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Null cones in Schwarzschild geometry
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In this work we investigate aspects of light cones in a Schwarzschild geometry, making connections to
gravitational lensing theory and to a new approach to general relativity, the null surface formulation. By
integrating the null geodesics of our model, we obtain the light cone from every space-time point. We study
three applications of the light cones. First, by taking the intersection of the light cone from each point in the
space-time with null infinity, we obtain the light cone cut function, a four parameter family of cuts of null
infinity, which is central to the null surface formulation. We examine the singularity structure of the cut
function. Second, we give the exact gravitational lens equations, and their specialization to the Einstein ring.
Third, as an application of the cut function, we show that the recently introduced coordinate system, the
“pseudo  Minkowski” coordinates, are a valid coordinate system for the space-time.
[S0556-282(199)00510-X

PACS numbd(s): 04.20.Cv

I. INTRODUCTION points on the light cone. We show in Sec. IV that the equa-
tions for the past light cone obtained in Sec. Il are, in fact,
The purpose of this work is to develop a simple modelexamples of exact lens equations. As a special case, we give
space-time in which we study gravitational lensing and thehe exact formula for the observation angle for an Einstein
light cone cuts of null infinity. These cuts are central to aring. In the final section, we show that the *“pseudo-
recent reformulation of general relativity known as the nullMinkowski” coordinates, defined if4], form a valid coor-
surface formulation1,2]. The model we consider consists of dinate system for the entire space-time.
a Schwarzschild exterior region surrounding a spherically
symmetric, static, constant density dust star. Il. INTEGRATING THE NULL GEODESICS
The null surface formulation makes explicit use of future
null infinity, denoted byZ ", which has the topology oR
X S2. In an asymptotically simple space-tini! represents

To begin, we integrate the null geodesics of a Schwarzs-
child space-time with an interior constant density matter re-

the future end points of all null geodesics and can be adde@ion- Since we eventually consider each geodesic’s limiting
as a boundary to the physical space-time through a proce&§91d point atZ ™ in order to obtain a cut function, we inte-
of conformal compactificatiofid]. The standard coordinates 9rate the null geodesics using a conformal Schwarzschild

onZ " are the Bondi coordinatesi(6, ), whereu labels the metric which is regular at null infinity. The integration is
R part, andd and ¢ label the sphere. performed using a “radial” parametdr=1/(y2r), so that

OnZ*, a light cone cut is the intersection of the light =0 corresponds to the point at null infinity, while a finite

cone from a particular point in the interior with future null >0 will be a point in the interior. _
infinity. In Bondi coordinates off *, the light cone cuts are _ 1he general form for a static, spherically symmetric met-

given by a cut function, ric with signature (-,—,—,—) is given by
u=2(x2,6,¢) 1) ds?=f(r)dt?—h(r)dr?—r2dQ?, (2

wherer2dQ?=r2d 6%+ r?sir? 6d¢? is the line element on the
gphere. In our model, the functiorigr) and h(r) will be
continuous, piecewise smooth functions for an exterior
Schwarzschild region and an interior constant density dust
solution with a radiuRR:
1/2\ 2
) Efint’ I’<R,

where for a fixed initial pointx§, the cut is a deformed
sphere, possibly with self-intersections and singularities. Th
crux of the null surface formulation is that from the knowl-
edge of the light cone cuts, E€), one can reconstruct all of
the conformal information of the space-time.

The current paper explores the light cones from an arbi- (3< 2M)1’2 1( M2

trary point in a Schwarzschild space-time surrounding a conf(r)= 1—- ——
stant density, dust star. By integrating the null geodesics in R
an inverse radial coordinate= 1/\/2r, we obtain parametric
expressions for the future and past light cones of an initial
point, x§, in terms of a “distance’l, and two “directional”
parameters which span the sphere of null directiongjat
The intersection of the future light cone of an arbitrary initial

2 RS

2M
f(r)=1—TEfext, r>R,

point with null infinity gives the light cone cuts. In Sec. IIl, h(r)= WEhim, r<R,
we study the singularity structure of the cuts, explaining how 1— r
the singularities are related to the formation of conjugate R®
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1 and use this equation and the first and third geodesic equa-
h(r)=——=y=hext. T>R. (3)  tions as independent equations far,l(®). After finding
1-— some trivial first integrals and rearranging, independent
r equations for null geodesics can be written as
We assume that the radius_of the inteﬁor region extends be- 1+ mi
yond ther =3M unstable circular orbit for null geodesics, U= —r—,
ensuring that the space-time is asymptotically simple. Work- 217 (1)
ing in a retarded null coordinata=t— fdr+/h(r)/f(r), and ~—
the inverted radial coordinatd=1/(y/2r), a conformally =+ /ME+ Al
rescaled version of the metric, E(®), which is regular at B k(1) - '

null infinity, is )
O=h. (8)
ds?=412f(I)du?— 4 k() dudl-dQ?, (4) _

In these equations the sign bfndicates whether the geode-
wherer is replaced in terms of the variableand k(l) is  sic is incoming(positive or outgoing (negative, and the
given by parameteb is a free integration parameter labeling the initial

direction of the geodesic. In Appendix A, we show how the

k(h)=f()h(l). parameteb is related to the initial direction of the null geo-
desic.

It is convenient to integrate the null geodesics first in a |n integrating the equations, geodesics which are initially
plane, and then to use the spherical symmetry to rotate thgutgoing will haveb values ranging from zero, correspond-
solution to an arbitrary orientation. The restriction we em-jng to a ray traveling radially outward, to some maximum
ploy is to take a particular initial poin3, lying on the value b,,,, for which the geodesic is initially tangent to a
—7 axis, sphere of radius,= 1/(\/2l,). The value ofb,, is the value

of b for which i =0 at the point =1,:

Xg=(Ug,lg,00=1,o=0),
1

and the geodesics as lying in tke plane. To define thg-z bm_|0\/W' ©
plane, one usually allow#g to range from O tor and has

¢=0 or 7. In order to facilitate our discussion, we will not For geodesics which are initially incoming, the rangebin
use this convention. Instead, we require tat0 and allow  will be from b,, back down to zero. The value dfwill
a variable,®, to range from 0 to z. In terms of the vari- increase until reaching some maximum vallre|,, which
ables (1,1,0), a Lagrangian corresponding to the conformalis a minimumr value. The value of, is the singlereal) root

metric is of the equation] =0, or the root of

212 _

c:2|2f(|)u2—2mm—%®2, (5) =03t ) =0. (19

At |, | changes sign, and the geodesics will head out to

where dots indicate derivatives with respect to an affine painfinity.

rameterr. The geodesic equations are It is convenient to reparametrize the equations of motion,

Egs. (8), usingl instead of the affine parameter, and to ex-
d . .. . press the solution to the null geodesic equations in terms of
g @t hu- Vk(hi=0, integrals ovel. In terms of these integrals, geodesics on the
light cone connecting the initial point§<8=(u0 0,60
ui =, ¢o=0), with the final point,x®=(u,l,®,$=0), are
k'(1)=0, given by

2k(1)

d%(— Jk(hu)— @1 (Hu2+12f" (1) u?) +
u=u(ug,lg,l,b)=ug+(—1)¢
diT@:o’ © xfldlf( + L k(1 )A") )
o | Vaa@-an)

with primes denoting derivatives with respectltdro solve
for null geodesics, we impose the null condition on the La-

grangian, N

b
VA

¢=0, (11)

®=®(I0,I,b)=7-r—f|dl’

lo

£=212f(1)u2—2 k()i —%®2=o, (7)
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The full solution to the null geodesic equations is ob-
tained by performing a rigid rotation of the spatial plane

defined by the path of this geodesic and thaxis, to an
arbitrary orientation. Due to spherical symmetry, the light
cone for an arbitrary point will be axially symmetric about
the spatial line connecting that point and the spatial origin
(defined byr =0). We will call the angle of revolution about
the axis of symmetryy; the angley essentially defines an
orientation of the spatial plane containing the geodesic and
the axis of symmetry(In the case that the initial point lies on
the —Z axis, y is simply the anglep.) To obtain the full light
cone from an arbitrary initial point, we need to rotate the
solution that is symmetric about tizeaxis over to the axis of
symmetry defined by the arbitrary point. We can think of this
as rotating the particular initial poi&g=(u0,lo,0o=w,¢o
=0) to the general initial poink§=(uo,lo,6o,¢%0) and al-
lowing the orientation parameterto take any value between
0 and 2r. This rotation is explicitly performed in Appendix
B.

It is often convenient to use complex stereographic coor-
dinates, defined by

Lines of
conjugate points

. 0 — 0 .
X, §=cot§e'¢, gzcotie"d’, (12
FIG. 1. The light cone of a point which has formed conjugate
points in its future. The crossover line represents points in the
space-time where Einstein rings are observed, while the line ofnstead of the angular coordinatésand ¢». Throughout this
caustics are stable singularities conjugate to the initial point. paper we freely switch back and forth between the two co-
ordinate systems. An arbitrary initial point is given in stereo-

where the integrals are defined piecewise over the variougraphic coordinates byg=(uo,lo,%0,0)-

segments irf andk, and the appropriate signs are chosen if ~The full light cone, obtained by using the rotation of the
the geodesics are incoming-{ or outgoing (—). The future  solutions of the null geodesic equations in #ie plane to an
light cone is given bye=0, and the past light cone by  arbitrary initial point and orientation given in Appendix B,
=1. are expressed parametrically in terms of the paranedsr

| 1= VKA

u=u(u0,lo,l,b)=uo+(—1)5f di'{ =

o\ Vaan@rary)

. O(,lp,b =
| eiPrco o) Violoe 127
_ Lo 2
§(|0!§0’§0’|'b1y): - (II b) 1
fo - Vfo?oe(”z)ycot—’zo’ +e (172y
. O(,ly,b =
7|12 e*("z)ycot(TO)vL LoLoe!"?Y
§(|0:§o1§01|:b:7)=(§_0) @(Il b) ’ (13)
0 - gofoe‘(”z)ycot'To'JreWW
where®(l,l4,b) is given by the integral in Eq11),
I b
0=0(,y,l,b)= —jdl’ + , 14
(ol D)= | B (14)
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and the convention foe and signs are taken as before.

Equations(13) represent the entire future and past light cones for an arbitrary point in the space-time. The light cones are
given in terms of two parameters,(y), which span the sphere of initial null directions at the initial poifit We note that
the u coordinate does not depend grdue to the axial symmetry of the light cone.

lll. LIGHT CONE CUTS AND THEIR SINGULARITIES

While the light cone from an arbitrary point in Minkowski space is always smooth, light cones in an asymptotically simple
space-time have, in general, self-intersections and several different kinds of singularities. These singularities are directly
related to the formation of conjugate points along null geodesics. A pictorial representation of a light cone with singularities
is given in Fig. 1. Since the light cone cut function is the intersection of the future light cone with null infinity, it inherits the
singularity structure of the light cone. In this section, we study the cut function in our model as a representative example of the
null surface formulation.

A parametric version of the cut function is obtained by setting the valu¢sod € to zero in Eqs(13):

1+Jk(IMAI")
JAI)(21'](17))

2 e(ilz)'}’co_l,_ gozoef(ilz)y

— goz)e(ilz)ycotw_i_e*(”z)y

0
uw(uo,lo,b)zuo+f dl’| = , (15

lo

=

— 4 !
gw(|01£0’§01b1'}/):(?—0) (16)

0
. O(ly,b =
—)1/2 e‘("z”cot%nL LoLoe!’?Y

o

o = O(ly.b) :
— (—il2)y (i12)y

{oloe cot—2 +e

ZO(|01§0!Z)1b17):< (17)

where the functior® (I, ,b) is given by Eqgs.(16) and(17) for b and y will be impossible. In such a
case, we will not be able to find an explicit cut function in
. b the form of Eq.(1), but will be forced to work with the cut
“ VA function in a parametric form.
In a sense, singularities in the light cone cuts are places
If it were possible to invert the pair of equations, E(6) where the null surface formulation undergoes technical
and(17), for b and y, obtaining the functions difficulties—a natural coordinate system used in the theory is
not well defined at these points. We now believe that these
v=G({x ZQ .o ,Zo Jdo), (19 difficulties can be overcome by using a particular parametric
representation the cut function. A primary interest here is to
and study the singularities in the cut function.
_ _ There is a complete classification of the stable singulari-
b=B({x,{x,{0,80:l0), (200 ties of the cut function which can be applied to our model,
due to Arnol’'d and his collaboratof$,6]. A stable singular-
ity is one which does not disappear under small perturba-
tions. For two dimensional surfaces, such as the light cone
cuts obtained by fixing the initial point in the cut function,
there are only two types of stable singularities. These are the
) , i ) — cusp ridge and the swallowtail. Due to high level of symme-
by msertmg the solgtlon fob in terms of ¢,{) from Eq. try in our model, any cut function must be axially symmetric.
(20) into theu.. soluﬂon, Eq.(15). _ _ This means that, although the cut function is a two dimen-
While {..(l9,0.40,b,7), and {.(lo.40.{0.b,¥) are  sjonal surface, it can be represented by a one dimensional
single valued inb, they will not, in general, have unique cyrve whose revolution about some axis gives the cut func-
inverses—more than one initial direction acquires the samgon. For a one dimensional curve, the only stable singularity
value of or { atZ+. This implies that there are singulari- is a cusp, which implies that we will not see swallowtall
ties in the cut function itself and that the global inversion of singularities in our model.

@(Io,b)=7r—flodl’ . (18

one could produce the full cut function in the form of Eq.

D,

u=2(x§,£,0),
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FIG. 3. A cusp ridge appears on the light cone cut from an
initial point sufficiently far away from the center of the space-time.
NearZ ", the intersection of the light cone of this initial point with
a time-like surface would look similar to this cut, except that the
“umbrella” at the top of the cut would be inside the main body of
the wave front.

rectly related to Einstein’s rings, the astronomical phenom-
enon where a spherical lens causes lensing in a uniform cir-
cular shapd7]. We discuss the rings in the next section on

) | | gravitational lensing.
[ I The singularities in the cut function represent points
I ' which are conjugate to the initial poirf . For a fixedxg , we
J_ J I . N . . . .
}, . - can think of the parametric equations for the cut function,
~ | > Egs.(15), (16), and(17), as a map between the initial direc-

tions of the geodesics at the initial point and the final posi-
FIG. 2. Three cut functions with one dimension suppressed ( tjgn (Uso Lo ,Zw) atZ*. One way to find the points of *
XR). As the initial radial position moves away from the spatial \yhich are conjugate to the initial poirg is to find the points
center smooth cuts give way to cuts with singularities. atT+ for which the Jacobian matrix expressing the mapping,

In Fig. 2, we give plots of three cut functions, suppressing AU, U,
the axially symmetric dimension, for three different values of R
the initial radial position],. These figures show that singu-
larities appear as the initial point moves away from the spa- % %
tial center of the space-time. A smooth cut of null infinity, J= b dy |’ (1)
corresponding to a cut from the light cone of a point close to — =
the center of the space-time, will be a smooth sphere-like % %
surface. Because of the axial symmetry, a cut with singulari- b dy

ties will have a circular cusp ridge and a single crossover
point. Figure 3 gives a pictorial representations of a singula

cut rdrops in rank 9]. For this to occur, all three 22 determi-

nants must be zero.

Because the cusp ridge singularity in our cut function is ; . . . .
stable, it represents a generic possibility for a cut function in \_N'th no loss in generality, we consider the cut function of

a general space-time. Specifically, this singularity will re-an initial point on the—z axis. In this case, the cut function
main if one makes a small perturbation of the metric awayS obtained by setting the final value i Eq. (11) to zero,
from a Schwarzschild metric. The crossover point along thétnd restoring the rotational degree of freedom by setjing
cut function is an unstable singularity, arising from the high= ¢... Thus, the cut function for an initial point on thez
degree of symmetry in the Schwarzschild case, and is diaxis is written in terms of the coordinates.(, 6.. , ¢..) as
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1+ Vk(IMA(")
VAN @E ()

Numerical computation shows that the first derivative is fi-
nite and non-zero along the cusps in the light cone cut. As
written, the second derivative is indeterminant along the
cusps since the term in square brackets is zero there. Apply-
ing L'Hospital's rule, one sees that the second derivative

0
Uw(UO,Io,b):uO'i‘f dll
lo

0 b actually diverges ag .
900(|o,b)=77—f di"{ = , As a final note on the cusp singularities, we list the be-
o /A_(I N p g

havior of several important quantities in the null surface for-
mulation as one approaches the cusps along the cut function.
b= Y- (22) All of these quantities are computed as derivatives of the cut
function with respect to the complex stereographic coordi-
In this case, the Jacobian matrix corresponding to(Ef).is  natess and¢, and have been computed in this model para-
given by metrically for initial points along the-z axis. These deriva-

tives are denoted by and d [8]. In terms of g, which

U, approaches zero as one approaches the cusp, the behavior of
b some important quantities of interest are listed below for
u.=2(x2,2,0).
| | 23 (x3.4.2)
b Quantity Behavior
0 1 w=0Z regular
. . A=0°Z q!
It is clear that for the Jacobian to drop rank we must have R—&57 q!
dA 1
M. ” |A’1|=ﬁ’
ob (24) 02=9g?7 352, q?
and
IV. GRAVITATIONAL LENSING EQUATIONS
z%_o 25 An important goal of gravitational lensing theory is to
a= db (25 construct lens equations which give the position of sources in

terms of directions seen by an observer and distances to the

A combination of numerical and analytic calculations shows>OHree: Typlcally, lens _equat|ons are obtam_ed Via approxi-
ations on the kinematics of the null geodesics of the source

that these two conditions are satisfied simultaneously only

the cusp ridge shown in the figures, and hence the cusps 1
the cut function are conjugate points to the initial point. Recently, a way to produce completely general, exact

An alternative way of deducing the singular points is to!€NSing equations has been found, and a paper is being pre-
consider the first and second derivativesigfwith respectto  Pared which develops gravitational lensing theory from this
6... For a cusp singularity, the first derivatives are alwaysP€'SPective9]. Our model provides an explicit example of

finite, while the second derivatives diverge. Working para-SUch @ formulation. In this section we give exact lensing
metrically in b, these derivatives are equations for the Schwarzschild space-time with a constant

density dust interior region, and show that our exact equa-

tions reduce to standard approximate lens equations. In the
au., special case that the source, lens, and observer are spatially
colinear, we give an exact expression for the observation

%:ﬂ angle in an Einstein ring.
0. 90 In Sec. II, we derived the future and past light cones of an
9b arbitrary point in the space-time. Recall that a lens equation
should express the location of the source in terms of some
and “distance” from the observer, and the directions which the

observer views the geodesics on the past light cone. The
equations of the past light cone, E¢$3), are such a set of
J2u., (&HW)_Z[«?ZUOC au., azgm] equations. In these equations, the observed directions are

== e T e (26) given by the parameter$(y), andl gives the “distance.”

2 .
a0, Hence, exact lens equations for our model are
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ok [lg,b* = o
(g )1/2 eli’27 cot¥+ Loloe™ 1127
- 0

{10,808, 1,b*,¥*) = O(l,ly,b*) '
0 . /gozoe<i/z)y*cot++e—<i/2)7*

—(i/2)v* ®(|1|Ovb*) — (i/2)v*
—)1/2 e 112y cot——p——+ LoLoe!?Y
0

Zo Ollo,b%) : @7

— A é‘ozoe(filz)'}’*cotT e(ilz)'}’*

Z(IO,éofo,l,b*.m:(

with (lo.1.b*) SiNYops
[OEAE] =TT
| b* /k(ll) lOVf(IO)
®(I,Io,b*)=w—f dli'( = . | 1
|
° V1-b*2'2%(1") xf | =+
I0 . ’
Sir? gond 2F(1")
In these lens equations, the spatial location of the source 1- 12£(1,)

is the point (,{,{). For an observer at the poinity(, o, <o), 070
the observed directions of the geodesic on the past null cone (30

are given by the particular values df,(y) which connect the . : .
source and the observer, denoted a, §* ). There may, in _A typical approximate lens equation for the Schwarzs-
fact, be more than one set of values fdr*(y*), as the child model[7] is
process of focusing may produce more than one “image.”
: . 2RsD s
Due to spherical symmetry, any observer may be consid- B=p—— (3D

. <. D, Dgy’
ered as lying on the-z axis, and the source may be taken as LDsy

lying in the X-z plane. We are interested in the case wheren this approximationg is the Euclidean angle between the
the lens is situated between the observer and the source, asdurce and the center of the space-time, Bge 2M is the

when the rays do not pass through the interior region of th&chwarzschild radius. The Euclidean distances between the
star. In this case, the lens equations, E83), reduce to the source and lens, source and observer, and lens and observer,
single equation fo® which was found in Eq(11): are given byD, 5, Dg, andD, respectively. Figure 4 shows

the case under consideration. We now show that our lens
equation, Eq(30) or Eq. (28), reduces to the approximate

T J‘I arl « b* 28) formula, Eq.(31), under appropriate approximations.
0 lo - ) ' Taking into account the correct signs for incoming and
V1-b*2"%(1") outgoing rays, the right hand side of E8) can be written
as
This lens equation specifies the location of the source in O=m—A(M,b*,ly,1) (32)
terms of the observed direction of the geodebit, and a ok
“distance,” |, to the source. where
In Appendix A, we find the relationship between the angle
at which a null geodesic crosses thaxis, the parametds, Iy b*dl’
and a positionl. In the lensing case, this “observation Azzfl
angle,” denoted byy,s, is related to the observer position, 0 \/2 \/EM b*2|'3p*2|'2 1
lo, and the observed directioh}, by
JIO b*dl’
. + . (33
SiNYops I
*= : (29 \/2\E|\/|b*2|’3—b*2|/2+1
loVF(lo)

Here,l is the position of the observdris the position of the
By replacingb* by ., in the lens equation, Eq28), the ~ source, and,, is the value of for which the geodesic comes
lens equation takes a more conventional form, where thelosest to the lens, attained whér0. The maximuml
direction parameter is the actual observation angle: value,l, is, from Eq.(10), the solution of the equation
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Source there is a cancellation of two divergent pieces which appear.
p: Using a small angle expansion if,,s, the first order cor-
rection t0® is
o/ ! 4\2MI
B A Ap=—i—0 (37)
/ / 'ﬁobs
an . . .
Lo N Inserting the forms ofA; and A; into Eqg.(32) gives
ns ,
B/ I\ 2y2Rd
Lo/ Sl]
~ 0= (1+—)——, (38)
Dy ; Yovs lo Yobs
Dy whereRs=2M is the Schwarzschild radius.
/ To lowest order, the physical distances in Fig. 4 are the
,’ Y inverse coordinate distances,
: PO O
Observer - \/EDLS’ 0~ \/EDL'
nd from Euclidean geometr() is related toB by

FIG. 4. The schematic representation of the path of a geodesic
observed in gravitational lensing. Distances between the lens a
_ BDs
Dis’

observer, lens and source, and observer and source are shown along
Using these relationships in E(B8) and rearranging gives

with the observation angley.
1-b*22+2\2Mb*23=0. (34)

For convenience, we assume that the source is closer &1 approximate lens equation
D, stD. 2RsD g

obs DSDL’;bobs

B Ds

the lens than the observer, so thatl,. To proceed, we
assume that the dimensionless quantifitdb=e and Ml
< e are small and make a Taylor series expansion dh
terms ofe:
which is the standard result whéh +D s=Dg:
A(e,b"‘,|o,|)=A(6=0,b*,|0,|)+e—‘E ,OEAO—'—AL 4 _ZRSDLS 1 9
obs DSDL l/’obs.
To computed,, we evaluate Eq33) at e=M=0. This

As a special case, we consider the Einstein rings, an early

prediction of “pre”-General Relativity only recently ob-

served. If the source lies along thez axis, directly opposite

the lens from the observer gt=0 =0, the observer sees the

implies thatl,=1/b* from Eq.(34). In this case the integrals
are all trigonometric integrals, and we have
Ay=m—arcsinb*ly) —arcsinb*1).
image as a circular ring surrounding the lens, or an Einstein
ring. In this special case, the lens equation, 81f), is an
implicit equation for the exact observation angle for the ring:
1

Using Eq.(29) to express\, in terms ofi,,s, and making a
small angle approximation, is given by
A0:7T_ (ﬂobs_w. (35) sin 'r//ObS Ib
lo m=——ro—| dI’
loVE(lg) 7o _ Yoo
The first order term is given by oriho \/1_S|n2 ond 2f(1")
12£(1,)
d lb* yIdl’ lob* /Id1’ ori’o
Ay=el — (zf*’ o +f° A ) (36) .
de] _\"Ji, A | A SiNYops ldl’ 1
| ) '
lovT(lo) \/1_Sinzl/fobsl 2£(17)
15f(10)
(40)

where
A= \/2ﬁeb*2l’3— b*2I1 21,
and in the upper limit,, and care must be taken so that wherel, is the postive root of Eq.34) or the positive root of

The derivative acts on both thedependence in the integrals
124002-8
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: 212,19 _ 1201 _ _ _
(SiNPope 21 B(1—242M1p) —13(1—2\/2M1 ) =0. “ xl,m:LZZ(XS,{(xg,n))YLm({(XS,7}))|J|d§
0

In terms of the future light cone of the source, an observer =fin(x§) (1=0,1). (45
who sees the Einstein ring is situated along the crossover line
in Fig. 1. Points on this line are conjugate to the initial point, This integral defines the pseudo-Minkowski coordinates.
and the light cone has unstable singularities there. The cross- We would like to show that the pseudo-Minkowski coor-
over point in the cut function represents a limiting “Einstein dinates form a good coordinate system by showing that the
ring” at infinity, but the actual observation angle for this ring Jacobian of the coordinate transformation defined by Eq.
is zero, so that the ring is not observable from infinity. (45),

XIm:fIm(Xg)v (46)
V. PSEUDO MINKOWSKI COORDINATES
, C . iS non-zero.
o ézlﬁagnasl(35(5)(2?&'5:?;o\(/)\fstl?iecgg[r;?r?;tt[:%nfovﬁq sah\(,)vv(\a/"tr:jzg_the Because of the spherical symmetry of the space-time and
P the fact that thex,,=(Xy1,X10,X1-1) transforms as an

fined, global coordinate system for the Schwarzschild space(—)(3) vector under Space-time rotations, we can conclude

time with a constant density dust interior. In this section, W&y 2t the functional form of the pseudo-Minkowski coordi-

use the complex stereographic angles_‘:—][ as coordinates on  nates must be

the sphere.

The pseudo-Minkowski coordinates are defined by inte- Xy —1=X—iY="1(ug,lg,b,y)sin ge ¢,
grals over the sphere at infinity of the cut function weighted
against the first fouly, , X10=2="1(ug,lp,b,y)cosb,

T Z 2_—| a — lel X IY (u01|01b, V)Sl I0€I ,

To test the non-vanishing of the Jacobian, all we need to do
is to take a point of thely,ly) plane, for examplepy=0,
and 6y= 7, and check the transformation

where

2 d¢Ade
:i_(l+§?)2 X0,0=9(Ug,l0,0,7), X10=f(Ug,lg,b,y), (48

since this part of the coordinate transformation represents the

is the volume element on the sphere of the null generators ofhon-rotational” part. The determinantD, of interest is
7. There is a conceptual problem with the definition of thegiven by
pseudo-Minkowski coordinates as stated in E@2).
Namely, the definition is ambiguous because the cut function IXgog X109 IXgg IX10
u=2(x§,{), is, in general, not single valued &t", and so T aug dlg  dlg dug (49)
one does not know which portion of the cut to integrate over.

The ambiguity is resolved by using the light cone struc-  For points along the-z axis, usingb andy as the initial
ture to pull the integral back to the sphere of initial null parameters and the Jacobian expressing their relationship to

directions at the initial point§. To pull the integral back, we the angles (Z) found in Appendix B, the pseudo-

must have a function, Minkowski coordinates are
_ a S 00,
{={(xq,m,m), (43 Xl,m:f db/\d’ySinaoo(IO1b)%u(u01|01b)
which relates the final angular positionsZit, the ,— to —
gular positio €0 XY@,y (120 (50)

the initial direction of the geodesicy(#) at the initial point.
Given a function of the form of Eq43), we can form the where the range iry is zero to 2r and the range itb runs

determinant of the Jacobian matrix, fully over both sheets of solutions. The integration oyer
. . does not cause any trouble for any of the integrals. At first
9L ar 9L aL glance, the convergence of the integration dves not clear,
19|= 9 e a—an’ (44) due to divergences in terdd,, / db asb approaches its maxi-
Non dnomn
mum value,
and transform the integral from an integral over the sphere at 1
null infinity into an integral over the sphere of initial direc- bn= .
tions: lovf(lo)
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These divergences are all of ordds{—b) # with g<1,
which ensures that theintegral also converges. The deriva-
tives in question can be written as

‘Iug

J—f dbsin6..(lo, b)

d

Tl

aly

30,
xf dbu(l o b)sind..(1g,b) -,

0')Xlo

_J_f dbsin ..(lo,b)cosb..(lo, b)

E

\/_

aly

fdbu(lo,uo,b)sma (lg,b)cosb,, (Io,b)—

_ 37 J
2 4l

d
XJdbu(lo,uo,b)%([sinew(lo,b)]z). (51)

The integrals are defined piecewise along the various seg-

ments ofu(l,uq,b) andé..(1y,b). The range irb runs from

PHYSICAL REVIEW D 59 124002

I

40000

30000 -

20000

10000 -
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0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

FIG. 5. A plot of the integralZ(l), as a function of the initial
radial position shows that there are no extrema. The integral has a
finite derivative for all points except,=0, which is not in the
physical space-time.

&uo dlg  dlg dug dlg
=3 J
Taly

d
Xfdbu(lo,uo,b)%([sinew(lo,b)]z), (54)
or finally

D=—\37- 2 1(ly), (55)
0

b=0, when the null geodesic is radially outgoing, and hence

0.(lg,b=0)=1, to a maximum value tdo=b,,, and, on
the second sheet, back down lte=0 for radially ingoing
rays, whered,.(l,,b=0)=0. The first integral is easily per-
formed:

&Xoo f
r9Uo =Jr dbsiné..(lq,b

. d
)5 = ﬁf db - (—cose.,)

= — Jm(cos 0-cosm) = — 2. (52

Likewise,

ﬂ’ \/_J dbsiné..(19,b)cosb..(lo, b)_

=¢§f db%(%(sinaw)z)

=@((sin 0)2—(sinm)?)=0. (53

Therefore, when the initial point lies along thez axis, the
Jacobian of the transformation simplifies to

with

d
z(lo):Jdb W(lo g, b) g (Sinf.(lo,b)1?).  (56)

Thus, to determine if the pseudo-Minkowski coordinates
are a good coordinate system, we only have to show that the
integral Z(ly) has no extremum as the initial radial coordi-
nate parametety, is varied. An extensive numerical calcu-
lation shows that there are no extremum to this integral,
whose values are plotted for many initial positions in Fig. 5.
In fact, the integral is a constantly decreasing function,
whose derivative is finite at all pointg exceptl =0, which
corresponds to spatial infinity. Since spatial infinity is not a
point in the space-time, we claim that the determinBntas
a finite positive value for all initial positions.

We have shown that the Jacobian of the transformation
between the g ,l,) and (o o,X1 o portions of the total co-
ordinate transformation,

XI m— 1:I m(XO)
is non-zero. Using the spherical symmetry of the space-time
and the inherent transformation properties of ¥g,, we
can claim that the entire transformation is non-singular, or

124002-10
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that the pseudo-Minkowski coordinates are a good coordi- h(l) 1 o
nate system of Schwarzschild space-time with a constant ds’=f(l)dt?~ ——dI*~——dQ?=f(l)dt*~g;;dXdx,
density dust interior. 2 2l 3
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~. 1 dé
L'=r—|1--,0/, (A4)
APPENDIX A: THE INITIAL DIRECTION AND
THE PARAMETER B
The parameteb, which arose as a constant of integration with
when integrating the null geodesic equations, parametrized

the initial direction of the geodesic. In this appendix, we h() 1 /de\?
choose the motion of the geodesic to remain inxteplane L=/ — +—2(a) .
and the initial point to lie on the-z axis. The initial direc- 2l 2l
tion of a geodesic is captured by giving an angtebetween
the spatial part of the directed tangent vector to the geodesithe value of the derivativel6/dl is determined using Eqg.
and thez axis. We are interested in determining the relation-(A1):
ship between the angl¢ and the parametds.

From Eg. (11), the coordinates of a null geodesic re-
stricted to thex-z plane were given in terms dfby (d9)2 f(Hh()b?

= o (A5)

di) 1-p22()
1+ k(A7)
JAI)(21'2%(17))

*

u=u0+(—1)ff|dl’

Iy A unit spatial vector pointing in the radial direction is given

by
I=I,
. 212
r'=(\/——,0,0).
: b vh(l)
O=m— | dlI'| = ,
lo VA(I)
B The inner product betweeh' andr' gives the angular
$=0, (A1) direction of the geodesic, namely,
with ~n
gijr'L’=cosy. (A6)
. 1-bA2%(1")
All")= oy After some algebra, EqA6) can be solved fob, giving our
desired result
Up to rescaling, thénull) tangent vector to this geodesic is
siny
b= . (A7)
. (du dl do d¢)| (du 1d0 0 A2 [VE(I)
- ala!aam - al lml . ( )

The range inb at the initial point is determined by Eqg.
Since both the measure of angles and the length of a nu(lA7). The parameter ranges frao=0, corresponding to ra-
vector are independent of conformal factors, any confordially outgoing rays wheny=0, to a maximum valueb
mally related metric may be used to compute them. In what=b,,,, wherey=w/2, back down tdo=0 wherey= 7, and
follows we use the physical metric of our model, which in again the geodesic travels radially. Eittesr ¢+ may be used
the coordinate$t,| =1/(\2r), 6, ¢] is to parametrize the initial direction of the geodesic.
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APPENDIX B: FULL ANGULAR DEPENDENCE OF o
THE LIGHT CONE b:cos§e<'/2><-7+ﬂ>,

In Sec. Il, we integrated the null geodesics emanating

from a point on the—Z axis, restricted to the-z plane, in & i)
terms of a parametdr The angular integrals were C=—Ccos;¢€ T,

=0,

| bvk(l")
®=(I,I0,b)=w—f dl'| +—|.
lo / , To determine the values of the Euler angles, we note that
1-b% % (") when® = 7, the geodesic is at the initial positioty. From
"=y, we have

We want to perform a rigid rotation of this restricted solution

restoring the full angular dependence, and allowing the ini- E_ X g @ i6

tial point to be at any position. d —cot2e =cot 2 € . (B5)
Due to spherical symmetry, the geodesic equations sepa-

rate into one time, one radial, and two angular equations. AR condition fixes two of the Euler angles,and 3, to be
arbitrary solution to the angular part of the geodesic equa- ’ ;

. . : - _ a= 0y and B= ¢y. Thus, in terms of the new initial point,
tions can .be optalned by performing a r|g|_d rotation of thego, the Cayley-Klein parameters are
solution given in Eq(B1). For such a solution, the motion

will take place in a new plane, but the angl,l,,b) will

o .
d=sin§e("2)(*7*'3>. (B4)

1/4

be preserved. N 1 T

To perform lhe rotation we use complex stereographic a= 1+ 5020 ZO € '
coordinates, {,{), as coordinates on the sphere defined in
Eqg. (12). In terms of £, the solution corresponding to Eq. — 14
(1D is b=/ §0§0_ 2) e (27

1+ Zodo\ o
O(,lg,b) —
{1l b)=cot—>——={(lIp,b). (B2

- —\ 1/4
- 1+
Under anSU(2) rotation, transforms as £odo’ €0

—\ 1/4
A(l,ly,b) de ]t (@) ~(i12)y B6
ag+p At th EENAT A 59

S clt+d Od,ly,b) B3
ccotTer The remaining free parameter gives the orientation of
the plane in which the geodesic moves. In the case that the

initial point lies on the—z axis, y is the angles. When the

initial point of the geodesic is rotated to an arbitrary location,

the parametet acts as an angle about the new axis of sym-

metry in the system.

a= Sinfe(i/zmw) Our final, full solution to the angular part of the geodesic
2 ' equations is obtained using Ed86) with Eq. (B3):

wherea,b,c,d are the Cayley-Klein parametel$0], which
can be expressed in terms of Euler anglesg, andy as

. O(.,ly,b =
Lo\ 2 e("z”cot(TO) +{oloe™ 12
o “

{(lo,80,40,1,b,7)= |
0 o\ /gOZ)e(iIZ)ycotw +e-(i12y

where we have dropped the prime onThe angular solutiory; is a function of the initial pointl, o ,?0), a parameter along
the light conel, and two free parametersh,(y), which span the sphere of initial null directions at the initial point. The
dependence ohy, |, andb comes througt®(l,l,,b) by integral expression
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| b /k(l ) (b, ), to the sphere of null generators &t . The Jacobian
®(|'|o:b):77_f dar| +—— = (Bg)  Mmatrix of the mapping is given by
[

° V1-b2'2%(1") 0w L

b ay
When the value of is taken to zero, Eq(B7) gives the J=| — —|. (B9)
final angular location of a point of* in terms of initial 9o 9w
directions p,y) and the initial pointx§=(uo,lo,%o,4g). In b dy
this case, we denot&(ly,{o,40,/=0b,7) by {.(x3.b,%),  In Sec. V, we use the determinant of this Jacobian to trans-

andO(1=0/,b) by 6... The existence of such a function form integrals overZ ™ to integrals over the initial null di-
provides a mapping from the sphere of initial null directions,rections.
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