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FLOW OF REAL HYPERSURFACES BY THE TRACE OF THE
LEVI FORM

Gerhard Huisken and Wilhelm Klingenberg

1. Introduction

Let F0 : N2n−1 → C
n, n ≥ 2, be a smooth immersion of a real

(2n − 1)-dimensional hypersurface in complex n-space. In this paper we study
the Cauchy-Riemann analogue of mean curvature flow [H] in Riemannian geom-
etry: We deform the initial hypersurface N0 = F0(N2n−1) in normal direction
such that the speed at each point is given by the trace of the Levi form of the
induced CR-structure on the hypersurface, with the defining one-form of norm
one. For simplicity we assume in this paper that N2n−1 is closed, i.e., compact
without boundary. Our initial value problem for the flow along the trace of the
Levi form then looks for a smooth family of immersions F : N2n−1× [0, T ) → C

n

satisfying the system
d

dt
F (p, t) = L(p, t) · X2n(p, t),(1.1)

F (p, 0) = F0(p),

where p ∈ N2n−1, t ∈ [0, T ). Here X2n(p, t) is the real unit normal of the
hypersurface Nt = F (·, t)(N2n−1) at F (p, t) in C

n (equipped with the standard
euclidean metric) and L(p, t) is the trace of the Levi form on Nt at F (p, t). On a
closed hypersurface we choose X2n to be the exterior unit normal and define the
Levi form such that L is negative on the metric sphere in order to be consistent
with the notation of [K].

This evolution equation is a weakly parabolic system exhibiting two different
types of degeneracies: First, due to the invariance under tangential diffeomor-
phisms, the symbol is degenerate in tangential directions, a phenomenon which
is well-known from mean curvature flow and can easily be dealt with by choosing
a particular gauge.

Secondly and more seriously, the trace of the Levi form L corresponds to a
quasilinear second order differential operator H∆ on N2n−1 as in [K. 4.1], which
acts like a Laplacian in complex directions HN := TN ∩ C

n

JTN of N but has
a zero eigenvalue in its symbol in the direction of TN that is orthogonal to HN .

After recalling the geometry of real hypersurfaces with their basic invariants
from [K] in section 2, we prove shorttime existence of solutions of (1.1) in sec-
tion 3. The proof is based on uniform a priori estimates for the curvature and its
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higher derivatives of solutions to approximating strictly parabolic systems. The
necessary evolution equations for the curvature and its derivatives are computed
with the help of commutator identities for the Kählerian shape operator estab-
lished in [K]. In addition to local existence we show that the solutions remain
smooth as long as both the curvature and its first derivatives remain bounded.
This result differs from standard mean curvature flow and is due to the degener-
ate parabolic structure of the flow. In section 4 we exploit the parabolic nature
of (1.1) in establishing a barrier principle for distinct solutions of the flow. We
also show that embedded solutions stay embedded. In the case n = 2, where
the Levi form reduces to a real scalar function, we prove a version of the strict
maximum principle to show that smooth, closed weakly pseudoconvex surfaces
instantaneously become strictly pseudoconvex under the evolution (1.1). This
provides a canonical approximation of such weakly pseudoconvex surfaces by
strictly pseudoconvex surfaces. We expect stronger regularity properties of the
flow in the strictly pseudoconvex case, which will be examined in a future article.
We refer to [ST] for a weak solution of (1.1) in the level set formulation.

Acknowledgement. We are grateful to Mrs. S. Schmidt for typing the manu-
script.

Remark. We wish to draw the attention of the reader to the recent work [C]
and [CM].

2. Notation and preliminaries

Here we review the notation and results in [K] that will be used throughout
this paper. For a real hypersurface F : N → C

n let HN = TV ∩ C
n

JTN be
the maximal complex tangent bundle in TN . We denote by T 1,0 and T 0,1 the
eigenspaces for i and −i of C⊗TC

n. The Kählerian geometry of a hypersurface
can be extracted from the principle bundle of unitary frames {ej}n

1 of F ∗T 1,0
C

n

that are adapted to TN ↪→ F ∗TC
n in the following way: span{eα}n−1

1 = H1,0N ,
span{fα := eα, fᾱ := eᾱ, fn := 1

2 (en+en̄)} = C⊗TN . We set Xj = 1√
2
(ej +ej̄),

Xn+j = i√
2
(ej−ej̄). It follows that X2n is normal to TN . We have the following

convention for ranges of indices: j, k, p, q ∈ {1, . . . , n}, α, β, γ ∈ {1, . . . , n − 1},
ξ, η ∈ {1, . . . , n − 1, 1̄, . . . , n − 1}, a, b, c ∈ {1, . . . , n, 1̄, . . . , n}. It follows for
example that span{fα} = H1,0N , span{fξ} = C⊗HN , span{fa} = C⊗TN . On
the bundles HN ↪→ TN ↪→ F ∗TN over N we have the Levi-Civita connection
C

n∇ and its projections N∇, H∇ with connection forms C
n

ω, Nω, Hω and
curvature forms C

n

Ω, NΩ, HΩ; see [K, 2.] for their structure equations and
interrelations. In [K, 1.] Klingenberg defines a tensor  on C ⊗ TN that takes
the role of a Kählerian shape operator of N → C

n:

 ja := θn(C
n∇fa

ej), j = 1, . . . , n, a = 1, . . . , n − 1, 1̄, . . . , n − 1, n.

Here, {θj} is the dual frame of {ej}, { αβ̄}n−1
1 is the Levi form of N → C

n,
which is hermitian on H1,0N ⊗H0,1N , { αβ} is symmetric on H1,0N ⊗H1,0N ,
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and { na} is a real form on C⊗ TN . We will also denote by {ξj , ξn+j} the dual
frame of {Xj , Xn+j} and {ϕa} the dual frame of {fa}. The trace of the Levi
form is given by

L := Σn−1
1  αᾱ.

It equals the negative trace of the restriction of the Riemannian second funda-
mental form to HN ↪→ TN , see [K, 1.4]. In addition, the total norm |A|2 of the
Riemannian second fundamental form is controlled by the total norm of  ja:

|A|2 ≤ 2| |2, | |2 := Σja| ja|2.(2.1)

We also set  2ab =  aγ̄ γb and  3ab =  aγ̄ γδ̄ δb. One can always choose a unitary
frame {eα} of H1,0N so that  αβ̄ = 0 for α �= β at a given point p ∈ N . We
denote by  H

jab and  N
jab the components of the first covariant derivative of  

with respect to the connection on HN and TN . Finally we note that with the
notation

H∆ = H∇eξ

H∇eξ̄
− H∇H∇eξ

eξ̄
≡ traceH(H∇2),

(1.1) has the form

d

dt
F (p, t) = H∆F (p, t),

which is analogous to the mean curvature flow in [H] given by

d

dt
F (p, t) = N∆F (p, t).

3. Short time existence

The aim of this section is to establish two main existence results. First we
prove short time existence of a solution of (1.1) with smooth initial data.

Theorem 3.1. Given a smooth regular immersion F0 : N2n−1 → C
n of a closed

hypersurface in complex Euclidean space, there exists a time interval [0, t0),
t0 > 0, with a smooth regular solution F : N2n−1 × [0, t0) → C

n of (1.1).

We can also show that the solution will continue to exist as long as the total
curvature and the total gradient of the evolving hypersurface remains bounded.
Notice that this result is in contrast to the mean curvature flow [H], where only
the curvature needs to be bounded to establish longtime existence. The stronger
condition here is due to the degeneracy in this flow which inhibits diffusion in
the direction normal to HN . We expect a better regularity result in the strictly
pseudoconvex case.

Theorem 3.2. There exists a maximal time interval [0, T ), T > 0, admitting a
smooth regular solution of (1.1). As t → T , the total curvature sup

Nt

| |2(t) or its

total derivative sup
Nt

|∇ |2(t) becomes unbounded.
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Remarks: i) The a priori estimates for the proof of Theorem 3.1 will also yield
a lower bound for T in terms of the initial curvature and initial gradient of
curvature, see Corollary 3.6.
ii) We will show in section 4 that for compact initial data T is bounded above in
terms of the radius R0 of the smallest sphere containing N0 : T ≤ R2

0/4(n − 1).
iii) Since equation (1.1) is more degenerate than mean curvature flow, we cannot
expect a general smoothing behaviour like in that case and Theorem 3.1 depends
heavily on the smoothness of the initial data. However, it will become apparent
in the proof that for intitial data in Ck−1,1, k ≥ 3, a solution exists in Ck−1,1.
Whether some smoothing result is true, e.g., for strictly pseudoconvex initial
data, is an interesting open problem.
iv) Theorems 3.1 and 3.2 can be extended to hypersurfaces in arbitrary Kähler
manifolds, since the corresponding evolution equations for  ja differ only by
terms involving the given curvature tensor of the ambient manifold and are of
lower order in the estimates derived here.

To prove the two theorems we first consider smooth regular solutions of the
evolution equation for a regular F : N × [0, T ) → C

n:

d

dt
F = KX2n on N2n−1 × [0, T ),(3.1)

with an arbitrary speed function K, and establish how the curvature changes
under this flow. Given an adapted frame {ek} of F ∗(·, 0)T 1,0

C
n, we need to de-

fine its time evolution in F ∗(·, t)T 1,0
C

n over Nt. For that we extend F to a map
F̃ : N × [0, T ) → C

n × R, F̃ (p, t) = (F (p, t), t). Then the bundle F̃ ∗T (Cn × R)
= F ∗TC

n ⊕R over N × [0, T ) can be equipped with the product metric in each
fibre and the Levi-Civita connection C

n×R∇. In addition, {ek} is naturally a
frame of F̃ ∗(·, 0)(T 1,0

C
n ⊕ 0) = F ∗(·, 0)T 1,0

C
n ⊕ 0 over N0 × 0. Extend C

n×R∇
trivially to T F̃ ∗(·, 0)(TC

n ⊕ R) = F ∗(TC
n ⊕ R) ⊕ C

n ⊕ R and set

Z := F̃ ∗F̃∗(∂/∂t).

Then Z = (KX2n, 1) is transverse to N × t for every t. Setting Ka:= fa · K,
the following system of ODEs then uniquely determines an evolution for {ek}:

∇Zeα = i
√

2Kαen,(3.2)

∇Zen = i
√

2Kj̄ej .(3.3)

This is well posed since for every t, the vector Z is transverse to N × t in
T F̃ ∗(TC

n ⊕ 0). In addition by the Kähler property, this evolution gives a frame
of F̃ ∗(·, t)(T 1,0

C
n ⊕ 0). We finally extend the frame by parallel transport along

the vectorfield X2n to
T F̃ ∗(T 1,0

C
n ⊕ 0). This implies that ∇Zej = ∇ ∂

∂t
ej and we will often simply

write ∂
∂t to denote such a derivative. We claim that the above evolution implies

ξ2n(LZfa) = 0,(3.4)

θβ(C
n×R∇Zeα) = 0.(3.5)
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Thus our choice of evolution for the frame {ej} ensures that the frame remains
adapted to HNt ⊂ TNt, without rotating the holomorphic directions. To prove
the claim, note that (3.3) implies ∇∂/∂tX2n = −Kξfξ̄ − 2Knfn, and therefore
ϕn(∇∂/∂tX2n) = −2Kn, ϕξ̄(∇∂/∂tX2n) = −Kξ, which gives ξ2n(∇∂/∂tfa) = Ka

and implies (3.4). Also, (3.2) clearly implies (3.5). This proves the claim. In
addition, we infer the identities

L∂/∂tfα =
1
2
K αξ̄fξ + (K αn + i

√
2Kα)fn,(3.6)

L∂/∂tfn =
1
2
K nξ̄fξ +

i√
2
(Kγ̄fγ − Kγfγ̄) + K nnfn.(3.7)

Proposition 3.3. For the evolution (3.1) of hypersurfaces, we have the follow-
ing evolution of  with respect to the frame constructed above.

∂

∂t
 αξ = 2(H∇2K)(fα, fξ) + i

√
2( nξKα ±  nαKξ −  αξKn)

+
1
2
K αη̄ ηξ + K αn nξ,

∂

∂t
 nα = 2 (H∇2K)(fn, fα) + i

√
2( αγKγ̄ −  αγ̄Kγ +  nnKα −  αnKn)

+
1
2
K αη̄ ηn + K αn nn,

∂

∂t
 nn = 2 (H∇2K)(fn, fn) +

3i√
2
( nγKγ̄ −  nγ̄Kγ)

+
1
2
K nη̄ ηn + K( nn)2.

In the first equation, the upper sign holds if ξ ∈ {1, . . . , n − 1} and the lower
sign holds otherwise.

Remark: It is easy to see that the evolution equations above only depend on
the construction of the frame on N × [0, T ), not on the parallel extension of the
frame along X2n in the ambient space. For a different extension of the frame
to the ambient space the time derivative is then replaced by differentiation in
direction Z.

Proof. By the product rule,

∂

∂t
θn(∇fa

ej) = (∇∂/∂tθ
n)(∇fa

ej) + θn(∇[∂/∂t,fa]ej) + θn(∇fa
∇∂/∂tfa).

Using the relations (3.2)–(3.7) and the identities fa ·Kα = (H∇2K)(fα, fa)K +
Kδω

δ
α(fa), fa · Kn = (H∇2K)(fn, fa) , we compute the above expression for
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various (a, j).

∂

∂t
θn(∇fξ

eα) = −i
√

2Kjθ
j(∇fξ

eα) +
1
2
K ξη̄θn(∇fηeα)

+ (K nξ ± i
√

2Kξ)θn(∇fneα)

+ i
√

2Kαθn(∇fξ
en) + i

√
2 (H∇2K)(fα, fξ)

+ i
√

2Kδω
δ
α(fξ)

= −i
√

2Kn
i√
2
 αξ +

i

23/2
K ξη̄ ηα

+
i√
2
K nξ nα ∓  nαKξ −  nξKα

+ i
√

2 (H∇2K)(fα, fξ),
∂

∂t
θn(∇fαen) = −i

√
2Kjθ

j(∇fαen) +
1
2
K αξ̄θ

n(∇fξ
en)

+ (K αn + i
√

2Kα)θn(∇fnen) + i
√

2Kj̄θ
n(∇fαej)

+ i
√

2 (H∇2K)(fn, fα)

= Kγ αγ̄ +
i

23/2
K αξ̄ ξn +

i√
2
K αn nn

− Kα nn − Kγ̄ αγ + i
√

2 (H∇2K)(fn, fα),
∂

∂t
θn(∇fnen) = −i

√
2Kjθ

j(∇fnen) +
1
2
K nη̄θn(∇fηen)

+
i√
2
(Kγ̄θn(∇fγ en) − Kγθn(∇fγ̄ en))

+ K nnθn(∇fnen) + i
√

2(H∇2K)(fn, fn)

+ i
√

2Kj̄θ
n(∇fn

ej)

= Kγ nγ̄ +
i

23/2
K nη̄ ηn − 1

2
Kγ̄ γn

+
1
2
Kγ nγ̄ +

i√
2
K( nn)2 + i

√
2 (H∇2K)(fn, fn)

− Kγ̄ nγ .

These easily imply the claims.

We will apply Theorem 3.1 with K = L+εLN , where −LN is the Riemannian
mean curvature of the hypersurface. The parabolic nature of the equations in
Theorem 3.1 will become apparent by combining them with the commutator
equations established in [K, 4.2].
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Proposition 3.4. Let ✷ε = ∂
∂t − (H∆ + ε N∆). Then

✷ε αβ̄ = i
√

2
[
 nγ̄ H

αβ̄γ −  nγ H
αβ̄γ̄ + 2( γβ̄ H

αγ̄n −  αγ̄ H
γβ̄n)

]
+

1
2
 αβ̄( 2γγ̄ +  2γ̄γ + 2 2nn) +

1
2
( 2αγ γ̄β̄ +  αγ 2γ̄β̄) −  3β̄α

+ ε
[
i
√

2( nβ̄LN
α −  nαLN

β̄ ) + | |2 αβ̄

]
,

✷ε αβ = i
√

2
[
 nγ̄ H

αβγ −  nγ H
αβγ̄ − 2 αγ̄ H

γβn +  2βγ̄ H
γαn)

]
+

1
2
 αβ( 2γγ̄ +  2γ̄γ + 2 2nn) + 2 nn( 2αβ +  2βα)

− 4( 2αn nβ +  αn 2βn) +
1
2
( αγ 2γ̄β +  2γ̄α γβ) − 1

2
( 3αβ +  3βα)

+ ε
[
i
√

2( nβLN
α +  nαLN

β ) + | |2 αβ

]
,

✷ε nα = i
√

2
[
−2 αγ̄ H

γnn +
1
2
( γδ 

H
γ̄δ̄α −  γ̄δ̄ 

H
γδα) −  αnLn

]

+  nα( 2γγ̄ +  2γ̄γ) − 2( αγ̄ 2nγ +  3nα) +
1
2
( nγ 2γ̄α +  3αn)

+ ε
[
i
√

2( αγLN
γ̄ −  αγ̄LN

γ +  nnLN
α ) + | |2 αn

]
,

✷ε nn = i
√

2( nγ nnγ̄ −  nγ̄ nnγ +  γδ γ̄δ̄n −  γ̄δ̄ γδn)

+
3
2
 nn( 2γγ̄ +  2γ̄γ +

3
2
 2nn) − 6 3nn +

1
2
( γδ̄ 

2
γ̄δ −  3γγ̄)

+ ε

[
3i√
2
( nγLN

γ̄ −  nγ̄LN
γ +

2
3
 nnLN

n ) + | |2 nn

]
.

Proof. Note that by definition of N∇ and H∇, as explained in section 2,
(N∇2LN )(fj , fa) + LN

n
Nωn

j (fa) = (H∇2LN )(fj , fa) . By [K, 2.1] we have
Nωn

j (fa) = ωn
j (fa) such that in view of the commutator identities from [K,

4.0, 4.2] for N∆, H∆ we may proceed as follows with K = L + εLN . In this
computation we use Proposition 3.1 and the definition of  2(ab) given in [K, 4.0].

✷ε αβ̄ = (
∂

∂t
 αβ̄ − 2 (H∇2K)(fα, fβ̄)) + (2 (H∇2L)(fα, fβ̄) − H∆ αβ̄)

+ ε(2 (N∇2LN )(fα, fβ̄) + 2LN
n ωn

α(fβ̄) − N∆ αβ̄)

= i
√

2( nβ̄Kα −  nαKβ̄ −  αβ̄Kn) +
1
2
K αη̄ ηβ̄

+ K αn nβ̄ + i
√

2
[
 nγ̄ H

αβ̄γ −  nγ H
αβ̄γ̄

+ 2( γβ̄ H
αγ̄n −  αγ̄ H

γβ̄n) +  nαLβ̄

−  nβ̄Lα +  αβ̄Ln

]
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+
1
2
 αβ̄( 2γγ̄ +  2γ̄γ + 2 2nn) − 1

2
L( 2αβ̄ +  2β̄α + 2 nα nβ̄)

+
1
2
( 2αγ γ̄β̄ +  αγ 2γ̄β̄) −  3β̄α

+ ε(| |2 αβ̄ − LN 2(αβ̄) + i
√

2 αβ̄ − LN
n ),

✷ε αβ = (
∂

∂t
 αβ − 2 (H∇2K)(fα, fβ)) + (2 (H∇2L)(fα, fβ) − H∆ αβ)

+ ε(2 (N∇2LN )(fα, fβ) + 2LN
n

Nωn
α(fβ) − N∆ αβ)

= i
√

2( nβKα +  nαKβ −  αβKn) +
1
2
K αη̄ ηβ

+ K αn βn + i
√

2
[
 nγ̄ H

αβγ −  nγ H
αβγ̄

− 2( αγ̄ H
γβn +  βγ̄ H

γαn)

−  nαLβ −  nβLα +  αβLn

]
+

1
2
 αβ( 2γγ̄ +  2γ̄γ + 2 2nn)

− 1
2
L( 2αβ +  2βα + 2 αn βn) + 2 nn( 2αβ +  2βα)

− 4( 2αn nβ +  αn 2βn) +
1
2
( αγ 2γ̄β +  2γ̄α γβ)

− 1
2
( 3αβ +  3βα)

+ ε(| |2 αβ − LN 2(αβ) + i
√

2 αβLN
n )

✷ε nα = (
∂

∂t
 nα − 2 (H∇2K)(fn, fα)) + (2 (H∇2L)(fn, fα) − H∆ nα)

+ ε(2 (N∇2LN )(fn, fα) + 2LN
n

Nωn
n(fα) − N∆ nα)

= i
√

2( αγKγ̄ −  αγ̄Kγ +  nnKα −  αnKn)

+
1
2
K αη̄ ηn + K αn nn

+ i
√

2
[
− 2 αγ̄ H

nγn − 2 nnLα −  αγLγ̄

+  αγ̄Lγ +
1
2
( γδ δ̄γ̄α −  γ̄δ̄ δγα)

]
+  nα( 2γγ̄ +  2γ̄γ) − 1

2
L( 2nα +  2αn + 2 nα nn)

− 2( αγ̄ 2nγ +  3nα) +
1
2
( nγ 2γ̄α +  3αn)

+ ε(| |2 αn − LN 2(αn))
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✷ε nn = (
∂

∂t
 nn − 2(H∇2K)(fn, fn)) + (2 (H∇2L)(fn, fn) − H∆ nn)

+ ε(2 (N∇2LN )(fn, fn) + 2LN
n

Nωn
n(fn) − N∆ nn)

=
3i√
2
( nγKγ̄ −  nγ̄Kγ) +

1
2
K nη̄ ηn + K( nn)2

+ i
√

2
[
 nγ nnγ̄ −  nγ̄ nnγ +

3
2
( nγ̄Lγ −  nγLγ̄)

+  γδ γ̄δ̄n −  γ̄δ̄ γδn

]
+

3
2
 nn( 2γγ̄ +  2γ̄γ +

2
3
 2nn) − L( 2nn + ( nn)2)

− 6 3nn +
1
2
( γδ̄ 

2
γ̄δ −  3γγ̄) + ε(| |2 nn − LN 2(nn)).

Further simplification immediately leads to the claim.

The above Proposition implies the following estimate.

Proposition 3.5. Let 0 ≤ ε ≤ 1. Then there is a constant c0 depending only
on n such that

✷ε| |2 ≤ −2|H∇H |2 + c0| |4.
Proof. For two tensors S, T we denote by S ∗ T any tensor whose entries are
homogeneous polynomials of degree two and are linear in both S and T . We
set ∇ = N∇, then we denote by ∇H the covariant derivative taken in direction
HN . Similarly for the connection H∇, we have H∇H standing for the covari-
ant derivative w.r.t. H∇, taken in direction HN . With this notation, we have
(∇− H∇)T =  ∗ T , and Proposition 3.4 gives

✷ε pa =  ∗ H∇H +  ∗  ∗  + ε( ∗ ∇ +  ∗  ∗  ).

Here we also used the Codazzi-type commutator relation [K, 2.4] to replace H∇L
by H∇H +  ∗  . Therefore we have for any pair of indices (pa)

∂

∂t
| pa|2 = (H∆ + εN∆)| pa|2 − 2| H∇H pa|2 +  ∗  ∗ H∇H +  ∗  ∗  ∗  

+ ε(−2|∇ pa|2 +  ∗  ∗ ∇ +  ∗  ∗  ∗  ).

Now using Cauchy-Schwarz, this completes the proof.

Corollary 3.6. If at t = 0 we have a curvature bound of the form max
N0

| |2 ≤
B, then max

Nt

| |2 ≤ B
1−c0Bt . In particular, the curvature will not blow up for

t ∈ [0, c−1
0 B−1).

Proof. Since ✷ε is a (weakly) parabolic operator for 0 ≤ ε ≤ 1, we can apply the
parabolic maximum principle to compare with the solution of the ODE ġ = c0g

2

with initial value B, which is given by g(t) = B
1−c0Bt .
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We will also need to control higher order derivatives and set

|∇m |2 =
∑
p,a

|∇m pa|2.

Proposition 3.7. Let 0 ≤ ε ≤ 1.
(i) There are constants c1 and c2 depending only on n such that the first

derivatives of the curvature satisfy the estimate

✷ε|∇ |2 ≤ −|H∇H∇ |2 + c1|∇ |3 + c2| |2|∇ |2.
(ii) For each m ≥ 2 there are constants c(n, m) depending only on n, m and

max
N×[0,T )

|∇i | for 0 ≤ i ≤ m − 1 such that

✷ε|∇m |2 ≤ −|H∇H∇m |2 + c(n, m)(1 + |∇m |2).
Proof. Since the good Bochner-type term on the RHS will look like
−|H∇H∇m−1 |2, which doesn’t dominate the total m-th derivative of  , we need
to keep track of the horizontal derivatives in the subsequent computations.

We compute

(∇∂/∂t∇fa −∇fa∇∂/∂t −∇[∂/∂t,fa])fb = (∇∂/∂tθ
c)(∇fafb)fc.

By (3.2),(3.3),(3.6) and (3.7), the coefficients of the RHS are polynomials of type
 ∗ ∇ . By (3.6), (3.7), the third term on the LHS is of type ( ∗  + ∇ ) ∗ ∇fb.
(Note that the term ∇ does not occur in the mean curvature flow, where the
frame is unrestrained in tangential directions. This additional term in the Levi
flow causes the cubic term in the equation for the gradient above.) We conclude,
for a tensor T ,

(∇∂/∂t∇fa −∇fa∇∂/∂t)T =  ∗ ∇ ∗ T + ( ∗  + ∇ ) ∗ ∇T,

such that in particular

(∇∂/∂t∇m −∇m∇∂/∂t) pa =
m−1∑
r=0

∇r(∇∂/∂t∇−∇∇∂/∂t)∇m−r−1 

=
m−1∑
r=0

∇r[ ∗ ∇ ∗ ∇m−r−1 

+  ∗  ∗ ∇m−r + ∇ ∗ ∇m−r ]

=
∑

i+j+k=m

∇i ∗ ∇j ∗ ∇k 

+
∑

i+j=m+1
i,j≥1

∇i ∗ ∇j .

We also need commutator relations on C⊗ TN . By the Gauss-type equation in
[K, 2.1], we have NΩ =  ∗ . Also, when expressed as a linear combination of {fc},
the vector [fa, fb] has coefficients of type  . This gives (∇fa∇fb

−∇fb
∇fa)T =

 ∗ ∇T +  ∗  ∗ T .
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In addition, since (∇− H∇)T =  ∗ T , we have

H∆T = (∇H + H∇H −∇H)2T
= ∇2

HT + ∇H ∗ T +  ∗ ∇HT +  ∗  ∗ T.

Therefore we compute the commutator of the horizontal Laplacian

(∇m H∆ − H∆∇m) pa = (∇m∇2
H −∇2

H∇m) + ∇m( ∗ ∇H +  ∗  ∗  )

=
m−1∑
r=0

∇r(∇H∇−∇∇H)∇m−r−1∇H 

+ ∇m( ∗ ∇H +  ∗  ∗  )

=
m−1∑
r=0

∇r( ∗ ∇m−r∇H +  ∗  ∗ ∇m−r−1∇H )

+ ∇m( ∗ ∇H +  ∗  ∗  )

=
∑

i+j=m

∇i ∗ ∇j∇H +
∑

i+j+k=m

∇i ∗ ∇j ∗ ∇k 

=
∑

i+j=m

∇i ∗H ∇H∇j +
∑

i+j+k=m

∇i ∗ ∇j ∗ ∇k .

Using then

(∇m N∇N
fa
∇fa

− N∇N
fa
∇fa

∇m) pa =
m−1∑
r=0

∇r(∇fa∇−∇∇fa)∇m−r 

=
m−1∑
r=0

∇r( ∗ ∇m−r+1 +  ∗  ×∇m−r ),

we conclude for the Riemannian Laplacian

(∇m N∆ − N∆ ∇m) =
∑

i+j=m+1

∇i ∗ ∇j +
∑

i+j+k=m

∇i ∗ ∇j ∗ ∇k .

Now, by Proposition 3.4 and the Codazzi equations established in [K,2.4], we
may write the evolution equations of the curvature as

∂

∂t
 pa = (H∆ + ε N∆) pa +  ∗ H∇H +  ∗  ∗  .
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Combining these identities we obtain for the higher derivatives of the curva-
ture

∂

∂t
|∇m pa|2 =

[
(∇∂/∂t∇m −∇m∇∂/∂t) pa

+ ∇m
(
H∆ pa +  ∗ H∇H +  ∗  ∗  

)
+ ε∇m N∆ pa

]
∇m pa

+ complex conjugate
= (H∆ + ε N∆)|∇m pa|2 − 2| H∇H∇m pa|2 − 2ε|∇m+1 pa|2

+ (∇∂/∂t∇m −∇m∇∂/∂t) ∗ ∇m 

+ (∇m H∆ − H∆∇m) ∗ ∇m 

+ ∇m( ∗ H∇H +  ∗  ∗  ) ∗ ∇m 

+ ε(∇m N∆ − N∆∇m) ∗ ∇m .

Hence we finally conclude, setting |∇m |2 :=
∑
p,a

|∇m pa|2,

✷ε|∇m |2 = −2|H∇H |2 +
∑

i+j=m

∇i ∗ H∇H∇j ∗ ∇m 

+
∑

i+j=m+1
i,j≥1

∇i ∗ ∇j ∗ ∇m +
∑

i+j+k=m

∇i ∗ ∇j ∗ ∇k ∗ ∇m 

+ ε

(
− 2|∇m+1 |2 +

∑
i+j=m+1

∇i ∗ ∇j ∗ ∇m 

+
∑

i+j+k=m

∇i ∗ ∇j ∗ ∇k ∗ ∇m 

)
.

Estimating the terms on the RHS by their absolute value and using ab ≤
δa2 + (δ−1/4)b2, we then derive

| ∗ H∇H∇m ∗ ∇m | ≤ |H∇H∇m |2 + c(n, m)| |2|∇m |2,
such that

✷ε|∇m |2 ≤ −|H∇H |2 + c(n, m)(| |2 + |∇ |)|∇m |2
+ c(n, m)

∑
i+j=m

i≤m−1,j≤m−2

|∇i |2|∇j+1 |2

+ c(n, m)
∑

i+j+k=m
i,j,k≤m−1

|∇i |2|∇j |2|∇k |2.

Corollary 3.8. (i) Let D = max
N0

|∇ |2 and 0 ≤ ε ≤ 1. There are con-

stants c3 > 0, c4 > 0 depending only on c0(n), c1(n), c2(n) defined
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previously such that max
Nt

|∇ |2 ≤ 2max{D, B2} for all 0 ≤ t ≤ t1 :=

min{c3B
−1, c4D

−1/2}.

(ii) For each m ≥ 2 there is a constant cm depending on n, m and max
N0

|∇i |2,
1 ≤ i ≤ m, such that max

Nt

|∇m |2 ≤ cm for all 0 ≤ t ≤ t1.

Proof. (i) By Proposition 3.7 we have

✷ε|∇ |2 ≤ c1|∇ |3 + c2| |2|∇ |2

≤ (c1 + c2))|∇ |3 +
c2B

3

(1 − c0Bt)3
,

by Young’s inequality and Corollary 3.6. Then |∇ |2 is dominated by the com-
parison function g(t) = k2

1/(1 − k2t)2 if k2
1 = max{D, B2}, k2 = max{(2c0 +

2
√

c2)B,
√

c1 + c2k1} and t1 = min{c3B
−1, c4D

− 1
2 } is chosen small enough. This

gives the desired estimate.
(ii) The higher derivative estimates follow from induction and Proposition

3.7(ii), since the interval is bounded.

Lemma 3.9. Let 0 ≤ ε ≤ 1. Then for any solution of (d/dt) F = (L +
εLN )X2n, the induced metric Nh on the hypersurfaces Nt is uniformly equiv-
alent to the initial metric on N0 for 0 ≤ t ≤ 1/2 t0.

Proof. This follows from the boundedness of | |2 for 0 ≤ t ≤ 1/2 t0 as in [Ha]
since | |2 controls the derivative of the induced metric in view of (2.1).

Proof of Theorem 3.1. Since the evolution equation (d/dt)F = (L + εLN )X2n

is strictly parabolic up to tangential diffeomorphisms for each 0 < ε ≤ 1, there
is a smooth solution F ε with initial data F0 for 0 < ε ≤ 1. In view of the
Corollary and Lemma, each solution F ε can be smoothly extended up to t1 =
min{1/2 c−1

0 B−1, c3D
−1/2}. In view of these uniform estimates we may then

pass ε → 0 to obtain the desired solution of (1.1).

4. Barrier principle

We demonstrate the parabolic nature of the flow (1.1) by showing that the dis-
tance between two disjoint surfaces is nondecreasing under the flow. In addition,
embedded surfaces remain embedded.

Theorem 4.1. (i) If Fj : N j× [0, t) → C
n, j = 1, 2, are two smooth solutions

of (1.1) with N1
0 ∩ N2

0 = ∅, then N1
t ∩ N2

t = ∅ for all t ∈ [0, T ) and
dist(N1

t , N2
t ) does not decrease in time.

(ii) If F0 : N → C
n is embedded, then the solution Ft of (1.1) remains embedded

for all t ∈ [0, T ).

Corollary 4.2. If N0 ⊂ B(x0, R) then Nt ⊂ B(x0, Rt) for Rt = (R2
0 − 4(n −

1)t)1/2. In particular, T < (4(n − 1))−1R2
0.
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Proof of Theorem 4.1. For two hypersurfaces Fj : N × [0, T ) → C
n, j = 1, 2,

evolving according to (1.1), we define the distance g : N × N × [0, T ) → R by
g(p, q, t) = |F1(p, t) − F2(q, t)|2. Then

∂

∂t
g = 2(F1 − F2, Ḟ1 − Ḟ2) = 2(F1 − F2,

H∆F1 − H∆F2).

Now let (p , q , t ) be an arbitrary point of N1×N2× [0, T ), where g(p , q , t ) ≤
g(p, q, t) for all (p, q) ∈ N1 × N2. In view of [Ha], it is sufficient to show that
(d/dt)g(p , q , t ) ≥ 0. In (p , q , t ) we have (F1 − F2)||X2n. Choose a unitary
frame {e1

α}n−1
1 in H1,0N1

t at the point F1(p , t ) and extend it parallel along
the straight line from F1(p , t ) to F2(p , t ), where we get again a unitary frame
{e2

α}n−1
1 in H1,0N2

t . The first variation of g in direction of e1
ξ ⊕ e2

ξ is then given
by

δg(e1
ξ ⊕ e2

ξ) = 2(F1 − F2,
N∇e1

ξ
F1 − N∇e2

ξ
F2),

and the second variation is given by

δ2g(e1
ξ , e

2
ξ) ⊗ (e1

ξ̄ , e
2
ξ̄) = 2|e1

ξ − e2
ξ |2 + 2(F1 − F2,

N∇e1
ξ̄
e1
ξ − N∇e2

ξ̄
e2
ξ).

Since X2n ∈ F ∗
j TC

n is normal to TN ,

(X2n, N∇ej

ξ̄

ej
ξ) = (X2n, H∇ej

ξ̄

ej
ξ) = (X2n ,H ∆Fj).

Therefore,
∂

∂t
g(p, q, t) = δ2g(e1

ξ ⊗ e2
ξ) ≥ 0.

This proves that the minimal distance between N1
t and N2

t does not decrease. To
show the second part of the Theorem, note that from Theorem 3.1 we know that
the solution remains smooth and regularly immersed as long as the curvature
and its gradient remain bounded. By the argument above, g cannot attain a
new interior minimum off the diagonal, which is the only place where it is zero
initially by assumption. Let T > 0 be the maximal time of existence of Ft

and δ > 0 be arbitrary. Then a uniform curvature bound | |2 ≤ Bδ exists on
N × [0, T − δ) and g is uniformly bounded below on the boundary of a suitable
small neighborhood of the diagonal in N ×N for t ∈ [0, T − δ). Thus g remains
nonzero off the diagonal on [0, T − δ). Since δ > 0 was arbitrary, the result
follows.

5. Maximum principles

In order to establish qualitative properties of solution to (1.1) as well as their
shape, we use the parabolic maximum principle for the operator d

dt − H� when
applied to L and  .

Theorem 5.1. (i) −L ≥ 0 is preserved under the flow (1.1)



FLOW OF REAL HYPERSURFACES BY THE TRACE OF THE LEVI FORM 659

(ii) If at time t = 0 we have −L ≥ c1 > 0 then −L has a lower bound given by

min
Nt

(−L) ≥ c1√
1 − tc2

1/(n − 1)
.

Proof. Since Proposition 3.4 implies(
d

dt
− H�

)
L = i

√
2 ( nγ̄eγ −  nγeγ̄) · L +

1
2
L

(
 2γγ̄ +  2γ̄γ + 2 2nn

)
,

the first result follows from the weak maximum principle for d
dt − H∆. Since

 2γγ̄ ≥ 1
2n−2L2, we have

(
d
dt − H∆

)
(−L) ≥ i

√
2 ( nγ̄eγ −  nγeγ̄) · (−L)− 1

2n−2L3.
By comparison with the solutions of the ODE

d

dt
f =

1
2n − 2

f3, f(0) = c0,

the second part of the result follows. Note that equality holds on spheres.

While we only use a weak version of the maximum principle in the last result,
we now prove a strict Hopf-type parabolic maximum principle for pseudoconvex
surfaces in C

2. As a result, equation (1.1) provides a canonical deformation of
smooth weakly pseudoconvex surfaces into strictly pseudoconvex surfaces in C

2.

Theorem 5.2. Let F0 : N3 → C
2 be a smooth closed weakly pseudoconvex

hypersurface. Then the solution F : N3 × [0, T ) → C
2 of (1.1) on a maximal

time interval has strictly pseudoconvex surfaces N3
t for all 0 < t < T .

For the proof of Theorem 5.2 we need a Frobenius-type integrability theorem
for certain distributions. Let U be a smooth real n-manifold and Dm ⊂ TU a
smooth distribution in TU , or a subbundle of TU , with fibre dimension m < n,
and fix p ∈ U . A piecewise regular real curve in U is called a D-curve if its
tangent spaces lie in D. Now Γ(D) denotes the set of points in U which can be
connected with p by a D-curve.

Theorem 5.3. Assume that D is involutive on Γ(D). Then in a neighborhood
Up of p there exist coordinates w : Up −→ R

n, w(p) = 0, with span
{
∂/∂wi

}m

1
=

D on
{
w� = 0

}n

m+1
.

Proof. The Theorem holds in the case that the fibre dimension m of D equals
one. We will use induction to prove it for any m ≤ n−1. Assume it holds for any
distribution of fibre dimension m− 1. Let D = span {Xi}m

1 and u : Up −→ R
n,

u(p) = 0, be coordinates with ∂/∂u1 = X1, and D1 =
{
X ∈ D : Xu1 = 0

} ⊂ D.

Now if X, X̃ ∈ D1, then
[
X, X̃

]
∈ D on Γ(D) and

[
X, X̃

]
u1 = 0. Therefore

D1 ⊂ TU is involutive on Γ(D). Now let U1 :=
{
u1 = 0

} ⊂ Up, then D1 |
U1 ⊂ TU1 is involutive on Γ(D1) ∩ U1. By induction hypothesis, on some
U2 ⊂ U1, there exist coordinates

(
v2, · · · , vn

)
: U2 → R

n−1, v(p) = 0, with
span

{
∂/∂vi

}m

2
= D1 | U2 on

{
v� = 0

}n

m+1
. We can shrink Up to define a map

π1 : Up → U2, π1(q) = u−1 ◦ (
0, u2, · · · , un

)
(q),
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and new coordinates w : Up −→ R
n, w(p) = 0, by w1 = u1, wj = vj ◦ π,

j = 2, . . . , n. Since span
{
Y1 := X1, Yi := Xi −

(
Xi · u1

)
X1

}m

2
= D, we have

[Yi, Yj ] = zijkYk on Γ(D) for functions zijk : Γ(D) → R that are smooth on
smooth segments of curves in Γ(D). Note that Y1w

� = 0 for  = m + 1, . . . , n,
so for j = 2, . . . , m, we have Y1

(
Yjw

�
)

= [Y1, Yj ]w� and by definition of zijk:

Y1

(
Yjw

�
)

= zijk

(
Yk · w�

)
on Γ(D).(ODE)

Since Yj ∈ span
{
∂/∂vj

}m

2
and w� = v� on U2,

Yjw
� = 0 on U2.(IC)

Denote by γv2,...,vm the integral curve of Y1 passing through (v2, ..., vm, 0, ..., 0)
∈ U2 ∩ {v� = 0}n

m+1. Then γv2,...,vm is contained in Γ(D). The above system of
ODEs along γv2,...,vm for the functions

(
Yj · w�

)
with initial condition (IC) on

U2 ∩ {v� = 0}n
m+1 has the unique solution Yj · w� = 0 on γv2,...,vm . Therefore

on
{
w� = 0

}n

m+1
, span

{
∂/∂wi

}m

1
= span {Yi}m

1 , and the latter equals D.

Proof of Theorem 5.2. Suppose there is p0 ∈ N , t ≥ 0 such that L(p0, t0) = 0.
For coordinates z1 = x1 + ix2, z3 = x3 + ix4 of C

2 let C4 be the largest x4-value
where L equals zero at t = t0, i.e.,

A := {q ∈ N |L(q, t0) = 0} ⊂ {x4 ≤ C4}, A ∩ {x4 = C4} �= ∅.
Let p ∈ A∩{x4 = C4}. Notice that the first order transport term in the evolution
equation of L as given in the proof of Theorem 5.1 involves only horizontal
derivatives of L and therefore has no component in the direction where H∆ is
degenerate. The strict maximum principle for degenerate parabolic equations,
see [B] and [A], then applies and shows that L has to be zero at each point (q, t0)
which can be reached from p by curves following a direction in HNt0 , i.e., in
Γp(HNt0) ⊂ A. In particular, C ⊂ {x4 ≤ C4} and p ∈ C ∩ {x4 ≤ C4}. By
the elliptic strong maximum principle for holomorphic curves it follows that C
⊂ {x4 = C4} ∩ Nt0 and is a subset of an affine complex line in C

2. Since A
and Nt0 are closed, we could repeat the above argument at a possible boundary
point of C, concluding that C can be extended in Nt0 to the entire affine complex
line. This contradicts the compactness of Nt0 .
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