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We investigate higher than the first order gravitational perturbations in the Newman-Penrose formalism.
Equations for the Weyl scalak,, representing outgoing gravitational radiation, can be uncoupled into a single
wave equation to any perturbative order. For second order perturbations about a Kerr black hole, we prove the
existence of a first and second order gaugeordinates and tetrad invariant waveformy,, by explicit
construction. This waveform is formed by the second order pieag,gflus a term, quadratic in first order
perturbations, chosen to maklie totally invariant and to have the appropriate behavior in an asymptotically flat
gauge.y, satisfies a single wave equation of the fofih, =S, where7 is the same wave operator as for first
order perturbations anflis a source term build up out gknown to this level first order perturbations. We
discuss the issues of imposition of initial data to this equation, computation of the energy and momentum
radiated and wave extraction for direct comparison with full numerical approaches to solve Einstein equations.
[S0556-282199)06912-X

PACS numbefs): 04.30.Db, 04.70.Bw

I. MOTIVATION AND OVERVIEW order Zerilli formalism of metric perturbations about the
Schwarzschild background. The method was successfully
The prediction of accurate waveforms generated duringmplemented with particular emphasis on a comparison with
the final orbital stage of binary black holes has become dhe fully numerically generated results. In the case of two
worldwide research topic in general relativity during this de-initially stationary black holegMisner data the agreement
cade. The main reason is that these catastrophic astrophysicdlthe results is strikin§i6]. Second order perturbation theory
events, considered one of the strongest sources of gravitaenfirmed the success of the close limit approximation with
tional radiation in the universe, are potentially observable byan impressive agreement in both waveforms and energy ra-
the Laser Interferometric Gravitational Wave Observatorydiated against the full numerical simulations. There has been
(LIGO), VIRGO, and other interferometric detectors. For itsa tantamount success in the extension of these studies to the
strong nonlinear features this black hole merger problem igase of initially moving towards each other black hdl@s
only fully tractable by direct numerical integratigwith su-  and for slowly rotating oneg3] (see Ref[9] for a compre-
percomputensof Einstein equations. Several difficulties re- hensive revieyw
main to be solved in this approach such as the presence of All the above close limit computations are based on the
early instabilities in the codes for numerical evolution of Zerilli [10] approach to metric perturbations of a Schwarzs-
Einstein theonf1] and finding a new prescription for astro- child, i.e., nonrotating, black hole. This method uses the
physically realistic initial data representing orbiting black Regge-Wheelef11] decomposition of the metric perturba-
holes[2,3]. Meanwhile, perturbation theory has shown nottions into multipoles(tensor harmonigs Einstein equations
only to be the main approximation scheme for computatiorin the Regge-Wheeler gauge reduce to two single wave equa-
of gravitational radiation, but also a useful tool to providetions for the even and odd parity modes of the gravitational
benchmarks for full numerical simulations. From the theoretperturbations. There is, however, the strong belief that binary
ical point of view perhaps the more relevant contributionblack holes in a realistic astrophysical scenario merge to-
during the nineties in perturbative theory has been the “closgether into a single, highly rotating, black hole. There is also
limit approximation” [4]. It considers the final merger state concrete observational evidence of accreting black Hdlgk
of two black holes as described bysingle perturbed one. that places the rotation parameter as higla/dd =0.95. Fi-
This idea was applied to the head-on collision of two blacknally, highly rotating black holes provide a new scenario to
holes and the emitted gravitational radiation was computedompare perturbative theory with full numerical integrations
by means of the techniques used in first order perturbatioof Einstein equations.
theory around a Schwarzschild black hole. When the results The Regge-Wheeler-Zerilli techniques cannot be ex-
of this computation have been compared with those of théended to study perturbations on a Kerr black hole back-
full numerical integration of Einstein equations the agree-ground(see Ref[8] for the slowly rotating cageln this case
ment was so good that it was disturbiff. This encouraged there is not a multipole decomposition of metric perturba-
the significant effort invested in the development of a secondions (in the time domaipand Einstein equations cannot be
uncoupled into wave equations. A reformulation of the gravi-
tational field equations due to Newman and Penrdsd,
*Electronic address: manuela@aei-potsdam.mpg.de based on the Einstein equations and Bianchi identities pro-
"Electronic address: lousto@aei-potsdam.mpg.de jected along a null tetrad, allowed TeukolsKi4] to write
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down a single master wave equation for the perturbations durbative parameter can affect the accuracy of the linearized
the Kerr metric in terms of the Weyl scalagg or . This  approximation[28]. The only reliable procedure to resolve
formulation has several advantage®: It is a first order the error and/or parameter arbitrariness is to carry out com-
gauge invariant descriptiotii) It does not rely on any fre- Pputations of the radiated waveforms and energy to second
quency or multipole decompositiofiii) The Weyl scalars order in the expansion parameter. The ratio (_)f second order
are objects defined in the full nonlinear theory and a onéOrrections to the linear order results constitutes the only
parameter perturbative expansion of it was proved to providéirect and systematically independent measure of the good-
a reliable account of the probleffi5]. In addition, the NeSS Of the perturbation results. ,
Newman-Penrose formulation constitutes a simpler and more 1 the next section we extend to secdadd higher order
elegant framework to organize higher order perturbatiorf"® Teukolsky derivation of the equation that describes first
schemes as we will see in the next section. order perturbations about a Kerr hole. To do so we consider
Since the 1970s, the Teukolsky equation for the first ordefhe Newman-Penrogd3] formulation of the Bianchi identi-

perturbations around a rotating black hole has been Fouridi€S @nd Einstein equations, make a perturbative expansion of
transformed and integrated in the frequency domain for 4, and decouple the equation that. descrlbgs the eyolutlon of
variety of situations where initial data played no rdtee second(and higher order perturbations. This equation takes
Ref.[16] for a review. Very recently it was provefil7,1§  the following form

that nothing is intrinsically wrong with the Teukolsky equa- -

tion when sources extend to infinity and that a regularization Ty D= M, 0,M], (1)
method produces sensible results. In order to incorporate ini-

tial data and have a notable computational efficiency, conwhere = (p(®)~*y,, T is the same(zeroth order wave
crete progress has been made recently to complete a compsperator that applies to first order perturbatidsee Eqg.
tational framework that allows to integrate the Teukolsky(12)], and S is a source term quadratic in the first order
equation in thetime domain First, an evolution code for perturbationgsee Eqs(9)—(11)].

integration of the Teukolsky wave equation is now available In Sec. lllA we describe how to compute the source,
[19] and successfully testel®0]. Second, nonconformally appearing in Eq(1), in terms of solutions of the wave equa-
flat Cauchy data, compatible with Boyer-Lindquist slices oftions for (" or ¢ only, which are the objects we directly
the Kerr geometry, began to be studied with a Kerr-Schildgbtain from the integration of the first order Teukolsky equa-
[21,22 or an axially symmetri¢23,24 ansatz. Finally, an tjon. Section IlIB discusses the issue of building uff’
expression connecting/, to only Cauchy data has been gnq g 4 out of initial data(which we assume are given to
worked out explicitly[25,20,28. first and second orderin Sec. Il C we recall the equations

_ Assuming that we can solve for the first order perturba<,, the computation of the second order total radiated energy
tions problem, we decided to go one step forward in setting,nq4 momentum.

the formalism for the second order perturbations. As motiva- Higher than first order calculations are always character-

tion for.th|s work we can cite the spgctacular results preq,qq by an extraordinary complexity and a number of subtle,
sented in Ref[6] for the head-on collision and the hope t0 hqtenially confusing, gauge issues mainly due to the fact
obtain similar agreement for the orbital binary black holey,a¢ 5 general second order gauge invariant formulation is
case in the close limit. Second order perturbations of the,o; yet at hand in the literature. In general, gauge invariant
Kerr metric may even play a more important role in this cas&yantities have an inherent physical meaning and they auto-
since we expect the perturbative parameter to be linear in thgarically lead to the simpler and direct interpretation of the
separation of the hole27] while in the head on case itis rggyits. |n the Newman-Penrose formalism one has not only
quadratic in the separation paramej2®]. The nonrotating ¢, ook at gauge invariancé.e., invariance under infinitesi-
limit of our approach will also provide an independent testy5| coordinates transformationsut also at invariance un-
and clarify some aspects of R¢f] results. High precision e tetrad rotationésee Secs. IV A and IV B More specifi-
comparison with full numerical integration of Einstein equa- . lly, the problem here is that the Wavefomﬁ?) in Eq. (1) is

tions using perturbative theory as benchmarks is also one either first order coordinate gauge invariant nor tetrad in-

the main goals in this program as well as a the developmeq}ariam. The question that arises therefore is whezﬂﬁ@rcan

of a tool to explore a complementary region of the parameteBe unambiguously compared with, for instance, full numeri-

space to that reachable by full numerical methods. An im- ) . Num .
portant application of second order perturbations is to propal computations of the covariank, ". To handle this

vide error bars. It is well known that linearized perturbationProplem we build up a c(ozc))rdlna_\te and tetrad invariant quan-
theory does not provide, in itself, any indication on how !ty Up to second orderj;”, which has the property of re-
good the perturbative approximation is. In fact, it is in gen-ducing to the Imt(aze)lr.pal(in the second order perturbations of
eral very difficult to estimate the errors involved in replacingthe metrig of 45~ in an asymptotically flat gauge at the
an exact solution of the full Einstein equations with an ap- fadiation zone,” far from the sources. This property en-
proximate (perturbativé solution, i.e., to determine how sures us direct comparison with};"™ by constructingy§"
small a perturbative parametermust be in order that the + #$?) . In Secs. IVA-IV C we give an explicit and general
approximate solution have sufficient accuracy. Moreoverprescription for the construction of second order gauge and
first order perturbation theory can be very sensitive to thdetrad invariant objects representing outgoing radiation. To
choice of parametrization; i.e., different choices of the perdo so we impose the waveformfz) to be invariant under a
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“combined” transformation of both the coordinates and the da=(6+3a+B+4m—1), dy=(A+4u+u+3y—7y).

tetrad frame to first and second order. The resulting second )
order invariant waveform can then be built up out of the
original wﬁz) plus corrections(quadratic in the first order In order to find a decoupled equation fg, we operate

uantities that cancel out the gauge and tetrad dependence. .
gf ¢f12). ginally in Sec. V alongg W?th a short sumery we with” EE"O) on Eq.(2), with 6(30) on Eq.(3), and then subtract

: : . L to obtain
discuss the astrophysical and numerical applications of our

result. We end the paper with three appendices: Appendix A —0) —0)
refers Sec. Ill A and contains explicit formulas to compute [dy'(D+4e—p)—d3’(6+48—1)]¢4
the first order perturbative Newman-Penrose quantities —0) —0) =
(Weyl scalars, spin coefficients, and perturbed tetriad A3 (A+4u+2y)—dg (6t 4m+2a) s
terms of the first order metric perturbations needed to build
up the source term in the wave equation #f’ . Appendix
B refers to Sec. Il B and contains formulas to compute the ) ) )
second order spin coefficients in terms of the second ordeéfhereT[matted is defined in Eq(10) below.
metric perturbations and product of first order perturbations N the above equatiorty, ¢s5,» andh vanish on the back-
needed, for instance, to build wg§® in terms of initial data. ground, i.e., on the.Kerr geometry, but so far this equation is
Finally, in Appendix C we explicitly give the expressions to exact, no perturbative expansion has been made yet. Let us
build up the gauge invariant waveform holding in the "W think how to use Eq(_6) ina pertl_era_tlve scheme. In
Schwarzschild limit case, i.e., fa=0. this context, the superscrigp) appearing in the formulas

In this paper for our notation we use Ref80,13 con- below stands for a sum over all perturbative orders fipm

_ _ . _l _ .
ventions. Background quantities carry the supersfptf ~ =1 Up top=n—1 (i.e., Z;Z1) wheren=12,... is an ar-

needed for clarity and are all explicitly given in the cited Pitrary order we want to study.

—3[d{v—d{\ ]y, = T[ mattei], 6)

references, while superscriptd) and (2) mean pieces of To fix ideas let us first discuss second order perturbations,
exclusivelyfirst and second order, respectively; for instance,7=2. The procedure for higher order perturbations will be
we expandy= O+ D+ y@ 4 ... clearly analogous. We want to have an uncoupled equation

for 2. Sincey{Y=0, the operator in the first bracket on
the left hand side of Eq(6) is needed to zeroth plus first
Il. DECOUPLED EQUATIONS FOR HIGHER ORDER order. The zeroth order acts @) and generates the same
GRAVITATIONAL PERTURBATIONS wave operator as for the first order perturbations. The first
order operator in the first bracket on the left hand side of Eq.
(6) acts ongbfll) and its result can be considered as generating
an additional source term since it is supposed we have al-
ready solved for the first order perturbation problem previ-
ously. The second bracket on the left hand side of(Egcan
be considered as a pure source term as well since its zeroth
order vanishes:

Let us consider the following two of the eight complex
Bianchi identities written in the Newman-Penrose formalism
(projected along a complex null tetnad[31], Chap 1.8 (see
also Appendix A

(D+4e—p) iy~ (5+4m+2a) s+ 3\,
=47[(6—27+2a)Tom— (A+2y—2y+ ) Trm dOA+4u+2y)O—dO(5+47+2a)0=0

ATt Tom) + 0 Tont v Tim], @ (see Ref[30] for an analogous progfand then we have to

considerwgl), i.e., only to first perturbative orddin gen-

_ _ eral, to all lower perturbative orders than the one consid-
(0+4B=)ha— (At dut2y)gat3vi, ered. The last set of brackets on the left hand side of (By.
=4a[(6—1+2B+2a)Ton— (A+2y+2u) Tom includes terms depending om® and A since y
_ [=—M/(r—iacosd)®] is nonvanishing. To get rid of these
F (T Tom) + vTiam = ATaml, (3 second order spin coefficients we use E4). multiplied to

the left by ¢4

and the following one out of the 18 complex Ricci identities n—1

31 - _
[31] [ M — gL\ (W] O = w(zmpzl [(dg—3m)( D)@
(A+p+p+3y—y)N—(6+3a+B+m—1)v+ 1/;4=o.( ) — (A= 3p) M PNE ] Oy
4
HereD=1%9,,A=n"d,,6=m"d,,. IHere we use operators defined on the background instead of Eq.

In what follows it is convenient to define the operators (5) for the sake of simplicity.
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where we have made use of the pure zeroth order relations (r’+a?? ) AMar
A O = — 3,040 and FO YO = 370y coming =|—x—a SIr? & |9y + e
from the Bianchi identities. The above result allow us again .
to write the terms depending of%, as source terms. 3 . _M@E=ah) o,

We finally obtain the equation that describes title order 4|r+iacosd A A= A0 (A 700
perturbations:

. a’
(dO(D +4e—p) O —dO( 5+ 48— )@ — 3y ~sing de(sinddy) - Go A%
= (n—p) (n—p)
ST T T Tmered ? ar—M) 1eost], +(4cof9+2), (12
co ,
where A sif 9| ¢
Y= — (Caﬂyanaaﬁnyaﬁ)(n) (8)  WhereM is the mass of the black hola,its angular momen-

tum per unit massX=r?+a?cogd, and A=r2—2Mr
and the source terms af@here brackets represent operators +a2. Note that if one wants to act op(®=(p(®) 4y
- rather thany{? in Eq. (6), then one should consistently res-
cale all the terms(including the sourceby a factor of
= 'q(0) — 7 (n=p) _'§(0) — »)(n=p)
84 21 {[d3 (5+4B T) n-e d4 (D+46 P) n p] 2(p(0))742 [See Eq(ll)]

) It is easy to show that an equation similar to Etjl) can

% ¢gp)_[ag0)(A+4M+27)(n—P) be obtained for the Weyl scalar fielh, upon exchange of
—0) = ()1 1(0) 1. 21 0).. (D) the tetrad vector$—n and m—m. In this paper we will
—dy(6+4m+2a0) " Py +3[dy7 (" P explicitly work with #, since it directly represents outgoing

gravitational radiation. Since at every level of the hierarchy
of perturbations we have the zeroth order wave operator act-
ing ony{", we could always use the method of full separa-

_EEIO))\(H—D)] lﬁ(gp)— 3¢(20)[(E3— 377)(H—D)V(p)

—(dy—3u)"= PP
(ds=3p) AP © tions of variables. In this paper, however, we will not pro-
and ceed so because we want our equations to be suitable for
evolution in the time domain from given Cauchy data.
n-1
T[matteﬂ=p21 {dP[(6-27+2a) 0 PTEL Il. PRACTICAL ISSUES

o A. Gauge choice and computation of the source
—(A+2y—2y+u) " PTEL L GO (A +2y

m As we will show explicitly in the next sectionj}, is not

—(-p)T0)_ = .07 (n—p)(p) invariant neither under first order coordinates transforma-
F2p)" P Ton= (0= 74+28+2a)" P Taglh, ions nor second order tetrad rotations. Thus, in order to
(10)  integrate Eq.(11), one would have to evolve in a fixed
gauge(and tetrag and then compute physical quantities, like
whereT(@=(T nuﬁg(p) TMZ(T Eﬂﬁ”)(m and TP radiated energy and waveform, in an asymptotically flat
nm pv * ' mm pv ! nn . .
=(T,,n*n")®). Note that in our formalism we have taken 93Ug€. This sort of approach was followed in Re] to
into account matter terms in order to be used in future comStudy second order perturbations of a Schwarzschild black
putations including an orbiting particle or an accretion disk0le in the Regge-Wheeler gauge which is a “unique™
around a Kerr hole. By summing up over albrders in Eq.  9auge in the sense that it allows one to invert expressions in

(7) one should be able to recover solutions to the full Ein-t€rms of generic perturbations and thus recover the gauge
stein equations. invariance. There is no generalization of the Regge-Wheeler

gauge when studying perturbations of a Kerr hole, essentially
because one cannot perform a simple multipole decomposi-
tion of the metric. Instead, ChrzanowgEi2] found two con-
venient gauges that allowed him to invert the metric pertur-
bations in terms of potential¥ g or ¥ org Satisfying the
AT¢(“)=2p‘42{S4[ P 5P|+ T{matted]). 232103\\/’;?;8 equations as the Weyl scafaréy, or iy, re

1D In the ingoing radiationgauge(IRG)

Note also that if one wants to act g™ = p~*y{" rather
than ng”), one should rescale all the ternisicluding the
source in Eq. (7) by a factor 3~ 43. After this rescaling,
Eq. (7) takes the following familiar form:

I.n Ref. [SQ] the v!ave operator was tran;formed to act. on the hl(ll): 0= h|(§)= 0= hl(é): 0= h%): 0= hfr% (13)
field ™M= (p©@) ~4y rather thany™ (in order to achieve

separability of the variables in the frequency domand the homogeneoufor vacuum metric components can be
takes the following form, in Boyer-Lindquist coordinates written, in the time domain, in terms of solutions to the wave
(t,r,¥,¢) and Kinnersley tetrad: equation forp“‘wgl) only, as follows:
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(1) — _ . _ one ends up with a set of potential equations oy(r, 6)
(Muphire=2 Re{~1,1,(5+at 3B 7)(5+45+37) and 4, ¥ ,(r, ) at the initial time. Boundary conditions are
—-m,m,(D—p)(D+3p)+I,m, chosen such that we obtain bounded solutions. The numeri-
_ cal integration of these equations is left for a forthcoming
X[(D+p—p)(6+4B+37) paper[42]. These solutions give us the initial data to inte-
— — grate the wave equations and then build up metric perturba-
+(0—a+3B—7m—1)(D+3p)[}(¥re)), tions form (13) or (15). The imposition of initial data tap,

(14) and ¢, is discussed in the next subsection.

' Finally, in order to integrate Eq11) we assumed knowl-
where “Re” stands fqr the real part of the whole object to edge of the source terrt9) since it depends only on first
ensure that the metric be re83,34 and we made the  order perturbations. In practice, one solves the Teukolsky
=0 choice. Note that in this gauge the metric potential hagquation forwgl) (and/orwgl)) and builds up metric pertur-
thel property to be transvelrsehfﬁlﬂ =0) and traceless pations. It then remains the task of writing all first order
(h{ #=0) at the future horizon and past infinity. This is Newman-Penrose quantities in termstof,. This is not a
thus a suitable gauge to study gravitational radiation effectsrivial task; so we give all the equations relating the
near the event horizon. Newman-Penrose fields to the metric perturbations in Ap-

The complementaryadjoinf gauge to the ingoing radia- pendix A.
tion gauge is theutgoing radiationgauge(ORG)
1 1 B. Imposition of initial data
hgln):():hl(r})zozhglr%:o:hﬁa)zozh;)a, (15) p . o
To start the evolution one has to be able to impose initial
where the metric potential now has the property to be transdata to the second order invariant waveform. We first note
verse ({)n#=0) and tracelessh{}’ #=0) at the past ho- that, from its definition, we can write
rizon and future infinity. It is then an example of a suitable 1
asymptotically flat gauge to directly compute radiated energy @)= _c@ 4 Z @R 400 4 L0
and momenta at infinitysee Sec. Il ¢ In this gauge, the Vi i 3 on (V274 927)
homogeneous metric components can be written in terms of 1
' ' 1) ® @
solutions to the wave equation fgii™) as _2< h(h— Ehmm) Etl)_ZhnE‘ﬁ(sl)' (17)
(h)ore=2 Relp~*{—n,n,(6—3a—p+5m)
. a For the sake of definiteness we have used here (Et)

X (6—da+m)—m,m,(A+5u—3y+7y) choice of the first order tetrad, but it is clear that the above
_ expression can be written in a generic tetrad. Besides, since
X(A+p—4y)+n,m, we are going to build up the invariait>), any choice of the

tetrad(and the gaugeleads to the same, correct, result.

In Ref.[26] we have completely expressed® (and its
time derivative in terms of hypersurface data only. The
expressiof

X[(E— 3a+§+ 57T+?)
X(A+pu—4y)+(A+5u—u—3y—y)

X (6—4a+m) ]} (Vora))- (16) @ T
— = — - . In'm!

Note that Eq(13) [or Eq.(15)] is four conditions on theeal Comnim [ Rijia 2Ky I mintm
part of the metric. Although Eq13) [or Eq.(16)] does not +8N[K]-[k,,]+(3)Ff’[kK|]p]ﬁ[omﬂﬁkm
fix completely the gauge freedom, the Chrzanowski metric
choice given in Eq. (14) [or Eq. (16)], being a specific
choice between all the possible solutions satisfying those
conditions,does uniquely fixall of the extra freedom.

The potentials¥ gz and Vorg satisfy the Teukolsky
equation forp~*y, andy,, respectively. To determine them
we can invert expressiai3) or (15) and its time derivatives
at the initial CaUChy surface to relate the pOtential to our fiernd its time derivative hold in generaL to all orders. Here
order initial data. Alternatively, one can use the relations of , 12 N2t R it ey
these potentials to gauge invariant objects kkeor p~4i,. N—(:tg ) 7% N'=N°g’, n“=n"+Nn " and m“fm“

For instance, in the IRG we can take the relatigg +N'M. When we expand the above relation to a given per-
—DDDDY . [see Eq(5.28 of Ref.[34]] or in the ORG turbative orden, the proof given in Ref[26] implies thaty,

the adjoint relationy,= AAAAWV rs. Here we lower the

order of the time derivatives o to first order ones by

repeated use of the Teukolsky equation potentials satisfy?Note that the factor of 8 appearing in front of the second set of
[see, for instance, Eq5.20 of Ref. [34]]. Since one can brackets corrects an obvious misprint in R&6]. This also applies
always make a mode decomposition of thedependence, to Eq. (3.2 for a,48Y.

—4N2[(3)R“ —KjpKP+KK; =T

1 A A A
+5Tg; nPmilnOm (18
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and d;¢, will be independent of the lapse and shift of orderthree-metric and the extrinsic curvature of the initial hyper-

n (but will depend, of course, on all lower perturbative or- surface we will proceed as in Reff26], taking now into

ders ofN andN'). account the additional terms, quadratic in the first order per-
To express our second order objet) in terms of the turbations. We then find

2 T 10T A
C( 2) :_[(B)Rijld+2Ki[kK|]j](2)nlm]nkml+8N(0)[K]‘[k’|]+(3)Fj-p[kK|]p](z)n[om”nkml

nmnm

1
_4N(20)[(3)Rj|_ijK|p+ KKJ|_T]|+ETgJ| n[om” I]+8N(1)[K1[k|]+( )F kK|] ](1)n[ m”nkn"lI

(2)

AlCmITACmY, (19
(1)

1
3

Note that the first three terms have the same structure as in _ 1, )
the first order caséfor terms linear inh{? andK?)). There lim == 5 (dthss—idthse), (21)
is no dependence on the second order lapse and shift, but roe

N(1) and the perturbative shift now explicitly appear. To re-
express them in terms of hypersurface data, we can make u
of Eq. (14) and expressions in Appendix A that relate all first
order quantities toV org, directly expressible in terms of dE : r2

hypersurface data only as discussed before, and the same ;=M 7~ dQU du ga(u,r,d,¢)

the total radiated energy per unit time=€t—r) can thus be
obtained from the Landau-Lifschitz pseudotensor as

r—oo

2]
technique allow us to build up the additional quadratic terms

occurring iny{? . Since the totaly{?) was originally invari- .

ant, its final expression is not affected by the use of the a d@=sind dd de, (22)
gauge choicgsuch as Eq(14) or (16)] at an intermediate \yhere we can considef, = (/,(1)+ lr,,(Z) AF

step. 2 Note that Eq.(22) can be equwalently obtained by di-
For .47, the prgcedurezls the same as before. We notgaily calculating the Bondi definition of the mass carried
that terms ||near Iﬂn( ) and Kl(j ) will have the same structure away by the grav|tat|ona| radiation by |mpos|ng asympto“-
as in the first order case; so E@.2 of Ref. [26] applies  cally flat conditions to the full Newman-Penrose quantities in
upon change of the subscrigl) by (2). The additional g general vacuum spacetime. In this way, one can also com-
terms, quadratic in the first order perturbations, can be dipute the total linear momentum radiated at infinity per unit

rectly written in terms o9,V r¢ by taking the time deriva- time along cartesian-like coordinates[&§]
tive of Eq.(14) and expressions in Appendix A.

In Appendix B we give an independent derivation relating dP, r2 ~ uo 2
Y2 to the four-geometry. We split qu I|m in dQ L | duda(ur,d.9) +,
VD= @+ y) (20 T,=(1,—singcosg,—sindsing,—cosd), (23

and the angular momentum carried away by the w426$

can be obtained from
where the first term on the right hand side is linear in the

second order perturbations of the metric, |Ief) and is dJ, . r?2 uo_
formally the same ag$" , replacingh(?)—h{). The second au " lim [4—Re{ f dﬂ( J f du y(u,r, 9 QD))
term on the right hand side, i. ep,fo), accounts for the qua- -
dratic part in first order metric perturbations.

X f_uwdu'f_”;dﬁﬁ(a,r,ﬂ,@) } (24)

C. Radiated energy and momenta One can directly compute the second order correction to

The energy and momenta radiated at infinity to secondhe energy and momentum radiated &t using 4%, pro-
perturbative order can be computed using the standard methided one is workingdto first ordey in an asymptotically flat
ods of linearized gravity(here h,, stands forh{())+h{?)  gauge (for instance, the outgoing radiation gauge

- defined in asymptotically flat coordinates at future null Equations(22)—(24), written in terms of the full, nonlinear
infinity). For outgoing wave§30] 4, are covariant expressions, holding in any asymptotically

124022-6



SECOND ORDER GAUGE INVARIANT GRAVITATIONAL . .. PHYSICAL REVIEW D 59 124022

flat spacetime. To first perturbative ordesi is directly  tions |, n“=—m,m*=1 (and all other scalar products
gauge and tetrad invariant; so one can forget that the abovgerg, can be decomposed into three Abelian subgroups.
equations had been obtained in an asymptotically flat gauge (i) Null rotation of type (I) which leaves thel, un-
and think of them as gaugand tetraglinvariant. We would  changed:

like to have the same nice property to second perturbative

order, buty{? is not invariant. One should then build up a =1,

gauge(and tetragl invariant waveformy{? that, in an as-

ymptotically flat gauge, coincides wit{?) A7, This will A,—n,+am,+am,+ad,,

ensure us the direct use of Eq22)—(24) in terms of our

invariant object, i.e.i(?) given in Eq.(41). m,—m,+d ,. (25)
IV. CONSTRUCTION OF THE SECOND ORDER (ii) Null rotation of type(ll), which leaves then, un-

COORDINATE AND TETRAD INVARIANT WAVEFORM changed:

The general covariancg.e., diffeomorphism invariange 1 —l,+ bﬁ/ﬁﬁm;ﬁ bEnM,

of Einstein’s theory of gravity guarantees the complete free- ®
dom in the choice of the spacetime coordinatgauge to A on
describe physical phenomena. In the relativistic theory of woTe

perturbations one always introduces two spacetimes, the
physical (perturbed spacetime and an idealize@inper-

turbed background. In this way the perturbations can be
viewed as fields propagating on the background. Conse-
quently, to compare any physical quantity in the perturbed

m,—m,+bn,. (26)

(iii ) Boost and rotation of typdll):

spacetime with the same quantity in the unperturbed space- Lu—Al,

time it is necessary to introduce a diffeomorphism about the ~ _1

pairwise identification points between the two manifolds. Ny—A""N,,

The arbitrariness in the choice of this point identification ~ .

map introduces an additional freedom to the usual gauge m,—exp(ig)m,, 27

freedom of general relativity and is at the origin of teuge .

problemin perturbation theonf37]. A convenient way to Where (a,b) are two complex functions and,¢) two real
deal with this gauge problem is to construct quantities whicHunctions on the four-dimensional manifold, hence the six
are invariant under a change of the identification map of thérbitrary parameters. When these functions are taken to be
perturbed spacetime while the background coordinates arfgfinitesimally small the above transformations can be ex-

held fixed. panded up to an arbitrary order and then applied to any
Invariance in the Newman-Penrose formalism has a mor&/éwman-Penrose quantity. _
restrictive meaning than in the standandetric) perturbation Under a combined tetrad rotation of classes |, I, and I,

theory, since the introduction of a tetrad frame at every point ~2) @ ] (1)1 =1 (1) L £ 21(0)
of the spacetime now requires that any physical perturbation ¥4 — ¥4 +2[(A=1) =i 0]y + days ) + 6y
must be invariant not only under infinitesimal gauge trans- (28

formations, but also under infinitesimal rotations of the local ] ] y o N
tetrad frame. In this section we briefly review the basic con- The idea here is to supplemep§” with additional terms

cepts of (higher order tetrad invariance and coordinate that make the whole object tetrad invariant. Since we have to
(gauge invariance in the framework of the Newman-Penrose2dd those “correcting” terms on both sides of the field Eq.
formalism. We start with our second order objegf?, (11), we will write them as powers of first order perturba-
which is invariant neither under first order changes of theions So that they can be added to the source @mThe
coordinates nor under second order tetrad rotations. We thécHrSt2 step 2toward§O;:gnstgug)t)|nzg this quantity is to note that
show how to build up a tetrad invariant object by adding to{l")“(M")“¢u /[(I")%(m" *)°] is invariant under rota-
l/,gz) a conveniently chosen term, quadratic in the first ordefions of class Ill. The second order piece of this combination

perturbations. In this way the new object will be invariant Of fi€lds is
under the(six-parametertetrad rotations. The procedure for
: - e [ m? @
the construction of the totally invariant object, i.e., also un- ) 1) (29)
der coordinate choice€our parameteps is analogous, but 4 MO AC ) AGE

algebraically more involved. The final result is a general pre-

scription for constructing totally invariard) quantities di-  Note that the second addend exactly compensates for the

rectly related to théoutgoing gravitational radiation. variation of class Ill ofy{? [proportional to the parameters

A—1 and @ in Eqg. (28)]. In addition one can easily check

that the second term in EQR9) is also invariant under rota-
The six-parameter group of homogeneous Lorentz trandions of classes | and Il with the Boyer-Lindquist choj&€)]

formations, which preserves the tetrad orthogonality relaof the zeroth order tetrad:

A. Tetrad invariance

124022-7
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© r’+a? a tetrad and gauge invariant object, sif®igrg is totally in-
()= —— 1.0 |, variant. In tf21e outgoing radiation gaugé? (and k)
reduces tcwE1 ),_ as can be directly deduced from the expres-
sions given in Appendix B.

1
(M) O= —————(r2+a? —A,0a),
2(r’+a”cos 9) B. Gauge invariance
The meaning of gauge invariance under infinitesimal co-
(m*)O=——— (jasing,0,1j/sind), ordinate changes, to an arbitrary order in the perturbations,
\/E(r +ia cosd) was explicitly elucidated in Ref38] following the approach

(300  of Ref.[39]. Locally, these gauge transformations are the
four-parameter group of the inhomogeneous Lorentz trans-

H o 1 ; ; ; R . . s
sincel"® m? (1) and yH are all mvanarﬁ under rotations  formations. Up to second order in the perturbations an infini-
of classes | and II. Still, the first term in E(R9) varies with  tesimal change of coordinates

respect to rotations of classes | and Il. To correct that we
note that under combined rotations I, Il, and IlI, ~ " 1, P "
~ B X”—>X”+8§(1)+§8 (&1 T €2 (34)
5 yi)+3ay). (3D)
where £(;) and (5 are two independent arbitrary vector

This allows us to solve for and replace it into the new fields ande a small (perturbativg parameter, produces the
expressiorfits form suggested by the dependence in the fofllowmg effe_ct(gn thelflrst and second ordefr_ pl)((jerr]turbatlons
transformation28)] that supplement Eq29). (Note that this of any quantity® (scalar, vector, or tensor figldhat we

: : assume can be expanded®®)+ @M+ ®(2)+ . ..
replacement is successful becaysevanishes to zeroth or- '

der) Thus, the object &(1)_><D(1)+£§ Q) (35)
@ '

'@ md @ 2 (1))2
244 -

P2+ 21,0511)( + ~ 1
[FO)  md @) 3 1/1(20) q)(2)ﬂ¢.(2)+£§(1)q)(1)+ E(£§(1)+ Eg(z))q)(o):

is second order tetrad invariant. (36)

While the above combination is tetrad invariant, one canyhere, for the sake of completeness, we recall here explicitly

see from the general behavior of the Weyl scalars and spighe pasic coordinate expressions of the Lie derivative along a
coefficients in an asymptotically flat gauggee, for instance, yector field £#:

Sec. VIl of Ref.[13]) that the quadratic term we added does

not vanish relative ta{?) for larger, i.e., goes likeO(1/r) L= & if d isascalar,

as well. In order to have the desired property that in the

radiation zone the invariant object approachié® " (AF LD'=d" g~ d# if d” is avector,
stands for an asymptotically flat gaygeve will subtract (37
from Eg. (32) another quadratic part that both cancels its

added asymptotic behavior and is tet(atid gaugginvari- LPop=Pop 84+ 8D 8

ant in order to preserve the gained invariance of &§).
Symbolically, if we callQ the quadratic part we added o
in Eq. (32), we search for

+&pd,, if .4 isatensor.

Note that from transformatiori35) it follows that all
Newman-Penrose quantities that vanish on the background
(or more precisely satisfy’, l)(I)(O)=0), such asyib,

A practical way to build upQ*F is to use relatior(16), i.e., Ell)-'f’(sl)'k(l)'”(l)_’)‘(l)”’(l)’ are first order gauge invariant
the perturbed metric in the outgoing radiation gauge, whicHG!)- Transformation(36), however, states that none of these
is an asymptotically flat gauge at infinity. In this gauge, weN€Wman-Penrose quantities, to sec?lr;d order in the perturba-
evaluate the quadratic pa@ in Eq. (32) and once, reex- ONS, are gauge invariant, sinég  @'"'#0. Thus, none of
pressed all in terms oF 5 via Eq.(16), we can forget that the interesting Newman-Penrose quantities that are tetrad in-
we used the outgoing radiation gauge and @Q@G as a Vvariant(Tl) and gauge invariant to first order are also invari-
ant to second order in the perturbations. In particular, second
order gauge invariance requires that the quantity vanishes to
zeroth and to first perturbative order.

Explicitly, for the scalar fieldy, we have

=P +Q-QF. (33

3It is clear that we can write the tetrad invariant object in terms of
a generic zeroth order tetrad by replacing in Bp) I" (—|" (1

_mra(ll)/(?)@m)_Erw(ll)/(?ﬂ//(zm) and m® W_m? (1)_|al//(31)/ B Fieh
(fla’.zp.%o)). We take the background tetr&80) for the sake of sim- PP — P+ &X‘L £ty (39)
plicity.
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Hence we see that the vanishingydf’ ensures thai{?) will

be gauge invariant under “pure” second order changes of
coordinates, but sincg{™ will in general depend on all four

coordlnates;//(z) will notbe gauge invariant undérst order
changes of the coordinates.

In order to apply similar techniques to those we used to
construct a tetrad invariant object now in the coordinated”

PHYSICAL REVIEW D 59 124022

W)_)T(l)p(l)_f_T(l)ﬁg(l)( PO)+ PO, (TO)

+Le, (TO)Le, (PO). (39

This proves our lemma. An obvious corollary is the case
hen both fields are gauge invariant, i 8, (T(O)) 0 and

context, i.e., by “correcting”y{?) with products of first or-  L¢,,(P(¥)=0. This generates a second order quantity that is

der quantities, we will make use of the following lemma.
Lemma: The product of the first order piecesTP(1) of

first and second order gaudgeoordinatg invariant.
To construct a second order gauge invariant waveform

two tensors (that can be expanded into perturbations) trans«$’);, we can then use the same techniques as in the previous
forms under a first plus second order gauge change, given bgubsection. It is convenient now to start from our tetrad in-
Eq. (34), as the product of the first order transformed quan-variant object, as defined in E433). Under a first order

tities individually.

TORM) (1) 0)y(p(1) (0)
(TOPW) —(TW+ £, TO(PD+ L, PO).

Proof: Let T andP be two general tensor fields. Apply the
first plus second order transformati(86) to the product and

consider second order pieces; then,
WH(TP)(ZHLQD(TP)(”

(0)
(ﬁf(n Lep)(TP)

or, more explicitly,

(TOPO) 4+ TMPM) 4 TO)P(2)

—(T@PO) 4+ TMP@) 4 TOP2)) 4 ‘65(1)(T(1)P(0)

T<°>P<l>)+ (cg(l +Le, )(TOPO),

We now apply the same transformati(86) to the prod-
uctsPOT and TP to obtain

POTA_, pOT(2) + PO, (TW)
1)

l
(0)
=P (£§(1)+£

+3 o) (MO

and, similarly,

W)_,T(O)p<2>+T(0>£§ (PO
(1)

1
(0) (0).
+ = T (£5(1)+ )(P)

£(2)

coordinates changg!?), transform as

Dy~ gyt O
¢(2T|_>¢5121r|+¢(1)§(1)+2‘//(1)( [(0)
1‘]‘ 0
Ot — b © w0
m? (0) ’

where we made use of the properties expressed in E88)
and (39).

As in Sec. lllA, the idea here is to add i), terms
quadratic in the first order perturbations in order to make the
whole object coordinate invarighwvhile preserving its tetrad
invariance. The procedure can be summarized as follows.

Prescription: The first step is to invert the coordinate
transformations of first order quantities for the gauge vectors
&(1)- We shall denote this first order combination by the
boldfacevector: £(},, i.e., §(1)= §(1) £(1)- Making the re-
placement{(;,— — £(; into Eq. (40) above generates a to-
tally invariant object. Still from all the possible invariant
objects we want those whose quadratic term do not contrib-
ute to the radiation in an asymptotically figkF) gauge. As
we discussed at the end of Sec. IV A, this ensures us a simple
interpretation of the invariang, regarding radiated energy
and waveforms. Since E@40) is linear in§(3,, subtracting
the quadratic term in an asymptotically flat gauge will be
equivalent to make the replacemg’;(q)egﬁ) 1)- As
we discussed before, a practical way to evallga(% and
keep the tetrad and coordinate invariance is to use the out-
going radiation gaug€Eg. (16)] and consider the final ex-
pression in terms o oi as a totally invariant expression
regardless its derivation with a choice of the first order gauge
and tetrad.

We recall here thai{?) and of course also terms gua-
dratic in the first order perturbations are already invariant
under pure second order coordinate transformations, labeled
by &5y Finally, our invariant waveform can then be sym-
bolically expressed as

“4A similar procedure was adopted to generate second order gauge

Upon subtraction of the last two expressions from the firSinvariants in Moncrief's formulation of Schwarzschild black hole

one, we obtain

perturbationg40].
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0 ORG ORG
1", O, ORC— g ) —1# O(g ORC— &) )
Ir(O)

2) 2 1 ORG 1
= P+ £ ORC- ) + 2y

9 (0 ORG 0 9% ORG b}
m?, O(E()°70- gy —m* O£ )
N . (4D
m? (©)
|
C. Construction of the second order invariant waveform since we will never refer to the second order gauge vectors.

The & and £ components can be easily found from the

The above prescription is conceptually very simple. How-"""% § . ) )
variations of the tetrad invariant Weyl scalag:1L ,

ever, in practice, to fintgt(l) and &%, brings some techni-
cal complications. The first remark is that the procedure is
not unique. We have a big choice of first order objdetis
Newman-Penrose quantities, metric, extrinsic curvature), etc.
to build up£{3, . In fact, one can easily see that the ambigu-and, of its complex conjugatg(zl),
ity to generate an invariant waveform has to be present since

Y — D+ 0 g0+ E99 5 (42)

one can always add products of first order invariant objects 1 E(l) e
to generate a new second order invariant object. The require- E'=—— ==+t (43
ment that the quadratic correction must not influence the M| p P
asymptotic behavior greatly reduces this ambiguity. In fact,
physical quantities such as the radiated energy and observed 1 Z(l) ey
) . . . 9 2 2
waveform, defined in an asymptotically flat region, are = — == (44)
uniquely defined by this method, since the differences intro- 6M(iasin®)| p* p

duced by different asymptotically flat coordinates vanish
with a higher power of. We thus give an explicit objectin  The same techniques cannot be straightforwardly applied
order to be able to make comparisons with, for instance, fulto find the other two components and £¢. The origin of
numerical results that directly compute the covariant objecthe problem can be traced back to the fact that the Kerr
4. Below we give a simple choice dffy), in order to con-  metric has two Killing vectors along andd,,, and thus one
struct 1/;512),, that is valid for perturbations of Kerr black can never find local, first order quantities that vary wittor
holes, i.e.a#0. In Appendix C we give another choice for &%, but only with the derivatives of them. Explicitly, using
the case of a Schwarzschild background. the variations of the metric and extrinsic curvature compo-
In the rest of this subsection, to simplify the notation, wenents(which are tetrad invariant quantitiesve find (here
drop the subscript (1) from the first order gauge vectpts background fields are unlabe)ed

. Upp(N+ 0t r € + 0, 08”) = 2000 (NP)+ Orp £+ Orp, o€+ 0o E%, + ')
§ 2(0%,~ 9u9e) '

(_ Qoo h 490 £ — g (NP + i £7,)

& 2
gt(p_gttggocp
P (h{y)+ gwf,?"‘ Oie€%)
0 Ott ’
t_ (hfpl@)_'— g:p(p,rgr + g<p<p,19§ﬁ+ 29cpcp§fp¢)
£ = (45
' th(p

and

29tt(ht(i)+ Ogr&+ 9t<p,ﬁ§ﬁ+ gt<p§fp¢+ gtt§f<p) — ol h§t1)+ Oir,r &'+ gtt,l‘}gﬂ)
2(9¢,~ 9uTys)

§i=
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&dh +gn§) 9io(h{P+0, €D

&%= ,
gt<p_gttggo<p
. K§)
D 2K,
(Ksclp)Jr Kor i+ Kor o8+ Ky €Y
£e=" K : (46)

or

Thus, to find&! and £ one has to integrate their four derivatives over the spacetime. This can be performed like the
integration of a potential in four dimensions. For that one has to verify the integrability conditions. In practice, since we are
going to compute differences of these vectors, with respect to the asymptotically flat ones, the existencg ahthg?
components are assumagriori and they are related to the existence of the outgoing radiation gauge proved [BReAs
a consequence of these integrals on first order fields, the resulting waveform will be nonlocal, but this carries no further
consequences since in solving the second order perturbations we assumed first order ones to be completely known. Notably,
the evolution equation for the second order perturbatiomscial. In fact, only derivatives o&' and £ enter in building up
the source:

TlP1=s, vP=p) %@, (47)

where the source terfras can be derived from E7)] is now

. |r(l)_|r(1) mﬁ (l)_mb‘ (1) 2 ( 1)_ .,(1) ORG)Z
S =2(p@) 434S, [ ¢{P]+ T matted} + T ORG S ORG ) V3 s

2"[’(1)( " 3 () l “

; (49

|’ (0)§ —¢& |+ © m? (0)§M _fﬂ m (0)
(1) g (1) (1) S.u (1) M (1)~ S,u (1)
T\, T2y ( 7o) + )

here, &= £fy ORC— &ty
While the evolution is local, we need to compute the waveform at least on the initial hypersurface and then at the observer
location (to compute, for instance, the radiated engrdyt t=0, after mode decomposition in the coordinate, we have

i (fiw_fl,quRG)melm‘p [ i ORG ORG ORG
go3 Bt I g, g9+ [ docel,—£ 27 - [ dravig,—£,879+e, (50
wherei=(t,¢) and the same equation holds for the observer at a fixgd exchanging the roles afandt.

Note the presence of the integration constaritand c?. They represent first order changes in the origin of time and
azimuthal angle. This problem was already found in R&f.and there it was given a method to fixposteriorithe value of
the constants. In Sec. IV B we generalize the procedure given if&eind explicity write the integrals that are necessary to
fix the constants' andc®.

In order to compute the totally invariant second order wavefmfﬁiC we must fix the constants; andc,,. We can
generalize the gauge fixing prescription given in R&f.and definea posteriorithe value of the constants

J; dt¢“4¢@>J;wdua¢¢$%F——J;wdta¢¢fﬁwfﬁj. dtyg{Ma,yih

— — , (52)
f dt( ¢<”>2Ldt<a¢w<l’>2 f dwﬂwa”fﬁwdwmwa”

f_ SERTS) f_mdwwa— f dta,y5 v f dt(y4)?

. (52)
J duwunzj' dt(9, )2 Jﬂ dtydo ¢u{f AP,y
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We can then construct thec“invariant” waveform invariant objecty, is not the second order term of a series
expansion ofi,, but it can be related tojfgz) in an asymp-
D= |(2)_(Ct,;t+c¢ﬁ(p),r/,(1)_ (53 totically flat gauge.

The spirit of this work has been to show that there exists
gauge invariant way to deal with second order perturba-

This procedure amounts to gauge fixing the zero of time an ons in the more general case of a rotating black hole and to

of the azimuthal angle in such a way that the integrals in th%rovide theoretical support to the numerical integration of

numerators of Egs.(51) and (52) vanish. In order to be the second order perturbation problem. In order to implement
able to compare the perturbative results with the full numeri- P P ' P

cally ones it is crucial that one be able to perform the sam<§UCh integration of Eq47) we proceed as follows: We as-

origin of coordinate fixing. Note that we can also fix theseSUMe that on an initial hypersurface we know the first and
constants at the initial hypersurfate 0. The same expres- second order perturbed metrics and extrinsic curvatures. We

sions (51),(52) apply, changing the integrations in time by then solve the f_irst ordtlar problem, 1i.e., solve the_standard
integrations inr. Teukolsky equation fop{" (and fory§H). Next we build up
the perturbed metric coefficients in, for instance, the outgo-
ing radiation gaugg15). The perturbed spin coefficients are
V. SUMMARY AND DISCUSSION now given by expressioA4) and the perturbed covariant
. . ~ basis by Eq.(A2). Those are all the necessary elements to
In this paper we presented a gauge and tetrad invariafjuild up the effective source term appearing on the right
framework for studying the evolution of general second or-hand side of our evolution equation, as explained in Sec.
der perturbations about a rotating black hole. To do so, w§j A_ It is worth noting here that from the analysis of the
first uncoupled seconéand highey order perturbations of  45ymptotic behavior of the different Newman-Penrose quan-
Kerr black holes for the Weyl scalaf,, which directly rep- a5 [13] involved in the source, one can see that at infinity
resents the outgoing gravitational radiation, and found thafhe envelope ofthe oscillating S, is at least ofO(r ~2)

the perturbed outgoing radiation fie'lﬂ%") fulfils a single \ hich guarantees the convergence of the integration of Eq.
Teukolsky-like equatiorisee Eq.(11)] with the same wave

operator as for the first order perturbati¢B6], acting on the 'I:he other piece of information that we need in order to
left hand side and an additional source term written as prod-

ucts of lower order perturbations on the right hand side of théntegrate Eq(47) is 41" on the initial hypersurface. This is

equation. We note, however, thaﬁz) is neither tetrad nor explained in Sec. lll B We_also_need to use in this case Eq.
first order coordinate(gauge invariant. It is only invariant (20 gnd the EXpressions given in Appendix B. For the com-
under purelysecondorder changes of coordinates, simply putation of the radiated energy and momentum one uses Egs.
becausey, vanishes on the backgrouriilerr metrig. In- (22) and(23). The advanta}ge Of.thIS procedure is tha}t we can
variant objects to describe second perturbations lead us {°W Use the same+1)-dimensional code for evolving the
reliable physical answers without having to face gauge diffi-first order perturbationgl9] by adding a source term. In fact,
culties. Hence, we explicitly show that it is always possibleth® backgroundKerr) metric allows a decomposition into
to correcty{?) in order to build up a complete second order @xial modes, i.e., the variable. A mode decomposition of
invariant waveformy{? (i.e., invariant under both tetrad ro- all quantities involved in the seconq order evolunqn equation
tations and infinitesimal coordinates transformatjotisat ~ €an be trivially performednote that in the source, involving
gives a measure of the outgoing gravitational radiation. Thigluadratic terms in the first order perturbations, one has to
is done in Sec. IV where we give a genepakscriptionto  include a double sum over modes, let us sagndm’). In
produce the result expressed in E41). We also show that the time domain no further mode decompositioe., in |

the same equation as E(L1), with a “corrected” source multipole) of the source term is practical.

term, is now satisfied bw,(z) [see Eq.(47)]. A number of An important application of the formalism presented in
interesting conceptual and technical issues are raised frothis papef42] is to reproduce the results obtained in Ré.

this computation, such as the appearance of nonlocalities iffor the nonrotating case and the multipble2). The com-

the definition of the gauge invariant waveform when weplexity of the calculations in the standard Zerilli formalism
want to relate it to known first order objects and its nonu-that would follow from considering the sum over all multi-
niqueness. Seen in retrospect, our method of generating goles can be notably simplified in the Newman-Penrose for-
gauge invariant object is like a machine that transforms anynalism. We can thus also study the-4 multipole of the
(first ordey gauge into an asymptotically flat one, in particu- radiation and not only test the efficiency of our formalism,
lar, into the outgoing radiation gauge. In fact, in this gaugebut also make a more detailed comparison with full numeri-
we have ¢$?)ORC=(y{2))ORC= (y(2)ORC= y(2) This fits  cal results. The next step is to extend the numerical compu-
into Bardeen’s[41] interpretation of a gauge independent tation to the more interesting case of rotating black holes.
quantity and suggests to work in the outgoing radiationThe numerical integration of Eq47) will be relevant not
gauge as a particularly simple way of dealing with the nu-only for establishing the range of validity of the collision
merical integration of the second order equatipt. In the  parameters in the close limit approximation, bbpefully)
language of Eq(36) we see that the process of building up to produce a more precise computation of the gravitational
Y, is like subtracting the first order piece #. Our gauge radiation. Direct comparison with the existing codes for nu-
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merical integration of the full nonlinear Einstein equations is 1

possible[43]. nt=— 2 ol #—hpin#, (A1)
Following the steps described in this paper, upon ex-

change of the null directions—n andm«m, it is straight- 1 _

forward to write the corresponding equations fiy in case me) = 2 N 5 A = Py nf =y .

one wants to have a description in terms of ingoing waves.

This would allow one to study the influence of gravitational Note that in order to have this explicit form a choice of the

radiation on the horizon of a rotating black hole, critical first order null directions was made. To relate this to the
collapse, and also phenomena in their interior, such as th —

mass inflation. We studied in detail only gravitational pertur-'%e_trIC pertL_eranon recall ttlla)ltgw—Zl(Mr(le))— Zm(%@)
bations, but it seems straightforward to generalize outNich _implies that h,,=2l¢/n,)+2l(,n;)"—2m;'m,)
method to scalar and vector perturbations. We also note that; 2m(ﬂm%)-

although we have focused our attention on the problem of Making use of the relationfA1) we can immediately de-
colliding black holes, the second order perturbative formal+ive the first order Newman-Penrose directional derivatives
ism developed in this paper can be easily generalized to any

Petrov type D(or even type Il background metric and thus DW=y — _ Eh A

can be applied to study other interesting astrophysical sce- u 2 11

narios as nonrotating neutron stars and cosmology.

1
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APPENDIX A: FIRST ORDER NEWMAN-PENROSE

QUANTITIES SD-Dé&=(a+B—mD+kA—(p+e—€)d— 0,

(A3)
Throughout this appendix, to simplify the notation, we . . . L

omit the superscript (0) on the background quantities, while SA—AS=—vD+(7—a—B)A+(u+y—7y)6—\4,

all first order quantities are denoted with the superscript (1)

with the exception of the first order metric perturbation that 55— §6=(u—u)D+(p—p)A+(a—B)S+(B—a)s,

we simply denote ab,,, .
Let us first note that the perturbed null tetrad can be repexpanding both sides to first perturbative order, and using

resented by44] Eqg. (A2) we can equate the coefficients of each operator to
get a system of linear equatiori$6 of which only 12 are
(0= Eh i independentthat can be solved for the spin coefficients, giv-
= nne, .
ing

— 1 —
k=(D-p=2 e)him—5(6-2a=2p+m+n)hy,

_ 1 - -
o= (7+ Dim+5(D+p—p+2e—2€)hnnm,

— 1 — _ —
v =—(A+pu+2y)hmt 5(8+2a+2f—m—1)hyy,

_ 1. — —
AND=—(r+ T)ham=5 (A+ =t 2y=27) o,
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. _ 1 _ _
2= phyy=(8+ 2B+ Dhy+ (6+ 28— 27— 1)hnn— 5 (28 + = p+ y= V)i,
2pW=phy+(p—p)hy+(D+p—p)hpm— (8—2a— m)hm+ (5+ 27— 2a+ m)hy,

— 1 1 — 1 - 1
2eM=(D+p—p)h,+ 5(0=2a=mhin=5(8=2a+37+A40) Mg+ S (p—p)ham— 5 (A+2y)hy,
(A4)

27W=—(D—p—2€e)hym— (6+ 7+ m)hy— (A+ u—29) him— 7hym— 7h

27 0=(D—p+2e)hym+ (86— 7= D)hy+ (A+ u—29)hyym— mhym— Thnm,
1 _ 1 S 1
2a<1>=E(D—zp—p—ze)hn;—E(A+4y—2u+ﬂ—2y)hlg—§(5+w+r)hm

_ _ 1 .
+ = +2a—77—7')hma—5(5—2a+ﬂ'+7’)hﬁ,

N| -

i _ 1 — 1
2= 5(D=p—4e+2p+26)hnn— 5 (A+ut2u+2y)hin= 5 (8+ 7+ 1)hy

1 — 1 _
—5(5— 2B+ 7+ 1) hymt 5(54- 2B—m—7)hpm,

— 1 S 1 — 1 —
27(1)=—(y+y)hn|+E(D+p—p+25)hnn—§(5+23+2w+3r)hn;+5(5+2ﬁ—2w—r)hnm

1 _
+7Bu=2p+y=y)hnm.

Note that these expressions are completely independent of the choice of the gauge, although a tetrad choice to first order had

to be made in Eq(AL).
Finally, theexactWeyl scalars are

Lpoz(D—36+?—p—;)0'—(5—;—3,8+;— T)K,
Y1=(D+e—p)B—(6—a+me—(a+m)o+(y+u)k,
Yr=[(6—2a+B—m—7)B—(6—a+m+7)a+(D+etetp—p)y—(A—y—y+pu—u)e
+(5—a+B—1-m)T—(A—y—ytu—pp+2vk—ro)i3,

Ys=(5+B—1y—(A—y+wat(etp)v—(B+ I\, (A5)
and

Ya=(8+3a+B+m—1)v—(A—y+3y+pu+p)\, (A6)
Note that these expressions can be trivially expanded to first perturbative order and hold when matter sources are included.

APPENDIX B: SECOND ORDER NEWMAN-PENROSE QUANTITIES

Taking the same first order choice of the tetrad to second dvekecan do this because the final aim is to plug this into an
invariant object one obtains

1
2)_ 2 1) (1 (EPNG!
1143 = =] ShiE)=hPh{D+ 2h hD) Ins,
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1
n“(z)z—[zhgzn)Jrth]%hﬁﬂl h®) —h{OhL 4 2 (h(l)h(l)+h(l)h(l)) n*, (B1)

m) = — [h<r§3+ hBh) 4 ha W [h@ 4 hR(D 4 f Uy

h<2)+ NI NV CY

mm 2 mm’ mm 2 mm mm

me+ > [h(z) +hU S e,

mm mm

We now expand up to second order the third commutator of(/&2) to obtain»® =2+ ) andA @)=\ +1E):
_ 1
vP=— (A +pt2ph Dt S (5+ 7= 0h @,
_ 1 _ _
v@=— (At u+29)hPhEl+2(5+ m= D - AOhD = S[(5+ 7 a-p)®

+(y+ PhEh B —[(u—y+9) D= (y+y)hHE

nm’

AP=— (A+,u p—2y+2yph&— (7 mh2,
@__1 (1)) NN IO 1 @@
NG'= E(A-I—,u, m— 27+2'y)hﬁhmm+(7+7'r) i hhy 2hmlh
1 1] — — 1
= SAOh = 5] (=t )= Zph+ (- y+y>h<”} - (B2)

H H . 2 2 2
Finally, using Eq.(A6) we find {2 = {2+ y{3,
P=(0+3a+ptm—n) D= (A+u+tu—y+3y\?,
YR=(6+3a+p+7—1)v&— (A+p+p—y+3YNE+(6+3a+p+7— 1)y
—(A+ptp—y+3y) D), (B3)
APPENDIX C: GAUGE INVARIANTS IN THE SCHWARZSCHILD LIMIT

In the case whea=0, we can find the following set dirst order gauge vectors assuming that &}es given by Eq(43):

o_  COS(2hy,+ 2SI I1 £, —si? Dhyy) +sinI(2imhy, —hy, 9 — 2SI 917 o)

" 2r2sind(m?+1)

. r - -
img! = m{rhw’r —2hy, +r3si? 9£E Fim(r—2M) &, T,

imgg=— {(m?+1-2,co$ 9)h,,+cos 9 sir? Fhy,

2r2 sire 9(m?+1)
+cosd sind(h,, y—2imhy,+sin? Ir & o)+ 2 sirf H(mP+sin? §) &1},
. r
&no= " gin 2a(r—2|v|)(r—3|v|){
+2imMrhy, +4mPM2g,  +2imMR3sin? 9£¢,  +2imMh,,—6Mr sif 9 &7,
+2r2sin? 9£] —sin29(3Mhyy—rhyy) —3Mh,, +rh .} (CY)

—imr2hy,  +m?r2g —AnPMr &, —imrésin 9£8
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i
(2r2(m2+1)sirt9)

¢ =
m,d

PHYSICAL REVIEW D59 124022

(—2i sin® cog ¥hy,+2m cosdth,,+2m cosd sin? Ir &,

—2ihy, sir® 9 —msirf ¥ cosdhyy—msindh,, s—2msir Ir &}, 4),

_ 2Mr2gp+hy

&=~ 2r(r—2M)

(r=2M)[rhy, +r3si? 9&¢, +im(r—2M) &L 1-2Mhy,

mt—

2r2sir? 9(r—3M

C2)
) (

&7 and f"r as given by Eqgs(46) and (45) are well defined in thea—0 limit.
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