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Abstract. We consider scalar field theory on tiéP® de Sitter spacetimeR(P3dS), which is

locally isometric to de Sitter space (dS) but has spatial topdkig’: We compare the Euclidean
vacua orRP3dS and dS in terms of three quantities that are relevant for an inertial observer: (a) the
stress—energy tensor; (b) the response of an inertial monopole particle detector; (c) the expansion
of the Euclidean vacuum in terms of many-particle states associated with static coordinates centred
at an inertial worldline. In all these quantities, the differences betii®lS and dS turn out

to fall off exponentially at early and late proper times along the inertial trajectory. In particular,
(b) and (c) yield at early and late proper timesRit®dS the usual thermal result for the de Sitter
Hawking temperature. This conforms to what one might call an exponential law: in expanding
locally de Sitter spacetimes, differences due to global topology should fall off exponentially in the
proper time.

PACS numbers: 0462, 0470D

1. Introduction

Observable consequences of the large-scale topology of the universe are a subject of increasing
interest. It has been recognized for some time that a topologically nontrivial universe can
produce multiple images of individually identifiable objects in the sky, and our not having seen
such images sets bounds on the potential scale of nontrivial topology in our universe [1-4].
More recently, itwas recognized that nontrivial topology can also leave an imprint on the cosmic
microwave background, through the quantum mechanical origin of density inhomogeneities
and the subsequent Sachs—Wolfe effect, and the observational bounds obtained in this way
could in fact be more stringent [5, 6].

The purpose of this paper is to explore another situation in which quantum fields in a curved
spacetime feel the large-scale topology: we consider the experiences of an inertial observer
coupled to a quantum field in a spacetime that is locally de Sitter, but has spatial topology
RP? instead of the usuai®. We consider a free scalar field, and we assume the field to be in
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the globally regular vacuum state that is induced by the Euclidean vacuum on de Sitter space.
As the unconventional spatial topology lies beyond the cosmological horizon of the inertial
observer, this problem illustrates how quantum fields can probe large-scale topology that is
classically unobservable by virtue of topological censorship [7]. Also, as the cosmological
horizon of the observer does not coincide with a bifurcate Killing horizon, this problem sheds
light on the role of the bifurcate Killing horizon in the thermal effects experienced by an inertial
observer in de Sitter space [8].

We shall find, from the analysis of a monopole particle detector, as well as from a
Bogoliubov transformation between the Euclidean vacuum and the vacuum natural for the
inertial observer, that the experiences of the inertial observer are not identical to those of an
inertial observer in the Euclidean vacuum in de Sitter space. However, in the limit of early
or late proper times along the observer trajectory, the differences vanish exponentially, and
the experiences of the observer become asymptotically thermal in the usual de Sitter Hawking
temperature. We also compute the renormalized stress—energy tensor, finding that it reduces
to that in de Sitter space in the limit of early and late times on each inertial trajectory. These
results conform to what one might call an exponential law: in expanding locally de Sitter
spacetimes, differences due to global topology should fall off exponentially in the proper time.
From the viewpoint of the absence of a bifurcate Killing horizon, qualitatively similar results
have been previously found on the single-exterior eternal black hole known B®thgeon
[9] and on the conformal boundary of tf@+ 1)-dimensional single-exterior black hole known
as theRP? geon [10].

The remainder of the paper is as follows. In section 2 we briefly review the properties of
four-dimensional de Sitter spacetime, which we denote by dS, and the quotient construction of a
spacetime, denoted ®P3dS, which has the same local geometry but whose spatial topology
is RP3. Scalar field theory and the Euclidean vacua on these spacetimes are introduced in
section 3, and the stress—energy tensoR#idS is evaluated by point-splitting methods.
Section 4 constructs the Bogoliubov transformationR¥dS, and the particle detector is
analysed in section 5. Section 6 contains a brief summary and discussion. An evaluation of
the stress—energy tensor by conformal methods, in the special case of a conformal field, is
given in the appendix.

We work in Planck unitsh = ¢ = G = 1. A metric with signatur€—+++) is called
Lorentzian and a metric with signaturet+++) Riemannian. All scalarfields are global sections
of a real line bundle over the spacetime (i.e. we do not consider twisted fields). Complex
conjugation is denoted by an overline.

2. de Sitter spacetime andRP3dS
In this section we briefly review the geometry of four-dimensional de Sitter spacetime (dS)

and its quotient spadeP*dS. The main purpose of the section is to establish the notation and
to introduce the coordinate systems that will be used with the quantum field theory.

2.1. de Sitter spacetime

Four-dimensional de Sitter space is a Lorentzian spacetime form of positive sectional curvature.
It can be represented as the hyperboloid

H?2=-U?+V2+X2+Y2+7° (2.1)
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in five-dimensional Minkowski space with the global coordinatgsV, X, Y, Z) and the
metric

ds? = —dU2+dv2+dx?+dy2+dz2 (2.2)

The parameteH > 0 is the inverse of the radius of curvature of the embedded hypersurface.
The spacetime is Lorentzian, and it solves Einstein’s equations with the cosmological constant
A = 3H2?. The Ricci scalar isR = 12H?. The spacetime is globally hyperbolic, with
spatial topologys?®, and a global3 + 1) foliation is provided, for example, by the spacelike
hypersurfaces of constaiit. The (connected component of the) isometry group is (the
connected component of) (4, 1). We denote this spacetime by dS.

If x andy denote points in dS, we define

Z(x,y) = H*nap X“(x) X" (y), (2.3)

where X“(x) and X“(y) are the five-dimensional Minkowski coordinates of the points on
the hyperboloid (2.1), and,, is the five-dimensional Minkowski metric (2.2)Z(x, y) is
clearly invariant under the isometries of dS, and it encodes almost all the isometry-invariant
information about the relative location efandy. In particular,x is on the lightcone of if
and only if Z(x, y) = 1. For more detail, see for example [11].

dS admits several coordinatizations that are adapted to different isometry subgroups. Of
relevance to this paper are two: hyperspherically symmetric coordinates and static coordinates.
We now exhibit these.

We introduce on dS the chagt, x, 6, ¢) by

U = H tsinhH?1), (2.4a)

V = H™'coshHr) cosy, (2.40)

Z = H 'cosh(Ht) sinx cosd, (2.4

X = H cosh Hr) sinx sind cosy, (2.4d)

Y = H 1cosh Hr) siny sind sing. (2.4e)
The metric reads

ds? = —dr? + H-2 cost(H1) dQ3, (2.5)

where d23 is the metric on the unit 3-sphere,
dQ3 = dy? + sir? x (do? + sir? 6 dg?). (2.6)

The anglesy, 6, ¢) form a standard set of hyperspherical coordinate$’pand the coordinate
singularities of this chart ors® can be handled in the standard way. Whené, ¢) is
understood in this extended sense as a global coordinatizatisf, ¢he chart(z, x, 6, ¢)
and the metric (2.5) are global on dS witlvo < t < co. The worldlines at constaxy, 6, ¢)
are timelike geodesics, and the proper time along them is

The coordinate$, yx, 6, ¢) make manifest the® (4) isometry subgroup whose orbits are
at constant. Conversely, thg€3 + 1) foliation of dS given by these coordinates is uniquely
specified by the choice of a particulan4) isometry subgroup.

It is useful to introduce the conformal timg

n := 2 arctarie”’), (2.7)

which takes the values @ n < 7. As cosi{Ht) = 1/ sinn, the metric (2.5) takes the form

ds? [—dn? + dQF]. (2.8)

- H2sir’p
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n=n

n=0

Figure 1. A conformal diagram of dS. The coordinates shown @rey ), and those suppressed
are (0,¢). For 0 < x < m, each point in the diagram represents a suppressed 2-sphere of
radius H~1siny /(sinn); at x = 0 andsw, each point in the diagram represents a point in the
spacetime. The quadragt, covered by the static coordinates r, 6, ), is at cog > | cosy|.

The involutionJ/, introduced in the text, consists of the reflecti@nx) — (n, # — x) about the
vertical axis, followed by the antipodal m&g, ¢) — (7 — 0, ¢ + ) on the suppressed 2-sphere.

The coordinates$n, x) are therefore appropriate for a conformal diagram in whiihy) are
suppressed. Such a conformal diagram is shown in figure 1.

We now turn to the static coordinates. L@¢ be the quadrant > |U| of dS. InQg, we
introduce the chatto, r, 6, ) by

U=H/1- H2%2sinhHo), (2.9)
V = H /11— H?r?coshHo), (2.%)
Z = r cosb, (2.%)
X =rsiné cosgp, (2.9d)
Y = rsinf sing. (2.%)

The metric takes the static form

ds® = —(l — H2r2) do? + (1 — H2r2)7l dr? +r? sz, (2.10)
where d23 is the metric on the unit 2-sphere,

dQ3 := dh? + sirf 6 do?. (2.11)

ForO< r < H™' the setr, 0, ¢) forms a standard set of three-dimensional polar coordinates,
and the coordinate singularity at= 0 and at the singularities of the spherical coordinates
(6, ¢) on the 2-spheres of constantan be handled in the standard way. Wher®, ¢) is
understood in this extended sense as a global coordinatizatiR?, @fith 0 < r < H~1, the
metric (2.5) with—oo < o < oo is global onQq. In the chart(n, x, 6, ¢), Qo is the region
cosy > | cosn|, as shown in the conformal diagram in figure 1. The transformation between
the charts reads

Hr = 2MX (2.129)

Sinn

cos
Ho = — arctank(—n). (2.1%)
cosy
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Qo hastopologyR*. As seen from figure 1, itis globally hyperbolic, and the hypersurfaces
of constantr are Cauchy surfaces f@, (but not for dS). The curve at = 0 is a timelike
geodesic in dS, andl is the proper time along this geodesic: the static coordin@ateso, ¢)
are centred around the worldline of an inertial observer at 0. The boundary oD, at
r — H™1, is the cosmological horizon for this observer, and the Killing veétgmwhich is
timelike in Qq, becomes null at the horizon. The horizon therefore has an infinite redshift.

In the quadran¥ > —|U|, or cosy < —|cosp|, a similar static chart can be introduced
with the obvious modifications. The future and past quadrdnts, |V| andU < —|V|, can
be covered by charts in which (Z2Band (2.®) are replaced by

U=+HY/H?%2—-1coskHo), (2.13%)
V = H%/H%2 - 1sinh(Ho) (2.1%)

with the upper (lower) sign in (2.5} in the future (past) quadrant. The metric in the future
and past quadrants takes the form (2.10) with H—1.

As any timelike geodesic in dS can be mapped to any other by an isometry, a static metric
of the form (2.10) can be introduced in a quadrant of the spacetime centred around any timelike
geodesic. The horizon of the static coordinates is in this sense observer dependent.

2.2. The quotient spacetini&P>dS
On the five-dimensional Minkowski space (2.2), consider the map

J: (U, V,X,Y,Z)~ (U,—V,—X,—Y, —Z). (2.14)
We denote by/ the map that/ induces on dS. In the coordinates x, 6, ¢), we have

J: i, x,0,0) > (n,m—x, T —0,0+m). (2.15)

J is an involutive isometry, it acts without fixed points and properly discontinuously, and it
preserves both space and time orientation. The quotient spadeis@ space- and time-
orientable Lorentzian manifold. We refer to this quotient spacRsde Sitter space and
denote it byRP3dS.

RP3dS is globally hyperbolic, with spatial topolodP3. The chart(n, x, 6, ¢) can be
reinterpreted as a global ch&fP3dS, provided the angles are understood in the sense of
hyperspherical coordinates ®P3 and not onS®: with this reinterpretation, equation (2.5)
gives the global metric oRP3dS. A conformal diagram in which the coordinatés¢) are

n=n

/2

X:

Figure 2. A conformal diagram oRP3dS. The regiory < %n is identical to that
in the diagram of figure 1, each point with<0 x < %n representing a suppressed
2-sphere in the spacetime, and each poing at 0 representing a point in the
spacetime. Ay = %n, each point in the diagram represents a suppre&§éd The
regionQ+, covered by the static coordinates r, 6, ¢), is at cosy > | cosy|.
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suppressed is shown in figure 2. As seen in the figure, one can repRESEl® by taking the
region 0< x < %n of dS and identifying ay = %7‘( the antipodal points on the 2-spheres
coordinatized by#, ¢).

The isometry group dRP3dS isZ, x O(4), as induced by the largest subgroupg®, 1)
that commutes withy. In the coordinate&, x, 6, ¢) onRIP3dS, theO (4) factor acts trivially
on n, while the nontrivial element of th&, factor acts trivially on the angles and sengd®
7 — n. The connected component of the isometry groupds4). It follows that the(3 + 1)
foliation of RP*dS provided by the coordinatés, x, 0, ¢) is a geometrically distinguished
one: it is the only foliation in which the spacelike hypersurfaces are orbits of the connected
component of the isometry group.

As J maps the quadrante > |[U| andV < —|U]| of dS onto each other, these two
quadrants project onto a regionRP3dS that is isometric to a single quadrant. We denote this
region of RP3dS byQ., and we introduce on it the chatt, r, 6, ¢) induced by the chart (2.9)
on Qo. Equation (2.10) then gives a globally defined metric@n and the charto, r, 6, ¢)
gives an explicit isometry betwegd, and Qq. The liner = 0 in Q. is a timelike geodesic
that is orthogonal to the distinguished foliationRiP3dS.

From the isometries oRP3dS it is immediately obvious that a static metric of the
form (2.10) could be introduced in a wedgeRiP3dS centred around any timelike geodesic
orthogonal to the distinguished foliation. It is straightforward to show that a similar static
metric could also be introduced around the timelike geodesics that are not orthogonal to the
distinguished foliation.

3. Scalar field quantization and the Euclidean vacuum

We now turn to the quantum theory of a real scalar fi¢ldIn this section we recall the
definition and some characteristic properties of the Euclidean vacuum on dS [11-15] and
discuss the induced vacuum RiP3dS.

3.1. Euclidean vacuum on de Sitter

The massive scalar field action on a general curved spacetime is

S = _% / V=8 d4x[glw¢,u¢,v + (/sz + ";:R)sz]a (3.1)

wherepu is the massR is the Ricci scalar anglis the curvature coupling constant. Specializing
to dS, we haveR = 12H2. We assume:? + 125 H? > 0, and we define the effective mass as

i =2+ 126 H2,

The field equation reads

(O-i%)¢ =0, (3.2)

where[d denotes the scalar Laplacian on dS. The (indefinite) inner product, evaluated on a
hypersurface of constantis

(¢1. ¢2) ;= iH 3coskF(Hr) / sin? x sinf dy do dg ¢1 3; ¢2. (3.3)
S3
The spatial dependence of the field equation (3.2) can be separated by the hyperspherical

harmonicsQ,;,,, which are eigenfunctions of the Laplacian on the unit 3-sphere with the
eigenvalue-(n?> — 1): heren = 1, 2, ..., and the degeneracy described by the indicasd
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m is n?. For more detail about the harmonics, see for example [16]. The remaining, time-
dependent equation can then be solved in terms of associated Legendre functions. For the
normalized positive-frequency mode functions, we choose

_ a—ivm/2 JTHZF(”-F%_V) i~3/2 v o (9 v _
Buim = € \/ A Ty Qo SRy (—cosn) = @i/m)0;_y (~cos],

(3.4)

whereP” ; andQ” , are the associated Legendre functions on the cut [17-19) ésmdne
n—s n—s;
of the solutions of

V2=

— p2H™2 (3.5)

hlo©

Which of the two solutions of (3.5) is chosen foris immaterial, as the two choices give
equivalent mode functions. The resulting vacuum, which we denotéghyis known as the
Euclidean vacuum or the Chernikov—Tagirov vacuum [12—14].

The vacuumOg) is uniquely characterized by the properties that its two-point function
Gis(x, x') is invariant under the connected component of the isometry group of dS, and that
the only singularity ofG j5(x, x") occurs whenx” is on the lightcone of [11]. Explicitly, we
have

Gis(x,x') = AH?F(3[1 + Z.(x, x))]), (3.6)
whereF is the hypergeometric function [17]

F(z)=oF1(3+v.3 —vi 2 2), (3.7)

and the numerical factot is given by

GPH™2 -2

=— 3.8
16 cosmv (3.8)

for i?H=? # 2, and in the special casg’H 2 = 2 by the limiting value of (3.8),
A = 1/(167%). Here Z.(x, y) is equal toZ(x, y) (equation (2.3)), but understood near
Z(x,y) = 1inasense that givesg(x, x") the correct singularity structure on the lightcone
[14]: we can represert,, for example, by

Z.(x,y) = Z(x,y) —ie[U(x) — U] — €U (x) — U]? 3.9)

wheree — O,.

The renormalized stress—energy tensoiGg) is by construction invariant under the
isometries of dS, and hence proportional to the metric tensor. In particular, the energy density
measured by an inertial observer is constant along the observer trajectory and the same for
every observer. The explicit expression for the stress—energy tensor can be found, for example,
in [20].

dS can be regarded as a Lorentzian section of a complex spacetime that admits the round
4-sphere as a Riemannian section. The Feynman propag#lgy then analytically continues
to the unigque Green function on the Riemannian section. This property is the origin of the
name ‘Euclidean vacuum’ fgfg).
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3.2. Euclidean vacuum dRP3dS

The above quantization on dS adapt®RB*dS with the obvious modifications. In the inner
product (3.3), the spatial integration is now oWP3. The spatial dependence of the field
equation (3.2) is separated by the harmonics on theRi#it these harmonics are constructed
by taking from the se{Q,;,} those that are invariant under the antipodal map, projecting
to RP3, and multiplying by~+/2 to achieve the correct normalizationt. In the normalized
positive-frequency mode functions, we choose the time dependence as in (3.4). We denote the
resulting vacuum byOgpsg).

As |Ogpsg) is induced by Og) under the projection dS> RP3dS, the two-point functions
in |Orpsg) are obtained from those @) by the method of images. For example, for the
positive-frequency Wightman functiaﬁﬂgpgds(x, x") in |Oppsg), We have

Grpsgs(X, X) = Gis(x, x) + Gglx, J (x), (3.10)

wherex andx’ on the two sides of the equation are understood as points in BFS in
the obvious way. It follows that all the two-point functions|Oxpsg) are invariant under the
connected component of the isometry groufR&fdS.

RP3dS can be regarded as a Lorentzian section of a complex spacetime using the formalism
of (anti)holomorphic involutions [22, 23], and its Riemannian section can then be defined as
a certainZ, quotient of the round 4-sphere. By method-of-images techniques similar to
those used in [9], one sees that the Feynman propagatOgist) analytically continues to
the unique Green function on the Riemannian section. We therefore ref@ste) as the
Euclidean vacuum oRP3dS.

Using (3.10), it is straightforward to compute the stress—energy ten$0gs) by the
point-splitting method [14]. The contribution from the first term on the right-hand side of
(3.10) is identical to the stress—energy tensor in dS. The remaining contribution, arising from
the second term on the right-hand side of (3.10), is finite without additional renormalization,
and it is clearly invariant under the isometrieskd#3dS. Denoting this contribution bX7,,,,
we find that its nonvanishing mixed components in the coordinates 6, ¢) are

AT', = AH*[36F(2) + 3(1— 46)zF ()], (3.11a)
AT'; = AH*{[3& + (4 — DAPH ?]F(z) + [2(165 — 3z +1 -6 |F'()}8';,  (3.11)
where the Latin indices denote the spatial coordingied, ¢), z = —sint?(Ht) and

F'(z) = dF(z)/dz.

It is clear from (3.11) that the energy density measured by an inertial observer is
not constant along the observer trajectory. However, it follows from the expansions of
hypergeometric functions [17] that all the componentsad@t”, fall off exponentially in¢
at large|t|, the details of the falloff depending on the parameters. Therefore, in the distant
past and future of each observer trajectory, the stress—energy tefGge#) is exponentially
asymptotic to the stress—energy tensoi).

As a special case, consider the massless conformally coupled field, foravhicg and
uw =0. Thenv = % A =1/(167%) and F(z) = 1/(1 — z). In the coordinateg, x, 6, ¢),
we obtain

ATty = — T Gag —1 -1 1) (3.12)
" 32n2cosH(Hr) oy 3 8s '
In the appendix we independently verify the result (3.12) by techniques that take advantage of
the conformal relation betwedRiP3dS and théRP® version of the Einstein static universe.

t For more details, see [21].
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4. Bogoliubov transformation on RP3dS

In this section we use a Bogoliubov-transformation technigue to examine the experiences of
an inertial observer iRP3dS, under the assumption that the worldline of the observer is
normal to the distinguished spacelike foliation. In subsection 4.1 we review the quantization
in the spacetime region covered by the static coordinates, centred around the worldline of the
observer, and we recall the construction of the Boulware-like vadOggg) in this region. In
subsection 4.2 we expref&kpsg) in terms of the excited states built ¢dsgs) and interpret

the result in terms of particles seen by the observer.

4.1. Quantization in the static coordinates

In this subsection we review the quantization of a real scalar fiéfdthe spacetime covered
by the static metric (2.10). As explained in section 2, we can interpret this spacetime as the
quadrantQg in dS, or as the regio@. in RP3dS.

The (indefinite) inner product, evaluated on a hypersurface of constaeads

0 00:=i [ simodody [ i G G, g, (4.1)
52 0
wherer* is the tortoise coordinate,
1 1+Hr
= —1 4.2
" T om ”<1—Hr>’ (4.2
having the range & r* < oco. Separating the field equation (3.2) by the ansatz
¢ = (4rw) 2r "R (r) €Y, (0, @), (4.3)
whereY,,, are the spherical harmonicst, the equation for the radial fundjipr) becomes
¢ 2 22\ ~2 2 1U+T)
0:[dr*2+w —(1—Hr)(,u —2H+ e )}Rw,. (4.4)

The one-dimensional differential operator in (4.4) is essentially self-adjoint with respect to
the Schédinger-type inner producfooo dr* RiR, for I > 0, and for/ = 0 we choose for
this operator the self-adjoint extension whose (generalized) eigenfunctions vantsa &t
The spatial parts of the wavefunctions (4.3) are then the (generalized) eigenfunctions of the
essentially self-adjoint spatial part of the wave operator in the field equation (3.2) [25], which,
in particular, means thak,,, are proportional tar*)"** at smallr*. It follows by standard
techniquest that for eaéhthe spectrum of? is continuous and spans the positive real axis.
We choose the positive-frequency mode functions to have 0, and we denote the
resulting vacuum by0Oggs). As these mode functions are positive frequency with respect
to the timelike Killing vectord,,, which generates the inertial motion along the geodesic at
r = 0, an observer moving along this geodesic experiet@gs) as her physical no-particle
state: |Oggs) is analogous to the Boulware vacuum on the exterior Schwarzschild, and to the
Rindler vacuum in a Rindler wedge on Minkowski space. For a complete orthonormal set of
positive-frequency modes, we choose

Upim = ei(”"”‘)”/2(4na))*1/2r*lRwl efiw(r Yin, (45)

Tt We use the Condon-Shortley phase convention (see, for example, [24]), in¥uhigh@, ¢) = (=1 Y1 (6, ¢)
andY, (r — 6, ¢ +7) = (=1)'Y1, (0, ¢).

1 When/ = 0 andji?2 < 2H?, equation (4.4) is analysed, for example, in [26]. In other cases the analysis is standard
by the non-negativity of the potential term in (4.4).
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where the function®,, are real-valued and normalized so that their asymptotic form at large
r*is

Ry ~ 2coswr™ +8,), r* — oo, (4.6)
wheres,,; is a real-valued phase shift. The orthonormality relation reads
(ua)lms uw’l’m’) = Sll’smm’s(w - 0)/): (47)

with the complex conjugates satisfying a similar relation with a minus sign, and the mixed
inner products vanishing.
We expand the quantized field as

oo
¢ = Z/ dw [bwlmuwlm + bz)lmuwlm]a (48)
im Y0
whereb,;,, andb., are the annihilation and creation operators associated with theapgde
The vacuumOggs) satisfies by definition

boim|0ggs) = 0. (4.9)

4.2. Bogoliubov transformation

We now consider the above quantization in the static coordinates as having been performed
in the regionQ. of RP3dS. We wish to write the vacuum induced @h by |Ogpsg) in
terms of|Oggs) and the excitations created @l,m}. Much of our analysis builds on the
transformations developed for dS in [27].

Rather than computing directly the Bogoliubov transformation between theé¢sgis
(3.4) and{u,,,,} (4.5), we take advantage of the observation that the m¢ggsare analytic
functions inn in the lower half of the strip O< Re(n) < 7 in the complexy-plane, and
that they are bounded as (m — —oo in this strip [28]. Following Unruh [29], we can
therefore find a set of modes that share the vac|@ume) by forming from{u,,,,} and their
complex conjugates linear combinations that are analytically continued across the horizons
with Im(n) < 0, and globally well defined oRP3dS. We call these modég-modes.

The construction of thé/-modes follows closely that in the Rindler-type spacetime in
[9]. We coordinatizeRP3dS by (1, x, 8, ¢) in the sense explained in section 2. The region
of RP°dS covered by the static coordinatesr, 6, ¢) is theny — 37 < |n — 17|, and the
embedding is given by (2.12). Near the horizon in the static regjen%n — |n— %71 [, Uoplm
is asymptotically proportional to

(& [tan(1(y — )]+ e [tan(3(n + N V. (4.10)

Continuing the asymptotic expression (4.10) past the horizen x into the past region of
RIP2dS, in the lower half-plane in, we obtain

{2 et tan(L(x —m)] " + e tan(3(x +m)] " Wi (4.12)
In order to have the asymptotic form of a mode that is globally well defined in the past region,
one needs to add to (4.11) its image under (2.15), which is
(—D'{e’ e/ [tan(3 (x + n))]"”/H +e i [tan(3(x —m)] Yim. (4.12)
Continuing the sum of (4.11) and (4.12) back to the static region, matching the asymptotic
form to a linear combination from the sgt,,,,,}, and normalizing, we recover the modes
1

J2sinmw/H)

Weoim == (e”’”/ZH Upim T efmu/ZH uwl(_m)). (413)
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A continuation to and from the future region Bf?3dS instead of the past region is similar
and leads again to (4.13). The $&t,,,,} provides the desired complete orthonormal set of
W-modes.

The quantized field can be expanded in terms ofithenodes as

o0
—Zfdﬂ%mmﬁb%w’ (4.14)
0

whered,,;,, andd,, are, respectively, the annihilation and creation operators associated with

the modeW,,;,,. The vacuum of thé&/-modes is by constructio@zpsg),

dyim|Ogpeg) = 0. (4.15)

Comparing the expansions (4.8) and (4.14), and using (4.13), we see that the Bogoliubov
transformation between the operators reads

1
ba)lm =
V2 sinmw/H)

Suppressing and/, and proceeding as in [9], we obtain

(eﬂu)/ZH doim ﬂu)/ZH dl]( m)) (416)

Ogpee) = 1 (°° (Zq—l)!!exp(—na)q/H)|2 ) )
TR T Jeostr,) \ = V2! 170
o0 1 [0¢]
X n11:[O<COS|”(rw) ; eXFx—T[CI)C]/H)|q>ln|q>(—m)) ) (417)
where
tanh(r,) ;= exp(—rw/H), (4.18)

and|q),, denotes the normalized state witlexcitations in the static mode labelled tay(and
the suppressed indicasand/),

19)n = (¢")?(b},)"|08as)- (4.19)

The notation in (4.17) is adapted to the tensor product structure of the Hilbert space over the
modes: the statl),,|q)m) containsg excitations both in the mode and in the mode-m.

The vacuun|Orpsg) therefore contains excitations with £ 0 in pairs whose members only
differ in the sign ofm.

For generic operators with support in the static region, or even with support only on the
inertial trajectory at = 0, the expectation values j@gpse) are clearly not thermal. However,
suppose thaf is an operator with support in the static region, such thdbes not couple to
the modest,,,, with m = 0, and for each tripletwlm) with m # 0, A only couples to one of
the modes:,,,, andu;_m). Itis easily seen from (4.17), as in the Rindler analysis in [9], that
the expectation values of are thermal in the temperatufe= H/(2r).

The mode functiong,,,, are unlocalized inr. However, it is straightforward to adapt
the above analysis to wavepackets localized partially in botimdw, as in the Rindler case
discussed in [9]. In the static region, one find thermal expectation values in the temperature
T = H/(2w) for any operator whose support is localized at asymptotically early or late values
ofo.
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5. Inertial particle detector in |Ogpsg)

We now turn to the experiences of an inertial monopole particle detector [14, 29-RBPfitS

in the vacuumOgpsg). As |Ogpsg) is invariant under the isometries BP3dS, we can without

loss of generality consider the detector trajectory whose one preimage on the hyperboloid (2.1)
is

U = H tsinh(Ht) coshy, (5.1a)
V = H 'coshH1), (5.1b)
Z = H 'sinh(H7) sinhy, (5.1¢)
X =0, (5.1d)
Y =0, (5.1¢)

where y is a non-negative parameter andis the proper time along the trajectory.
Geometrically,y is the hyperbolic angle between the trajectoryrat: 0 and the normal
to the spacelike hypersurface belonging to the distinguished foliati®PédS. Fory = 0,
the trajectory is orthogonal to the distinguished foliation atalFory > 0, the trajectory is
nowhere orthogonal to this foliation, but it becomes asymptotically orthogorial as oo.
We shall consider on a par both this trajectoryR**dS and the well known case of the
trajectory (5.1) in dS.

In first-order perturbation theory, the probability for the detector becoming excited is
[14,29-31]

2
> I(EIm(0)|0)|"F(E). (5.2)
E>0
wherec is the coupling constantr(7) is the detector's monopole moment operaltdy, is the
ground state of the detector, the sum is over all the excited gtayesf the detector, and the
detector response functiof(E) is given by

F(E) := f dr f de’ e "G (x (1), x (). (5.3)
For the trajectory (5.1) in dS, equation (3.6) yields

Gis(x (1), x(r")) = AH?F(cost[H (r — t')/2 — i€]). (5.4)
For the trajectory ilRP3dS, equations (3.6) and (3.10) give

Grpags(* (1), x(1) = Gig(x (1), x(1) + AG™ (¢, ), (5.5)
where

AG*(1, 7)) = AH?F(3[1+ Z.(7, T)]) (5.6)
with
Z.(t,7') ;= —cosh[H (r + t')] — 2sinify sinh(Ht) sinl(Ht') —ie(r — /). (5.7)

Fory = 0, the imaginary part in (5.7) can be dropped, as the argumehtinf(5.6) is then
always negative: the geometrical reason is that in this case the trajectory (5.1) in dS and its
image undet/ have a spacelike separation, which guaranteesAliat(z, t’) is necessarily
nonsingular. Fop > 0, on the other hand, the imaginary partin (5.7) is needed to specify the
singularity structure iMG*(z, /) when the argument of in (5.6) takes the value 1.

Consider now the familiar case of the detector (5.1) in dSGjg(x(7), x(t")
(equation (5.4)) is independent pf and it depends on and<t’ only through the difference
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T — 7/, as the case must be by the invarianc¢Ogf under the connected isometries of dS. If
the detector is adiabatically turned on in the asymptotic past and off in the asymptotic future,
the total response functiafys(E) is infinite, which reflects the fact that the excitation rate

is constant and nonvanishing along the trajectory: the excitation rate in unit proper time is
recovered by leaving out one of the integrals in (5.3). £8H 2 = 2, one recovers for the
excitation rate the Planckian result at the temperatuse H/(2r) [14],

Fuas(E) _ E
(unit proper time) 2 (e27£/H — 1)

Consider then the detector RIP3dS. ASAG*(z, t’) (equation (5.6)) depends anand
7’ not only through the difference— ¢’ but also through the individual values, the excitation
probability per unit proper time is not a constant along the trajectory, and this probability
also depends op. The detector therefore senses the distinction between the {@&guand
|Orpsg), and it also senses its velocity with respect to the distinguished foliatidRiPedS.
However, ifr andr’ are both large and positive, or if they are both large and negaiive, /)
(equation (5.7)) is large and negative, ahd " (z, ') tends to zero ag + /| — oo [17].
In the asymptotic future, or in the asymptotic past, the detector therefore respond6gs in
Fory = 0, this is the result one would have expected from the Bogoliubov transformation of
section 4.

(5.8)

6. Summary and discussion

We have shown that the Euclidean vacua of a free scalar field on the spacetimeskESdad

are distinguishable to aninertial observer who couples to the field through a monopole detector,
or to an observer who can measure the field stress—energy tensor. In the special case of an
inertial observer whose worldline dRP2dS is orthogonal to the distinguished foliation, we
arrived at a similar conclusion by constructing the Bogoliubov transformation between the
modes that define the Euclidean vacuum and the modes that are of positive frequency with
respect to the observer’s natural time coordinate. However, we also saw that the differences
between dS anRP3dS become exponentially small in the distant past or future on an inertial
observer worldline, and in these limits the observer thus sees the Euclidean vacR¥d&

as a thermal bath in the usual de Sitter Hawking temperature. This result conforms to the
central tenet of inflationary cosmology, namely, that the physics in an exponentially expanding
spacetime should become indistinguishable from physics in de Sitter space exponentially fast:
what falls off exponentially in our case are the effects of the unconventional spatial topology
on the quantum field.

While our particle detector analysis accommodated an arbitrary inertial observer in
RP3dS, we only performed the Bogoliubov transformation for an inertial observer whose
worldline is orthogonal to the distinguished foliation. As any inertial worldlin&RiF*dS
has a neighbourhood covered by the static metric (2.10), such that the worldline s @t
the case of a nonorthogonal trajectory would also be in principle amenable to a Bogoliubov
transformation analysis. One would expect the correlations in the counterpart of (4.17) to be
more complicated for a nonorthogonal trajectory, but one would expect a wavepacket analysis
to also show thermality in the limit of early and late times in this case. Finding the Bogoliubov
transformation explicitly for a nonorthogonal trajectory is, however, more difficult, and we
shall not pursue this question further here.

Yet another way to investigate the experiences of an inertial obser®&3aS is through
the complex analytic properties of the Feynman propagatdfgreg). As mentioned in
section 3,RP3dS can be regarded as a Lorentzian section of a complex spacetime whose
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Riemannian section is a certaia quotient of the round 4-sphere, and the Feynman propagator

in |Ogpsg) continues to the unique Green function on this Riemannian section. A set of
coordinates covering the Riemannian section can be obtained from the static coordinates
(o,1,0,9) on Q. by settingc = —ig, provided the coordinate®, r, 6, ¢) are identified

as

(6,r,0,9) ~ (@G +2n/H,r,0,0) ~ (x/H—G,r,m —0,¢p+m). (6.1)

The first identification in (6.1) is just as for dS, and this identification implies for the Feynman
propagator inOg) complex analytic properties that correspond to thermality in the de Sitter
Hawking temperaturé? /(27) [32]. The second identification in (6.1) is specificR®3dS.

One can argue that the complex analytic properties of the Feynman propag#lge:j

are consistent with thermality in the limit of asymptotically early and late proper times: the
reasoning is similar to that given for tfRP3 geon in [9], and we shall not spell out the detail
here.

The action of the Riemannian sectionRP3dS is half of the action of the Riemannian
section of dS. If one uses these actions in a semiclassical estimate to a quantum gravitational
partition function, and if one associatesRB3dS the de Sitter Hawking temperatudg (27),
one finds for the entropy &P3dS the result 2 H 2, which is half of the value obtained for dS
[33]. An analogous observation was made in [9] for the entropy dRiffegeon. Although the
entropy associated with cosmological horizons may be physically less clear than the entropy
associated with black hole horizons, it should prove interesting to understand whether this
naive instanton-method evaluation of the entropRBfdS could be physically justified, and,
in particular, whether the factor of one half relative to dS might also arise in any state-counting
approach to the entropy.
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Appendix. Stress—energy tensor via a conformal transformation

In this appendix we verify the result (3.12) for the stress—energy tensor of a massless
conformally coupled field by the conformal technique of Parker [34] and zeta-function
regularization.

To begin, recall [34] that any covariantly conserved symmetric tekigdrin a spacetime
with a conformal Killing vectori" satisfies the relation

Vu(K"E,) = $V,EV KL (A1)

Integration of (A.1) over a compact spacetime reglémwith spacelike boundargM yields
/ d®x n'2K*En, = 3 / d*x (—g)Y?V," K", (A.2)
oM M

wheren,, is the outward unit normal form o#/. If both the spacetime anki*” are spatially
homogeneous, we can chods¥ to consist of two homogeneous spatial hypersurfaces, and
the spatial integration in (A.2) then factors out on both sides of the equation. One recovers a
relation that relates the projection &f*” orthogonal to the homogeneity hypersurfaces o

t A conformal Killing vector in four spacetime dimensions satisigg, + V,§, = %Vpéf’g,w.
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We apply the above to the spacetimes dSRiddS, for both of which the metric takes
the form (2.5). For the conformal Killing vectdr, we choosed, = H~!cosh Ht)d,, for
which V,&” = 4sinh(Ht). In the coordinateg, x, 6, ¢), we obtain

cost(H1;)K%(t;) — cosH(H)K%t;) = —H/fdt cost(Ht) sinh(HO)K ! (1).  (A.3)

We wish to use the relation (A.3) to determine the difference of the renormalized stress—
energy tensors in the vaci@) and|Ogpse). We denote these tensors, respectively{fgs]”)
and(THifPfs). Both tensors are covariantly conserved and invariant under the isometries of the
respective spacetimes. Further, we can use the projection from BB3dS to map(TS’é”)
into a tensor ofRPP3dS. By the usual abuse of notation, we denote also this tensRPaaS
by (Tg"). ThenATH := (Tiy:) — (Tg') is a well defined, covariantly conserved tensor
on RP3dS, and it fully characterizes the differences in the stress—energy teng6gs and
|Orpeg). Equation (A.3) hence holds witki** = AT*".

We now specialize to the conformally coupled massless fields 0 andé = % As
the divergences in the trace of the renormalized stress energy tensor are purely local and
anomalous, they are determined entirely by the local geometry. These contributions are the
same fofRP3dS and dS; thua T = 0. Equation (A.3) withk** = AT then implies

AT = (A.4)

cosf(Hr)’

where(C is a constant. Together with the tracelessness and symmeteEH13f this implies
no—_ - diag(—1. L L1

ATH, = cosHHD) diag(—1, 3, 3. 3)- (A.5)
Note thatA 7% behaves as if it were classical radiation. In particular, it redshifts exponentially
to zero at large times

To evaluate the constant, and, in particular, to show that it is nonzerot, we employ

a conformal transformation technique. Observe [36] that® is entirely due to the
nongeometrical contribution from the conformal vacuum, i.e. that reflecting the boundary
conditions on the state set by the topology rather than that contributed from the anomalous
trace. One can therefore computd@ ® by first finding the corresponding quantit7°,
in suitable conformally related spacetimes and then performing a conformal transformation:
from equation (6.129) in [36], this transformation reads

i 2
AT;:(§> AT, (A.6)

whereg andg are the determinants of the conformally related metrics.

Suitable spacetimes conformally related to dS &R¥dS are, respectively, the usual
Einstein static universe, with spatial topolo§$, and the Einstein static universe with spatial
topologyRP3. Their metrics are obtained by multiplying the metric (2.8), on, respectively,
dS andRP3dS, by sif . For the ordinary Einstein static universe with curvature radjus
the energy density iggs = 1/(4807°c*) [37,38], and a derivation of this result by zeta-
function regularization methods [39] is given in [40]. For the Einstein static universe with
spatial topologyRP3, we adapt the zeta-function calculation of [40], noting that among the
hyperspherical harmonid®2,.,,} on the rounds?, those that project to the rourkIP® are

T This point is nontrivial: see Kennedy and Unwin [35] for an example where changing the boundary conditions on
states does not change the energy density.
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precisely those whose principal quantum numbés odd [21]. The regularized expression
for the total energy on the spacelike hypersurfaces of the Einstein static universe with spatial
topologyRP2 and curvature radiusreads thus

E@)rp =3 Y n’(n/o)” =3¢ (1= 227) (s — 2, (A7)

wheres is the regularization parameter agds the Riemann zeta-function. Taking= —1
and dividing by the spatial volume?c® yields the energy densityrps = —7/(2407%c%).
Taking the difference betweenp: and gz, we obtain

700 _
ATY = 302" (A.8)
From (A.6) and (A.8) we thus find
H4
AT® ) = ———— A.9
© 3272 cosH (Hr) (A.9)

which is (A.4) withC = —H*/(327?). With this value ofC, the expression (A.5) agrees with
the result (3.12) obtained in the main text by point-splitting methods.

If the field is not conformally coupled and masslead;/* need not vanish. It would be
possible to obtain partial information abat°, in particular, about its falloff ag| — oo,
by first computingAT/* via point-split methods and then applying (A.3). This calculation
would, however, not be substantially simpler than the full point-splitting evaluatian7of .
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