices. We will follow this
istic for the normal fluid, the superfluid neutrons could perfect§Pmmon assumption, which has been shown to be valid under
well be in state of differential rotatior’{i€2, # 0), even under certain conditions by Ruderman & Sutherland (1974). In the
the condition of stationarity, but for simplicity we will assumdree case we have
it to be uniformly rotating. i ®)

As we are interested in stationary solutions, we will als@ ’
neglect the external forces acting on the neutron star, whigly, we can treat the two casgs (7) dnd (8) together, writing
for isolated neutron stars, are due to electromagnetic radiation _
and lead to the long—term slowdown of the rotation rate of tie = —9% fis ; )
crust. This approximation is easily justified, as the timescalmere the *
of mechanical displacements of the neutron star matter due & free ca
change in rotation is much shorter than the typical slowdown—
timescale2/€2, which is of the order of0° years. Q):

Part of the normal fluid, namely the solid crust, is not really
a fluid, but we could still approximately describe it as a quiqﬁ
subject to anisotropic volume—forces, hamely the stress forces
due to the solidity. This means that the force dengjtyact-
ing on the normal fluid would not only consist of the opposite 1
interaction term— £, but also of an extra ternf due to the V* <_¢C +¢— 5§w2> = 8, k(r)es(es — e0)View?
anisotropic stress forces, i.e., we would have 2

fi=rie 1. © R CO HCEY

pinning switchd, is 1 in the pinned case arilin
se.
We arrive at the following form for the two Euler equations

(—ws +¢— %giﬁ + 6pes(es — €c)w2> =0, (10)
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where we have defined function of p,,. This relation can therefore be globally inverted,
(0) (r) so that the density,, can be uniquely written as a function of
k(r) = L ‘EO) ) (12) the effective potentiaj,, in the form
pe(r
’ Pa = Pa (wa) ; (16)
(0) . . . . .
po’ being the zeroth order density distributions, that is, of the ] ] ] ]
non—rotating configuration. a relation that will be important for the subsequent analysis.

We see that the right—hand sidelof{(11) has to be the gradient
of some scalar function. Looking at the pinning term (containirgy Generalized Chandrasekhar expansion
dp,) of this equation, we see that this term alone can in general . ) ) )
not be written as a gradient, because of the fagtep. This 't Will be convenient, in order to obtain more compact expres-
shows that in general the pinning force cannot be compensa%@if's' to !ntroduce a matrix notation in the fluid indices. One
effectively recover the usual Chandrasekhar type of terms

without the presence of the anisotropic stress fgicevhichis !
P P gl -égbown from the case of one fluid (see Chandrasekhar1933; Tas-

in the literature (e.g., Ruderman 1991). soul1978), with the scalar perturbation quantities replaced by

There is however a special case that has the advantage Ofse@metricz x 2 matrices. We write the effective potentials as
ollo

ing analytically tractable, where the pinning forc@n be com- follows:

pensated by the gradient force on the left—hand side alone, with- w? 4
outincluding any anisotropic stress forces. This is obviously the — ¢ & Zo e+ Cale), 17
case whenx(r) is a constant. As with our preceding assump- ; . ., L~ .
tion of uniformity of(,, this case is not necessarily realistic fof'nere the “centrifugal” matrices,, are defined as
neutron stars, but it is still of interest since it provides qualitas 1 2 1

tive insight in the behavior of the system in the pinned case4t = ( 0) —0p ( 10 ) )

corresponds to the limiting case of a very ductile crust that does 0 9 _1

not develop any notable shear stress and deforms like a fldd = ( ) + K0p < )

under the applied Magnus force. On the other hand, contrary to

afluid it is able to keep the vortices from moving relative to thgy writing M we indicate that the quantity/ is a symmetric

crust. . . 2 x 2 matrix in the fluid indices with componentg **, ande
The condition of constant(r) = « does not restrict the iq the vector with components,.

choice of the EOS dbothfluids, but only fixes the EOS of the Following the standard method of Chandrasekhar, we ex-

second fluid with respect to the chosen EOS for the first fluifl g 5 quantities up to second order in the rotation parameter
by the relation ¢ around the non-rotating configuration. Because of the sym-

1 metry under parity, i.eg — —¢, there can be no terms of first
Pe(pe) = EPS(WC) ’ (13) order ing. The second—order term is a quadratic forma isnd
In the following we seff = 0 and postpone the difficult prob_therefore. the_deﬂmtl_on .of the coefﬂmg_nt matrix is gmb|guous.
lem of including anisotropic stress forces to future work, sie ¢an fix this ambiguity by the additional condition that the

we restrict our analysis to the two above mentioned completéﬂf‘mces occurring in the expansions have to be symmetric.
“uid” cases: We work in spherical coordinatesandu = cos(6) (where,

of coursef is defined with respect to the axis of rotation) and
(i) freevortices ¢, = 0) so for the fluid densitieg,, (r, u) this expansion reads

(if) pinned vortices ¢, = 1) 0) . ~
(with the EOS subject td(13), such that’ /p”) = xis a Palrst) = po’(r) + da(r,u) with oo =g fa-£. (19)

-1 0 (18)

constant) We expand the other quantities C,, andp in the same way,
From Egs.[(ID), (11) angi = 0 we obtain the effective poten-With the respective second order coefficient matrﬁzé’a and
tials p (where of course@ = p; + p.).
9 Itis important to note that the additive constafitsdepend
Vs = ¢ — “ (2 — 20,e5(es — ec)) + Cs, (14) in general on the rotation rates We can absorb the additive
22 constanC&O) into the definition of,, (¢, ), so for convenience
Ve = ¢ — % (2 + 2K0pe5(es —ec)) + Ch, (15) we can seC” = 0, but we have to keep track of t@(c?)

corrections - Cy, - €. N
In order to obtain the relations betwegnand¢ to second
order ing, we expand,, (¢, ) around the non—rotating config-

urationyl?) = ¢(©):

where theC', are constants ispace but they may depend on
the rotation rates,. One can see that the pinned cage= 1)
introduces mixed terms;e.., while in the free case)f = 0) the
only non-zero terms are the diagonal ones, thaf is

The pressuré’, should be a monotonic function of density © ~ w2s
pa, and so we see frori)(5) that, should also be a monotonicPe (¥a) = pa(@™) —kae- (¢ — 5 Zat C‘l) e, (20)
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where Using the orthogonality property of the Legendre polynomials
dpe (1) together with the fact thatw? = 2r%(1 — Py(u)) leads to the
- ;1/J : (21) following series of ordinary differential equations
(0

~ s
Order by order comparison betweEnl(20) dnd (19) togetherwitr?o(f0 +ho = +T2{( D,

the condition of symmetric matrices leads to the identificationsP2¢2 + & ¢2 = —r7K, (31)
() = 2O (). Doypoy + ko = 0 for 1>2.

ka

2

~ ~

N ~ In order to solve these equations, one must specify the appropri-
Po = —ka <¢ - 72a + Ca) g (22) ate boundary conditions, which we consider in the next section.

which further allows us to write the “structure functio®&?, .
5. Boundary conditions

simply as
0) The first restriction on the solutions df {31) comes from the
ko(r) = — dpa ) (23) requirement that the,; should be regular functions in= 0,
dp(©® and therefore the left hand side of the differential equation has

The total density perturbation coefficient is found frdml (22) t& Pe regular in the origin too. This leads to the conditions

be bu(0) = 0 for 1>1,

N 2 R ~
p=—ko+ 3%;((7,) —D(r), (24) ¢9,(0) = 0 for 1>0. (32)
where we have defindd= k. + k. and the matrices The prime stands for derivatives with respectrtoAnother

boundary condition is obtained by matching the solution for
R(r) = 1 (kzjs n kcgc) and B(T) = k,C, + k.C. . (25) the gravitational potential insidg th(_a star to the soluﬁb@mu.t—
3 side the star. The external solution is normalized conventionally
R . = e S
Surprisingly, the matrisk is found (using the definitions of LY 1ir—co ¢ = 0, and satisfies’"¢; = 0. Its expansion in

. : terms of Legendre polynomials, and up to second ordehizas
and k., (I2) and[(2B)) to be the same in the free (i) and t X )
pinned (i) case, namely htﬁerefore the following form:

. K0 R
R=, (’g 13) (26) ¢E<r,u)=r+s-< Tzﬁlpgxu)) £+ 0. (393)
c =0

Inserting [24) into Poisson’s equatidd (4), one finally obtaingking into account the deviation of the star from sphericity, the
the partial differential equation for the second order correctioggrface can be expressed as

gg of the gravitational potential,

= . 2 ) 4
Vo +kd= % K(r)— D(r). 7y MW =1te (; R”P”(“)) e+ 06, (34)

Using the decomposition af(r, ) in the orthogonal basis of Where the radius of the non—rotating Configg_ratlb(ﬁ) =1in
Legendre polynomials, we can reduce this partial differenti@4r units (see Tablé 1). The matching conditions are given by

equation to an infinite series of ordinary differential equations
V\?e write Y a d(R(u),u) = ¢p(R(u),u),

¢'(R(u),u) = ¢p(R(u),u). (35)

o0
o(r,u) =Y Pulu) du(r), (28) The deviation of the derivative normal to the surface from a
1=0 simple radial derivative is of ord€?(s*), so we can neglect it.
where we only need to sum over Legendre polynomials with Expanding these matching conditions up to second order
even index, assuming equatorial symmetry. Using the walhd using the fact thap©®” (1) + 26(0)’(1) = 0 yields the
known differential equation for the Legendre Polynomials, ttfellowing boundary condition for thém:
Laplace operator acting afis seen to reduce to

- R Oy(1) + (20 + 1) $u(1) = 0. (36)
Vep(r,u) = Py (u)D r), 29 L . . . .

o(rw) ; 21(u) Dat $a1(r) (29) It is interesting to note that this condition was found without

) _ _ _ ever specifying the actual surface of matching. Fhewere in
where the differential operatd?,, is defined as fact completely arbitrary apart from the restriction to be small
2 compared ta 2, such that the developmefnt{34) makes sense.

d 2d nn+1) ) ) _ ThEs
D, = 2 + P (30) This shows that the obtained boundary relation fordgheis a
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rather robust consequence of the matching to the vacuum smtuced, with the help of Poisson’s equatidn (4), to a differential
lution itself. One could in fact find th&,; which specify the boundary condition o, namely
actual surface of the star up to second orderimterms of the qg, (1) =0 43)

0(1) =

b2 by the obvious definition _ _ , ,
but in the case of two fluids considered here, we still have to

p(R(u),u) =0 (37) use one of the two integral constrairts](42), in order to fix the
] ) second constant.
which then leads to the expression for the surface up(ts’) If one wanted to consider a transfusive type of model (see
in the form Langlois et al 1998), one would effectively have ofilyl(43) and
1 would still need some other prescription in order to fix the re-

Ru) =1-—~¢- (Z ﬁzl(l)le(U)> ‘€. (38) maining constant, and thereby the respective transfusive mass
PO ) =0 transfer between the two fluids.

For the individual fluids we can find the, = 0 surfaces in the

same way: 6. Formal solution

Ro(u) = RO — 1 The prescription of the boundary conditions not only completely
@ ng)’(RgO)) specifies the solutions of our series of ordinary differential equa-

(39) ! =>2 o1 is given by a homogeneous differential equation of
second order, subject to the boundary conditibnk (32)[add (36).
: . .. Only one of the two fundamental solutions can be chosen to
It has already been recognized by various authors that this %%ere ular in the origin. so we have the freedom of onlv one
of expansion eventually becomes singular in the vicinity of the” | : guiar gin. . ; y ol
! Sy , multiplicative constant in order to satisfiy {36), which can in
star’'s surface (see Smith _1975; Tassoul 1978, and references . L
therein). The zeroth order term pf®) (1) + & - 5 - £ obviousl general only be zero. All the solutions are trivial whenever the
become.s 2610 on the non—rotat?ng star’siragiu% 1 and s}(/) differential equation is homogeneous. This is the case for all the

theO(e2) correction can no longer be considered as being smat with { > 2 (but alsg for thgse matrix-elements in the cases
= 0 and! = 1, for which the inhomogeneous term, that is the

with respect to the zeroth order term. Due to this fact the valué di el & andD. i
for p(r, ) is locally valid only as long as one stays away frorffoTresponding matrix-element af and D, Is Z€ro).

the surface, and so the definition Bf; via (37) seems rather Iowio :jheen;?trmaelrfl?:t)lgggnoéézgig;onti;egg ?282':;;3 of the fol-
unreliable. Therefore itis important that the boundary condition 9 yp

) tions [31), but it even restricts nearly all of them to be zero. For
9

ce. (z o) Pu(u)

=0

~ 7"2 ~ ~
(38) does not depend on the actual form ofthe boundary surfaﬁ%(r) = —ka(r) <¢0(T) Tz o+ Ca) ’
We note that for the case= 0 we still need two more 3
conditions in order to fix all the four free parameters of the r? .

solutionsg(r) andp, o (C, and the two free parameters for?e2(r) = —ka(r) <¢’2(7') + 3Z’1) ) (44)
a solution of a differential equation of second order). These

conditions are obtained by invoking the requirement of ma%th the do(r) and¢:(r) solutions of (31), subject to the con-

conservation for each of the two fluids: ditions of regularity[[3R), continuity with the external potential
(36), and mass conservatiaii42).

/ 3z po(ryu) = / dx p((xo) (r). (40)
Ve v 7. Expansion, ellipticity and moment of inertia
0 - . (0
The fact thapl,” (r) vanishes ik}, leads to We will now discuss some of the consequences of the obtained
5 5. (0) formal solution up to second orderdrfor the densitiep,, (r, u).
/ d’zpa = /m) d IEP& (r) For simplicity, we restrict our attention in this section to mass
Ve * distributionsp,, with a simply connected topology, that is to
+e- (/ o B ﬁa) e+ 0. (41) say, which possess only one boundary surleice for each fluid,
Va namely the outer surface, and so we ha{ (R) < o.

Because of the orthogonality property of the Legendre pollfrom the expression for the respective boundary surfacés (39)
nomials andP, (u) = 1, any integral of the typgfil duPy (u) We see that there is a uniform expansion of the fluid as a whole

vanishes foi # 0, so that the condition of mass conservatiogf amountz - (—ﬁa,o(R&O))/pg))/(R((f))) -¢, and superposed on

simply reduces to this a term proportional té (u), which leads to the ellipticity
RO of the surface. At the equatd®,(u) = —1/2 and at the poles
/ “dr 2 Pao(r) =0. (42) P»(u) = +1,sowe getthe general expression for the ellipticity:
; :

(—§ a2 (RY) - g)
/
B o8 (R

As mentioned by Heintzmann et al. (1973) in the caser | _ 3
2

. : . , (45)
fluid, the integral constraint dbtal mass conservation can be “
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From [44) and the regularity conditia}g(o) = 0, we see that which is the rotation rate for a given angular momentip)
p2(0) = 0, and so the relative change of the central densityifswe kept the mass distribution fixed to the value of the non—
given by rotating case. We see that in}52), at the or@¢r?), we were
5pa(0) - Pao(0) e allowed to replace, by 5&1). This is the explicit relation for

OOy N (46) <, (M, M), orequivalently, (L, L.). Here we see again the
pa (0) pa(0) effect of the rotational coupling between the two fluids, namely
The respective fluid volumes are given by the change of the rotation rate of one fluid if we change the
angular momentum of the other fluid. This mutual dependence
explicitly reads as

22 pao(BY) £

Vo = VO +47RQ o o “n
lpe” (Ra”) a% _ (I&m _. T .§<1>) Go— 26 (fa .§(1))B (54)
Finally, we write the change of the two moments of inertia in 7

The effect is of orde©(¢?) and its actual importance is deter-

. mined by the coefficienfa/léo), which depends on the EOS.
I,=19 +¢e -1, ¢, (48) Let us take a look at a particular case, where we change
the angular momentur, without changingd’_,, corresponding
to what happens in a real neutron star, for example when we
-~ 3 o consider the loss of angular momentum of the normal fluid due
lo = / © d°r @ pa (7, u) - (49) 1o electromagnetic radiation. In this case we can express the

\Z . . .
“ change of angular velocity of the superfluid with respect to the

We note that the integral is done only over the unperturbagshange of the normal fluid as
spherical volumé&”), because the corrections due to the form 7.
of the boundary surface are of ordéXc*), which is due to des _ 9es/0Le () ( s )c
the same cancellation as has already been encountered indhe 0c./0L.
density integratior{ (41). Further evaluation leads to

the form

wherel, is given by

D O . (55)

gr (B 9. Exact solution for the polytrope P o p?

o= 3 . drr? <ﬁa,o(7") 3 ﬁa,Q(T)> : (80) Inthe previous sections we have obtainediormal;solutions, and
all quantities have been expressed in termgycdind¢., which

satisfy the differential equatiorls {31). The purpose of this sec-

tion is to consider a special case for which these equations can

In this section we investigate a consequence of the dependdpeexplicitly solved, and that s the case of the two fluids obeying

of the moments of inertia on the rotation ratgsvhich is ex- a polytropic EOS of the type

pressed in equation (48). The moment of inertia of one fluid also p2

depends on the rotation of tsecondluid, which leads to what Py = ﬁ ) (56)

can be called “rotational coupling”. This effect is still present '\r}ghere for the moment thé, is just a fluid—specific positive

th_e free case, V\_/he_re the only way the two fluids COMMUNICALE stant. We can see that the two EQS (56) satisfy the relation
with each other is via the gravitational potentiathanging the (@3) with & — k. /k., S0 we can study the free and the pinned

rotation rate of the fluidv changes its mass distributigg and . . iopfd)
therefore als@, which in its turn will change the mass distribu*35€ for this special EOS. The solut (r) for the non-

8. Rotational coupling

. . . 0 0 . .
tion of the second fluighs. As we saw above, this effect takegotating case will satisfy!” = rp"). This relation tells us that
place on the orde®(¢2). both fluids share the same boundary surface, which is therefore
Let us consider the angular momentum, which in our unitge star’s surface, and " =RV —p=1.
(see Tabl€l) is given by We start by the zeroth order approximation, that is the non—
R rotating configuration of the two—fluid star. The equation of
L, = (I&O) +e-1, -g) ga +0(°). (51) hydrostatic equilibrium in the non—rotating case reads as
1 . :
If we want to express the rotation ratesin terms of the angular —g; V' Fo = —Vig®, (57)

momental,,, it suffices to invert this relation and we obtain _ _
and for the EO9(86) it has the solution

D). 7. .M
o= eV (1 - 51(0)5> , (52 o0 = ko (60 +CP) . (59)
I,
. _ _ Using the definitior((23) of the structure functibg(r), we see
where we have defined the first order rotation rate by it is equal the constarit, defined in the EO$ (56). For the total
I density we find
el =5 (B3) 0 — 10 4 c©
FiC PO = —kg® 4 O | (59)
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Putting this expression into Poisson’s equatidn (4), we recoxemmpleteness we will write the complete solutign](44) after
the same Lane—Emden equation we would gedf@mpolytrope putting all the pieces together:
of the form P = p? /2k, namely

~ K (. , 3 6
V2o (r) + kp () = 0, (60) Paolr) = ‘ka{wz@ﬂo(m) Ty w)
even if the combined system of the two fluids cannot be de- (1 g2
scribed as a barotrope at all, i.&(ps, p.) = Ps + P. cannot + Za (5 3) )
be written as a function g alone. The above equation, sub-
ject to the boundary conditiori®) (0) = 1 (which is due to our _ K o 25
choice of units), has the following solution: Pa2(r) = —ka ;) (52(rm) — %) + §Za ) (68)
p O (r) = M’ for r<1, (61) While the total density perturbation coefficiepts can be writ-
(rVk) B ten more compactly,
which implies that R

~ . 6
po = —K (230(7“77)—7r2> ;

- . o _ p2 = —5K jo(rm). (69)
This is not too surprising, as it is well known that in the case
of a static polytrope with polytropic index 2 there exists a sinHsing this explicit solution we can evaluate the coefficients that
ple proportionality relation between the star's raditiand the determine the rotational couplirig {54) discussed in §ect. 8. The
coefficientk, the radius being in fact degenerate with respeigttegration [5D) over the explicit solutioris {68) yields
to the star's mass. As we are working in units wh&e= 1, -~

k=n2. (62)

this also fixes the numerical value bf Due to the proportion- %) =aK+bZ,, (70)
ality relationp{”) = xp”) andx = k,/k., we obtain for the Io
respective densities with the coefficients
ko sin(rm) 9 2 gt
Oy =222, 63 = 3————
Poc (1) 72 rr (63) a -6 ( 5 175) 7
We come now to the corrections of ord@(s?), determined by b — 3

the coefficientsp, and é» that are the solutions of(81). The  175(7% —6)
regular homogeneous solution is found in terms of the spherigg|s expression(85), which applies to the particular case where

Bessel functioy, (x) to be dLs =0, dL. # 0, can now be obtained explicitly as
Po(r) =Aj : 64) de,
Pau(r) Jau(rm) (64) di — —2ak, e (71)
Particular solutions are found by inspection, and so we obt:;uﬁc _
the exact solution td(31) in the form in the free case (i), and
7> A de
'y T K, 6 D P =2 <b g2 4 akcs(1)5(1)> 72
¢0(7")=A0J0(7“7T)+7T2(T _772>_772’ de. (&) s (72)
~ . K in the pinned case (ii).
da(r) = Agja(rm) — ﬁTQ , (65)
QASQI(T) =0, for 1>2, 10. Conclusions

where the remaining constam%) A, and D are to be deter- We have considered stationary axisymmetric configurations of

mined by the boundary conditiorls {36) afd](43), which ﬁna"}yvo flqids rotating uniformly with different rotation rates. Th_e
analytical method of Chandrasekhar, known from the classical

ields
Y problem of a single rotating fluid, has been generalized to the
~ K, ) two—fluid case. By applying this method we have obtained the
po(r) = o2 (2jo(rm) + 1% = 1), (66)  formal solution of the respective equilibrium mass distributions
. K ) for the two fluids in terms of the two functiors (r) andes (r),
$2(r) = — (5g2(rm) —12) . (67) which are the solutions of the ordinary differential equations

R (31). In order to fully determine these solutions, one needs to
Inserting the obtained into the equation[(44) for thg, and specify an EOS for the two fluids. The case of the special poly-
invoking the mass conservation conditi(42) for the individugdopic EOSP o p? is solved as an example in Sédt. 9. A genuine
fluids determines the remaining constafits. For the sake of effect of the two—fluid model is pointed out in Sédt. 8, namely
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the fact that the gravitational potential communicates chand&sstein R. I., Baym G., 1988, A[gP8 680
in rotation speed and mass distribution between the two fluidgibelman J., 1971, Phys. RevAX6), 1589

Further effort would be necessary in order to include tHélendenning N. K., 1997Compact StarsSpringer, Astronomy and
effects of solidity of the crust, so that one could analyze the Astrophysics Library
buildup of stress forces in the crust, including the case of pinn@g'adnléllsefég'\‘;tﬁrloi 72;”0 hee2 131
vortices n its gene_)rallty, \.NlthOUt the present restr_lctlodﬁ_i (1gzeintzman'n H., I—l|iIIebrandt W, irotscheek E., 1973, Ann. Pidfs.
Further investigations will also be concerned with the impli-
catip_ns_of the present results on the dgviatiop from c.hemi%lnes P.B.. 1990, MNRAS46, 315
equilibrium and thus heating and neutrino emission. Finally,gnes p. B., 1991, Aj73 208
general relativistic description would be desirable, as the masgglois D., Sedrakian D. M., Carter B., 1998, MNRARS7, 1189
concentration and rotation rates of neutron stars clearly exce@tk B. K., Epstein R. I, 1991, Ap373 592
the range for which a Newtonian treatment can be accurate.Link B., Epstein R. I., 1996, Apd57, 844

Link B., Franco L. M., Epstein R. 1., 1998, AfaD8 838
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