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Abstract

The connection between IIA superstring theory compactified on a circle of radius R and IIB theory compactified on a
circle of radius 1rR is reexamined from the perspective of Ns2, Ds9 space-time supersymmetry. We argue that the
consistency of IIArB duality requires the BPS states corresponding to momentum and winding of either of the type-II
superstrings to transform as inequivalent supermultiplets. We show that this is indeed the case for any finite compactification
radius, thus providing a nontrivial confirmation of IIArB duality. From the point of view of Ns2, Ds9 supergravity, one

Ž .is naturally led to an SL 2,Z invariant field theory that encompasses both the M-theory torus and the Kaluza-Klein states of
the IIB theory. q 1999 Published by Elsevier Science B.V. All rights reserved.

1. Introduction

The bosonic string compactified on a circle of
radius R is subject to a duality which relates the
theory obtained at a compactification radius R to the
theory compactified at radius 1rR, where we set the

w xstring scale to unity 1 . The origin of this duality is
that momentum modes, whose masses are multiples
of 1rR are accompanied by winding modes, whose
masses are multiples of R. The spectrum exhibits a
symmetry under R™1rR combined with an inter-
change of momentum and winding states, which in
fact is a symmetry of the full string theory. Because
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large and small distances are related, R can be
w .restricted to the interval 1,` and the theory appears

to have a smallest length set by the string scale. At
Rs` the theory decompactifies while at the self-dual
point Rs1 the winding and momentum states ac-
quire equal masses and gauge symmetry enhance-
ment takes place. The heterotic string possesses the

w xsame kind of duality symmetry 2 .
However, there are situations where string theory

is not self-dual in this naive sense, although the
spectra at compactification scales R and 1rR seem
to be identical. This is the case for the type-II string

w xtheories 3,4 . One way to analyze whether or not the
theory is self-dual is to start at large compactification
radius and to extrapolate all the way to zero radius.
In that limit, the winding states become massless and
the theory is expected to again decompactify. If this
is indeed the case, one must obtain one of the
consistent string theories defined in the uncompacti-
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fied space-time; either this is the theory one started
with, or it is a different string theory.

The approach followed in this paper is that one
can understand which theories are related by duality
without extrapolating to zero radius provided the
winding and momentum states carry different space-
time quantum numbers from the very beginning,
where by space-time we refer to the generic space-
time with one compactified coordinate of finite ra-
dius. We claim that this happens to the type-II string
theories, where we will show that the momentum
and winding states constitute inequiÕalent Ns2,
Ds9 supermultiplets at any given compactification
radius. In this situation two immediate conclusions
are obvious. First of all, there will be no symmetry
enhancement when the masses of momentum and

Žwinding states become equal this is consistent with
the fact that the underlying conformal theory does

.not give rise to gauge symmetry enhancement , and
secondly, the uncompactified theory obtained at Rs
0 is distinct from the theory at Rs`. In this case,
duality is conceptually different from a symmetry.
Clearly one must find a different theory for any
value of the compactification radius. There are no
two radii at which the corresponding theories could
conceivably be identical, because their spectra will
be inequivalent; thus the different theories are now

Ž .parametrized by the radius R in the interval 0,` .
Duality means that two theories that are unrelated in
the uncompactified space-time, can be viewed as
different limits in the ‘moduli’ space of the compact-
ified theories. Of course, one can describe the com-
pactified theory from the perspective of one of the
two inequivalent uncompacified theories associated
with the endpoints Rs` and Rs0, but this leaves
it unchanged.

The present evidence for IIArB duality is either
based on formally mapping one theory onto the
other, or on studying the behaviour near the two

w xdecompactification points at Rs` and Rs0. In 3
it was argued that the consistency of the interchange
of momentum and winding numbers, and of R and
1rR, with world-sheet superconformal invariance
requires that the components in the compactified
direction of both the left-moving bosonic and
fermionic world-sheet fields change sign, leading to

w xa corresponding flip in the GSO projection 5 . For-
mally, one thus obtains a mapping between two

consistent theories, namely compactified IIA and
compactified IIB string theory, which extends to

w xtheir respective vertex operators. In 4 a possible
continuous connection between the two theories is
investigated by considering the Lorentz generators
near the two decompactification points. The sign
change of the world-sheet fields is invoked in order
to show that the Lorentz representations carried by
the Ramond-Ramond ground state in these two limits

Žmust be different. In this approach, however as
w x.noted in 4 , the ten-dimensional Lorentz invariance

is broken when the compactification radius R is
different from zero or infinity, so that one cannot
truly interpolate between the two theories.

The arguments given in this paper provide addi-
tional evidence that the IIA and the IIB theories are
asymptotic limits in a one-parameter moduli space of
theories. First, we analyze the nine-dimensional Ns
2 supersymmetry algebra from the space-time view-
point and on the basis of perturbative string theory
and M-theory. This analysis indeed confirms that the
winding and momentum states constitute inequiva-
lent supermultiplets in either of the type-II string
theories at a given compactification radius. We then
show that the same conclusion follows upon impos-
ing the physical state conditions on the relevant
string vertex operators. In fact, Ns2, Ds9 super-
symmetry alone already gives rise to a unified de-
scription encompassing both the M-theory torus and
the Kaluza-Klein states of the IIB theory. Our work

w xlends support to the arguments given in 6 that there
is a duality between M-theory and IIB theory which
can be understood in terms of the fundamental super-

w xmembrane 7 . The coupling of one class of BPS
Ž .states to supergravity breaks the continuous SL 2,R

symmetry group into a discrete subgroup associated
with the Kaluza-Klein states on T 2. The second class
of BPS multiplets carries charges that are unrelated
to T 2 and can be identified with either the Kaluza-
Klein states of the IIB theory, or the wrapping of a
membrane around the torus.

2. Ns2 supersymmetry in nine dimensions

Let us first summarize the various possible BPS
multiplets associated with the nine-dimensional su-
persymmetry algebra with Lorentz invariant central
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charges. We consider the supersymmetry algebra in
an Ns2 Majorana basis and write it as follows,

Qi ,Q† j s Pug 0 qZ i j ig 0 . 1Ž .Ž . Ž .� 4 ab a ba b

We recall that, in nine dimensions, the charge conju-
gation matrix is symmetric and can be chosen equal
to the identity; therefore Z i j is a real symmetric
matrix. We can decompose the central charge as

i ji j i jZ sM b d qa cosu s qsinu s , 2Ž . Ž .3 1

where M is the rest mass of the representation and
s ,s ,s denote the usual Pauli matrices. It is clear,1 2 3

and this is crucial for what follows, that these central
charges fall into two categories. The component

Ž .proportional to b defines an SO 2 invariant central
charge, while the two components proportional to a
rotate into each other under the action of the auto-

Ž .morphism group SO 2 .
Let us first derive the possible values for Z i j

when straightforwardly reducing the ten-dimensional
supersymmetry algebra. We first decompose the
Clifford algebra generated by the ten-dimensional
gamma matrices G M, and define G 11 by G 11 s
G 0G 1 PPP G 9. Nine-dimensional gamma matrices,
which commute with G 9 and G 11, are given by

g msG mg , ms0,1,2, . . . ,8, 3Ž .˜
where gsyiG G , such that the product g 0g 1˜ 9 11

PPP g 8 syi1. Observe that the Dirac conjugate of
a spinor is changed accordingly 5. The ten-dimen-
sional charge-conjugation matrix can now be written
as g , so that the nine-dimensional gamma matrices˜
are symmetric and the nine-dimensional charge-con-
jugation matrix equals the unit matrix. With these
conventions, the ten-dimensional supersymmetry al-

M� 4gebra Q,Q syiP G is converted into theM
m� 4nine-dimensional algebra Q,Q s yiP g ym

P G 11. Hence the sign of the P term depends on9 9

the chirality of the supercharge. Therefore, the ma-
i j Ž . i jtrix Z will be proportional to s for IIA theory,3

where one has supercharges of opposite chirality,

5 In nine and ten dimensions, the Dirac conjugate is defined by
† 0 † 0 mc s ic g and c s ic G , respectively. Note that the g and

G M are hermitean, with the exception of g 0 and G 0, which are
anti-hermitean. We use the ‘mostly plus’ metric. Observe that our
conventions are such that there is no G 10 matrix.

and proportional to d i j for IIB theory, where the
charges have equal chirality.

To exhibit the BPS multiplets in nine dimensions
Ž .we diagonalize the matrix 2 by an appropriate

Ž .SO 2 transformation so that us0. In the rest frame
Ž .the anticommutator 1 decomposes into four eight-

dimensional unit matrices, according to the decom-
position 8 q8 q8 q8 of the thirty-two super-c s c s

Žcharges, with coefficients equal to M times 1qaq
. Ž . Ž . Ž .b , 1yayb , 1yaqb and 1qayb , respec-

tively. We have BPS multiplets whenever one of
these coefficients vanishes. So we distinguish the
following three cases:

ŽØ Choosing as"1 and bs0 leads to the 8 qÕ
. Ž . 88 = 8 q8 decomposition of the 2 -dimen-s Õ c

sional supermultiplet with respect to the rest-frame
Ž .spin rotation group SO 8 . As always we can

combine multiplets into larger multiplets with
Žhigher spin i.e. by assigning spin to the Clifford

.vacuum , but here we concentrate on the smallest
multiplet. Note that this multiplet contains
fermions of mixed chirality. Another characteris-
tic feature is the presence of a 56 spin represen-Õ

tation. This is the multiplet that comprises the
Kaluza-Klein states of IIA supergravity compacti-
fied on S1, which are the momentum states of the
compactified IIA string. Therefore this particular
multiplet will be called the KKA multiplet.

Ø Choosing as0 and bs"1 leads to the 28-di-
Ž . Ž .mensional multiplet 8 q8 = 8 q8 . AgainÕ c Õ c

we can obtain larger multiplets of higher spin, but
these will not be discussed here. A sign change in
b leads to the conjugate multiplet, where 8 ands

8 are interchanged. Obviously the fermions havec

definite chirality and their partners in the conju-
gate supermultiplet carry opposite chirality. Ob-
serve also the absence of 56 states. This super-Õ

multiplet comprises the momentum states of the
IIB theory and therefore it will be called the KKB
multiplet. Clearly, the BPS states associated with
a membrane wrapped around T 2 in eleven dimen-
sions constitute KKB multiplets. Observe that this
is crucial for the duality between M-theory and

w xIIB theory, noted in 6 .
Ø The multiplets with "a"bs"1 comprise 212

states. They do appear in string theory as mixed
states containing both winding and momentum
and have a nonzero oscillator number in order to
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satisfy the mass-shell condition. Hence they carry
masses of the order of the string scale. The
smallest multiplet associated with the lowest spins

Ž . Ž . Ž .decomposes as 8 q8 = 8 q8 = 8 q8 .Õ c Õ c Õ s

Again there is a conjugate multiplet when chang-
ing the signs of a and b. This class of BPS
supermultiplets will not play a role in what fol-
lows.
In the literature one often finds the statement that

the IIA and the IIB theories become indistinguish-
able when viewed in a nine-dimensional context,

Ž .because the SO 7 decompositions of the IIA and IIB
massless multiplets coincide. Although this is true, it
is essential to understand that the Kaluza-Klein mo-
mentum states for the two theories remain different
in nine dimensions: for massiÕe states in nine di-

Ž .mensions, the rest-frame SO 8 rotation group coin-
Ž .cides with the SO 8 helicity group for massless

states in ten dimensions.
It is furthermore important that the KKA and

KKB multiplets differ not only in their spin decom-
position, but also carry inequiÕalent charges. We
will return to this shortly, but we already note here

Ž .that a KKA supermultiplet carries a nonzero SO 2
doublet charge while a KKB supermultiplet carries

Ž .the SO 2 invariant charge. It follows from the above
observations that these charges are mutually exclu-

Žsive for these multiplets but not for the ‘inter-
12 .mediate’ multiplets with 2 states . As explained in

the introduction, it is of vital importance for duality
between the two type-II string theories that the wind-
ing and the momentum modes of a given type-II
theory at a given compactification radius constitute
inequivalent representations and correspond to dif-
ferent kinds of string states.

The above conclusions can also be arrived at by
consideration of the supersymmetry algebra in eleven
dimensions with a membrane charge,

ˆ ˆ ˆ1M M NQ,Q syiP G q iZ G , 4Ž .� 4 ˆ ˆ ˆM M N2

where we have eleven-dimensional momenta P ,M̂

two-brane charges Z and 32-component spinorˆ ˆM N

charges. Upon reducing this algebra to nine dimen-
sions, assuming that Z takes only values in theˆ ˆM N

ˆtwo extra dimensions labeled by Ms9,10, we ob-
tain for the central-charge matrix Z i j,

i ji j i jZ sZ d y P s yP s . 5Ž . Ž .9 10 9 3 10 1

From this result, we deduce the general BPS mass
formula,

2 2 < <(Ms P qP q Z . 6Ž .9 10 9 10

We will further elaborate on the significance of these
formulas later.

3. World sheet description

The structure of the BPS supermultiplets can also
be established on the basis of the world-sheet super-
conformal field theory. In type-II string theory, the
two Majorana supercharges can be represented as
contour integrals over world-sheet operators. One
charge, Q1 , resides in the left-moving sector and thea

other one, Q2 , resides in the right-moving sector, soa

we define

dz d z
1 2Q s V z , Q s V z . 7Ž . Ž . Ž .E Ea a a a2p i 2p i

In the canonical qsy1r2 ghost picture the two
covariant left- and right-moving fermion vertex oper-

Ž . Ž . w x Žators V z and V z are given by 8 omittinga a

.normal-ordering symbols

y1r4X 1V z s a S z exp y f z ,Ž . Ž . Ž . Ž .Ž .a Žy1r2. a 2

y1r4X 1V z s a S z exp y f z ,Ž . Ž . Ž . Ž .Ž .a Žy1r2. a 2

8Ž .

Ž . Ž Ž .. Ž .where f z f z is one of the left- right -moving
Ž . Ž .bosonized superconformal ghosts and S z , S za a

are the spin field vertex operators in the 16 or 16
Ž .chiral spinor representations of SO 9,1 . Note that

Ž .8 is valid for both IIA and IIB string theory, as we
refrain from using dotted and undotted indices to
indicate the chirality. Whenever this may lead to
confusion, the reader should remember to simply
project onto the corresponding chiral subspaces. The

M Ž .ten world-sheet fermions c z can be bosonized in
Ž .terms of five scalars f as exp i l Pf , with thev

Ž . Ž . ŽSO 1,9 vector weights l s 0, . . . ,"1,0, . . . thusv
2 . Ž .l s1 . The spin field operators S z can be simi-v a

Ž Ž .. Žlarly expressed as exp i l Pf z , or exp i l Ps c
Ž .. Ž .f z , where l and l denote the two SO 9,1s c

1 1 1 1 1Ž .chiral spinor weights " ," ," ," ," , with2 2 2 2 2
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Ž .an even odd number of minus signs for the positive
52 2Ž . Ž .negative chirality and l sl s .s c 4

In order to compute the supersymmetry algebra
from these world sheet fields it is convenient to
introduce the supercharges in the equivalent qs
q1r2 superconformal ghost picture. In this ghost

Ž .picture V z , for example, takes the forma

y3r4X MV z s a E X z G S zŽ . Ž . Ž . Ž .Ž .a Žq1r2. L M a

= 1exp f z , 9Ž . Ž .Ž .2

where the chirality of S is opposite to the chiralitya

Ž .of the S used in the corresponding expression 8 .a

The supersymmetry algebra can now be obtained by
computing the following operator products between
the vertex operators in the two different ghost pic-
tures,

V z V wŽ . Ž .a Žy1r2. b Žq1r2.

1 1
M; C G E X w q PPP ,Ž . Ž .abX M Lzyw a

V z V wŽ . Ž .a Žy1r2. b Žq1r2.

1 1
M; C G E X w q PPP ,Ž . Ž .abX M Rzyw a

V z V w ;0 , 10Ž . Ž . Ž .a Žy1r2. b Žq1r2.

where C is the ten-dimensional charge-conjugation
matrix. Taking the contour integrals and converting
to the nine-dimensional gamma indices introduced

i j� 4earlier, we find the Q ,Q anticommutator in terms
of the nine-dimensional momenta and the right- and
left-moving zero-mode momenta,

1 dz 1 m
9p s i E X z s ynT ,Ž .EXL L X ž /'a 2p i Ta

1 dz 1 m
9p s i E X z s qnT ,Ž .EXR R X ž /'a 2p i Ta

11Ž .

where we measure the compactification radius R in
string units by means of a dimensionless parameter

X'TsRr a . The integers m and n denote the mo-
mentum and winding numbers, respectively. This

yields the following supersymmetry algebra for the
IIArB superstrings in nine space-time dimensions

1 1 m 11Q ,Q syiP g yp G ,� 4 m L

2 2 m 11Q ,Q syiP g yp G ,� 4 m R

1 2Q ,Q s0 . 12Ž .� 4
Comparing with the previously derived supersymme-

Ž .try algebra 1 , it is now obvious that the central
charges are just linear combinations of the internal
left- and right momenta p and p . To be moreL R

precise, in the IIA and the IIB theory the central
charge matrix Z i j takes one of the two alternative

Ž .forms up to an overall sign ,

1 1° i ji jŽ . Ž . Ž .p q p d q p y p s for IIBL R L R 32 2i j ~Z s
1 1

i ji jŽ . Ž . Ž .p y p d q p q p s for IIA¢ L R L R 32 2

13Ž .

This proves our assertion that the momentum and
winding BPS states constitute inequivalent supermul-
tiplets. The IIA momentum states and the IIB wind-
ing states are in the KKA representation, whereas the
IIA winding states and the IIB momentum states are
in the KKB representation. This ensures that the two
decompactification limits T™0 and T™` lead to
different theories. Moreover, it proves that type-II
string compactifications on circles of different radii
must be inequivalent. And finally, it is clear that no
symmetry enhancement will take place when the
momentum and the winding states have coinciding
masses, as these states are always distinctly different.
This is in accord with the fact that no gauge symme-
try enhancement is possible in the conformal field
theory.

The emergence of different representations for the
momentum and winding states can also be under-
stood in terms of the corresponding covariant physi-
cal vertex operators. To write them down for the
compactified theory in nine dimensions, we again

Ž .make use of the SO 1,9 covariant ghost and spin
field vertex operators. The vertex operators for the
Kaluza-Klein and winding states in nine dimensions
can be directly obtained from the vertex operators of
the massless states in ten dimensions by splitting the
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Ž .physical momenta as in 12 . More precisely, we
consider the Ramond-Ramond operators

m 9 aexp ip X z q ip X z u p S zŽ . Ž . Ž . Ž .Ž .m L L L L a

= 1 m 9exp y f z exp ip X z q ip X zŽ . Ž . Ž .Ž . Ž .m R R R2

= 1bu p S z exp y f z , 14Ž . Ž . Ž . Ž .Ž .R b 2

Ž . Ž .where the 16-component spinors u p and u pL R
Ž .denote the chiral SO 1,9 spinor polarizations of the

Žleft- and right-moving states so that we have imple-
.mented a GSO projection and the p are the valuesm

taken by the nine-dimensional momentum operators
P . Again we refrain from using dotted and undottedm

Ž .SO 1,9 spinor indices and we leave the chirality of
the spin fields and therefore of the polarization
spinors unspecified. Note, however, that the chirality

Ž .of the S must be the same as in 8 . We recall alsoa

that the ghost and spinor weights for the vertex
operator must be chosen in accordance with the

Ž w xlocality requirement see 9 for a detailed discussion
.of this point .

Ž .To the operators 14 we must apply the physical
state condition which follows from requiring that
they commute with the left- and right-moving BRST
operators. The relevant part of the left-moving such

M Ž . Ž .operator is proportional to E X z c z =L L M
Ž Ž ..exp f z ; the formula for its right-moving counter-

part is similar. In this way we recover first of all the
mass-shell condition yp p m sp2 sp2 , where them L R

last equality is valid only for states without oscillator
excitations. Secondly, we obtain the Dirac equation
for the spinor polarizations. Written with nine-di-
mensional gamma matrices, this yields,

ip g m qp G 11 u pŽ .Ž .m L L

s ip g m qp G 11 u p s0 . 15Ž . Ž .Ž .m R R

These conditions reduce the number of physical
spinor polarizations from 16 to 8, so that the vertex

Ž .operators 14 describe 8=8s64 states for given
momentum. When combined with the Neveu-
Schwarz sector these states comprise full BPS super-

Ž .multiplets. In obtaining the SO 8 representations in
accord with our earlier analysis, it is important to

realize that the chirality of the polarization spinors is
opposite to that of the corresponding S .a

The above results are in precise correspondence
with our previous analysis of the superalgebra rela-

Ž .tions 12 . The mass-shell condition tells us that
p s"p , and depending on this sign, we get eitherL R

Ž .the same or different SO 8 representations from the
Ž .physical state condition 15 . Thus winding and mo-

mentum states indeed constitute inequivalent super-
multiplets.

Finally let us discuss the choice of the chirality
Ž . Ž .for the spinors in 8 and in 14 . Clearly we only

need to distinguish between equal and opposite chi-
rality for the left- and right-moving spinor fields. On
the other hand, switching the relative chirality, e.g.

Ž .by changing the chirality of S z , and correspond-a

ingly of u , can be compensated for by assigning anL

opposite momentum p to that state, leaving pL R

unchanged. This corresponds to interchanging the
winding and the momentum numbers m and n in
Ž .11 , together with the interchange of T with 1rT.
So the states and the corresponding supermultiplets
remain the same; what changes is only the notion of
a momentum and a winding state. Clearly, there is a
type-IIA and a type-IIB description, but of a single
theory. In the decompactification limits T™0 and
T™`, one is left with inequivalent supermultiplets
as the mass of one supermultiplet vanishes and that
of its inequivalent counterpart is pushed to infinity.

It is equally straightforward to analyze the ‘inter-
mediate’ BPS multiplets with 212 states from this
point of view. However, the corresponding vertex
operators are more complicated due to oscillator
contributions, which modifies the relation between
p and p .L R

4. Ns2 supergravity in nine dimensions

We will now use Ns2 supergravity in Ds9
dimensions together with some basic input from
string theory to obtain independent confirmation of
the result that the momentum and winding states are
in different supermultiplets. Let us first discuss some
features of the massless fields which constitute Ns2
supergravity in nine dimensions. This theory has
already been discussed in the literature; in particular,
its relation to string theory and IIArB duality was
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w xstudied in 10 , so we will be brief here. The focus of
our attention is the coupling of the massless theory
to the massive BPS states that we discussed above.
In particular, we want to exhibit the coupling of the
nine-dimensional gauge fields to the BPS states.

In nine dimensions there is only one Ns2 super-
gravity theory, whose scalar sector is governed by an

Ž . Ž .SL 2,R rSO 2 non-linear s-model, and which
therefore exhibits an invariance under a nonlinearly

Ž .realized SL 2,R . In addition there is an invariance
Ž .under SO 1,1 , which can be systematically under-

stood from combining ordinary dimensional analysis
with scale transformations on the compactified coor-

w xdinate 11 . From the IIB supergravity perspective,
Ž . Ž . Ž .the SL 2,R originates from the SL 2,R rSO 2 coset

Ž .structure and the SL 2,R symmetry which are al-
w xready present in ten dimensions 12 . From the per-

w xspective of eleven-dimensional supergravity 13 , on
the other hand, these are just the ‘hidden’ symme-
tries obtained by reducing the theory from eleven to
nine dimensions on the torus T 2. In this reduction,
the diffeomorphism symmetry in the compactified

Ž . Ž .dimensions is ‘frozen’ to a rigid GL 2,R sSL 2,R
Ž .=SO 1,1 symmetry. Similarly, the full Lorentz

symmetry in eleven dimensions is reduced to
Ž . Ž . Ž . Ž .SO 1,8 =SO 2 ;SO 1,10 , where SO 2 is con-

verted into the R-symmetry corresponding to the
automorphism group of the nine-dimensional Ns2
superalgebra.

Identifying the various transformations, one read-
ily obtains the various quantum numbers, without the
need for a detailed dimensional reduction. We denote
the bosonic fields of eleven-dimensional supergrav-

ˆ ˆity by G and A . The bosonic fields of IIAˆ ˆ ˆ ˆ ˆM N M NP

supergravity are denoted by G , C , C , CM N M M N M NP

and f, and those of IIB supergravity by G , A a ,M N M N

f a and A . Here the index a is associated withM NP Q
Ž .SL 2,R . The fields of Ns2 nine-dimensional su-

pergravity are the metric g , three scalars s andmn

f a, three abelian gauge fields B and A a, twom m

antisymmetric tensors A a and a three-rank antisym-mn

Ž .metric gauge field A . The fields and their SO 1,1mnr

weights are summarized in Table 1. We use the
Einstein frame, so that the metric is invariant under

Ž . aSO 1,1 . The scalar fields f characterize the coset
Ž . Ž .representative of SL 2,R rSO 2 . They satisfy a

a Ž .constraint f f s1 and are subject to local SO 2a

transformations, so that they correspond to one com-

Table 1
The bosonic fields of the eleven dimensional, type-IIA, nine-di-
mensional Ns2 and type-IIB supergravity theories. The eleven-
dimensional and ten-dimensional indices, respectively, are split as
ˆ Ž . Ž .Ms m,9,10 and Ms m,9 , where ms0,1, . . . 8. The last col-

Ž .umn lists the SO 1,1 scaling weights of the fields.

Ž .Ds11 IIA Ds9 IIB SO 1,1

Ĝ G g G 0mn mn mn mn

Â C B G y4m 9 10 m 9 m m 9
a aˆ ˆG , G G , C A A 3m 9 m 10 m 9 m m m 9
a aˆ ˆA , A C ,C A A y1mn 9 mn 10 mn 9 mn mn mn

Â C A A 2mnr mnr mnr mnrs

a af f 0ˆ ˆ ˆG , G , G f, G , C9 10 9 9 10 10 9 9 9 ½ G 7exp sŽ . 9 9

Ž .plex field. The scalar exp s will be defined as G ,99

the IIB metric in the compactified dimension. The
determinant of the eleven-dimensional metric in
the two compactified directions is then equal to

4Ž .exp y s . We have ignored certain nonlinear fea-3

tures of the relationship with the higher-dimensional
fields. On the other hand, the assignments are also
relevant for the massive Kaluza-Klein states in the

2 1 w xT and S compactifications 11 .
Now we consider the three abelian vector gauge

fields in the nine-dimensional theory, which decom-
Ž .pose into a singlet and a doublet under SL 2,R .

Note that their origin is rather different when viewed
from the IIA and from the IIB side. The singlet field
is the graviphoton from the IIB side, so it must
couple to the IIB momentum states. The doublet
fields originate from the IIB doublet of tensor fields,
so they couple to the IIB winding states. It thus
follows that the IIB momentum states constitute

Ž .KKB states by definition whereas the IIB winding
states constitute KKA multiplets. The second KKA
charge can only be understood beyond string pertur-
bation theory; the degeneracy in the winding states is
due to winding of fundamental and D-strings.

The pattern is the same, but complementary on
the IIA side. Here the momentum states carry the

Ždoublet charges, so they constitute again by defini-
.tion KKA multiplets. Accordingly, the two

graviphotons originating from eleven dimensions
Ž .transform as an SL 2,R doublet. The degeneracy in

the momentum states can thus be understood from
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eleven-dimensional supergravity, as the doublet
charges find their origin in the T 2 on which the
theory is compactified. The winding states couple to
the singlet field, which originates from the IIA tensor
field. Hence the IIA winding states constitute KKB
multiplets. Alternatively these states can be under-
stood as membranes wrapped around the M-theory

w xtorus 6 , because, as we have shown before, these
constitute the same supermultiplets.

5. Coupling to BPS supermultiplets

One may contemplate the construction of a nine-
dimensional field theory consisting of Ns2 super-
gravity coupled to an infinite tower of BPS super-
multiplets with a two-dimensional charge lattice
Ž .q ,q for the KKA states and a one-dimensional1 2

lattice of charges p for the KKB states. This theory
encompasses both eleven-dimensional supergravity
Ž 2 . Žcompactified on T and IIB supergravity com-

1.pactified on S . The usual T-duality is trivial for
this theory. It is not associated with any symmetry
and only amounts to certain field redefinitions. We
know that the theory is free from inconsistencies in
each of these sectors separately and it is an interest-
ing question whether such a ‘dichotomic’ field the-

Ž .ory could be classically consistent to all orders. In
low orders of perturbation theory, its short-distance
behaviour should be relatively mild as it can be
viewed as a combination of known supergravity
theories. Of course, this is not truly an effective field
theory as the masses of the various states will never
be light simultaneously with respect to the string
scale. The theory is manifestly invariant under

Ž . Ž .SO 1,1 and under SL 2,Z . The latter is the
Ž .integer-valued subgroup of SL 2,R that leaves the

charge lattice of the KKA states invariant. There is a
Ž .formulation in which the SL 2,R is linearly realized,

also in the presence of the BPS states. In that case
the massive fields transform only under the local
Ž . Ž . Ž .composite SO 2 and not directly under SL 2,R .
However, the KKA fields have a minimal coupling
with respect to q Aa, which, in order to remaina m

invariant under the integer-valued subgroup, requires
the charges to transform covariantly under this sub-
group. The KKB fields have a minimal coupling to

Ž .p B , which is SL 2,R invariant.m

It should be clear that the theory will exhibit ten-
or eleven-dimensional Lorentz invariance only in
certain limits. For the KKA states with charges q ,a

and KKB states with charge p, respectively, the BPS
mass formula in the nine-dimensional Einstein frame
is given by

< a < < <Msm q f qm p , 16Ž .KKA a KKB

where m and m denote two different massKKA KKB

scales, whose product is inversely proportional to a
X.

Here we made use of the fact that the mass should be
Ž . Ž .SL 2,Z and SO 1,1 invariant in the Einstein frame.

w x Ž .As noted in 6 the mass formula 16 is entirely
consistent with that of a membrane wrapped around
a torus with modular parameter t't q it . Here1 2

we should point out that the supersymmetry algebra
for a fundamental supermembrane gives rise to pre-

Ž .cisely the algebra 4 with Z describing the wind-ˆ ˆM N
w xing of the membrane over some compact space 14 .

In the case of a torus with area A, the BPS mass
Ž . Žformula follows directly from 6 and reads in

.eleven-dimensional Planck units

1
< < < <Ms q yt q qAT p , 17Ž .1 2 mAt( 2

where T denotes the supermembrane tension, qm 1,2

label the momentum modes on the torus and p is the
Žnumber of times the membrane is wrapped includ-

.ing orientation over the torus. This formula agrees
w xwith the one previously derived in 15 on the basis

of a semi-classical approximation. We refrain from
indicating how the modular parameter is related to
the fields f a but simply note that both formulae are

Ž .invariant under SL 2,Z .
Ž .The formula 16 can now be interpreted in two

different ways. From the perspective of IIA string
theory, one of the q is the IIA Kaluza-Klein mo-a

mentum number, while the other is the D0 charge; as
is well known, the mass of the D0 branes is inversely

w xproportional to the IIA string coupling constant 16 .
Then p is the IIA winding number. Conversely,
from the IIB perspective, q and q are the winding1 2

numbers of the elementary string and of the solitonic
ŽD1 string which corresponds to a D0 brane in the

. Ž .IIA description . Now the SL 2,Z is a strong-weak
coupling duality, as it interchanges the elementary
strings with the D1 strings. The modular parameter
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associated with the fields f a is the IIB dilaton
which contains the IIB string coupling constant.
From this perspective the integral charge lattice fol-
lows from a Dirac-type quantization condition. The
integer p is just the IIB Kaluza-Klein momentum
number.

The question that remains is, of course, what
IIArB duality can teach us about M-theory and its
fundamental degrees of freedom. The theory we
referred to as ‘dichotomic’ above transcends both
eleven-dimensional supergravity and IIB supergrav-
ity. The above results can be interpreted as evidence
that M-theory is just the fundamental supermem-
brane. Supermembrane theory may not suffer from
the incompleteness of perturbative string theory. Un-
like superstring theory, which has both a string
tension as well as a coupling constant, it has no
conventional perturbative expansion as its only pa-
rameter is the membrane tension T . As is evidentm

Ž . Ž .from 5 and 17 , both the Kaluza-Klein doublet
states and the winding states arise naturally upon
compactification to nine dimensions. Likewise, the
perturbative massive string states, which have no

Ž .analog in the uncompactified supermembrane, can
emerge out of the continuous supermembrane spec-

w xtrum 17 in the reduction from eleven to ten dimen-
Žsions recall that the excited superstring states cannot

.be combined into massive Ds11 multiplets . This
indicates that the quantum supermembrane is not
only a second quantized, but also a non-perturbative
theory from the very outset – like M-theory.
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