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1. Introduction

The remarkable duality between type IIB string theory on AdS5 × M5, (M5 a

compact manifold), and conformally invariant supersymmetric Yang-Mills theory at

the boundary of the anti-de Sitter space, proposed in [1] (and elaborated in [2, 3]),

provides a new approach to the large N limit of four-dimensional gauge theories.

Many aspects of this non-trivial relation have been and indeed still are, the subject

of numerous investigations. An example, that will be further studied in this letter,

is the computation of the potential between a heavy quark-antiquark pair [4, 5]. In

gauge theory this is conveniently done by evaluating the expectation value of the

Wilson loop operator. In the AdS/CFT scheme, one considers a string worldsheet

with boundary fixed at the loop one is interested in. The (exponential of the) type

IIB string action with this boundary condition is then the expectation value of the

Wilson loop operator.

In refs. [4, 5], the authors considered the caseM5 = S
5 leading to the maximally

supersymmetric N = 4 Yang-Mills theory. The expectation value of the Wilson loop
was calculated to the lowest order by evaluating the area of the string worldsheet.

A macroscopic string is stretched between the quark and antiquark at the boundary

of the anti-de Sitter space. The non-trivial metric of this space means that it is

1



J
H
E
P
0
8
(
1
9
9
9
)
0
1
3

energetically favourable for the string to fall in the interior of the AdS space along

a geodesic connecting the two points on the boundary. The string action is the area

of the worldsheet in the induced metric.

The full superstring action in the background AdS5 × S5 has meanwhile been
constructed in [6], and further considered in [7]. This enables one to address the

question of stringy corrections to the classical area of the worldsheet. In this letter

we will consider the sigma model corrections at one loop by expanding the string

action to quadratic order in fluctuation. We first recapitulate briefly the set up and

calculation in [4, 5]. We then start with the superstring action in [6] and expand it

around the classical background using the normal coordinates [8]. The issue of gauge

fixing to actually evaluate the determinant is discussed next. We finally give the

result in terms of determinants of two-dimensional second order differential operators

and discuss the issue of UV divergences.

2. Wilson loop in AdS/CFT correspondence

Let us consider a static configuration of a quark-antiquark pair separated by a dis-

tance L. The Wilson loop is a rectangular one the sides of which are parallel to the

time and one of the space directions. The length of the temporal side T is taken to

infinity. In the dual string description there is a macroscopic string with endpoints

fixed on the quarks by Dirichlet boundary condition. If, for simplicity we assume

that the string ends are at the same point on S5, the minimum energy configuration

is that for which the string is stretched along a geodesic in AdS5. This follows from

the fact that the classical string action (with the overall factor α′ set to 1) is

SNG =
1

2π

∫
d2σ

√
− det ||GMN∂ixM∂jxN || , (2.1)

where the GMN is the metric on AdS5 × S5 given by

ds2 = R2
[
u2
(
−(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

)
+
du2

u2
+ dΩ25

]
. (2.2)

The spaces AdS5 and S
5 have the same value of radius (4πgN)1/4. Note that we have

rescaled u→ R2u compared to [4] to make the sigma model loop counting parameter
R2/α′ manifest.
It is convenient to adopt a ‘static gauge’ to describe the macroscopic string. Let

XM denote the classical values of the string coordinates. We set X0 = τ , X1 = σ

and assume that all the other coordinates except U = U(σ) are independent of the

worldsheet coordinates (τ, σ). The radial coordinate U has a nontrivial dependence

on σ only, which is implicitly given by [4]

∂σU = ±U
2

U20

√
U4 − U40 , (2.3)
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with a constant U0 = (2π)
3/2/Γ(1/4)2L. (U0 is the closest the string comes to the

origin of the AdS5 space, and once again we have rescaled it by R
2.) Due to the

symmetry of the string configuration it will be sufficient to restrict to the range

0 ≤ σ ≤ L/2 and take the postive root in (2.3).
With this choice of classical solution, the metric induced on the worldsheet hclij

is given by

ds2cl
R2
= −U2 dτ 2 + U

6

U40
dσ2 . (2.4)

The energy of the quark pair is calculated by evaluating the area AR of the string

worldsheet using this induced metric, and is (after subtracting an infinite contribution

of the quark mass [4])

E = − 4π
2
√
2g2YMN

Γ(1/4)4L
, (2.5)

that is of the form of Coulomb law. The 1/L dependence of the energy is a conse-

quence of conformal invariance, but the g2YMN = gN , is non-perturbative from the

point of view of the gauge theory.

How is this result calculated in classical string theory, corrected? One possible

source of correction from the change in geometry has been ruled out by a number

of authors [9, 6, 7] who argued that the AdS5 × S5 is an exact string background.1
However, corrections can arise from taking into account the fluctuation of the string

around the given classical configuration. For this we will need to start with the

type IIB superstring action in the AdS5 × S5 background. Let us briefly sketch our
approach before we go into the details.

We are going to replace the classical saddle-point approximation of [4] by a

functional integral over the fluctuations

W (C) =
∫
[DδX][Dδθ] e−SIIB(X+δX,δθ), (2.6)

where δX, δθ denote quantum fluctuations of the bosonic and fermionic coordinates.

It was observed in [6] is that the string action on AdS5 × S5 with radii ∓R is R2
times the action on AdS5×S5 with unit radii. Therefore as expected 1/R2 plays the
role of a loop expansion parameter. The superstring action of [6] in this background

is a Green-Schwarz type action and is invariant under worldsheet diffeomorphism

and a local fermionic kappa symmetry. Further there is no supersymmetry on the

worldsheet. However we will find that, much as in the case of flat space, a gauge

fixing condition for kappa symmetry makes worldsheet fermions out of the fermionic

coordinates of the target space.

1This is no longer true for gauge theory at finite temperature [10, 11].
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3. Superstring action in AdS5 × S5 background
In ref. [6], Metsaev and Tseytlin have constructed an action for the IIB theory in

the AdS5 × S5 background. The action is defined as a covariant κ-symmetric two-
dimensional sigma model on a supercoset appropriate for this background. Explicitly,

the part of the lagrangean relevant to us here is

L = −1
2

√−hhij
(
eâi − iθ̄I γ̂â(Diθ)I

) (
eâj − iθ̄J γ̂â(Djθ)J

)
−

−iεijeâi
(
θ̄1γâ(Djθ)

1 − θ̄2γâ(Djθ)2
)
, (3.1)

where the notation used is same as in [6]. In particular hij is a two-dimensional

metric, eâi =
(
eaµ∂ix

µ, ea
′
µ′∂iy

µ′
)
is defined in terms of vielbeins of AdS5 and S

5,

γ̂â =
(
γa, iγa

′)
satisfy the SO(4, 1) and SO(5) Clifford algebras respectively and

θI , I = 1, 2 label the two sets of spinors of these. The two-dimensional indices i, j

run over 0 and 1, (a, a′) = (0, . . . , 4; 5, . . . 9) are (flat) tangent space indices for
AdS5 × S5, and similarly for the curved indices (µ, µ′).
In order to compute the one loop contribution we will expand (3.1) to second

order in the fluctuations around the classical solution of [4]. In this background

the metric on the worldsheet hij is the one induced from the target space (2.4),

and we will fix hij to this value (which we will call h
cl
ij) by exploiting worldsheet

diffeomorphism. Notice that this differs from the standard practice of working with

a flat (or conformally flat) worldsheet metric.

The classical solution is non-trivial only in the bosonic part along the AdS5
directions. Consequently fluctuations in bosonic degrees of freedom along the AdS5
and S5 space, and fluctuations in the fermionic variables all decouple (to second

order). Therefore one can study these independently and add up their contributions.

4. Fluctuations of the bosonic coordinates

4.1 The AdS5 part

The metric in the AdS5 space is

ds2AdS5 = u
2dxadxbηab +

du2

u2
. (4.1)

In the above a, b = 0, . . . , 3; however, in the following the label a = 4 will refer to the

‘radial’ coordinate u, and its quantum fluctuations. The classical solution has been

reviewed in section 2. We now expand the action in terms of the normal coordinates

using standard technology[8]. To quadratic order this leads to

LAdS5 = −
√
−hcl

[
1 +
1

2
hijclηabDiξ

aDjξ
b + ηabξ

aξb −

− 1
2
hijclGµλGνρ(∂iX

µ)(∂jX
ρ)EλaE

ν
b ξ
aξb
]
, (4.2)
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where, Diξ
a = ∂iξ

a + (∂iX
µ)ωaµbξ

b. In the above we have used the expression of the

Riemann tensor in terms of the metric Rµνρλ = − (GµρGνλ −GµλGνρ), in AdS space.
However eqn (4.2) is not the end of the story, as the variation of the metric hijcl

lead to nontrivial constraints

Cij ≡ Eij(ξ)− 1
2
hclij

(
hklclEkl(ξ)

)
≈ 0 , (4.3)

where Eij(ξ) = Gµν(xcl) (∂ix
µ
clE

ν
aDjξ

a + ∂jx
ν
clE

µ
aDiξ

a). These constraints need to be

taken into account. This can be done by following standard procedure. However it

turns out to be easier to calculate the full induced metric (including fluctuations),

which can then be shown to be equal to the sum of (4.2) plus Lagrange multipliers

times the constraints (4.3).

In order to write the final form of the AdS5 part of the lagrangean, let us intro-

duce the following linear combinations

ξ‖ =
U20
U2
ξ1 +

√
U4 − U40
U2

ξ4

ξ⊥ = −
√
U4 − U40
U2

ξ1 +
U20
U2
ξ4 . (4.4)

These are the (normalized) fluctuations along the direction parallel (respectively

perpendicular) to the classical string configuration. (That these indeed parametrize

the fluctuations parallel and perpendicular to the string background is most evident

in terms of the normal coordinates ξµ with curved indices.) In terms of these variables

the quadratic part of the lagrangean takes the following simple form

L(2)AdS5 = −
1

2

√
−hcl

[
hijcl

(
∂iξ
⊥∂jξ⊥ + ∂iξ2∂jξ2 + ∂iξ3∂jξ3

)
+

+ 2

(
1− U

4
0

U4

)(
ξ⊥
)2
+ 2

(
ξ2
)2
+ 2

(
ξ3
)2 ]
. (4.5)

In writing (4.5), we have ignored some total derivative terms. One observes that the

fluctuations ξ0 and ξ‖ along the worldsheet have dropped out of the action. This
is a consequence of the worldsheet diffeomorphism, which is completely fixed if we

eliminate two redundant degrees of freedom by choosing

ξ0 = ξ‖ = 0 . (4.6)

This gauge choice is analogous to the non-covariant light-cone gauge, and is consistent

with the static gauge employed to write the classical solution.

Finally we notice that the covariant laplacean of the induced metric (2.4) with

its canonical connection, ∆cl =
1√
hcl
∂i
(√
hclh

ij
cl∂j

)
, appears in (4.5). For future use,

let us rewrite (4.5) as

L(2)AdS5 =
1

2

√
hcl


 ∑
a=2,3,⊥

ξa∆clξ
a − 2

(
ξ2
)2 − 2 (ξ3)2 + (R(2) − 4) (ξ⊥)2


 , (4.7)
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where, R(2) = 2(U4+U40 )/U
4 is the scalar curvature of the two-dimensional induced

metric. The fluctuations ξ2 and ξ3 in the transverse directions are seen to be massive,

while ξ⊥ moves in a potential. In addition, as U → ∞ the fluctuations must be
required to vanish as that is where the heavy quarks sit.

4.2 The S5 part

We have assumed for simplicity a trivial background for the S5 part. Both the

quarks are at the same point on S5, and this classical position is independent of

the worldsheet coordinates (τ, σ). Let ηa
′
, a′ = 5, . . . , 9 be the normal coordinates

denoting the quantum fluctuations on the sphere. These variables behave like the

ξ2,3 fluctuations in the AdS5 space. The lagrangean relevant for the S
5 part is

L(2)S5 = −
1

2

√
−hcl hijcl∂iηa

′
∂jη

a′ =
1

2

√
hcl η

a′∆clη
a′ . (4.8)

The fluctuations are massless and the the second order operator is just the laplacean

of the induced metric.

5. Fluctuations of the fermionic coordinates

Let us start by recalling the covariant derivative (Djθ)
I appearing in (3.1):

(Djθ)
I = DIJj θ

J =
[
δIJ

(
∂j +

1

4
(∂jx

µ
cl)ω

ab
µ γ
ab
)
− i
2
εIJ(∂jx

µ
cl)e

a
µγ
a
]
θJ

= DjθI − i
2
εIJ(∂jx

µ
cl)e

a
µγ
aθJ . (5.1)

In [6] there are additional terms in the above definition, but in our context those

vanish. The first term DjθI = ∂jθI + 1
4
(∂jx

µ
cl)ω

bc
µ γ
bcθI , is the standard covariant

derivative on the fermions. The additional second term appears due to the non-

trivial coupling to the RR 5-form field strength. Substituting above in (3.1), and

using the properties of gamma matrices and the fermions given in [6], the fermionic

part of the action in the background of the macroscopic string is compactly written as

LF = −
√
−hcl ( θ̄1 θ̄2 )

(
2ieaµ(∂ixcl)

µγaP ij−Dj 1− B
−1− B 2ieaµ(∂ixcl)

µγaP ij+Dj

)(
θ1

θ2

)
,

(5.2)

where B = 1
2
√−hcl ε

ijeaµe
b
ν(∂iX

µ)(∂jX
ν)γab, and P ij± = 1

2

(
hijcl ± εij/

√−hcl
)
are projec-

tion operators similar to the ones in flat space [12].

Let us define the following combination of gamma matrices

γ‖ =
U20
U2
γ1 +

√
U4 − U40
U2

γ4 ,

γ⊥ = −
√
U4 − U40
U2

γ1 +
U20
U2
γ4 , (5.3)
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in analogy with (4.4), and let γ± = 1
2

(
γ0 ± γ‖

)
. In the background of the classical

solution, the diagonal terms are simply iγ±
(
1
U
Dτ ± U20

U3
Dσ
)
, and θ̄1Bθ2 = θ̄2Bθ1 =

−(2U4/U40 )θ̄1γ0‖θ2.
Now recall that the action (3.1) or (5.2) has a local fermionic gauge symmetry,

the so called κ-symmetry, which has to be fixed so as to remove the redundant

fermionic degrees of freedom. It turns out that a most convenient choice is to set

γ−θ1 = 0 , γ+θ2 = 0 . (5.4)

With this choice, the lagrangean (5.2) simplifies to

LF = −
√
−hcl ( θ̄1 θ̄2 )

(
iγ+D̄+ 2

−2 iγ−D̄−

)(
θ1

θ2

)
, (5.5)

where we have defined the two-dimensional covariant derivative with tangent space

indices

D̄± =
1

U
Dτ ± U

2
0

U3
Dσ = ετ0Dτ ± εσ1Dσ , (5.6)

ετ0 and ε
σ
1 being a set of two-dimensional (inverse) vielbeine of the classical induced

metric (2.4).

The equations of motion that follow from this lagrangean are

γ+


∂+ +

√
U4 − U40
2U2


 θ1 + θ2 = 0 ,

γ−

∂− −

√
U4 − U40
2U2


 θ2 − θ1 = 0 , (5.7)

where the derivatives are with respect to tangent space indices on the worldsheet,

and their definitions are similar to (5.6) above. However the above form is somewhat

deceptive as γ± depend on σ, and hence are not covariantly constant. This situ-
ation is remedied by exploiting the κ-symmetry fixing condition (5.4). After some

straightforward manipulations, one arrives at

iγ0∇+θ1 + θ2 ≡ iγ0
(
∂+ +

ω

2
+ A

)
θ1 + θ2 = 0

iγ0∇−θ2 − θ1 ≡ iγ0
(
∂− − ω

2
− A

)
θ2 − θ1 = 0 , (5.8)

where ω = ετ0ω
01
τ is the contribution from the spin connection and A =

U20
U2
γ14 is an

additional gauge connection.

Now with the help of the following definition for two-dimensional gamma-

matrices

ρ+ =

(
0 0

γ0 0

)
, ρ− =

(
0 γ0

0 0

)
(5.9)
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the equations of motion are compactly expressed as

(
iρj∇j + ρ3

)( θ1
θ2

)
= 0 , (5.10)

with ρ3 =diag(1,−1), and θ = ( θ1θ2 ) is a ‘two component’ spinor of the two-
dimensional worldsheet. This is the AdS analogue of the well-known ‘metamorphosis’

of target-space spinors into world-sheet spinors [12].

Coming back to (5.8) now, we see that θ1 (say) is completely determined in terms

of θ2, which should be treated as independent fermionic fields. Since each θ had, to

start with, 16 components and the gauge condition fixing κ-symmetry (5.4) reduces

these by half, the fermions have altogether eight on-shell degrees of freedom. This of

course matches with those of the bosonic fields.

The coupled set of first order equations (5.8) can be traded for the second order

equation (
−∆F − 1

4
R(2) + 1

)
θ2 = 0 , (5.11)

for θ2 alone, and similarly for θ1. In the above, the 4 × 4 matrix operator ∆F =
hij∇i∇j is the laplacean of the generalized covariant derivative (including gauge
connection) (5.8) acting on the fermions.

It is natural to wonder how the equations of motion for the fluctuations, fermionic

((5.8) or (5.10)) and as well as bosonic (4.7), go over to their flat space limit as the

radius R is taken to ∞. The action of ref. [6], after a Wigner-Iönoü contraction
(rescaling by appropriate power of R followed by R→∞), has a flat space limit. We
are however, studying the fluctuations in the background of a macroscopic string.

It is not clear to us how, if at all, such a configuration in the AdS5 × S5 geometry
smoothly goes over to an analogous configuration in flat space.

6. Towards evaluation of the determinants

We are now in a position to perform the functional integration over the fluctuations,

and give a formal expression for the one-loop result. Collecting (4.7), (4.8) and (5.11),

we find the following expression for W (C) in (2.6):

W (C) = e−AR
det

(
−∆F − 1

4
R(2) + 1

)
det (−∆cl + 2) det1/2 (−∆cl + 4−R(2)) det5/2 (−∆cl)

. (6.1)

Recall that e−AR is the classical contribution, AR being the (regulated) area of the
worldsheet; and that the fermionic operator in the numerator is a 4 × 4 matrix
operator. The formal determinants in (6.1) suffer from potential divergences and

need to be regulated. Out of many ways to make sense of these, the heat kernel

regularization is particularly convenient. There is a vast literature on this — we
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will use ref. [13], which gives an asymptotic expansion for (the logarithm of) such

determinants as an infinite sum. The first few terms in the sum are (regularized)

divergent contributions.

Let Λ be an ultraviolet cut-off. It is then easy to see (using the results of [13]),

that the quadratic divergence c2Λ
2 cancels between the bosons and fermions. In

addition, since we have a worldsheet with boundary, there is a linear divergence

c1Λ, which cancels in the same way. Finally, the coefficient c0 of the logarithmically

divergent term c0 ln Λ, is given by the difference in the quadratic potential between

bosons and fermions. We find that, contrary to naive expectation, this coefficient

does not vanish. Specifically, we find that this term is proportional to

c0 ∼
∫
d2σ

√
hclR

(2) = 4T
∫ ∞
U0

dU
U4 + U40

U2
√
U4 − U40

, (6.2)

where we have used the classical solution (2.3).

Notice that if we were working in the Neveu-Schwarz-Ramond formalism, di-

vergence of the form (6.2), (modulo subtleties involving the boundary), would have

signalled a non-zero β-function. And to restore conformal invariance of the sigma

model, one will need to shift the dilaton. In the Green-Schwarz approach that we are

working with, such a conclusion is far from obvious, as there is no correpondence be-

tween the β-function and equations of motion of the spacetime fields. Therefore one

should be cautious of such an interpretation with its implication apparently at vari-

ance with the conformal invariance of the SYM theory. This point is worth further

critical examination.

While we really do not know the full significance of the logarithmic divergence,

let us nevertheless try to understand it in our context. To this end, we evaluate the

coefficient c0 by substituting the upper limit of U -integration by a cut-off Umax. This

is not a new scale, but was already introduced to regularize the classical contribu-

tion [4]. Now we expand (6.2) in terms of the small parameter U0/Umax,

c0 ∼
∫
d2σ

√
hclR

(2) = 4TUmax

(
1 +O

(
U40
U4max

))
. (6.3)

To leading order this does not depend on the separation between the quarks, and

goes to only renormalize the (infinite) mass of the quarks.2 The higher corrections

vanish in the limit Umax →∞.
We recall that the AdS5 × S5 background was the near horizon limit of N D3-

branes. However, the set up to calculate the quark potential differs in one small, but

important way. Here one starts with N + 1 D3-branes and takes one of them far

away from the others. This introduces a scale, whose only effect in the near horizon

limit is seen in the (infinite) mass of the heavy quarks. The logarithmic divergence at
2Since the mass dimension of U is one the UV cut-off is dimensionless. The divergence (6.3) can

be absorbed in a redefinition of Umax.
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one-loop goes only to ‘renormalize’ this hidden scale. Therefore we conclude, (albeit

with some caution), that the one loop regularization does not affect the potential

energy between the quark-antiquark pair.

Some of the higher (non-divergent) terms in the infinite sum in the expression

of the determinants can be read from ref. [13]. It would be nice to compute the

determinants in closed form.

7. Conclusion

In this letter we study the effect of stringy fluctuations around the classical macro-

scopic string background that define expectation value of Wilson loop operator in the

AdS/CFT framework. To this end we expand the Green-Schwarz type superstring

action for the AdS5 × S5 background [6] to second order in fluctuation around the
classical solution in ref. [4]. Both reparametrization as well as the local fermionic

κ-symmetry is fixed for this background leaving only physical degrees of freedom.

We fix diffeomorphism not by the standard choice of a (conformally) flat metric on

the worldsheet, but rather by fixing it to be the metric induced from the target space.

Our κ-symmetry fixing condition likewise differs from that given in refs. [7], and is

more suitable for the problem at hand. We comment on the evaluation of the deter-

minants that are the result of functional integration. Surprisingly, we find that the

divergent contributions do not completely cancel between the bose and fermi fields.

Our understanding of this is admittedly somewhat tentative, and we leave this issue

open for further exploration.

Note added. After we completed this work, the paper [14] appeared in the archive.

This also studies stringy fluctuations affecting Wilson loop in AdS/CFT, but in

the finite temperature case. Same applies to [15]. The techniques of the present

paper have been used in [16] to study the fluctuations of membranes of M-theory in

AdS7 × S4 background. Some preliminary result of the present paper was reported
in the Ahrenshoop Workshop in Buckow, Germany (September, 1998) by S.F. and

in the String Workshop in Puri, India (December, 1998) by D.G.
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