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Abstract. We study stationary axisymmetric configurations of
a star model consisting of two barotropic fluids, which are uni-
formly rotating at two different rotation rates. Analytic approx-
imate solutions in the limit of slow rotation are obtained with
the classical method of Chandrasekhar, which consists of an ex-
pansion of the solution in terms of the rotation rate, and which
is generalized to the case of two fluids in order to apply it to the
present problem. This work has a direct application to neutron
star models, in which the neutron superfluid can rotate at a dif-
ferent speed than the fluid of charged components. Two cases
are considered, the case of two non–interacting fluids, and the
case of an interaction of a special type, corresponding to the vor-
tices of the neutron superfluid being completely pinned to the
second fluid. The special case of the equation of stateP ∝ ρ2

is solved explicitly as an illustration of the foregoing results.
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1. Introduction

More than 30 years after the discovery of the pulsar phenomenon
and its identification with rotating neutron stars (Gold 1968),
there exists today a considerable body of observational data
(Lyne & Graham–Smith 1998), but also still a number of un-
certainties and open questions about the theoretical model for
pulsars, mainly due to the extremely dense (and therefore poorly
known) state of matter implied (Glendenning 1997).

One of the generally agreed characteristics of neutron stars
is the existence of a superfluid neutron component. This is not
only predicted by calculations from nuclear physics (Ainsworth
et al. 1989), but also agrees with observed features of pulsar
behavior, like the very long relaxation times, from months up
to years, after a glitch (a sudden increase of angular velocity of
the order of∆Ω/Ω . 10−6). All the charged parts of a neutron
star (nuclei, protons and electrons) can be treated as a single
normal fluid, and are predicted to be “locked” together in a state
of corotation (Easson 1979) on sufficiently long timescales. In
contrast, the neutron superfluid can have a different rotation
even on very long timescales, and so one is naturally led to
consider a neutron star model consisting of two independent
fluids, an approach that was first adopted by Baym et al. (1969).

This model has since been the basis of our understanding of
the glitch behavior and the subsequent post–glitch relaxation
observed in pulsars (Anderson & Itoh 1975; Alpar et al. 1984;
Sedrakian et al. 1995b; Link & Epstein 1996).

Apart from being inviscid and therefore forming an inde-
pendent fluid component, a superfluid is moreover constrained
to be in a state of irrotational flow, and consequently its rota-
tion can only be achieved by the presence of quantized vortices.
These vortices will interact with the fluid of charged compo-
nents (Feibelman 1971; Sauls et al. 1982; Epstein & Baym
1988; Jones 1990, 1991; Link & Epstein 1991; Sedrakian &
Sedrakian 1995a), giving rise to an effective friction force on a
moving vortex, and they can even be completely pinned to the
Coulomb lattice of nuclei that forms the crust of the neutron
star. A consequence is, that the vortices will not corotate with
the superfluid and will therefore be subject to the Magnus force
orthogonal to their relative velocity with respect to the super-
fluid. These forces will balance each other, which leads to an
effective interaction between the two fluids.

The long–term slowdown of the neutron star’s rotation rate,
which is caused by the loss of energy in form of electromagnetic
radiation, has many important consequences. The global slow-
down tends to decrease the ellipticity of the equilibrium shape
of the neutron star. This leads to the buildup of stress forces in
the solid crust, which can get suddenly released in form of a
starquake. This has been proposed by Ruderman (1969) as one
of the first models in order to explain glitches, and has since
been a subject of great interest, directly as a model for glitches
(Baym & Pines 1971; Heintzmann et al. 1973; Ruderman 1991;
Link et al. 1998), or at least as a trigger for some other glitch–
mechanism via the energy liberated in such a starquake event
(Link & Epstein 1996). Another aspect of the global slowing
down has been pointed out by Reisenegger (1995): the decrease
of the centrifugal force leads to a global compression of the neu-
tron star matter (consisting of neutrons, protons and electrons).
But the equilibrium composition (with respect toβ reactions) of
this plasma depends on the density, and so a global compression
drives the plasma out of equilibrium. This has some possibly ob-
servable consequences, e.g., on the emission of neutrinos and
on the evolution of the temperature of neutron stars.

These consequences have been examined from the point of
view of a global slowdown of the whole neutron star, but it
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has to be noted that in the two–fluid model, it is primarily the
fluid of charged components that gets slowed down, while the
superfluid neutrons will significantly lag behind and continue
to turn at a faster rotation rate. It has been remarked recently
(Carter et al. 1999), that this could lead to a new mechanism to
induce stress forces in the crust, due to an increasing deficit of
centrifugal buoyancy. The model for the driven deviation from
chemical equilibrium also has to be refined according to the
two–fluid picture. Not only is there a global compression, but
also a relative displacement of the two mass distributions with
respect to each other, as the difference of their rotation rates
increases. For example, when the two fluids have been inβ
equilibrium in the state of corotation, the slowdown of one fluid
changes its ellipticity and therefore moves volume elements of
that fluid to regions with a different equilibrium composition, so
that they are no longer in a state of equilibrium with the second
fluid.

The purpose of this paper is to study the consequences of the
two fluids having different rotation rates on the mass distribution
of the star. Even in the case of a single rotating, self–gravitating
fluid, it is impossible to obtain exact analytic solutions, and
one has to rely either on numerical treatments or on analytic
approximations (e.g., see Tassoul 1978). In the present work
we will develop a generalization of the analytic approximation
of Chandrasekhar (Chandrasekhar 1933; Tassoul 1978) to the
case of a barotropic two–fluid star. This method consists of an
expansion of the rotating solution around the static solution in
terms of the rotation rate. Using this method, we will obtain an
expression for the stationary mass distribution of a barotropic
two–fluid star up to second order in the two rotation rates. The
obvious limitations of this approach are that the rotation rates
have to be small compared to their “natural” scale, and that both
have to be of the same order of magnitude. These conditions
are in general satisfied in the case of neutron stars. The fact
that we considered stationary solutions is no real restriction
either, as the slowdown of pulsars takes place on very long
timescales. Therefore it should be possible to describe it as a
quasi–stationary process, passing through a series of stationary
states.

The plan of this paper is the following. In Sect. 2 we define
the Newtonian general model of a barotropic two–fluid star, and
in Sect. 3 we further specialize this general model in the context
of neutron stars. In Sect. 4 we generalize and apply the classical
method of Chandrasekhar to this two–fluid star, which allows
us to reduce the problem to a set of ordinary differential equa-
tions. Sect. 5 is devoted to the boundary conditions necessary to
obtain the complete solution, which is given in Sect. 6. Sect. 7
is concerned with some consequences of the solution, like the
change in ellipticity and moment of inertia. In Sect. 8 we discuss
an effect that we call “rotational coupling”, which is the fact that
changes of the rotation speed of one fluid influence the rotation
of the other fluid via the gravitational potential, even if the two
fluids are supposed to be strictly non–interacting. Sect. 9 gives
an illustration of the foregoing results in the completely ana-
lytically solvable case of a special polytropic equation of state.
Sect. 10 summarizes this work.

Table 1. The system of the chosen “natural” units,R andρ0 are re-
spectively the radius and the central density of the non–rotating con-
figuration

Quantity Unit

Length R
Density ρ0

Time 1/
√

4πGρ0

Frequency
√

4πGρ0

Mass ρ0R
3

Moment of Inertia ρ0R
5

Gravitational Potential 4πGρ0R
2

Pressure 4πGρ2
0R

2

Angular Momentum
√

4πGρ
3/2
0 R5

Force/Volume 4πGρ2
0R

2. The two–fluid model

We want to describe a star consisting of two independent fluids
in Newtonian gravitation. We distinguish a fluid denoted by
the subscriptc, that will represent the globally neutral fluid
of charged components of a neutron star (nuclei of the crust,
protons and electrons), and a fluid denoted by the subscripts,
that will describe the superfluid of free neutrons. We will also
refer to the fluid of charged components as the “normal fluid”,
as opposed to the superfluid. So the basic description of our
model consists of the Euler equations for the two fluids:

ρs (∂tv
i
s + vj

s∇jv
i
s) = −∇iPs − ρs∇iφ+ f i

s ,

ρc (∂tv
i
c + vj

c∇jv
i
c) = −∇iPc − ρc∇iφ+ f i

c , (1)

where∂t denotes the partial derivative with respect to time,
ρα, Pα, vi

α andf i
α are the respective mass density, pressure,

velocity and force per volume of each of the two fluids, andα is
the “chemical index” (α = s, c).φ is the gravitational potential,
which is related to the total densityρ ≡ ρc + ρs by Poisson’s
equation

∇2 φ = 4πGρ, (2)

whereG is Newton’s constant.
We consider only stationary axisymmetric configurations,

with the two fluids rotating uniformly with respective angular
velocitiesΩc andΩs, i.e.,vα ≡ Ωα×r. In the subsequent anal-
ysis we work with dimensionless quantities, measuring length
scales in units of the radiusR, densities in units of the central
densityρ0 of the non–rotating configuration and time in units
of 1/

√
4πGρ0 . Table 1 shows a summary of the employed fun-

damental and derived units.
In order to avoid unnecessary complications of notation, we

will in the following keep the same symbols for the dimension-
less variables, with the exception of the rotation ratesΩα, which
we will now denoteεα. This is in order to emphasize the fact
that we are consideringslow rotationswith respect to the nat-
ural scale ofΩ (see Table 1; this scale is in general still bigger
than the Keplerian rotation rateΩ2

K = 4πGρ/3, whereρ is the
mean density), and thereforeεα represents a small parameter,
i.e.,εα � 1.
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The rescaled Euler equations (1) take the form

1
ρs

∇iPs + ∇i(φ− 1
2
ε2s$

2) =
1
ρs
f i

s ,

1
ρc

∇iPc + ∇i(φ− 1
2
ε2c$

2) =
1
ρc
f i

c , (3)

where$ is the cylindrical radius, and Poisson’s equation (2) in
the new variables reads

∇2φ = ρ . (4)

The fundamental assumption in our treatment is that each of
the two fluids obeys abarotropicequation of state (EOS), i.e.,
Pα = Pα(ρα). This allows us to write the terms∇iPα/ρα in
(3) as the gradient of a function−ψα, say, that is defined as

− ψα ≡
∫ Pα dp

ρα(p)
. (5)

As we will work in the approximation ofT = 0, the quantity
−ψa is equivalent to the enthalpy per mass unit and to the chem-
ical potential per mass unit, and in our subsequent analysis it
will play the role of an effective potential.

3. The two–fluid model for neutron stars

In the present section we will specialize the general two–fluid
model of the previous section to the case of a neutron star. The
“normal” fluid of charged components (c) is supposed to be
corotating with the crust on short timescales, because of the
strong magnetic field that “locks” all charged components to
the crust (Easson 1979). The independent component (s) is a
perfect fluid that coexists with the normal fluid without any vis-
cous interaction, but we will allow for an indirect interaction
via the superfluid vortices. We neglect all magnetic and thermal
influences, as we are mainly interested in the effects of rotation.
While the assumption of uniform rotation is probably quite real-
istic for the normal fluid, the superfluid neutrons could perfectly
well be in state of differential rotation (∇iΩs 6= 0), even under
the condition of stationarity, but for simplicity we will assume
it to be uniformly rotating.

As we are interested in stationary solutions, we will also
neglect the external forces acting on the neutron star, which,
for isolated neutron stars, are due to electromagnetic radiation
and lead to the long–term slowdown of the rotation rate of the
crust. This approximation is easily justified, as the timescales
of mechanical displacements of the neutron star matter due to a
change in rotation is much shorter than the typical slowdown–
timescaleΩ/Ω̇, which is of the order of106 years.

Part of the normal fluid, namely the solid crust, is not really
a fluid, but we could still approximately describe it as a fluid
subject to anisotropic volume–forces, namely the stress forces
due to the solidity. This means that the force densityf i

c act-
ing on the normal fluid would not only consist of the opposite
interaction term−f i

s, but also of an extra termf i
a due to the

anisotropic stress forces, i.e., we would have

f i
c = f i

a − f i
s . (6)

The fact that there is no temperature–dependence in the bulk
EOS is an excellent approximation in the neutron–star context,
as the actual temperatures (for not extremely young neutron
stars) are some orders of magnitudes below the Fermi tempera-
ture. Additionally, as we assume two independently conserved
barotropes, we also neglect possible “chemical interactions” be-
tween the two fluids viaβ reactions, which transform neutrons
into protons and electrons and vice versa (n 
 p + e + ν̄e).
But the nature of the involvedβ reactions in neutron star matter
(namely modified Urca) seems to be rather slow, i.e., the chem-
ical equilibration timescales are of the order of several years for
not very young neutron stars (Haensel 1992) and therefore much
longer than the dynamical timescales under consideration. So
the above approximation should be rather viable as long as we
do not consider evolutions on very long timescales, where in-
evitable effects of transfusion would have to be included in the
analysis (e.g., see Langlois et al. 1998).

We still need to specify the nature of the interaction forcef i
s.

The conditions of stationarityanddifferent rotation rates do not
allow a dissipative interaction between the superfluid vortices
and the normal fluid, so we are basically left with two possi-
ble types of interaction, the case of completelypinnedvortices,
e.g., as obtained by Epstein & Baym (1988), and the case of
quasi–freevortices, as suggested by the results of Jones (1991).
The pinned case should still be a good approximation even if
vortex–creep is effective (that is, the vortices jump from pinning
site to pinning site, as they are pushed by the Magnus force),
whenever the creep–timescale is long compared to the dynam-
ical timescale, so that the quasi–stationary mass distribution in
the creep case should not differ from the pinned case. The pinned
case leads to an interaction caused to the Magnus force acting
on the vortices, which is given by

f i
M = ρs(εs − εc)εs∇i$2 . (7)

This supposes a parallel lattice of vortices. We will follow this
common assumption, which has been shown to be valid under
certain conditions by Ruderman & Sutherland (1974). In the
free case we have

f i
s = 0 , (8)

so we can treat the two cases (7) and (8) together, writing

f i
s = −δp f i

M , (9)

where the “pinning switch”δp is 1 in the pinned case and0 in
the free case.

We arrive at the following form for the two Euler equations
(3):

∇i

(
−ψs + φ− 1

2
ε2s$

2 + δp εs(εs − εc)$2
)

= 0, (10)

∇i

(
−ψc + φ− 1

2
ε2c$

2
)

= δp κ(r)εs(εs − εc)∇i$2

+
1
ρc
f i

a + O(ε4) , (11)
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where we have defined

κ(r) ≡ ρ
(0)
s (r)

ρ
(0)
c (r)

, (12)

ρ
(0)
α being the zeroth order density distributions, that is, of the

non–rotating configuration.
We see that the right–hand side of (11) has to be the gradient

of some scalar function. Looking at the pinning term (containing
δp) of this equation, we see that this term alone can in general
not be written as a gradient, because of the factorκ(r). This
shows that in general the pinning force cannot be compensated
without the presence of the anisotropic stress forcef i

a, which is
provided by the solidity of the crust, as has already been noticed
in the literature (e.g., Ruderman 1991).

There is however a special case that has the advantage of be-
ing analytically tractable, where the pinning forcecanbe com-
pensated by the gradient force on the left–hand side alone, with-
out including any anisotropic stress forces. This is obviously the
case whenκ(r) is a constant. As with our preceding assump-
tion of uniformity ofΩs, this case is not necessarily realistic for
neutron stars, but it is still of interest since it provides qualita-
tive insight in the behavior of the system in the pinned case. It
corresponds to the limiting case of a very ductile crust that does
not develop any notable shear stress and deforms like a fluid
under the applied Magnus force. On the other hand, contrary to
a fluid it is able to keep the vortices from moving relative to the
crust.

The condition of constantκ(r) = κ does not restrict the
choice of the EOS ofbothfluids, but only fixes the EOS of the
second fluid with respect to the chosen EOS for the first fluid
by the relation

Pc(ρc) =
1
κ
Ps(κρc) . (13)

In the following we setf i
a = 0 and postpone the difficult prob-

lem of including anisotropic stress forces to future work, so
we restrict our analysis to the two above mentioned completely
“fluid” cases:

(i) free vortices (δp = 0)
(ii) pinned vortices (δp = 1)

(with the EOS subject to (13), such thatρ(0)
s /ρ

(0)
c = κ is a

constant)

From Eqs. (10), (11) andf i
a = 0 we obtain the effective poten-

tials

ψs = φ− $2

2
(
ε2s − 2δpεs(εs − εc)

)
+ Cs , (14)

ψc = φ− $2

2
(
ε2c + 2κδpεs(εs − εc)

)
+ Cc , (15)

where theCα are constants inspace, but they may depend on
the rotation ratesεα. One can see that the pinned case (δp = 1)
introduces mixed termsεsεc, while in the free case (δp = 0) the
only non–zero terms are the diagonal ones, that isε2α.

The pressurePα should be a monotonic function of density
ρa, and so we see from (5) thatψα should also be a monotonic

function ofρα. This relation can therefore be globally inverted,
so that the densityρα can be uniquely written as a function of
the effective potentialψα in the form

ρα = ρα(ψα) , (16)

a relation that will be important for the subsequent analysis.

4. Generalized Chandrasekhar expansion

It will be convenient, in order to obtain more compact expres-
sions, to introduce a matrix notation in the fluid indices. One
will effectively recover the usual Chandrasekhar type of terms
known from the case of one fluid (see Chandrasekhar 1933; Tas-
soul 1978), with the scalar perturbation quantities replaced by
symmetric2 × 2 matrices. We write the effective potentials as
follows:

ψα = φ− $2

2
ε · Ẑα · ε+ Cα(ε) , (17)

where the “centrifugal” matriceŝZα are defined as

Ẑs ≡
(

1
0

)
− δp

(
2 −1

−1 0

)
,

Ẑc ≡
(

0
1

)
+ κδp

(
2 −1

−1 0

)
. (18)

By writing M̂ we indicate that the quantityM is a symmetric
2 × 2 matrix in the fluid indices with componentsMαβ , andε
is the vector with componentsεα.

Following the standard method of Chandrasekhar, we ex-
pand all quantities up to second order in the rotation parameter
ε around the non-rotating configuration. Because of the sym-
metry under parity, i.e.,ε → −ε, there can be no terms of first
order inε. The second–order term is a quadratic form inε and
therefore the definition of the coefficient matrix is ambiguous.
We can fix this ambiguity by the additional condition that the
matrices occurring in the expansions have to be symmetric.

We work in spherical coordinatesr andu ≡ cos(θ) (where,
of course,θ is defined with respect to the axis of rotation) and
so for the fluid densitiesρα(r, u) this expansion reads

ρα(r, u) = ρ(0)
α (r) + δρα(r, u) with δρα = ε · ρ̂α · ε . (19)

We expand the other quantitiesφ, Cα andρ in the same way,
with the respective second order coefficient matricesφ̂, Ĉα and
ρ̂ (where of coursêρ = ρ̂s + ρ̂c).

It is important to note that the additive constantsCα depend
in general on the rotation ratesε. We can absorb the additive
constantC(0)

α into the definition ofρα(ψα), so for convenience
we can setC(0)

α = 0, but we have to keep track of theO(ε2)
correctionε · Ĉα · ε.

In order to obtain the relations betweenρ̂α andφ̂ to second
order inε, we expandρα(ψα) around the non–rotating config-
urationψ(0)

α = φ(0):

ρα(ψα) = ρα(φ(0)) − kα ε ·
(
φ̂− $2

2
Ẑα + Ĉα

)
· ε , (20)
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where

kα ≡ − dρα(ψ)
dψ

∣∣∣∣
φ(0)

. (21)

Order by order comparison between (20) and (19) together with
the condition of symmetric matrices leads to the identifications

ρα(φ(0)) = ρ(0)
α (r) ,

ρ̂α = −kα

(
φ̂− $2

2
Ẑα + Ĉα

)
, (22)

which further allows us to write the “structure function”kα

simply as

kα(r) = − dρ
(0)
α

dφ(0) . (23)

The total density perturbation coefficient is found from (22) to
be

ρ̂ = −kφ̂+
3$2

2
K̂(r) − D̂(r) , (24)

where we have definedk ≡ kc + ks and the matrices

K̂(r) ≡ 1
3

(
ksẐs + kcẐc

)
and D̂(r) ≡ ksĈs + kcĈc . (25)

Surprisingly, the matrixK̂ is found (using the definitions ofκ
andkα, (12) and (23)) to be the same in the free (i) and the
pinned (ii) case, namely

K̂ =
1
3

(
ks 0
0 kc

)
. (26)

Inserting (24) into Poisson’s equation (4), one finally obtains
the partial differential equation for the second order corrections
φ̂ of the gravitational potential,

∇2φ̂+ k φ̂ =
3$2

2
K̂(r) − D̂(r) . (27)

Using the decomposition of̂φ(r, u) in the orthogonal basis of
Legendre polynomials, we can reduce this partial differential
equation to an infinite series of ordinary differential equations.
We write

φ̂(r, u) =
∞∑

l=0

P2l(u) φ̂2l(r) , (28)

where we only need to sum over Legendre polynomials with
even index, assuming equatorial symmetry. Using the well
known differential equation for the Legendre Polynomials, the
Laplace operator acting on̂φ is seen to reduce to

∇2φ̂(r, u) =
∑
l=0

P2l(u)D2l φ̂2l(r) , (29)

where the differential operatorDn is defined as

Dn ≡ d2

dr2
+

2
r

d

dr
− n(n+ 1)

r2
. (30)

Using the orthogonality property of the Legendre polynomials
together with the fact that3$2 = 2 r2(1 − P2(u)) leads to the
following series of ordinary differential equations

D0φ̂0 + k φ̂0 = +r2K̂ − D̂ ,

D2φ̂2 + k φ̂2 = −r2K̂ , (31)

D2lφ̂2l + k φ̂2l = 0 for l ≥ 2 .

In order to solve these equations, one must specify the appropri-
ate boundary conditions, which we consider in the next section.

5. Boundary conditions

The first restriction on the solutions of (31) comes from the
requirement that thêφ2l should be regular functions inr = 0,
and therefore the left hand side of the differential equation has
to be regular in the origin too. This leads to the conditions

φ̂2l(0) = 0 for l ≥ 1,

φ̂′
2l(0) = 0 for l ≥ 0 . (32)

The prime stands for derivatives with respect tor. Another
boundary condition is obtained by matching the solution for
the gravitational potential inside the star to the solutionφE out-
side the star. The external solution is normalized conventionally
by limr→∞ φE = 0, and satisfies∇2φE = 0. Its expansion in
terms of Legendre polynomials, and up to second order inε has
therefore the following form:

φE(r, u) =
κ(0)

r
+ ε ·

(∑
l=0

κ̂2l

r2l+1P2l(u)

)
· ε+ O(ε4) . (33)

Taking into account the deviation of the star from sphericity, the
surface can be expressed as

R(u) = 1 + ε ·
(∑

l=0

R̂2lP2l(u)

)
· ε+ O(ε4) , (34)

where the radius of the non–rotating configurationR(0) = 1 in
our units (see Table 1). The matching conditions are given by

φ(R(u), u) = φE(R(u), u) ,
φ′(R(u), u) = φ′

E(R(u), u) . (35)

The deviation of the derivative normal to the surface from a
simple radial derivative is of orderO(ε4), so we can neglect it.

Expanding these matching conditions up to second order
and using the fact thatφ(0)′′

(1) + 2φ(0)′
(1) = 0 yields the

following boundary condition for thêφ2l:

φ̂′
2l(1) + (2l + 1) φ̂2l(1) = 0 . (36)

It is interesting to note that this condition was found without
ever specifying the actual surface of matching. TheR̂2l were in
fact completely arbitrary apart from the restriction to be small
compared toε−2, such that the development (34) makes sense.
This shows that the obtained boundary relation for theφ̂2l is a
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rather robust consequence of the matching to the vacuum so-
lution itself. One could in fact find thêR2l which specify the
actual surface of the star up to second order inε in terms of the
φ̂2l by the obvious definition

ρ (R(u), u) = 0 (37)

which then leads to the expression for the surface up toO(ε2)
in the form

R(u) = 1 − 1
ρ(0)′(1)

ε ·
(∑

l=0

ρ̂2l(1)P2l(u)

)
· ε . (38)

For the individual fluids we can find theρα = 0 surfaces in the
same way:

Rα(u) = R(0)
α − 1

ρ
(0)
α

′
(R(0)

α )

×ε ·
(∑

l=0

ρ̂α,2l(R(0)
α )P2l(u)

)
· ε . (39)

It has already been recognized by various authors that this type
of expansion eventually becomes singular in the vicinity of the
star’s surface (see Smith 1975; Tassoul 1978, and references
therein). The zeroth order term ofρ(0)(r) + ε · ρ̂ · ε obviously
becomes zero on the non–rotating star’s radiusr = 1, and so
theO(ε2) correction can no longer be considered as being small
with respect to the zeroth order term. Due to this fact the value
for ρ(r, u) is locally valid only as long as one stays away from
the surface, and so the definition ofR̂2l via (37) seems rather
unreliable. Therefore it is important that the boundary condition
(36) does not depend on the actual form of the boundary surface.

We note that for the casel = 0 we still need two more
conditions in order to fix all the four free parameters of the
solutionsφ̂0(r) and ρ̂α,0 (Ĉα and the two free parameters for
a solution of a differential equation of second order). These
conditions are obtained by invoking the requirement of mass
conservation for each of the two fluids:∫

Vα

d3x ρα(r, u) =
∫

V
(0)

α

d3x ρ(0)
α (r) . (40)

The fact thatρ(0)
α (r) vanishes inR(0)

α leads to∫
Vα

d3xρα =
∫

V
(0)

α

d3xρ(0)
α (r)

+ε ·
(∫

V
(0)

α

d3x ρ̂α

)
· ε+ O(ε4) . (41)

Because of the orthogonality property of the Legendre poly-
nomials andP0(u) = 1, any integral of the type

∫ 1
−1 duP2l(u)

vanishes forl 6= 0, so that the condition of mass conservation
simply reduces to∫ R(0)

α

0
dr r2ρ̂α,0(r) = 0 . (42)

As mentioned by Heintzmann et al. (1973) in the case ofone
fluid, the integral constraint oftotal mass conservation can be

reduced, with the help of Poisson’s equation (4), to a differential
boundary condition onφ0, namely

φ̂′
0(1) = 0 , (43)

but in the case of two fluids considered here, we still have to
use one of the two integral constraints (42), in order to fix the
second constant.

If one wanted to consider a transfusive type of model (see
Langlois et al. 1998), one would effectively have only (43) and
would still need some other prescription in order to fix the re-
maining constant, and thereby the respective transfusive mass
transfer between the two fluids.

6. Formal solution

The prescription of the boundary conditions not only completely
specifies the solutions of our series of ordinary differential equa-
tions (31), but it even restricts nearly all of them to be zero. For
l ≥ 2, φ̂2l is given by a homogeneous differential equation of
second order, subject to the boundary conditions (32) and (36).
Only one of the two fundamental solutions can be chosen to
be regular in the origin, so we have the freedom of only one
multiplicative constant in order to satisfy (36), which can in
general only be zero. All the solutions are trivial whenever the
differential equation is homogeneous. This is the case for all the
φ̂2l with l ≥ 2 (but also for those matrix-elements in the cases
l = 0 andl = 1, for which the inhomogeneous term, that is the
corresponding matrix–element of̂K andD̂, is zero).

So the formal solution of the problem consists of the fol-
lowing density perturbation coefficients (see (22))

ρ̂α,0(r) = −kα(r)
(
φ̂0(r) − r2

3
Ẑα + Ĉα

)
,

ρ̂α,2(r) = −kα(r)
(
φ̂2(r) +

r2

3
Ẑα

)
, (44)

with the φ̂0(r) andφ̂2(r) solutions of (31), subject to the con-
ditions of regularity (32), continuity with the external potential
(36), and mass conservation (42).

7. Expansion, ellipticity and moment of inertia

We will now discuss some of the consequences of the obtained
formal solution up to second order inε for the densitiesρα(r, u).
For simplicity, we restrict our attention in this section to mass
distributionsρα with a simply connected topology, that is to
say, which possess only one boundary surface for each fluid,

namely the outer surface, and so we haveρ
(0)
α

′
(R(0)

α ) ≤ 0.
From the expression for the respective boundary surfaces (39)
we see that there is a uniform expansion of the fluid as a whole

of amountε · (−ρ̂α,0(R
(0)
α )/ρ(0)

α

′
(R(0)

α )) · ε, and superposed on
this a term proportional toP2(u), which leads to the ellipticity
of the surface. At the equatorP2(u) = −1/2 and at the poles
P2(u) = +1, so we get the general expression for the ellipticity:

σα =
3
2

(
−ε · ρ̂α,2(R

(0)
α ) · ε

)
R

(0)
α |ρ(0)

α

′
(R(0)

α )|
. (45)
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From (44) and the regularity condition̂φ2(0) = 0, we see that
ρ̂2(0) = 0, and so the relative change of the central density is
given by

δρα(0)

ρ
(0)
α (0)

=
ε · ρ̂α,0(0) · ε
ρ
(0)
α (0)

. (46)

The respective fluid volumes are given by

Vα = V (0)
α + 4πR(0)

α

2 ε · ρ̂α,0(R
(0)
α ) · ε

|ρ(0)
α

′
(R(0)

α )|
. (47)

Finally, we write the change of the two moments of inertia in
the form

Iα = I(0)
α + ε · Îα · ε , (48)

whereÎα is given by

Îα =
∫

V
(0)

α

d3x$2ρ̂α(r, u) . (49)

We note that the integral is done only over the unperturbed,
spherical volumeV (0)

α , because the corrections due to the form
of the boundary surface are of orderO(ε4), which is due to
the same cancellation as has already been encountered in the
density integration (41). Further evaluation leads to

Îα =
8π
3

∫ R(0)
α

0
dr r4

(
ρ̂α,0(r) − 1

5
ρ̂α,2(r)

)
. (50)

8. Rotational coupling

In this section we investigate a consequence of the dependence
of the moments of inertia on the rotation ratesε, which is ex-
pressed in equation (48). The moment of inertia of one fluid also
depends on the rotation of thesecondfluid, which leads to what
can be called “rotational coupling”. This effect is still present in
the free case, where the only way the two fluids communicate
with each other is via the gravitational potentialφ: changing the
rotation rate of the fluidα changes its mass distributionρα and
therefore alsoφ, which in its turn will change the mass distribu-
tion of the second fluidρβ . As we saw above, this effect takes
place on the orderO(ε2).

Let us consider the angular momentum, which in our units
(see Table 1) is given by

Lα =
(
I(0)
α + ε · Îα · ε

)
εα + O(ε5) . (51)

If we want to express the rotation ratesεα in terms of the angular
momentaLα, it suffices to invert this relation and we obtain

εα = ε(1)α

(
1 − ε(1) · Îα · ε(1)

I
(0)
α

)
, (52)

where we have defined the first order rotation rate by

ε(1)α ≡ Lα

I
(0)
α

, (53)

which is the rotation rate for a given angular momentumLα,
if we kept the mass distribution fixed to the value of the non–
rotating case. We see that in (52), at the orderO(ε3), we were
allowed to replaceεα by ε(1)α . This is the explicit relation for
εα(ε(1)s , ε

(1)
c ), or equivalentlyεα(Ls, Lc). Here we see again the

effect of the rotational coupling between the two fluids, namely
the change of the rotation rate of one fluid if we change the
angular momentum of the other fluid. This mutual dependence
explicitly reads as

∂εα

∂Lβ
=
(
I(0)
α − ε(1) · Îα · ε(1)

)
δαβ −2ε(1)α

(
Îα · ε(1)

)
β
.(54)

The effect is of orderO(ε2) and its actual importance is deter-
mined by the coefficient̂Iα/I

(0)
α , which depends on the EOS.

Let us take a look at a particular case, where we change
the angular momentumLc without changingLs, corresponding
to what happens in a real neutron star, for example when we
consider the loss of angular momentum of the normal fluid due
to electromagnetic radiation. In this case we can express the
change of angular velocity of the superfluid with respect to the
change of the normal fluid as

dεs

dεc
=
∂εs/∂Lc

∂εc/∂Lc
= −2ε(1)s

(
Îs · ε(1)

)
c

I
(0)
s

+ O(ε4) . (55)

9. Exact solution for the polytropeP ∝ ρ2

In the previous sections we have obtained formal solutions, and
all quantities have been expressed in terms ofφ̂0 andφ̂2, which
satisfy the differential equations (31). The purpose of this sec-
tion is to consider a special case for which these equations can
be explicitly solved, and that is the case of the two fluids obeying
a polytropic EOS of the type

Pα =
ρ 2

α

2kα
, (56)

where for the moment thekα is just a fluid–specific positive
constant. We can see that the two EOS (56) satisfy the relation
(13) with κ = ks/kc, so we can study the free and the pinned
case for this special EOS. The solutionsρ(0)

α (r) for the non–
rotating case will satisfyρ(0)

s = κρ
(0)
c . This relation tells us that

both fluids share the same boundary surface, which is therefore
the star’s surface, and soR(0)

s = R
(0)
c = R = 1.

We start by the zeroth order approximation, that is the non–
rotating configuration of the two–fluid star. The equation of
hydrostatic equilibrium in the non–rotating case reads as
1

ρ
(0)
α

∇iPα = −∇iφ(0) , (57)

and for the EOS (56) it has the solution

ρ(0)
α = −kα

(
φ(0) + C(0)

α

)
. (58)

Using the definition (23) of the structure functionkα(r), we see
it is equal the constantkα defined in the EOS (56). For the total
density we find

ρ(0) = −kφ(0) + C(0) . (59)
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Putting this expression into Poisson’s equation (4), we recover
the same Lane–Emden equation we would get foronepolytrope
of the formP = ρ2/2k, namely

∇2ρ(0)(r) + kρ(0)(r) = 0 , (60)

even if the combined system of the two fluids cannot be de-
scribed as a barotrope at all, i.e.,P (ρs, ρc) ≡ Ps + Pc cannot
be written as a function ofρ alone. The above equation, sub-
ject to the boundary conditionρ(0)(0) = 1 (which is due to our
choice of units), has the following solution:

ρ(0)(r) =
sin(r

√
k)

(r
√
k)

, for r ≤ 1 , (61)

which implies that

k = π2 . (62)

This is not too surprising, as it is well known that in the case
of a static polytrope with polytropic index 2 there exists a sim-
ple proportionality relation between the star’s radiusR and the
coefficientk, the radius being in fact degenerate with respect
to the star’s mass. As we are working in units whereR = 1,
this also fixes the numerical value ofk. Due to the proportion-
ality relationρ(0)

s = κρ
(0)
c andκ = ks/kc, we obtain for the

respective densities

ρ(0)
α (r) =

kα

π2

sin(rπ)
rπ

. (63)

We come now to the corrections of orderO(ε2), determined by
the coefficientŝφ0 and φ̂2 that are the solutions of (31). The
regular homogeneous solution is found in terms of the spherical
Bessel functionjn(x) to be

ϕ̂2l(r) = Â j2l(rπ) . (64)

Particular solutions are found by inspection, and so we obtain
the exact solution to (31) in the form

φ̂0(r) = Â0j0(rπ) +
K̂

π2

(
r2 − 6

π2

)
− D̂

π2 ,

φ̂2(r) = Â2j2(rπ) − K̂

π2 r
2 , (65)

φ̂2l(r) = 0 , for l ≥ 2 ,

where the remaining constantŝA0, Â2 andD̂ are to be deter-
mined by the boundary conditions (36) and (43), which finally
yields

φ̂0(r) =
K̂

π2

(
2j0(rπ) + r2 − 1

)
, (66)

φ̂2(r) =
K̂

π2

(
5j2(rπ) − r2

)
. (67)

Inserting the obtained̂φ into the equation (44) for thêρα and
invoking the mass conservation condition (42) for the individual
fluids determines the remaining constantsĈα. For the sake of

completeness we will write the complete solution (44) after
putting all the pieces together:

ρ̂α,0(r) = −kα

{
K̂

π2

(
2 j0(rπ) + r2 − 3

5
− 6
π

)

+ Ẑα

(
1
5

− r2

3

)}
,

ρ̂α,2(r) = −kα

{
K̂

π2

(
5 j2(rπ) − r2

)
+
r2

3
Ẑα

}
, (68)

while the total density perturbation coefficientsρ̂2l can be writ-
ten more compactly,

ρ̂0 = −K̂
(

2 j0(rπ) − 6
π2

)
,

ρ̂2 = −5 K̂ j2(rπ) . (69)

Using this explicit solution we can evaluate the coefficients that
determine the rotational coupling (54) discussed in Sect. 8. The
integration (50) over the explicit solutions (68) yields

Îα

I
(0)
α

= a K̂ + b Ẑα , (70)

with the coefficients

a =
9

π2 − 6

(
3 − π2

5
− π4

175

)
,

b =
3π6

175(π2 − 6)
.

The expression (55), which applies to the particular case where
dLs = 0, dLc 6= 0, can now be obtained explicitly as

dεs

dεc
= −2a kc ε

(1)
s ε(1)c (71)

in the free case (i), and

dεs

dεc
= −2

(
b(ε(1)s )2 + akcε

(1)
s ε(1)c

)
(72)

in the pinned case (ii).

10. Conclusions

We have considered stationary axisymmetric configurations of
two fluids rotating uniformly with different rotation rates. The
analytical method of Chandrasekhar, known from the classical
problem of a single rotating fluid, has been generalized to the
two–fluid case. By applying this method we have obtained the
formal solution of the respective equilibrium mass distributions
for the two fluids in terms of the two functionŝφ0(r) andφ̂2(r),
which are the solutions of the ordinary differential equations
(31). In order to fully determine these solutions, one needs to
specify an EOS for the two fluids. The case of the special poly-
tropic EOSP ∝ ρ2 is solved as an example in Sect. 9. A genuine
effect of the two–fluid model is pointed out in Sect. 8, namely
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the fact that the gravitational potential communicates changes
in rotation speed and mass distribution between the two fluids.

Further effort would be necessary in order to include the
effects of solidity of the crust, so that one could analyze the
buildup of stress forces in the crust, including the case of pinned
vortices in its generality, without the present restriction of (13).
Further investigations will also be concerned with the impli-
cations of the present results on the deviation from chemical
equilibrium and thus heating and neutrino emission. Finally, a
general relativistic description would be desirable, as the mass
concentration and rotation rates of neutron stars clearly exceed
the range for which a Newtonian treatment can be accurate.
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