
PHYSICAL REVIEW D, VOLUME 59, 124022
Second order gauge invariant gravitational perturbations of a Kerr black hole
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We investigate higher than the first order gravitational perturbations in the Newman-Penrose formalism.
Equations for the Weyl scalarc4 , representing outgoing gravitational radiation, can be uncoupled into a single
wave equation to any perturbative order. For second order perturbations about a Kerr black hole, we prove the
existence of a first and second order gauge~coordinates! and tetrad invariant waveform,c I , by explicit
construction. This waveform is formed by the second order piece ofc4 plus a term, quadratic in first order
perturbations, chosen to makec I totally invariant and to have the appropriate behavior in an asymptotically flat
gauge.c I satisfies a single wave equation of the formTc I5S, whereT is the same wave operator as for first
order perturbations andS is a source term build up out of~known to this level! first order perturbations. We
discuss the issues of imposition of initial data to this equation, computation of the energy and momentum
radiated and wave extraction for direct comparison with full numerical approaches to solve Einstein equations.
@S0556-2821~99!06912-X#
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I. MOTIVATION AND OVERVIEW

The prediction of accurate waveforms generated dur
the final orbital stage of binary black holes has becom
worldwide research topic in general relativity during this d
cade. The main reason is that these catastrophic astrophy
events, considered one of the strongest sources of gra
tional radiation in the universe, are potentially observable
the Laser Interferometric Gravitational Wave Observat
~LIGO!, VIRGO, and other interferometric detectors. For
strong nonlinear features this black hole merger problem
only fully tractable by direct numerical integration~with su-
percomputers! of Einstein equations. Several difficulties r
main to be solved in this approach such as the presenc
early instabilities in the codes for numerical evolution
Einstein theory@1# and finding a new prescription for astro
physically realistic initial data representing orbiting bla
holes @2,3#. Meanwhile, perturbation theory has shown n
only to be the main approximation scheme for computat
of gravitational radiation, but also a useful tool to provi
benchmarks for full numerical simulations. From the theor
ical point of view perhaps the more relevant contributi
during the nineties in perturbative theory has been the ‘‘cl
limit approximation’’ @4#. It considers the final merger sta
of two black holes as described by asingle perturbed one.
This idea was applied to the head-on collision of two bla
holes and the emitted gravitational radiation was compu
by means of the techniques used in first order perturba
theory around a Schwarzschild black hole. When the res
of this computation have been compared with those of
full numerical integration of Einstein equations the agre
ment was so good that it was disturbing@5#. This encouraged
the significant effort invested in the development of a sec
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order Zerilli formalism of metric perturbations about th
Schwarzschild background. The method was successf
implemented with particular emphasis on a comparison w
the fully numerically generated results. In the case of t
initially stationary black holes~Misner data! the agreement
of the results is striking@6#. Second order perturbation theor
confirmed the success of the close limit approximation w
an impressive agreement in both waveforms and energy
diated against the full numerical simulations. There has b
a tantamount success in the extension of these studies t
case of initially moving towards each other black holes@7#
and for slowly rotating ones@8# ~see Ref.@9# for a compre-
hensive review!.

All the above close limit computations are based on
Zerilli @10# approach to metric perturbations of a Schwar
child, i.e., nonrotating, black hole. This method uses
Regge-Wheeler@11# decomposition of the metric perturba
tions into multipoles~tensor harmonics!. Einstein equations
in the Regge-Wheeler gauge reduce to two single wave e
tions for the even and odd parity modes of the gravitatio
perturbations. There is, however, the strong belief that bin
black holes in a realistic astrophysical scenario merge
gether into a single, highly rotating, black hole. There is a
concrete observational evidence of accreting black holes@12#
that places the rotation parameter as high asa/M.0.95. Fi-
nally, highly rotating black holes provide a new scenario
compare perturbative theory with full numerical integratio
of Einstein equations.

The Regge-Wheeler-Zerilli techniques cannot be
tended to study perturbations on a Kerr black hole ba
ground~see Ref.@8# for the slowly rotating case!. In this case
there is not a multipole decomposition of metric perturb
tions ~in the time domain! and Einstein equations cannot b
uncoupled into wave equations. A reformulation of the gra
tational field equations due to Newman and Penrose@13#,
based on the Einstein equations and Bianchi identities p
jected along a null tetrad, allowed Teukolsky@14# to write
©1999 The American Physical Society22-1
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down a single master wave equation for the perturbation
the Kerr metric in terms of the Weyl scalarsc4 or c0. This
formulation has several advantages:~i! It is a first order
gauge invariant description.~ii ! It does not rely on any fre-
quency or multipole decomposition.~iii ! The Weyl scalars
are objects defined in the full nonlinear theory and a o
parameter perturbative expansion of it was proved to prov
a reliable account of the problem@15#. In addition, the
Newman-Penrose formulation constitutes a simpler and m
elegant framework to organize higher order perturbat
schemes as we will see in the next section.

Since the 1970s, the Teukolsky equation for the first or
perturbations around a rotating black hole has been Fou
transformed and integrated in the frequency domain fo
variety of situations where initial data played no role~see
Ref. @16# for a review!. Very recently it was proved@17,18#
that nothing is intrinsically wrong with the Teukolsky equ
tion when sources extend to infinity and that a regularizat
method produces sensible results. In order to incorporate
tial data and have a notable computational efficiency, c
crete progress has been made recently to complete a co
tational framework that allows to integrate the Teukols
equation in thetime domain: First, an evolution code for
integration of the Teukolsky wave equation is now availa
@19# and successfully tested@20#. Second, nonconformally
flat Cauchy data, compatible with Boyer-Lindquist slices
the Kerr geometry, began to be studied with a Kerr-Sch
@21,22# or an axially symmetric@23,24# ansatz. Finally, an
expression connectingc4 to only Cauchy data has bee
worked out explicitly@25,20,26#.

Assuming that we can solve for the first order perturb
tions problem, we decided to go one step forward in sett
the formalism for the second order perturbations. As moti
tion for this work we can cite the spectacular results p
sented in Ref.@6# for the head-on collision and the hope
obtain similar agreement for the orbital binary black ho
case in the close limit. Second order perturbations of
Kerr metric may even play a more important role in this ca
since we expect the perturbative parameter to be linear in
separation of the holes@27# while in the head on case it i
quadratic in the separation parameter@29#. The nonrotating
limit of our approach will also provide an independent te
and clarify some aspects of Ref.@6# results. High precision
comparison with full numerical integration of Einstein equ
tions using perturbative theory as benchmarks is also on
the main goals in this program as well as a the developm
of a tool to explore a complementary region of the parame
space to that reachable by full numerical methods. An
portant application of second order perturbations is to p
vide error bars. It is well known that linearized perturbati
theory does not provide, in itself, any indication on ho
good the perturbative approximation is. In fact, it is in ge
eral very difficult to estimate the errors involved in replaci
an exact solution of the full Einstein equations with an a
proximate ~perturbative! solution, i.e., to determine how
small a perturbative parameter« must be in order that the
approximate solution have sufficient accuracy. Moreov
first order perturbation theory can be very sensitive to
choice of parametrization; i.e., different choices of the p
12402
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turbative parameter can affect the accuracy of the lineari
approximation@28#. The only reliable procedure to resolv
the error and/or parameter arbitrariness is to carry out c
putations of the radiated waveforms and energy to sec
order in the expansion parameter. The ratio of second o
corrections to the linear order results constitutes the o
direct and systematically independent measure of the go
ness of the perturbation results.

In the next section we extend to second~and higher! order
the Teukolsky derivation of the equation that describes fi
order perturbations about a Kerr hole. To do so we cons
the Newman-Penrose@13# formulation of the Bianchi identi-
ties and Einstein equations, make a perturbative expansio
it, and decouple the equation that describes the evolutio
second~and higher! order perturbations. This equation tak
the following form

T̂c (2)5S@c (1),] tc
(1)#, ~1!

where c5̇(r (0))24c4 , T̂ is the same~zeroth order! wave
operator that applies to first order perturbations@see Eq.
~12!#, and S is a source term quadratic in the first ord
perturbations@see Eqs.~9!–~11!#.

In Sec. III A we describe how to compute the sourc
appearing in Eq.~1!, in terms of solutions of the wave equa
tions forc4

(1) or c0
(1) only, which are the objects we directl

obtain from the integration of the first order Teukolsky equ
tion. Section III B discusses the issue of building upc4

(2)

and] tc4
(2) out of initial data~which we assume are given t

first and second order!. In Sec. III C we recall the equation
for the computation of the second order total radiated ene
and momentum.

Higher than first order calculations are always charac
ized by an extraordinary complexity and a number of sub
potentially confusing, gauge issues mainly due to the f
that a general second order gauge invariant formulation
not yet at hand in the literature. In general, gauge invari
quantities have an inherent physical meaning and they a
matically lead to the simpler and direct interpretation of t
results. In the Newman-Penrose formalism one has not o
to look at gauge invariance~i.e., invariance under infinitesi
mal coordinates transformations!, but also at invariance un
der tetrad rotations~see Secs. IV A and IV B!. More specifi-
cally, the problem here is that the waveformc4

(2) in Eq. ~1! is
neither first order coordinate gauge invariant nor tetrad
variant. The question that arises therefore is whetherc4

(2) can
be unambiguously compared with, for instance, full nume
cal computations of the covariantc4

Num. To handle this
problem we build up a coordinate and tetrad invariant qu
tity up to second order,c I

(2) , which has the property of re
ducing to the linear part~in the second order perturbations
the metric! of c4

(2) in an asymptotically flat gauge at th
‘‘radiation zone,’’ far from the sources. This property e
sures us direct comparison withc4

Num by constructingc4
(1)

1c4 I
(2) . In Secs. IV A–IV C we give an explicit and gener

prescription for the construction of second order gauge
tetrad invariant objects representing outgoing radiation.
do so we impose the waveformc I

(2) to be invariant under a
2-2
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‘‘combined’’ transformation of both the coordinates and t
tetrad frame to first and second order. The resulting sec
order invariant waveform can then be built up out of t
original c4

(2) plus corrections~quadratic in the first orde
quantities! that cancel out the gauge and tetrad depende
of c4

(2) . Finally, in Sec. V, along with a short summary, w
discuss the astrophysical and numerical applications of
result. We end the paper with three appendices: Append
refers Sec. III A and contains explicit formulas to compu
the first order perturbative Newman-Penrose quanti
~Weyl scalars, spin coefficients, and perturbed tetrad! in
terms of the first order metric perturbations needed to b
up the source term in the wave equation forc I

(2) . Appendix
B refers to Sec. III B and contains formulas to compute
second order spin coefficients in terms of the second o
metric perturbations and product of first order perturbatio
needed, for instance, to build upc I

(2) in terms of initial data.
Finally, in Appendix C we explicitly give the expressions
build up the gauge invariant waveform holding in th
Schwarzschild limit case, i.e., fora50.

In this paper for our notation we use Refs.@30,13# con-
ventions. Background quantities carry the superscript~0! if
needed for clarity and are all explicitly given in the cite
references, while superscripts~1! and ~2! mean pieces of
exclusivelyfirst and second order, respectively; for instan
we expandc5c (0)1c (1)1c (2)1•••.

II. DECOUPLED EQUATIONS FOR HIGHER ORDER
GRAVITATIONAL PERTURBATIONS

Let us consider the following two of the eight comple
Bianchi identities written in the Newman-Penrose formali
~projected along a complex null tetrad! ~ @31#, Chap 1.8! ~see
also Appendix A!

~D14e2r!c42~ d̄14p12a!c313lc2

54p@~d̄22t̄12a!Tnm̄2~D12g22ḡ1m̄ !Tm̄m̄

2l~Tnl1Tmm̄!1s̄Tnn1nTlm̄#, ~2!

~d14b2t!c42~D14m12g!c313nc2

54p@~d̄2 t̄12b̄12a!Tnn2~D12g12m̄ !Tnm̄

1n~Tnl1Tmm̄!1 n̄Tm̄m̄ 2lTnm#, ~3!

and the following one out of the 18 complex Ricci identiti
@31#

~D1m1m̄13g2ḡ !l2~ d̄13a1b̄1p2 t̄ !n1c450.
~4!

HereD5 l m]m ,D5nm]m ,d5mm]m .
In what follows it is convenient to define the operators
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d̄35̇~ d̄13a1b̄14p2 t̄ !, d̄45̇~D14m1m̄13g2ḡ !.
~5!

In order to find a decoupled equation forc4 we operate
with1 d̄4

(0) on Eq.~2!, with d̄3
(0) on Eq.~3!, and then subtrac

to obtain

@ d̄4
(0)~D14e2r!2d̄3

(0)~d14b2t!#c4

1@ d̄3
(0)~D14m12g!2d̄4

(0)~ d̄14p12a!#c3

23@ d̄3
(0)n2d̄4

(0)l#c25T@matter#, ~6!

whereT@matter# is defined in Eq.~10! below.
In the above equationc4 ,c3 ,n andl vanish on the back-

ground, i.e., on the Kerr geometry, but so far this equation
exact; no perturbative expansion has been made yet. Le
now think how to use Eq.~6! in a perturbative scheme. In
this context, the superscript~p! appearing in the formulas
below stands for a sum over all perturbative orders fromp
51 up top5n21 ~i.e., (p51

n21) wheren51,2, . . . is an ar-
bitrary order we want to study.

To fix ideas let us first discuss second order perturbatio
n52. The procedure for higher order perturbations will
clearly analogous. We want to have an uncoupled equa
for c4

(2) . Sincec4
(0)50, the operator in the first bracket o

the left hand side of Eq.~6! is needed to zeroth plus firs
order. The zeroth order acts onc4

(2) and generates the sam
wave operator as for the first order perturbations. The fi
order operator in the first bracket on the left hand side of
~6! acts onc4

(1) and its result can be considered as genera
an additional source term since it is supposed we have
ready solved for the first order perturbation problem pre
ously. The second bracket on the left hand side of Eq.~6! can
be considered as a pure source term as well since its ze
order vanishes:

d̄3
(0)~D14m12g!(0)2d̄4

(0)~ d̄14p12a!(0)50

~see Ref.@30# for an analogous proof!, and then we have to
considerc3

(1) , i.e., only to first perturbative order~in gen-
eral, to all lower perturbative orders than the one cons
ered!. The last set of brackets on the left hand side of Eq.~6!
includes terms depending onn (2) and l (2) since c2

(0)

@52M /(r 2 ia cosq)3# is nonvanishing. To get rid of thes
second order spin coefficients we use Eq.~4! multiplied to
the left byc2

(0) :

@ d̄3
(0)n (n)2d̄4

(0)l (n)#c2
(0)5c2

(0)(
p51

n21

@~ d̄323p!(n2p)n (p)

2~ d̄423m!(n2p)l (p)#1c2
(0)c4

(n) ,

1Here we use operators defined on the background instead o
~5! for the sake of simplicity.
2-3
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where we have made use of the pure zeroth order relat
D (0)c2

(0)523m (0)c2
(0) and d̄ (0)c2

(0)523p (0)c2
(0) coming

from the Bianchi identities. The above result allow us ag
to write the terms depending onc2 as source terms.

We finally obtain the equation that describes thenth order
perturbations:

$d̄4
(0)~D14e2r!(0)2d̄3

(0)~d14b2t!(0)23c2
(0)%c4

(n)

5S4@c (n2p),] tc
(n2p)#1T@matter#, ~7!

where

c4
(n)5̇2~Cabgdnam̄bngm̄d!(n) ~8!

and the source terms are~where brackets represent operato!

S45 (
p51

n21

$@ d̄3
(0)~d14b2t!(n2p)2d̄4

(0)~D14e2r!(n2p)#

3c4
(p)2@ d̄3

(0)~D14m12g!(n2p)

2d̄4
(0)~ d̄14p12a!(n2p)#c3

(p)13@ d̄3
(0)n (n2p)

2d̄4
(0)l (n2p)#c2

(p)23c2
(0)@~ d̄323p!(n2p)n (p)

2~ d̄423m!(n2p)l (p)#% ~9!

and

T@matter#5 (
p51

n21

$d̄4
(0)@~ d̄22t̄12a!(n2p)Tnm̄

(p)

2~D12g22ḡ1m̄ !(n2p)Tm̄m̄
(p)

#1d̄3
(0)@~D12g

12m̄ !(n2p)Tnm̄
(p)

2~ d̄2 t̄12b̄12a!(n2p)Tnn
(p)#%,

~10!

whereTnm̄
(p)

5(Tmnnmm̄n)(p), Tm̄m̄
(p)

5(Tmnm̄mm̄n)(p), and Tnn
(p)

5(Tmnnmnn)(p). Note that in our formalism we have take
into account matter terms in order to be used in future co
putations including an orbiting particle or an accretion d
around a Kerr hole. By summing up over alln orders in Eq.
~7! one should be able to recover solutions to the full E
stein equations.

Note also that if one wants to act onc (n)5̇r24c4
(n) rather

than c4
(n) , one should rescale all the terms~including the

source! in Eq. ~7! by a factor 2r24S. After this rescaling,
Eq. ~7! takes the following familiar form:

T̂c (n)52r24S$S4@c (n2p),] tc
(n2p)#1T@matter#%.

~11!

In Ref. @30# the wave operator was transformed to act on
field c (1)5̇(r (0))24c4

(1) rather thanc4
(1) ~in order to achieve

separability of the variables in the frequency domain! and
takes the following form, in Boyer-Lindquist coordinate
(t,r ,q,w) and Kinnersley tetrad:
12402
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T̂5F ~r 21a2!2

D
2a2 sin2 qG] tt1

4Mar

D
] tw

24F r 1 ia cosq2
M ~r 22a2!

D G] t2 D2] r~D21] r !

2
1

sinq
]q~sinq]q!2F 1

sin2 q
2

a2

D G]ww

1 4Fa~r 2M !

D
1

i cosq

sin2 q
G]w1~4 cot2 q12!, ~12!

whereM is the mass of the black hole,a its angular momen-
tum per unit mass,S[r 21a2 cos2 q, and D[r 222Mr

1a2. Note that if one wants to act onc (2)5̇(r (0))24c4
(2)

rather thanc4
(2) in Eq. ~6!, then one should consistently re

cale all the terms~including the source! by a factor of
2(r (0))24S @see Eq.~11!#.

It is easy to show that an equation similar to Eq.~11! can
be obtained for the Weyl scalar fieldc0, upon exchange of
the tetrad vectorsl↔n and m̄↔m. In this paper we will
explicitly work with c4 since it directly represents outgoin
gravitational radiation. Since at every level of the hierarc
of perturbations we have the zeroth order wave operator
ing onc4

(n) , we could always use the method of full separ
tions of variables. In this paper, however, we will not pr
ceed so because we want our equations to be suitable
evolution in the time domain from given Cauchy data.

III. PRACTICAL ISSUES

A. Gauge choice and computation of the source

As we will show explicitly in the next section,c4 is not
invariant neither under first order coordinates transform
tions nor second order tetrad rotations. Thus, in order
integrate Eq.~11!, one would have to evolvec in a fixed
gauge~and tetrad! and then compute physical quantities, lik
radiated energy and waveform, in an asymptotically fl
gauge. This sort of approach was followed in Ref.@8# to
study second order perturbations of a Schwarzschild bl
hole in the Regge-Wheeler gauge which is a ‘‘uniqu
gauge in the sense that it allows one to invert expression
terms of generic perturbations and thus recover the ga
invariance. There is no generalization of the Regge-Whe
gauge when studying perturbations of a Kerr hole, essenti
because one cannot perform a simple multipole decomp
tion of the metric. Instead, Chrzanowski@32# found two con-
venient gauges that allowed him to invert the metric pert
bations in terms of potentialsC IRG or CORG satisfying the
same wave equations as the Weyl scalarsr24c4 or c0, re-
spectively.

In the ingoing radiationgauge~IRG!

hll
(1)505hln

(1)505hlm
(1)505hlm̄

(1)
505hmm̄

(1) , ~13!

the homogeneous~for vacuum! metric components can b
written, in the time domain, in terms of solutions to the wa
equation forr24c4

(1) only, as follows:
2-4
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~hmn
(1)! IRG52 Re„$2 l ml n~d1ā13b2t!~d14b13t!

2mmmn~D2r!~D13r!1 l (mmn)

3@~D1 r̄2r!~d14b13t!

1~d2ā13b2p̄2t!~D13r!#%~C IRG!…,

~14!

where ‘‘Re’’ stands for the real part of the whole object
ensure that the metric be real@33,34# and we made thee
50 choice. Note that in this gauge the metric potential h
the property to be transverse (hmn

(1)l m50) and traceless
(hm

(1) m50) at the future horizon and past infinity. This
thus a suitable gauge to study gravitational radiation effe
near the event horizon.

The complementary~adjoint! gauge to the ingoing radia
tion gauge is theoutgoing radiationgauge~ORG!

hnn
(1)505hln

(1)505hnm
(1)505hnm̄

(1)
505hmm̄

(1) , ~15!

where the metric potential now has the property to be tra
verse (hmn

(1)nm50) and traceless (hm
(1) m50) at the past ho-

rizon and future infinity. It is then an example of a suitab
asymptotically flat gauge to directly compute radiated ene
and momenta at infinity~see Sec. III C!. In this gauge, the
homogeneous metric components can be written in term
solutions to the wave equation forc0

(1) as

~hmn
(1)!ORG52 Re„r24$2nmnn~ d̄23a2b̄15p!

3~ d̄24a1p!2m̄mm̄n~D15m23g1ḡ !

3~D1m24g!1n(mm̄n)

3@~ d̄23a1b̄15p1 t̄ !

3~D1m24g!1~D15m2m̄23g2ḡ !

3~ d̄24a1p!#%~CORG!…. ~16!

Note that Eq.~13! @or Eq.~15!# is four conditions on thereal
part of the metric. Although Eq.~13! @or Eq. ~16!# does not
fix completely the gauge freedom, the Chrzanowski me
choice given in Eq. ~14! @or Eq. ~16!#, being a specific
choice between all the possible solutions satisfying th
conditions,does uniquely fixall of the extra freedom.

The potentialsC IRG and CORG satisfy the Teukolsky
equation forr24c4 andc0, respectively. To determine them
we can invert expression~13! or ~15! and its time derivatives
at the initial Cauchy surface to relate the potential to our fi
order initial data. Alternatively, one can use the relations
these potentials to gauge invariant objects likec0 or r24c4.
For instance, in the IRG we can take the relationc0
5DDDDC IRG @see Eq.~5.28! of Ref. @34## or in the ORG
the adjoint relationc45DDDDCORG. Here we lower the
order of the time derivatives ofC to first order ones by
repeated use of the Teukolsky equation potentials sa
@see, for instance, Eq.~5.20! of Ref. @34##. Since one can
always make a mode decomposition of thew dependence
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one ends up with a set of potential equations forCm(r ,u)
and ] tCm(r ,u) at the initial time. Boundary conditions ar
chosen such that we obtain bounded solutions. The num
cal integration of these equations is left for a forthcomi
paper@42#. These solutions give us the initial data to int
grate the wave equations and then build up metric pertu
tions form ~13! or ~15!. The imposition of initial data toc4
andc0 is discussed in the next subsection.

Finally, in order to integrate Eq.~11! we assumed knowl-
edge of the source term~9! since it depends only on firs
order perturbations. In practice, one solves the Teukol
equation forc4

(1) ~and/orc0
(1)) and builds up metric pertur

bations. It then remains the task of writing all first ord
Newman-Penrose quantities in terms ofhmn . This is not a
trivial task; so we give all the equations relating th
Newman-Penrose fields to the metric perturbations in A
pendix A.

B. Imposition of initial data

To start the evolution one has to be able to impose ini
data to the second order invariant waveform. We first n
that, from its definition, we can write

c4
(2)52Cnm̄nm̄

(2)
1

1

4
hnn

(1)hm̄m̄
(1)

~c2
(0)1c̄2

(0)!

22S hln
(1)2

1

2
hmm̄

(1) Dc4
(1)22hnm̄

(1)
c3

(1) . ~17!

For the sake of definiteness we have used here Eq.~A1!
choice of the first order tetrad, but it is clear that the abo
expression can be written in a generic tetrad. Besides, s
we are going to build up the invariantc I

(2) , any choice of the
tetrad~and the gauge! leads to the same, correct, result.

In Ref. @26# we have completely expressedc4
(1) ~and its

time derivative! in terms of hypersurface data only. Th
expression2

Cnm̄nm̄52@ (3)Ri jkl 12Ki [kKl ] j #n̂
i m̂̄j n̂km̂̄l

18N@K j [k,l ]1
(3)G j [k

p Kl ] p#n̂[0m̂̄j ] n̂km̂̄l

24N2F (3)Rjl 2K jpKl
p1KK jl 2Tjl

1
1

2
Tgjl G n̂[0m̂̄j ] n̂[0m̂̄l ] ~18!

and its time derivative hold in general, to all orders. He

N5(2gtt)21/2, Ni5N2gti , n̂m5nm1Nint, and m̂̄m5m̄m

1Nim̄t. When we expand the above relation to a given p
turbative ordern, the proof given in Ref.@26# implies thatc4

2Note that the factor of 8 appearing in front of the second se
brackets corrects an obvious misprint in Ref.@26#. This also applies
to Eq. ~3.2! for ] tc4

(1) .
2-5
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and] tc4 will be independent of the lapse and shift of ord
n ~but will depend, of course, on all lower perturbative o
ders ofN andNi).

To express our second order objectc I
(2) in terms of the
s
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12402
three-metric and the extrinsic curvature of the initial hyp
surface we will proceed as in Ref.@26#, taking now into
account the additional terms, quadratic in the first order p
turbations. We then find
Cnm̄nm̄
(2)

52@ (3)Ri jkl 12Ki [kKl ] j # (2)n̂
i m̂̄j n̂km̂̄l18N(0)@K j [k,l ]1

(3)G j [k
p Kl ] p# (2)n̂

[0m̂̄j ] n̂km̂̄l

24N(0)
2 F (3)Rjl 2K jpKl

p1KK jl 2Tjl 1
1

2
Tgjl G

(2)

n̂[0m̂̄j ] n̂[0m̂̄l ]18N(1)@K j [k,l ]1
(3)G j [k

p Kl ] p# (1)n̂
[0m̂̄j ] n̂km̂̄l

28N(0)N(1)F (3)Rjl 2K jpKl
p1KK jl 2Tjl 1

1

2
Tgjl G

(1)

n̂[0m̂̄j ] n̂[0m̂̄l ] . ~19!
i-
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Note that the first three terms have the same structure a
the first order case~for terms linear inhi j

(2) andKi j
(2)). There

is no dependence on the second order lapse and shift
N(1) and the perturbative shift now explicitly appear. To r
express them in terms of hypersurface data, we can make
of Eq. ~14! and expressions in Appendix A that relate all fir
order quantities toCORG, directly expressible in terms o
hypersurface data only as discussed before, and the s
technique allow us to build up the additional quadratic ter
occurring inc I

(2) . Since the totalc I
(2) was originally invari-

ant, its final expression is not affected by the use of th
gauge choice@such as Eq.~14! or ~16!# at an intermediate
step.

For ] tc I
(2) , the procedure is the same as before. We n

that terms linear inhi j
(2) andKi j

(2) will have the same structur
as in the first order case; so Eq.~3.2! of Ref. @26# applies
upon change of the subscript~1! by ~2!. The additional
terms, quadratic in the first order perturbations, can be
rectly written in terms of] tC IRG by taking the time deriva-
tive of Eq. ~14! and expressions in Appendix A.

In Appendix B we give an independent derivation relati
c4

(2) to the four-geometry. We split

c4
(2)5̇c4L

(2)1c4Q
(2) , ~20!

where the first term on the right hand side is linear in
second order perturbations of the metric, i.e.,hmn

(2) and is
formally the same asc4

(1) , replacinghmn
(2)→hmn

(1) . The second
term on the right hand side, i.e.,c4Q

(2) , accounts for the qua
dratic part in first order metric perturbations.

C. Radiated energy and momenta

The energy and momenta radiated at infinity to seco
perturbative order can be computed using the standard m
ods of linearized gravity~here hmn stands forhmn

(1)1hmn
(2)

1••• defined in asymptotically flat coordinates at future n
infinity!. For outgoing waves@30#
in

ut
-
se

me
s

a

te

i-

e

d
th-

l

lim
r→`

c452
1

2
~] t

2hq̂q̂2 i ] t
2hq̂ŵ!, ~21!

the total radiated energy per unit time (u5t2r ) can thus be
obtained from the Landau-Lifschitz pseudotensor as

dE

du
5 lim

r→`
H r 2

4pEV
dVU E

2`

u

dũ c4~ ũ,r ,q,w!U2J ,

dV5sinq dq dw, ~22!

where we can considerc45c4
(1)1c4

(2) AF1•••.
Note that Eq.~22! can be equivalently obtained by d

rectly calculating the Bondi definition of the mass carri
away by the gravitational radiation by imposing asympto
cally flat conditions to the full Newman-Penrose quantities
a general vacuum spacetime. In this way, one can also c
pute the total linear momentum radiated at infinity per u
time along cartesian-like coordinates as@35#

dPm

du
52 lim

r→`
H r 2

4pEV
dV l̃ mU E

2`

u

dũ c4~ ũ,r ,q,w!U2J ,

l̃ m5~1,2sinu cosw,2sinu sinw,2cosu!, ~23!

and the angular momentum carried away by the waves@36#
can be obtained from

dJz

du
52 lim

r→`
H r 2

4p
ReF E

V
dVS ]wE

2`

u

dũ c4~ ũ,r ,q,w! D
3S E

2`

u

du8E
2`

u8
dũ c̄4~ ũ,r ,q,w! D G J . ~24!

One can directly compute the second order correction
the energy and momentum radiated atJ1 usingc4

(2) , pro-
vided one is working~to first order! in an asymptotically flat
gauge ~for instance, the outgoing radiation gauge!.
Equations~22!–~24!, written in terms of the full, nonlinear
c4, are covariant expressions, holding in any asymptotica
2-6



o
u

tiv
a

ee

o
t

b
s
e

ac
th
s

on
ug

ic
th
a

o

in
tio
ns
ca
n

te
s

th
th
to

de
n
r
n

t
re

n
la

s

six
be

ex-
any

III,

e to
q.

a-

hat

ion

the
s
k
-

SECOND ORDER GAUGE INVARIANT GRAVITATIONAL . . . PHYSICAL REVIEW D 59 124022
flat spacetime. To first perturbative order,c4
(1) is directly

gauge and tetrad invariant; so one can forget that the ab
equations had been obtained in an asymptotically flat ga
and think of them as gauge~and tetrad! invariant. We would
like to have the same nice property to second perturba
order, butc4

(2) is not invariant. One should then build up
gauge~and tetrad! invariant waveformc I

(2) that, in an as-
ymptotically flat gauge, coincides withc4

(2) AF . This will
ensure us the direct use of Eqs.~22!–~24! in terms of our
invariant object, i.e.,c I

(2) given in Eq.~41!.

IV. CONSTRUCTION OF THE SECOND ORDER
COORDINATE AND TETRAD INVARIANT WAVEFORM

The general covariance~i.e., diffeomorphism invariance!
of Einstein’s theory of gravity guarantees the complete fr
dom in the choice of the spacetime coordinates~gauge! to
describe physical phenomena. In the relativistic theory
perturbations one always introduces two spacetimes,
physical ~perturbed! spacetime and an idealized~unper-
turbed! background. In this way the perturbations can
viewed as fields propagating on the background. Con
quently, to compare any physical quantity in the perturb
spacetime with the same quantity in the unperturbed sp
time it is necessary to introduce a diffeomorphism about
pairwise identification points between the two manifold
The arbitrariness in the choice of this point identificati
map introduces an additional freedom to the usual ga
freedom of general relativity and is at the origin of thegauge
problem in perturbation theory@37#. A convenient way to
deal with this gauge problem is to construct quantities wh
are invariant under a change of the identification map of
perturbed spacetime while the background coordinates
held fixed.

Invariance in the Newman-Penrose formalism has a m
restrictive meaning than in the standard~metric! perturbation
theory, since the introduction of a tetrad frame at every po
of the spacetime now requires that any physical perturba
must be invariant not only under infinitesimal gauge tra
formations, but also under infinitesimal rotations of the lo
tetrad frame. In this section we briefly review the basic co
cepts of ~higher order! tetrad invariance and coordina
~gauge! invariance in the framework of the Newman-Penro
formalism. We start with our second order objectc4

(2) ,
which is invariant neither under first order changes of
coordinates nor under second order tetrad rotations. We
show how to build up a tetrad invariant object by adding
c4

(2) a conveniently chosen term, quadratic in the first or
perturbations. In this way the new object will be invaria
under the~six-parameter! tetrad rotations. The procedure fo
the construction of the totally invariant object, i.e., also u
der coordinate choices~four parameters!, is analogous, bu
algebraically more involved. The final result is a general p
scription for constructing totally invariant~I! quantities di-
rectly related to the~outgoing! gravitational radiation.

A. Tetrad invariance

The six-parameter group of homogeneous Lorentz tra
formations, which preserves the tetrad orthogonality re
12402
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tions l m nm52mmm̄m51 ~and all other scalar product
zero!, can be decomposed into three Abelian subgroups.

~i! Null rotation of type ~I! which leaves thel m un-
changed:

l̃ m→ l m

ñm→nm1am̄m1āmm1aāl m ,

m̃m→mm1al m . ~25!

~ii ! Null rotation of type ~II !, which leaves thenm un-
changed:

l̃ m→ l m1bm̄m1b̄mm1bb̄nm ,

ñm→nm ,

m̃m→mm1bnm . ~26!

~iii ! Boost and rotation of type~III !:

l̃ m→Alm ,

ñm→A21nm ,

m̃m→exp~ iu!mm , ~27!

where (a,b) are two complex functions and (A,u) two real
functions on the four-dimensional manifold, hence the
arbitrary parameters. When these functions are taken to
infinitesimally small the above transformations can be
panded up to an arbitrary order and then applied to
Newman-Penrose quantity.

Under a combined tetrad rotation of classes I, II, and

c̃4
(2)→c4

(2)12@~A21!2 iu#c4
(1)14āc3

(1)16ā2c2
(0) .

~28!

The idea here is to supplementc4
(2) with additional terms

that make the whole object tetrad invariant. Since we hav
add those ‘‘correcting’’ terms on both sides of the field E
~11!, we will write them as powers of first order perturb
tions so that they can be added to the source term~9!. The
first step towards constructing this quantity is to note t
( l r)2(mq)2c4 /@( l r (0))2(mq (0))2# is invariant under rota-
tions of class III. The second order piece of this combinat
of fields is

c4
(2)12S l r (1)

l r (0)
1

mq (1)

mq (0)D c4
(1) . ~29!

Note that the second addend exactly compensates for
variation of class III ofc4

(2) @proportional to the parameter
A21 andu in Eq. ~28!#. In addition one can easily chec
that the second term in Eq.~29! is also invariant under rota
tions of classes I and II with the Boyer-Lindquist choice@30#
of the zeroth order tetrad:
2-7
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~ l m!(0)5S r 21a2

D
,1,0,

a

D D ,

~nm!(0)5
1

2~r 21a2 cos2 q!
~r 21a2,2D,0,a!,

~mm!(0)5
1

A2~r 1 ia cosq!
~ ia sinq,0,1,i /sinq!,

~30!

sincel r (1), mq (1), andc4
(1) are all invariant3 under rotations

of classes I and II. Still, the first term in Eq.~29! varies with
respect to rotations of classes I and II. To correct that
note that under combined rotations I, II, and III,

c̃3
(1)→c3

(1)13āc2
(0) . ~31!

This allows us to solve for a¯and replace it into the new
expression@its form suggested by the a¯dependence in the
transformation~28!# that supplement Eq.~29!. ~Note that this
replacement is successful becausec3 vanishes to zeroth or
der.! Thus, the object

c4
(2)12c4

(1)S l r (1)

l r (0)
1

mq (1)

mq (0)D 2
2

3

~c3
(1)!2

c2
(0)

~32!

is second order tetrad invariant.
While the above combination is tetrad invariant, one c

see from the general behavior of the Weyl scalars and
coefficients in an asymptotically flat gauge~see, for instance
Sec. VII of Ref.@13#! that the quadratic term we added do
not vanish relative toc4

(2) for large r, i.e., goes likeO(1/r )
as well. In order to have the desired property that in
radiation zone the invariant object approachesc4

(2) AF (AF
stands for an asymptotically flat gauge!, we will subtract
from Eq. ~32! another quadratic part that both cancels
added asymptotic behavior and is tetrad~and gauge! invari-
ant in order to preserve the gained invariance of Eq.~32!.
Symbolically, if we callQ the quadratic part we added toc4
in Eq. ~32!, we search for

c4 TI
(2) 5̇c4

(2)1Q2QI
AF . ~33!

A practical way to build upQI
AF is to use relation~16!, i.e.,

the perturbed metric in the outgoing radiation gauge, wh
is an asymptotically flat gauge at infinity. In this gauge,
evaluate the quadratic partQ in Eq. ~32! and once, reex-
pressed all in terms ofCORG via Eq.~16!, we can forget that
we used the outgoing radiation gauge and seeQI

ORG as a

3It is clear that we can write the tetrad invariant object in terms
a generic zeroth order tetrad by replacing in Eq.~32! l r (1)→ l r (1)

2mr c̄1
(1)/(3c̄2

(0))2m̄rc1
(1)/(3c2

(0)) and mq (1)→mq (1)2 l qc3
(1)/

(3c2
(0)). We take the background tetrad~30! for the sake of sim-

plicity.
12402
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tetrad and gauge invariant object, sinceCORG is totally in-
variant. In the outgoing radiation gaugec4

(2) ~and c4 TI
(2) )

reduces toc4 L
(2) as can be directly deduced from the expre

sions given in Appendix B.

B. Gauge invariance

The meaning of gauge invariance under infinitesimal
ordinate changes, to an arbitrary order in the perturbatio
was explicitly elucidated in Ref.@38# following the approach
of Ref. @39#. Locally, these gauge transformations are t
four-parameter group of the inhomogeneous Lorentz tra
formations. Up to second order in the perturbations an infi
tesimal change of coordinates

x̃m→xm1«j (1)
m 1

1

2
«2~j (1);n

m j (1)
v 1j (2)

m !, ~34!

where j (1)
m and j (2)

m are two independent arbitrary vecto
fields and« a small ~perturbative! parameter, produces th
following effect on the first and second order perturbatio
of any quantityF ~scalar, vector, or tensor field! that we
assume can be expanded asF(0)1F(1)1F(2)1•••,

F̃(1)→F(1)1Lj(1)
F(0), ~35!

F̃(2)→F(2)1Lj(1)
F(1)1

1

2
~Lj(1)

2 1Lj(2)
!F(0),

~36!

where, for the sake of completeness, we recall here explic
the basic coordinate expressions of the Lie derivative alon
vector fieldjm:

LjF5F ,mjm if F is a scalar,

L jF
n5F ,m

n jm2j ,m
n Fm if Fn is a vector,

~37!

LjFab5Fab,mjm1j ,a
m Fmb

1j ,b
m Fam if Fab is a tensor.

Note that from transformation~35! it follows that all
Newman-Penrose quantities that vanish on the backgro
~or more precisely satisfyLj(1)

F(0)50), such asc0
(1) ,

c4
(1) ,c3

(1) ,k(1),s (1),l (1),n (1), are first order gauge invarian
~GI!. Transformation~36!, however, states that none of the
Newman-Penrose quantities, to second order in the pertu
tions, are gauge invariant, sinceLj(1)

F(1)Þ0. Thus, none of
the interesting Newman-Penrose quantities that are tetra
variant~TI! and gauge invariant to first order are also inva
ant to second order in the perturbations. In particular, sec
order gauge invariance requires that the quantity vanishe
zeroth and to first perturbative order.

Explicitly, for the scalar fieldc4 we have

c̃4
(2)→c4

(2)1
]c4

(1)

]xm
j (1)

m . ~38!

f

2-8
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Hence we see that the vanishing ofc4
(0) ensures thatc4

(2) will
be gauge invariant under ‘‘pure’’ second order changes
coordinates, but sincec4

(1) will in general depend on all fou
coordinates,c4

(2) will not be gauge invariant underfirst order
changes of the coordinates.

In order to apply similar techniques to those we used
construct a tetrad invariant object now in the coordina
context, i.e., by ‘‘correcting’’c4

(2) with products of first or-
der quantities, we will make use of the following lemma.

Lemma: The product of the first order pieces T(1)P(1) of
two tensors (that can be expanded into perturbations) tra
forms under a first plus second order gauge change, give
Eq. (34), as the product of the first order transformed qua
tities individually.

~T~1)P(1))̃→~T(1)1Lj(1)
T(0)!~P(1)1Lj(1)

P(0)!.

Proof: Let T andP be two general tensor fields. Apply th
first plus second order transformation~36! to the product and
consider second order pieces; then,

~TP!~2!̃→~TP!(2)1Lj(1)
~TP!(1)

1
1

2
~Lj(1)

2 1Lj(2)
!~TP!(0)

or, more explicitly,

(T(2)P(0)1T(1)P(1)1T(0)P~2!)˜
→~T(2)P(0)1T(1)P(1)1T(0)P(2)!1Lj(1)

~T(1)P(0)

1T(0)P(1)!1
1

2
~Lj(1)

2 1Lj(2)
!~T(0)P(0)!.

We now apply the same transformation~36! to the prod-
uctsP(0)T andT(0)P to obtain

P(0)T(2)̃→P(0)T(2)1P(0)Lj(1)
~T(1)!

1
1

2
P(0)~Lj(1)

2 1Lj(2)
!~T!(0)

and, similarly,

T(0)P(2)̃→T(0)P(2)1T(0)Lj(1)
~P(1)!

1
1

2
T(0)~Lj(1)

2 1Lj(2)
!~P!(0).

Upon subtraction of the last two expressions from the fi
one, we obtain
12402
f
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-
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T(1)P(1)̃→T(1)P(1)1T(1)Lj(1)
~P(0)!1P(1)Lj(1)

~T(0)!

1Lj(1)
~T(0)!Lj(1)

~P(0)!. ~39!

This proves our lemma. An obvious corollary is the ca
when both fields are gauge invariant, i.e.,Lj(1)

(T(0))50 and

Lj(1)
(P(0))50. This generates a second order quantity tha

first and second order gauge~coordinate! invariant.
To construct a second order gauge invariant wavefo

c4 GI
(2) we can then use the same techniques as in the prev

subsection. It is convenient now to start from our tetrad
variant object, as defined in Eq.~33!. Under a first order
coordinates changec4 TI

(2) transform as

c4 TI
(2)̃ →c4 TI

(2) 1c4,m
(1)j (1)

m 12c4
(1)S l ,m

r (0)j (1)
m 2j (1),m

r l m (0)

l r (0)

1
m,m

q (0)j (1)
m 2j (1),m

q mm (0)

mq (0) D , ~40!

where we made use of the properties expressed in Eqs.~38!
and ~39!.

As in Sec. III A, the idea here is to add toc4 TI
(2) terms

quadratic in the first order perturbations in order to make
whole object coordinate invariant4 while preserving its tetrad
invariance. The procedure can be summarized as follow

Prescription: The first step is to invert the coordinat
transformations of first order quantities for the gauge vect
j (1)

m . We shall denote this first order combination by t
boldfacevector:j (1)

m , i.e., j (1)
m 5 j̃ (1)

m 2j (1)
m . Making the re-

placementj (1)
m →2j (1)

m into Eq. ~40! above generates a to
tally invariant object. Still from all the possible invarian
objects we want those whose quadratic term do not cont
ute to the radiation in an asymptotically flat~AF! gauge. As
we discussed at the end of Sec. IV A, this ensures us a sim
interpretation of the invariantc I regarding radiated energ
and waveforms. Since Eq.~40! is linear inj (1)

m , subtracting
the quadratic term in an asymptotically flat gauge will
equivalent to make the replacementj (1)

m →j (1)
m AF2j (1)

m . As
we discussed before, a practical way to evaluatej (1)

AFm and
keep the tetrad and coordinate invariance is to use the
going radiation gauge@Eq. ~16!# and consider the final ex
pression in terms ofCORG as a totally invariant expressio
regardless its derivation with a choice of the first order gau
and tetrad.

We recall here thatc4
(2) and of course also terms qua

dratic in the first order perturbations are already invari
under pure second order coordinate transformations, lab
by j (2)

m . Finally, our invariant waveform can then be sym
bolically expressed as

4A similar procedure was adopted to generate second order g
invariants in Moncrief’s formulation of Schwarzschild black ho
perturbations@40#.
2-9
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c4 I
(2) 5̇c4 TI

(2) 1c4,m
(1)~j (1)

m ORG2j (1)
m !12c4

(1)F l ,m
r (0)~j (1)

m ORG2j (1)
m !2 l m (0)~j(1),m

r ORG2j(1),m
r !

l r (0)

1
m,m

q (0)~j (1)
m ORG2j (1)

m !2mm (0)~j (1),m
q ORG2j (1),m

q !

mq (0) G . ~41!
w

tc
u
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C. Construction of the second order invariant waveform

The above prescription is conceptually very simple. Ho
ever, in practice, to findj (1)

t andj (1)
w brings some techni-

cal complications. The first remark is that the procedure
not unique. We have a big choice of first order objects~all
Newman-Penrose quantities, metric, extrinsic curvature, e!
to build upj (1)

m . In fact, one can easily see that the ambig
ity to generate an invariant waveform has to be present s
one can always add products of first order invariant obje
to generate a new second order invariant object. The requ
ment that the quadratic correction must not influence
asymptotic behavior greatly reduces this ambiguity. In fa
physical quantities such as the radiated energy and obse
waveform, defined in an asymptotically flat region, a
uniquely defined by this method, since the differences in
duced by different asymptotically flat coordinates van
with a higher power ofr. We thus give an explicit object in
order to be able to make comparisons with, for instance,
numerical results that directly compute the covariant ob
c4. Below we give a simple choice ofj (1)

m , in order to con-
struct c4 I

(2) , that is valid for perturbations of Kerr blac
holes, i.e.,aÞ0. In Appendix C we give another choice fo
the case of a Schwarzschild background.

In the rest of this subsection, to simplify the notation, w
drop the subscript (1) from the first order gauge vectorsj m
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since we will never refer to the second order gauge vect
The j r and j q components can be easily found from th
variations of the tetrad invariant Weyl scalarc2

(1) ,

c̃2
(1)→c2

(1)1j r] rc2
(0)1jq]qc2

(0) ~42!

and, of its complex conjugatec̄2
(1) ,

j r52
1

6M F c̄2
(1)

r̄4
1

c2
(1)

r4 G , ~43!

j q52
1

6M ~ ia sinq! F c̄2
(1)

r̄4
2

c2
(1)

r4 G . ~44!

The same techniques cannot be straightforwardly app
to find the other two componentsj t and j w. The origin of
the problem can be traced back to the fact that the K
metric has two Killing vectors along] t and]w , and thus one
can never find local, first order quantities that vary withj t or
jw, but only with the derivatives of them. Explicitly, usin
the variations of the metric and extrinsic curvature comp
nents~which are tetrad invariant quantities!, we find ~here
background fields are unlabeled!
j,t
t 5

gww~htt
(1)1gtt,rj

r1gtt,qj q!22gtw~htw
(1)1gtw,rj

r1gtw,qj q1gtwj ,w
w 1gttj ,w

t !

2~gtw
2 2gttgww!

,

j,r
t 5

gww~htr
(1)1grr j ,t

r !2gtw~hrw
(1)1grr j ,w

r !

gtw
2 2gttgww

,

j,q
t 52

~htq
(1)1gqqj ,t

q1gtwj ,q
w !

gtt
,

j,w
t 52

~hww
(1)1gww,rj

r1gww,qj q12gwwj ,w
w !

2gtw
~45!

and

j ,t
w5

2gtt~htw
(1)1gtw,rj

r1gtw,qj q1gtwj ,w
w 1gttj ,w

t !2gtw~htt
(1)1gtt,rj

r1gtt,qj q!

2~gtw
2 2gttgww!

,

2-10
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j ,r
w 5

gtt~hrw
(1)1grr j,w

r !2gtw~htr
(1)1grr j,t

r !

gtw
2 2gttgww

,

j ,q
w 52

Kqq
(1)

2Kwq
,

j ,w
w 52

~Krw
(1)1Kwr ,rj

r1Kwr ,qjq1Kwrj,r
r !

Kwr
. ~46!

Thus, to findj t and j w one has to integrate their four derivatives over the spacetime. This can be performed li
integration of a potential in four dimensions. For that one has to verify the integrability conditions. In practice, since
going to compute differences of these vectors, with respect to the asymptotically flat ones, the existence of thej t and jw

components are assumeda priori and they are related to the existence of the outgoing radiation gauge proved in Ref.@32#. As
a consequence of these integrals on first order fields, the resulting waveform will be nonlocal, but this carries no
consequences since in solving the second order perturbations we assumed first order ones to be completely known
the evolution equation for the second order perturbations islocal. In fact, only derivatives ofj t andj w enter in building up
the source:

T̂ @c I
(2)#5SI , c I

(2)5̇~r (0)!24c4 I
(2) , ~47!

where the source term@as can be derived from Eq.~7!# is now

SI52~r (0)!24S$S4@c4
(1)#1T@matter#%1T̂ F2c (1)S l r (1)2 l ORG

r (1)

l r (0)
1

mq (1)2mORG
q (1)

mq (0) D 2
2

3

~c3
(1)2c3

(1) ORG!2

~r (0)!4c2
(0) G ~48!

1T̂ Fc ,m
(1)j (1)

m 12c (1)S l ,m
r (0)j (1)

m 2j ,m (1)
r l m (0)

l r (0)
1

m,m
q (0)j (1)

m 2j ,m (1)
q mm (0)

mq (0) D G ; ~49!

here,jm5̇j (1)
m ORG2j (1)

m .
While the evolution is local, we need to compute the waveform at least on the initial hypersurface and then at the o

location ~to compute, for instance, the radiated energy!. At t50, after mode decomposition in thew coordinate, we have

j i5 (
mÞ0

~j ,w
i 2j ,w

i ORG!meimw

im
1E dr~j ,r

i 2j ,r
i ORG!1E dq~j ,q

i 2j ,q
i ORG!2E drdq~j ,rq

i 2j ,rq
i ORG!1ci , ~50!

wherei 5(t,w) and the same equation holds for the observer at a fixedr obs, exchanging the roles ofr and t.
Note the presence of the integration constantsct and cw. They represent first order changes in the origin of time a

azimuthal angle. This problem was already found in Ref.@8# and there it was given a method to fixa posteriori the value of
the constants. In Sec. IV B we generalize the procedure given in Ref.@8# and explicity write the integrals that are necessary
fix the constantsct andcw.

In order to compute the totally invariant second order waveformc4 Ic
(2) we must fix the constantsct and cw . We can

generalize the gauge fixing prescription given in Ref.@7# and definea posteriori the value of the constants

ct5

E
2`

`

dtċ4
(1)c4 I

(2) E
2`

`

dt~]wc4
(1)!22E

2`

`

dt]wc4
(1)c4 I

(2) E
2`

`

dtċ4
(1)]wc4

(1)

E
2`

`

dt~ ċ4
(1)!2E

2`

`

dt~]wc4
(1)!22E

2`

`

dtċ4
(1)]wc4

(1)E
2`

`

dtċ4
(1)]wc4

(1)
, ~51!

cw5

E
2`

`

dtċ4
(1)]wc4

(1)E
2`

`

dtċ4
(1)c4 I

(2) 2E
2`

`

dt]wc4
(1)c4 I

(2) E
2`

`

dt~ ċ4
(1)!2

E
2`

`

dt~ ċ4
(1)!2E

2`

`

dt~]wc4
(1)!22E

2`

`

dtċ4
(1)]wc4

(1)E
2`

`

dtċ4
(1)]wc4

(1)
. ~52!
124022-11
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We can then construct the ‘‘c invariant’’ waveform

c Ic
(2)5c I

(2)2~ct] t1cw]w!c (1). ~53!

This procedure amounts to gauge fixing the zero of time
of the azimuthal angle in such a way that the integrals in
numerators of Eqs. ~51! and ~52! vanish. In order to be
able to compare the perturbative results with the full num
cally ones it is crucial that one be able to perform the sa
origin of coordinate fixing. Note that we can also fix the
constants at the initial hypersurfacet50. The same expres
sions ~51!,~52! apply, changing the integrations in time b
integrations inr.

V. SUMMARY AND DISCUSSION

In this paper we presented a gauge and tetrad invar
framework for studying the evolution of general second
der perturbations about a rotating black hole. To do so,
first uncoupled second~and higher! order perturbations o
Kerr black holes for the Weyl scalarc4, which directly rep-
resents the outgoing gravitational radiation, and found t
the perturbed outgoing radiation fieldc4

(n) fulfils a single
Teukolsky-like equation@see Eq.~11!# with the same wave
operator as for the first order perturbations@30#, acting on the
left hand side and an additional source term written as pr
ucts of lower order perturbations on the right hand side of
equation. We note, however, thatc4

(2) is neither tetrad nor
first order coordinate~gauge! invariant. It is only invariant
under purelysecondorder changes of coordinates, simp
becausec4 vanishes on the background~Kerr metric!. In-
variant objects to describe second perturbations lead u
reliable physical answers without having to face gauge d
culties. Hence, we explicitly show that it is always possib
to correctc4

(2) in order to build up a complete second ord
invariant waveformc I

(2) ~i.e., invariant under both tetrad ro
tations and infinitesimal coordinates transformations! that
gives a measure of the outgoing gravitational radiation. T
is done in Sec. IV where we give a generalprescription to
produce the result expressed in Eq.~41!. We also show that
the same equation as Eq.~11!, with a ‘‘corrected’’ source
term, is now satisfied byc I

(2) @see Eq.~47!#. A number of
interesting conceptual and technical issues are raised
this computation, such as the appearance of nonlocalitie
the definition of the gauge invariant waveform when w
want to relate it to known first order objects and its non
niqueness. Seen in retrospect, our method of generati
gauge invariant object is like a machine that transforms
~first order! gauge into an asymptotically flat one, in partic
lar, into the outgoing radiation gauge. In fact, in this gau
we have (c4

(2))ORG5(c4L
(2))ORG5(c I

(2))ORG5c I
(2) . This fits

into Bardeen’s@41# interpretation of a gauge independe
quantity and suggests to work in the outgoing radiat
gauge as a particularly simple way of dealing with the n
merical integration of the second order equations@42#. In the
language of Eq.~36! we see that the process of building u
c I is like subtracting the first order piece toc4. Our gauge
12402
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invariant objectc I is not the second order term of a seri
expansion ofc4, but it can be related toc4

(2) in an asymp-
totically flat gauge.

The spirit of this work has been to show that there exi
a gauge invariant way to deal with second order pertur
tions in the more general case of a rotating black hole an
provide theoretical support to the numerical integration
the second order perturbation problem. In order to implem
such integration of Eq.~47! we proceed as follows: We as
sume that on an initial hypersurface we know the first a
second order perturbed metrics and extrinsic curvatures.
then solve the first order problem, i.e., solve the stand
Teukolsky equation forc4

(1) ~and forc0
(1)). Next we build up

the perturbed metric coefficients in, for instance, the out
ing radiation gauge~15!. The perturbed spin coefficients ar
now given by expression~A4! and the perturbed covarian
basis by Eq.~A2!. Those are all the necessary elements
build up the effective source term appearing on the ri
hand side of our evolution equation, as explained in S
III A. It is worth noting here that from the analysis of th
asymptotic behavior of the different Newman-Penrose qu
tities @13# involved in the source, one can see that at infin
the envelope of~the oscillating! S4 is at least ofO(r 22),
which guarantees the convergence of the integration of
~47!.

The other piece of information that we need in order
integrate Eq.~47! is c I

(2) on the initial hypersurface. This is
explained in Sec. III B. We also need to use in this case
~20! and the expressions given in Appendix B. For the co
putation of the radiated energy and momentum one uses
~22! and~23!. The advantage of this procedure is that we c
now use the same~211!-dimensional code for evolving the
first order perturbations@19# by adding a source term. In fac
the background~Kerr! metric allows a decomposition into
axial modes, i.e., the variablew. A mode decomposition of
all quantities involved in the second order evolution equat
can be trivially performed~note that in the source, involving
quadratic terms in the first order perturbations, one has
include a double sum over modes, let us saym andm8). In
the time domain no further mode decomposition~i.e., in l
multipole! of the source term is practical.

An important application of the formalism presented
this paper@42# is to reproduce the results obtained in Ref.@6#
~for the nonrotating case and the multipolel 52). The com-
plexity of the calculations in the standard Zerilli formalis
that would follow from considering the sum over all mult
poles can be notably simplified in the Newman-Penrose
malism. We can thus also study thel 54 multipole of the
radiation and not only test the efficiency of our formalism
but also make a more detailed comparison with full nume
cal results. The next step is to extend the numerical com
tation to the more interesting case of rotating black hol
The numerical integration of Eq.~47! will be relevant not
only for establishing the range of validity of the collisio
parameters in the close limit approximation, but~hopefully!
to produce a more precise computation of the gravitatio
radiation. Direct comparison with the existing codes for n
2-12
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merical integration of the full nonlinear Einstein equations
possible@43#.

Following the steps described in this paper, upon
change of the null directionsl↔n andm̄↔m, it is straight-
forward to write the corresponding equations forc0 in case
one wants to have a description in terms of ingoing wav
This would allow one to study the influence of gravitation
radiation on the horizon of a rotating black hole, critic
collapse, and also phenomena in their interior, such as
mass inflation. We studied in detail only gravitational pert
bations, but it seems straightforward to generalize
method to scalar and vector perturbations. We also note
although we have focused our attention on the problem
colliding black holes, the second order perturbative form
ism developed in this paper can be easily generalized to
Petrov type D~or even type II! background metric and thu
can be applied to study other interesting astrophysical
narios as nonrotating neutron stars and cosmology.
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APPENDIX A: FIRST ORDER NEWMAN-PENROSE
QUANTITIES

Throughout this appendix, to simplify the notation, w
omit the superscript (0) on the background quantities, wh
all first order quantities are denoted with the superscript
with the exception of the first order metric perturbation th
we simply denote ashmn .

Let us first note that the perturbed null tetrad can be r
resented by@44#

l m(1)52
1

2
hll n

m,
12402
-

s.
l
l
he
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f
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e-
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e
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nm(1)52
1

2
hnnl

m2hnln
m, ~A1!

mm(1)5
1

2
hmmm̄m1

1

2
hmm̄mm2hmln

m2hmnl
m.

Note that in order to have this explicit form a choice of t
first order null directions was made. To relate this to t
metric perturbation recall thatgmn52l (mnn)22m(mm̄n)

which implies that hmn52l (m
(1)nn)12l (mnn)

(1)22m(m
(1)m̄n)

22m(mm̄n)
(1) .

Making use of the relations~A1! we can immediately de-
rive the first order Newman-Penrose directional derivativ

D (1)5 l m(1)]m52
1

2
hll D,

D (1)5nm(1)]m52
1

2
hnnD2hnlD, ~A2!

d (1)5mm(1)]m5
1

2
hmmd̄1

1

2
hmm̄d2hmlD2hmnD.

In order to compute the spin coefficients to the requir
order we follow Ref.@44#, making use of the commutatio
relations@31#, Chap. 1.8~these are exact expressions!,

DD2DD5~g1ḡ !D1~e1 ē !D2~ t̄1p!d2~t1p̄ !d̄,

dD2Dd5~ ā1b2p̄ !D1kD2~ r̄1e2 ē !d2sd̄,
~A3!

dD2Dd52 n̄D1~t2ā2b!D1~m1ḡ2g!d2l̄ d̄,

d̄d2dd̄5~m̄2m!D1~ r̄2r!D1~a2b̄ !d1~b2ā !d̄,

expanding both sides to first perturbative order, and us
Eq. ~A2! we can equate the coefficients of each operato
get a system of linear equations~16 of which only 12 are
independent! that can be solved for the spin coefficients, gi
ing
k(1)5~D2 r̄22 e!hlm2
1

2
~d22a22b1p̄1t!hll ,

s (1)5~p̄1t!hlm1
1

2
~D1r2 r̄12ē22e!hmm,

n (1)52~D1m̄12g!hnm̄1
1

2
~ d̄12a12b̄2p2 t̄ !hnn ,

l (1)52~ t̄1p!hnm̄2
1

2
~D1m̄2m12g22ḡ !hm̄m̄ ,
2-13
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2m (1)5rhnn2~d12b1t!hnm̄1~ d̄12b̄22p2 t̄ !hnm2
1

2
~2D1m̄2m1g2ḡ !hmm̄,

2r (1)5m̄hll 1~r2 r̄ !hnl1~D1r2 r̄ !hmm̄2~d22ā2p̄ !hlm̄1~ d̄12t̄22a1p!hlm ,

2e (1)5~D1r2 r̄ !hnl1
1

2
~ d̄22a2p!hlm2

1

2
~d22ā13p14t!hlm̄1

1

2
~r2 r̄ !hmm̄2

1

2
~D12g!hll ,

~A4!

2p (1)52~D2r22e!hnm̄2~ d̄1 t̄1p!hnl2~D1m̄22ḡ !hlm̄2 t̄hmm̄2th m̄m̄ ,

2t (1)5~D2 r̄12ē !hnm1~d2p̄2t!hnl1~D1m22g!hlm2p̄hmm̄2phmm,

2a (1)5
1

2
~D22r̄2r22e!hnm̄2

1

2
~D14g22m1m̄22ḡ !hlm̄2

1

2
~ d̄1p1 t̄ !hnl

1
1

2
~ d̄12a2p2 t̄ !hmm̄2

1

2
~d22ā1p̄1t!hm̄m̄ ,

2b (1)5
1

2
~D2 r̄24e12r12ē !hnm2

1

2
~D1m12m̄12g!hlm2

1

2
~d1p̄1t!hnl

2
1

2
~d22b1p̄1t!hmm̄1

1

2
~ d̄12b2p2 t̄ !hmm,

2g (1)52~ ḡ1g!hnl1
1

2
~D1r2 r̄12ē !hnn2

1

2
~d12b12p̄13t!hnm̄1

1

2
~ d̄12b̄22p2 t̄ !hnm

1
1

4
~3m̄22m1g2ḡ !hmm̄.

Note that these expressions are completely independent of the choice of the gauge, although a tetrad choice to first
to be made in Eq.~A1!.

Finally, theexactWeyl scalars are

c05~D23e1 ē2r2 r̄ !s2~d2ā23b1p̄2t!k,

c15~D1 ē2 r̄ !b2~d2ā1p̄ !e2~a1p!s1~g1m!k,

c25@~ d̄22a1b̄2p2 t̄ !b2~d2ā1p̄1t!a1~D1e1 ē1r2 r̄ !g2~D2ḡ2g1m̄2m!e

1~ d̄2a1b̄2 t̄2p!t2~D2ḡ2g1m̄2m!r12~nk2ls!#/3,

c35~ d̄1b̄2 t̄ !g2~D2ḡ1m̄ !a1~e1r!n2~b1t!l, ~A5!

and

c45~ d̄13a1b̄1p2 t̄ !n2~D2ḡ13g1m1m̄ !l, ~A6!

Note that these expressions can be trivially expanded to first perturbative order and hold when matter sources are i

APPENDIX B: SECOND ORDER NEWMAN-PENROSE QUANTITIES

Taking the same first order choice of the tetrad to second order~we can do this because the final aim is to plug this into
invariant object! one obtains

l m(2)52F1

2
hll

(2)2hll
(1)hln

(1)12hlm̄
(1)

hlm
(1)Gnm,
124022-14
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nm(2)52F1

2
hnn

(2)12hnm̄
(1)

hnm
(1)G l m2Fhnl

(2)2hll
(1)hnn

(1)1
1

2
~hlm

(1)hnm̄
(1)

1hlm̄
(1)

hnm
(1)!Gnm, ~B1!

mm(2)52@hmn
(2)1hnm̄

(1)
hmm

(1) 1hmm̄
(1)

hnm
(1)# l m2@hml

(2)1hlm̄
(1)

hmm
(1) 1hmm̄

(1)
hlm

(1)#nm

1
1

2 Fhmm̄
(2)

1
1

2
hm̄m̄

(1)
hmm

(1) 1
1

2
hmm̄

(1)
hmm̄

(1) Gmm1
1

2
@hm̄m̄

(2)
1hmm̄

(1)
hm̄m̄

(1)
#m̄m.

We now expand up to second order the third commutator of Eq.~A2! to obtainn (2)5̇nL
(2)1nQ

(2) andl (2)5̇lL
(2)1lQ

(2) :

nL
(2)52~D1m̄12g!hnm̄

(2)
1

1

2
~ d̄1p2 t̄ !hnn

(2) ,

nQ
(2)52~D1m̄12g!hnm

(1)hm̄m̄
(1)

12~ d̄1p2 t̄ !hnm
(1)hnm̄

(1)
2l (1)hnm

(1)2
1

2
@~ d̄1 t̄2a2b!(1)

1~g1ḡ !hlm̄
(1)

#hnn
(1)2@~m2g1ḡ !(1)2~g1ḡ !hlm

(1)#hnm̄
(1) ,

lL
(2)52

1

2
~D1m̄2m22ḡ12g!hm̄m̄

(2)
2~ t̄1p!hnm̄

(2) ,

lQ
(2)52

1

2
~D1m̄2m22ḡ12g!hm̄m̄

(1)
hm̄m

(1)
1~ t̄1p!Fhm̄n

(1)
hln

(1)2hm̄m̄
(1)

hnm
(1)2

1

2
hm̄l

(1)
hnn

(1)G
2

1

2
l (1)hm̄m

(1)
2

1

2 F ~m̄2ḡ1g!(1)2
1

2
r̄hnn

(1)1~m2g1ḡ !hln
(1)Ghmm

(1) . ~B2!

Finally, using Eq.~A6! we find c4
(2)5̇c4L

(2)1c4Q
(2) ,

c4L
(2)5~ d̄13a1b̄1p2 t̄ !nL

(2)2~D1m̄1m2ḡ13g!lL
(2) ,

c4Q
(2)5~ d̄13a1b̄1p2 t̄ !nQ

(2)2~D1m̄1m2ḡ13g!lQ
(2)1~ d̄13a1b̄1p2 t̄ !(1)n (1)

2~D1m̄1m2ḡ13g!(1)l (1). ~B3!

APPENDIX C: GAUGE INVARIANTS IN THE SCHWARZSCHILD LIMIT

In the case whena50, we can find the following set offirst order gauge vectors assuming that thejm
r is given by Eq.~43!:

j m
q52

cosq~2hww12 sin2 qr j m
r 2sin2 qhqq!1sinq~2imhqw2hww,q22 sin2 qr jm,q

r !

2r 2 sinq~m211!
,

imjm
t 5

r

2~r 23M !
$rhtw,r22htw1r 3 sin2 qj m,rt

w 1 im~r 22M !jm,r
t %,

imj m
w 52

1

2r 2 sin2 q~m211!
$~m21122,cos2 q!hww1cos2 q sin2 qhqq

1cosq sinq~hww,q22imhqw1sin2 qr j m,q
r !12 sin2 q~m21sin2 q!jm

r %,

jm,q
t 52

r

sin 2q~r 22M !~r 23M !
$2 imr 2htw,r1m2r 2jm,r

t 24m2Mr jm,r
t 2 imr 4 sin2 qj m,tr

w

12imMrhtw,r14m2M2jm,r
t 12imMR3 sin2 qj m,tr

w 12imMhtw26Mr sin2qjm,t
r

12r 2 sin2 qjm,t
r 2sin 2q~3Mhtq2rhtq!23Mhww,t1rhww,tr % ~C1!
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j m,q
w 52

i

~2 r 2~m211!sin3q!
~22i sinq cos2 qhqw12m cosqhww12m cosq sin2 qr jm

r

22ihqw sin3 q2m sin2 q cosqhqq2m sinqhww,q22m sin3 qr j m,q
r !,

jm,t
t 52

2Mr 2j m
r 1htt

2r ~r 22M !

j m,t
w 52

~r 22M !@rhtw,r1r 3 sin2 qj m,rt
w 1 im~r 22M !j m,r

t #22Mhtw

2r 2 sin2 q~r 23M !
. ~C2!

j,r
w andj,r

t as given by Eqs.~46! and ~45! are well defined in thea→0 limit.
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