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Null cones in Schwarzschild geometry

Thomas P. Kling and Ezra T. Newman
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

~Received 2 September 1998; published 28 April 1999!

In this work we investigate aspects of light cones in a Schwarzschild geometry, making connections to
gravitational lensing theory and to a new approach to general relativity, the null surface formulation. By
integrating the null geodesics of our model, we obtain the light cone from every space-time point. We study
three applications of the light cones. First, by taking the intersection of the light cone from each point in the
space-time with null infinity, we obtain the light cone cut function, a four parameter family of cuts of null
infinity, which is central to the null surface formulation. We examine the singularity structure of the cut
function. Second, we give the exact gravitational lens equations, and their specialization to the Einstein ring.
Third, as an application of the cut function, we show that the recently introduced coordinate system, the
‘‘pseudo Minkowski’’ coordinates, are a valid coordinate system for the space-time.
@S0556-2821~99!00510-X#
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I. INTRODUCTION

The purpose of this work is to develop a simple mod
space-time in which we study gravitational lensing and
light cone cuts of null infinity. These cuts are central to
recent reformulation of general relativity known as the n
surface formulation@1,2#. The model we consider consists
a Schwarzschild exterior region surrounding a spheric
symmetric, static, constant density dust star.

The null surface formulation makes explicit use of futu
null infinity, denoted byI1, which has the topology ofR
3S2. In an asymptotically simple space-time,I1 represents
the future end points of all null geodesics and can be ad
as a boundary to the physical space-time through a pro
of conformal compactification@3#. The standard coordinate
onI1 are the Bondi coordinates (u,u,f), whereu labels the
R part, andu andf label the sphere.

On I1, a light cone cut is the intersection of the lig
cone from a particular point in the interior with future nu
infinity. In Bondi coordinates onI1, the light cone cuts are
given by a cut function,

u5Z~x0
a ,u,f!, ~1!

where for a fixed initial point,x0
a , the cut is a deformed

sphere, possibly with self-intersections and singularities.
crux of the null surface formulation is that from the know
edge of the light cone cuts, Eq.~1!, one can reconstruct all o
the conformal information of the space-time.

The current paper explores the light cones from an a
trary point in a Schwarzschild space-time surrounding a c
stant density, dust star. By integrating the null geodesic
an inverse radial coordinatel 51/A2r , we obtain parametric
expressions for the future and past light cones of an in
point, x0

a , in terms of a ‘‘distance’’l, and two ‘‘directional’’
parameters which span the sphere of null directions atx0

a .
The intersection of the future light cone of an arbitrary init
point with null infinity gives the light cone cuts. In Sec. II
we study the singularity structure of the cuts, explaining h
the singularities are related to the formation of conjug
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points on the light cone. We show in Sec. IV that the eq
tions for the past light cone obtained in Sec. II are, in fa
examples of exact lens equations. As a special case, we
the exact formula for the observation angle for an Einst
ring. In the final section, we show that the ‘‘pseud
Minkowski’’ coordinates, defined in@4#, form a valid coor-
dinate system for the entire space-time.

II. INTEGRATING THE NULL GEODESICS

To begin, we integrate the null geodesics of a Schwar
child space-time with an interior constant density matter
gion. Since we eventually consider each geodesic’s limit
end point atI1 in order to obtain a cut function, we inte
grate the null geodesics using a conformal Schwarzsc
metric which is regular at null infinity. The integration i
performed using a ‘‘radial’’ parameterl 51/(A2r ), so that
l 50 corresponds to the point at null infinity, while a finit
l .0 will be a point in the interior.

The general form for a static, spherically symmetric m
ric with signature (1,2,2,2) is given by

ds25 f ~r !dt22h~r !dr22r 2dV2, ~2!

wherer 2dV25r 2du21r 2sin2 udf2 is the line element on the
sphere. In our model, the functionsf (r ) and h(r ) will be
continuous, piecewise smooth functions for an exter
Schwarzschild region and an interior constant density d
solution with a radiusR:

f ~r !5S 3

2 S 12
2M

R D 1/2

2
1

2 S 12
2Mr 2

R3 D 1/2D 2

[ f int , r ,R,

f ~r !512
2M

r
[ f ext , r .R,

h~r !5
1

12
2Mr 2

R3

[hint , r ,R,
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h~r !5
1

12
2M

r

[hext , r .R. ~3!

We assume that the radius of the interior region extends
yond ther 53M unstable circular orbit for null geodesic
ensuring that the space-time is asymptotically simple. Wo
ing in a retarded null coordinate,u5t2*drAh(r )/ f (r ), and
the inverted radial coordinate,l 51/(A2r ), a conformally
rescaled version of the metric, Eq.~2!, which is regular at
null infinity, is

dŝ254l 2f ~ l !du224Ak~ l !dudl2dV2, ~4!

where r is replaced in terms of the variablel and k( l ) is
given by

k~ l !5 f ~ l !h~ l !.

It is convenient to integrate the null geodesics first in
plane, and then to use the spherical symmetry to rotate
solution to an arbitrary orientation. The restriction we e
ploy is to take a particular initial point,x̃0

a , lying on the

2 ẑ axis,

x̃0
a5~u0 ,l 0 ,ũ05p,f̃050!,

and the geodesics as lying in thex̂-ẑ plane. To define thex̂-ẑ
plane, one usually allowsu to range from 0 top and has
f50 or p. In order to facilitate our discussion, we will no
use this convention. Instead, we require thatf50 and allow
a variable,Q, to range from 0 to 2p. In terms of the vari-
ables (u,l ,Q), a Lagrangian corresponding to the conform
metric is

L52l 2f ~ l !u̇222Ak~ l !u̇l̇ 2
1

2
Q̇2, ~5!

where dots indicate derivatives with respect to an affine
rametert. The geodesic equations are

d

dt
„2l 2f ~ l !u̇2Ak~ l ! l̇ …50,

d

dt
„2Ak~ l !u̇…2„2l f ~ l !u̇21 l 2f 8~ l !u̇2

…1
u̇l̇

2Ak~ l !
„k8~ l !…50,

d

dt
Q̇50, ~6!

with primes denoting derivatives with respect tol. To solve
for null geodesics, we impose the null condition on the L
grangian,

L52l 2f ~ l !u̇222Ak~ l !u̇l̇ 2
1

2
Q̇250, ~7!
12400
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and use this equation and the first and third geodesic e
tions as independent equations for (u,l ,Q). After finding
some trivial first integrals and rearranging, independ
equations for null geodesics can be written as

u̇5
11Ak~ l ! l̇

2l 2f ~ l !
,

l̇ 56A12b2l 2f ~ l !

k~ l !
[6AA~ l !,

Q̇5b. ~8!

In these equations the sign ofl̇ indicates whether the geode
sic is incoming~positive! or outgoing ~negative!, and the
parameterb is a free integration parameter labeling the init
direction of the geodesic. In Appendix A, we show how t
parameterb is related to the initial direction of the null geo
desic.

In integrating the equations, geodesics which are initia
outgoing will haveb values ranging from zero, correspon
ing to a ray traveling radially outward, to some maximu
value bm , for which the geodesic is initially tangent to
sphere of radiusr 051/(A2l 0). The value ofbm is the value
of b for which l̇ 50 at the pointl 5 l 0 :

bm5
1

l 0Af ~ l 0!
. ~9!

For geodesics which are initially incoming, the range inb
will be from bm back down to zero. The value ofl will
increase until reaching some maximum value,l 5 l b , which
is a minimumr value. The value ofl b is the single~real! root
of the equation,l̇ 50, or the root of

12b2l b
2f ~ l b!50. ~10!

At l b , l̇ changes sign, and the geodesics will head ou
infinity.

It is convenient to reparametrize the equations of moti
Eqs. ~8!, using l instead of the affine parameter, and to e
press the solution to the null geodesic equations in term
integrals overl. In terms of these integrals, geodesics on
light cone connecting the initial point,x̃0

a5(u0 ,l 0 ,u0

5p,f050), with the final point,xa5(u,l ,Q,f50), are
given by

u5u~u0 ,l 0 ,l ,b!5u01~21!e

3E
l 0

l

dl8S 6
16Ak~ l 8!A~ l 8!

AA~ l 8!„2l 82f ~ l 8!…
D ,

Q5Q~ l 0 ,l ,b!5p2E
l 0

l

dl8S 6
b

AA~ l 8!
D ,

f50, ~11!
2-2
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where the integrals are defined piecewise over the var
segments inf andk, and the appropriate signs are chosen
the geodesics are incoming (1) or outgoing (2). The future
light cone is given bye50, and the past light cone bye
51.

FIG. 1. The light cone of a point which has formed conjuga
points in its future. The crossover line represents points in
space-time where Einstein rings are observed, while the line
caustics are stable singularities conjugate to the initial point.
12400
us
f

The full solution to the null geodesic equations is o
tained by performing a rigid rotation of the spatial pla
defined by the path of this geodesic and theẑ axis, to an
arbitrary orientation. Due to spherical symmetry, the lig
cone for an arbitrary point will be axially symmetric abo
the spatial line connecting that point and the spatial ori
~defined byr 50). We will call the angle of revolution abou
the axis of symmetryg; the angleg essentially defines an
orientation of the spatial plane containing the geodesic
the axis of symmetry.~In the case that the initial point lies o
the2 ẑ axis,g is simply the anglef.! To obtain the full light
cone from an arbitrary initial point, we need to rotate t
solution that is symmetric about theẑ axis over to the axis of
symmetry defined by the arbitrary point. We can think of th
as rotating the particular initial pointx̃0

a5(u0 ,l 0 ,u05p,f0

50) to the general initial pointx0
a5(u0 ,l 0 ,u0 ,f0) and al-

lowing the orientation parameterg to take any value betwee
0 and 2p. This rotation is explicitly performed in Appendix
B.

It is often convenient to use complex stereographic co
dinates, defined by

z5cot
u

2
eif, z̄5cot

u

2
e2 if, ~12!

instead of the angular coordinatesu andf. Throughout this
paper we freely switch back and forth between the two
ordinate systems. An arbitrary initial point is given in stere
graphic coordinates byx0

a5(u0 ,l 0 ,z0 ,z̄0).
The full light cone, obtained by using the rotation of th

solutions of the null geodesic equations in thex̂-ẑ plane to an
arbitrary initial point and orientation given in Appendix B
are expressed parametrically in terms of the parameterl as

e
of
u5u~u0 ,l 0 ,l ,b!5u01~21!eE
l 0

l

dl8S 6
16Ak~ l 8!A~ l 8!

AA~ l 8!„2l 82f ~ l 8!…
D ,

z~ l 0 ,z0 ,z̄0 ,l ,b,g!5S z0

z̄0
D 1/2S e~ i /2!gcot

Q~ l ,l 0 ,b!

2
1Az0z̄0e2~ i /2!g

2Az0z̄0e~ i /2!gcot
Q~ l ,l 0 ,b!

2
1e2~ i /2!g

D ,

z̄~ l 0 ,z0 ,z̄0 ,l ,b,g!5S z̄0

z0
D 1/2S e2~ i /2!gcot

Q~ l ,l 0 ,b!

2
1Az0z̄0e~ i /2!g

2Az0z̄0e2~ i /2!gcot
Q~ l ,l 0 ,b!

2
1e~ i /2!g

D , ~13!

whereQ( l ,l 0 ,b) is given by the integral in Eq.~11!,

Q5Q~ l 0 ,l ,b!5p2E
l 0

l

dl8S 6
b

AA~ l 8!
D , ~14!
2-3
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and the convention fore and signs are taken as before.
Equations~13! represent the entire future and past light cones for an arbitrary point in the space-time. The light co

given in terms of two parameters, (b,g), which span the sphere of initial null directions at the initial pointx0
a . We note that

the u coordinate does not depend ong due to the axial symmetry of the light cone.

III. LIGHT CONE CUTS AND THEIR SINGULARITIES

While the light cone from an arbitrary point in Minkowski space is always smooth, light cones in an asymptotically
space-time have, in general, self-intersections and several different kinds of singularities. These singularities are
related to the formation of conjugate points along null geodesics. A pictorial representation of a light cone with singu
is given in Fig. 1. Since the light cone cut function is the intersection of the future light cone with null infinity, it inherit
singularity structure of the light cone. In this section, we study the cut function in our model as a representative examp
null surface formulation.

A parametric version of the cut function is obtained by setting the values ofl ande to zero in Eqs.~13!:

u`~u0 ,l 0 ,b!5u01E
l 0

0

dl8S 6
16Ak~ l 8!A~ l 8!

AA~ l 8!„2l 82f ~ l 8!…
D , ~15!

z`~ l 0 ,z0 ,z̄0 ,b,g!5S z0

z̄0
D 1/2S e~ i /2!gcot

Q~ l 0 ,b!

2
1Az0z̄0e2~ i /2!g

2Az0z̄0e~ i /2!gcot
Q~ l 0 ,b!

2
1e2~ i /2!g

D , ~16!

z̄`~ l 0 ,z0 ,z̄0 ,b,g!5S z̄0

z0
D 1/2S e2~ i /2!gcot

Q~ l 0 ,b!

2
1Az0z̄0e~ i /2!g

2Az0z̄0e~2 i /2!gcot
Q~ l 0 ,b!

2
1e~ i /2!g

D , ~17!
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where the functionQ( l 0 ,b) is given by

Q~ l 0 ,b!5p2E
l 0

0

dl8S 6
b

AA~ l 8!
D . ~18!

If it were possible to invert the pair of equations, Eqs.~16!
and ~17!, for b andg, obtaining the functions

g5G~z` ,z̄` ,z0 ,z̄0 ,l 0!, ~19!

and

b5B~z` ,z̄` ,z0 ,z̄0 ,l 0!, ~20!

one could produce the full cut function in the form of E
~1!,

u5Z~x0
a ,z,z̄ !,

by inserting the solution forb in terms of (z,z̄) from Eq.
~20! into theu` solution, Eq.~15!.

While z`( l 0 ,z0 ,z̄0 ,b,g), and z̄`( l 0 ,z0 ,z̄0 ,b,g) are
single valued inb, they will not, in general, have uniqu
inverses—more than one initial direction acquires the sa
value ofz or z̄ at I1. This implies that there are singular
ties in the cut function itself and that the global inversion
12400
e

f

Eqs.~16! and~17! for b andg will be impossible. In such a
case, we will not be able to find an explicit cut function
the form of Eq.~1!, but will be forced to work with the cut
function in a parametric form.

In a sense, singularities in the light cone cuts are pla
where the null surface formulation undergoes techni
difficulties—a natural coordinate system used in the theor
not well defined at these points. We now believe that th
difficulties can be overcome by using a particular parame
representation the cut function. A primary interest here is
study the singularities in the cut function.

There is a complete classification of the stable singul
ties of the cut function which can be applied to our mod
due to Arnol’d and his collaborators@5,6#. A stable singular-
ity is one which does not disappear under small pertur
tions. For two dimensional surfaces, such as the light c
cuts obtained by fixing the initial point in the cut function
there are only two types of stable singularities. These are
cusp ridge and the swallowtail. Due to high level of symm
try in our model, any cut function must be axially symmetr
This means that, although the cut function is a two dime
sional surface, it can be represented by a one dimensi
curve whose revolution about some axis gives the cut fu
tion. For a one dimensional curve, the only stable singula
is a cusp, which implies that we will not see swallowta
singularities in our model.
2-4
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In Fig. 2, we give plots of three cut functions, suppress
the axially symmetric dimension, for three different values
the initial radial position,l 0 . These figures show that singu
larities appear as the initial point moves away from the s
tial center of the space-time. A smooth cut of null infinit
corresponding to a cut from the light cone of a point close
the center of the space-time, will be a smooth sphere-
surface. Because of the axial symmetry, a cut with singul
ties will have a circular cusp ridge and a single crosso
point. Figure 3 gives a pictorial representations of a singu
cut.

Because the cusp ridge singularity in our cut function
stable, it represents a generic possibility for a cut function
a general space-time. Specifically, this singularity will r
main if one makes a small perturbation of the metric aw
from a Schwarzschild metric. The crossover point along
cut function is an unstable singularity, arising from the hi
degree of symmetry in the Schwarzschild case, and is

FIG. 2. Three cut functions with one dimension suppressedS
3R). As the initial radial position moves away from the spat
center smooth cuts give way to cuts with singularities.
12400
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rectly related to Einstein’s rings, the astronomical pheno
enon where a spherical lens causes lensing in a uniform
cular shape@7#. We discuss the rings in the next section
gravitational lensing.

The singularities in the cut function represent poin
which are conjugate to the initial pointx0

a . For a fixedx0
a , we

can think of the parametric equations for the cut functio
Eqs.~15!, ~16!, and~17!, as a map between the initial direc
tions of the geodesics at the initial point and the final po
tion (u` ,z` ,z̄`) at I1. One way to find the points ofI1

which are conjugate to the initial pointx0
a is to find the points

atI1 for which the Jacobian matrix expressing the mappi

J5S ]u`

]b

]u`

]g

]z`

]b

]z`

]g

]z̄`

]b

]z̄`

]g

D , ~21!

drops in rank@9#. For this to occur, all three 232 determi-
nants must be zero.

With no loss in generality, we consider the cut function
an initial point on the2 ẑ axis. In this case, the cut functio
is obtained by setting the final value ofl in Eq. ~11! to zero,
and restoring the rotational degree of freedom by settingg

5f` . Thus, the cut function for an initial point on the2 ẑ
axis is written in terms of the coordinates (u` ,u` ,f`) as

FIG. 3. A cusp ridge appears on the light cone cut from
initial point sufficiently far away from the center of the space-tim
NearI1, the intersection of the light cone of this initial point wit
a time-like surface would look similar to this cut, except that t
‘‘umbrella’’ at the top of the cut would be inside the main body
the wave front.
2-5
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THOMAS P. KLING AND EZRA T. NEWMAN PHYSICAL REVIEW D 59 124002
u`~u0 ,l 0 ,b!5u01E
l 0

0

dl8S 6
16Ak~ l 8!A~ l 8!

AA~ l 8!„2l 82f ~ l 8!…
D ,

u`~ l 0 ,b!5p2E
l 0

0

dl8S 6
b

AA~ l 8!
D ,

f`5g. ~22!

In this case, the Jacobian matrix corresponding to Eq.~21! is
given by

J5S ]u`

]b
0

]u`

]b
0

0 1

D . ~23!

It is clear that for the Jacobian to drop rank we must hav

]u`

]b
50, ~24!

and

q[
du`

db
50. ~25!

A combination of numerical and analytic calculations sho
that these two conditions are satisfied simultaneously onl
the cusp ridge shown in the figures, and hence the cusp
the cut function are conjugate points to the initial point.

An alternative way of deducing the singular points is
consider the first and second derivatives ofu` with respect to
u` . For a cusp singularity, the first derivatives are alwa
finite, while the second derivatives diverge. Working pa
metrically in b, these derivatives are

]u`

]u`
5

]u`

]b

]u`

]b

and

]2u`

]u`
2

5S ]u`

]b D 22F ]2u`

]b2
2

]u`

]u`

]2u`

]b2 G . ~26!
12400
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Numerical computation shows that the first derivative is
nite and non-zero along the cusps in the light cone cut.
written, the second derivative is indeterminant along
cusps since the term in square brackets is zero there. Ap
ing L’Hôspital’s rule, one sees that the second derivat
actually diverges asq21.

As a final note on the cusp singularities, we list the b
havior of several important quantities in the null surface f
mulation as one approaches the cusps along the cut func
All of these quantities are computed as derivatives of the
function with respect to the complex stereographic coor

natesz and z̄, and have been computed in this model pa

metrically for initial points along the2 ẑ axis. These deriva-

tives are denoted byZ and Zp @8#. In terms of q, which
approaches zero as one approaches the cusp, the behav
some important quantities of interest are listed below

u`5Z(x0
a ,z,z̄).

Quantity Behavior

v5ZZ regular
L5Z2Z q21

R5ZpZZ q21

uL,1u5UdL

dRU 1

V25gabZ,aZpZZ,b q22

IV. GRAVITATIONAL LENSING EQUATIONS

An important goal of gravitational lensing theory is
construct lens equations which give the position of source
terms of directions seen by an observer and distances to
source. Typically, lens equations are obtained via appro
mations on the kinematics of the null geodesics of the sou
@7#.

Recently, a way to produce completely general, ex
lensing equations has been found, and a paper is being
pared which develops gravitational lensing theory from t
perspective@9#. Our model provides an explicit example o
such a formulation. In this section we give exact lensi
equations for the Schwarzschild space-time with a cons
density dust interior region, and show that our exact eq
tions reduce to standard approximate lens equations. In
special case that the source, lens, and observer are spa
colinear, we give an exact expression for the observa
angle in an Einstein ring.

In Sec. II, we derived the future and past light cones of
arbitrary point in the space-time. Recall that a lens equa
should express the location of the source in terms of so
‘‘distance’’ from the observer, and the directions which t
observer views the geodesics on the past light cone.
equations of the past light cone, Eqs.~13!, are such a set o
equations. In these equations, the observed directions
given by the parameters (b,g), and l gives the ‘‘distance.’’
Hence, exact lens equations for our model are
2-6
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z~ l 0 ,z0 ,z̄0 ,l ,b* ,g* !5S z0

z̄0
D 1/2S e~ i /2!g* cot

Q~ l ,l 0 ,b* !

2
1Az0z̄0e2~ i /2!g*

2Az0z̄0e~ i /2!g* cot
Q~ l ,l 0 ,b* !

2
1e2~ i /2!g* D ,

z̄~ l 0 ,z0 ,z̄0 ,l ,b* ,g* !5S z̄0

z0
D 1/2S e2~ i /2!g* cot

Q~ l ,l 0 ,b* !

2
1Az0z̄0e~ i /2!g*

2Az0z̄0e~2 i /2!g* cot
Q~ l ,l 0 ,b* !

2
1e~ i /2!g* D , ~27!
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Q~ l ,l 0 ,b* !5p2E
l 0

l

dl8S 6
b*Ak~ l 8!

A12b* 2l 82f ~ l 8!
D .

In these lens equations, the spatial location of the sou
is the point (l ,z,z̄). For an observer at the point (l 0 ,z0 ,z̄0),
the observed directions of the geodesic on the past null c
are given by the particular values of (b,g) which connect the
source and the observer, denoted as (b* ,g* ). There may, in
fact, be more than one set of values for (b* ,g* ), as the
process of focusing may produce more than one ‘‘image

Due to spherical symmetry, any observer may be con
ered as lying on the2 ẑ axis, and the source may be taken
lying in the x̂-ẑ plane. We are interested in the case wh
the lens is situated between the observer and the source
when the rays do not pass through the interior region of
star. In this case, the lens equations, Eqs.~27!, reduce to the
single equation forQ which was found in Eq.~11!:

Q~ l 0 ,l ,b* !5p2E
l 0

l

dl8S 6
b*

A12b* 2l 82f ~ l 8!
D . ~28!

This lens equation specifies the location of the source
terms of the observed direction of the geodesic,b* , and a
‘‘distance,’’ l, to the source.

In Appendix A, we find the relationship between the ang
at which a null geodesic crosses theẑ axis, the parameterb,
and a positionl. In the lensing case, this ‘‘observatio
angle,’’ denoted bycobs, is related to the observer positio
l 0 , and the observed direction,b* , by

b* 5
sincobs

l 0Af ~ l 0!
. ~29!

By replacingb* by cobs in the lens equation, Eq.~28!, the
lens equation takes a more conventional form, where
direction parameter is the actual observation angle:
12400
ce

ne

d-
s
e
nd
e

in

e

Q~ l 0 ,l ,b* !5p2
sincobs

l 0Af ~ l 0!

3E
l 0

l

dl8S 6
1

A12
sin2 cobsl 8

2f ~ l 8!

l 0
2 f ~ l 0!

D .

~30!

A typical approximate lens equation for the Schwarz
child model@7# is

b5c2
2RSDLS

DLDSc
. ~31!

In this approximation,b is the Euclidean angle between th
source and the center of the space-time, andRS52M is the
Schwarzschild radius. The Euclidean distances between
source and lens, source and observer, and lens and obse
are given byDLS , DS , andDL respectively. Figure 4 show
the case under consideration. We now show that our l
equation, Eq.~30! or Eq. ~28!, reduces to the approximat
formula, Eq.~31!, under appropriate approximations.

Taking into account the correct signs for incoming a
outgoing rays, the right hand side of Eq.~28! can be written
as

Q5p2D~M ,b* ,l 0 ,l !, ~32!

where

D52E
l 0

l b b* dl8

A2A2Mb* 2l 832b* 2l 8211

1E
l

l 0 b* dl8

A2A2Mb* 2l 832b* 2l 8211

. ~33!

Here,l 0 is the position of the observer,l is the position of the
source, andl b is the value ofl for which the geodesic come
closest to the lens, attained whenl̇ 50. The maximuml
value, l b , is, from Eq.~10!, the solution of the equation
2-7
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12b* 2l b
212A2Mb* 2l b

350. ~34!

For convenience, we assume that the source is close
the lens than the observer, so thatl . l 0 . To proceed, we
assume that the dimensionless quantitiesMl[e and Ml 0
,e are small and make a Taylor series expansion ofD in
terms ofe:

D~e,b* ,l 0 ,l !5D~e50,b* ,l 0 ,l !1eF]D

]e G
e50

[D01D1 .

To computeD0 , we evaluate Eq.~33! at e5M50. This
implies thatl b51/b* from Eq.~34!. In this case the integral
are all trigonometric integrals, and we have

D05p2arcsin~b* l 0!2arcsin~b* l !.

Using Eq.~29! to expressD0 in terms ofcobs, and making a
small angle approximation,D0 is given by

D05p2cobs2
cobsl

l 0
. ~35!

The first order term is given by

D15eF d

deG
e50

S 2E
l 0

l bb* Aldl 8

A
1E

l

l 0b* Aldl 8

A D , ~36!

where

A5A2A2eb* 2l 832b* 2l l 821 l .

The derivative acts on both thee dependence in the integra
and in the upper limitl b , and care must be taken so th

FIG. 4. The schematic representation of the path of a geod
observed in gravitational lensing. Distances between the lens
observer, lens and source, and observer and source are shown
with the observation angle,c.
12400
to

there is a cancellation of two divergent pieces which appe
Using a small angle expansion incobs, the first order cor-
rection toQ is

D15
4A2Ml 0

cobs
. ~37!

Inserting the forms ofD0 andD1 into Eq. ~32! gives

Q5cobsS 11
l

l 0
D2

2A2RSl 0

cobs
, ~38!

whereRS52M is the Schwarzschild radius.
To lowest order, the physical distances in Fig. 4 are

inverse coordinate distances,

l'
1

A2DLS

, l 0'
1

A2DL

,

and from Euclidean geometry,Q is related tob by

Q5
bDS

DLS
.

Using these relationships in Eq.~38! and rearranging gives
an approximate lens equation

b5
DLS1DL

DS
cobs2

2RSDLS

DSDLcobs

which is the standard result whenDL1DLS5DS :

b5cobs2
2RSDLS

DSDL

1

cobs
. ~39!

As a special case, we consider the Einstein rings, an e
prediction of ‘‘pre’’-General Relativity only recently ob
served. If the source lies along the1 ẑ axis, directly opposite
the lens from the observer atb5Q50, the observer sees th
image as a circular ring surrounding the lens, or an Eins
ring. In this special case, the lens equation, Eq.~30!, is an
implicit equation for the exact observation angle for the rin

p5
sincobs

l 0Af ~ l 0!
E

l 0

l b
dl8S 1

A12
sin2 cobsl 8

2f ~ l 8!

l 0
2f ~ l 0!

D
2

sincobs

l 0Af ~ l 0!
E

l b

l

dl8S 1

A12
sin2cobsl 8

2f ~ l 8!

l 0
2f ~ l 0!

D ,

~40!

wherel b is the postive root of Eq.~34! or the positive root of

ic
nd
long
2-8
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~sincobs!
2l b

2~122A2Ml b!2 l 0
2~122A2Ml 0!50.

~41!

In terms of the future light cone of the source, an obser
who sees the Einstein ring is situated along the crossover
in Fig. 1. Points on this line are conjugate to the initial poi
and the light cone has unstable singularities there. The cr
over point in the cut function represents a limiting ‘‘Einste
ring’’ at infinity, but the actual observation angle for this rin
is zero, so that the ring is not observable from infinity.

V. PSEUDO MINKOWSKI COORDINATES

As a final application of the cut function, we show that t
so called pseudo-Minkowski coordinates@4# form a well de-
fined, global coordinate system for the Schwarzschild spa
time with a constant density dust interior. In this section,
use the complex stereographic angles (z,z̄) as coordinates on
the sphere.

The pseudo-Minkowski coordinates are defined by in
grals over the sphere at infinity of the cut function weight
against the first fourYlm ,

xl ,m5E
S2

Z~x0
a ,z!Ȳl ,m~z!dS2[ f l ,m~x0

a! ~ l 50,1!

~42!

where

dS25
2

i

dz`dz̄

~11zz̄ !2

is the volume element on the sphere of the null generator
I1. There is a conceptual problem with the definition of t
pseudo-Minkowski coordinates as stated in Eq.~42!.
Namely, the definition is ambiguous because the cut func
u5Z(x0

a ,z), is, in general, not single valued atI1, and so
one does not know which portion of the cut to integrate ov

The ambiguity is resolved by using the light cone stru
ture to pull the integral back to the sphere of initial nu
directions at the initial pointx0

a . To pull the integral back, we
must have a function,

z5z~x0
a ,h,h̄ !, ~43!

which relates the final angular positions atI1, the (z,z̄) to
the initial direction of the geodesic, (h,h̄) at the initial point.
Given a function of the form of Eq.~43!, we can form the
determinant of the Jacobian matrix,

uJu5
]z

]h

]z̄

]h̄
2

]z

]h̄

]z̄

]h
, ~44!

and transform the integral from an integral over the spher
null infinity into an integral over the sphere of initial direc
tions:
12400
r
ne
,
s-

e-
e

-

of

n

r.
-

at

xl ,m5E
S0

2
Z„x0

a ,z~x0
a ,h!…Ȳl ,m„z~x0

a ,h!…uJudS0
2

5 f lm~x0
a! ~ l 50,1!. ~45!

This integral defines the pseudo-Minkowski coordinates.
We would like to show that the pseudo-Minkowski coo

dinates form a good coordinate system by showing that
Jacobian of the coordinate transformation defined by
~45!,

xlm5 f lm~x0
a!, ~46!

is non-zero.
Because of the spherical symmetry of the space-time

the fact that thex1,m5(x1,1,x1,0,x1,21) transforms as an
O(3) vector under space-time rotations, we can conclu
that the functional form of the pseudo-Minkowski coord
nates must be

x1,215X2 iY5 f ~u0 ,l 0 ,b,g!sinue2 if,

x1,05Z5 f ~u0 ,l 0 ,b,g!cosu,

x1,15X1 iY5 f ~u0 ,l 0 ,b,g!sinueif,

x0,05T5g~u0 ,l 0 ,b,g!. ~47!

To test the non-vanishing of the Jacobian, all we need to
is to take a point of the (u0 ,l 0) plane, for examplef050,
andu05p, and check the transformation

x0,05g~u0 ,l 0 ,b,g!, x1,05 f ~u0 ,l 0 ,b,g!, ~48!

since this part of the coordinate transformation represents
‘‘non-rotational’’ part. The determinant,D, of interest is
given by

D5
]x00

]u0

]x10

] l 0
2

]x00

] l 0

]x10

]u0
. ~49!

For points along the2 ẑ axis, usingb andg as the initial
parameters and the Jacobian expressing their relationsh
the angles (z,z̄) found in Appendix B, the pseudo
Minkowski coordinates are

xl ,m5E db`dgsinu`~ l 0 ,b!
]u`

]b
u~u0 ,l 0 ,b!

3Ȳl ,m„z~b,g!… ~ l 50,1! ~50!

where the range ing is zero to 2p and the range inb runs
fully over both sheets of solutions. The integration overg
does not cause any trouble for any of the integrals. At fi
glance, the convergence of the integration overb is not clear,
due to divergences in term]u` /]b asb approaches its maxi
mum value,

bm5
1

l 0Af ~ l 0!
.

2-9
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These divergences are all of order (bm2b)2b with b,1,
which ensures that theb integral also converges. The deriv
tives in question can be written as

]x00

]u0
5ApE dbsinu`~ l 0 ,b!

]u`

]b
,

]x00

] l 0
5Ap

]

] l 0

3E dbu~ l 0 ,u0 ,b!sinu`~ l 0 ,b!
]u`

]b
,

]x10

]u0
5A3pE dbsinu`~ l 0 ,b!cosu`~ l 0 ,b!

]u`

]b
,

]x10

] l 0
5A3p

]

] l 0

3E dbu~ l 0 ,u0 ,b!sinu`~ l 0 ,b!cosu`~ l 0 ,b!
]u`

]b

5
A3p

2

]

] l 0

3E dbu~ l 0 ,u0 ,b!
d

db
„@sinu`~ l 0 ,b!#2

…. ~51!

The integrals are defined piecewise along the various
ments ofu( l 0 ,u0 ,b) andu`( l 0 ,b). The range inb runs from
b50, when the null geodesic is radially outgoing, and hen
u`( l 0 ,b50)5p, to a maximum value tob5bm , and, on
the second sheet, back down tob50 for radially ingoing
rays, whereu`( l 0 ,b50)50. The first integral is easily per
formed:

]x00

]u0
5ApE dbsinu`~ l 0 ,b!

]u`

]b
5ApE db

d

db
~2cosu`!

52Ap~cos 02cosp!522Ap. ~52!

Likewise,

]x10

]u0
5A3pE dbsinu`~ l 0 ,b!cosu`~ l 0 ,b!

]u`

]b

5A3pE db
d

db S 1

2
~sinu`!2D

5
A3p

2
„~sin 0!22~sinp!2

…50. ~53!

Therefore, when the initial point lies along the2 ẑ axis, the
Jacobian of the transformation simplifies to
12400
g-

e

D5
]x00

]u0

]x10

] l 0
2

]x00

] l 0

]x10

]u0
522Ap

]x10

] l 0

52A3p
]

] l 0

3E dbu~ l 0 ,u0 ,b!
d

db
„@sinu`~ l 0 ,b!#2

…, ~54!

or finally

D52A3p
]

] l 0
I~ l 0!, ~55!

with

I~ l 0!5E db u~ l 0 ,u0 ,b!
d

db
„@sinu`~ l 0 ,b!#2

…. ~56!

Thus, to determine if the pseudo-Minkowski coordinat
are a good coordinate system, we only have to show that
integralI( l 0) has no extremum as the initial radial coord
nate parameter,l 0 , is varied. An extensive numerical calcu
lation shows that there are no extremum to this integ
whose values are plotted for many initial positions in Fig.
In fact, the integral is a constantly decreasing functio
whose derivative is finite at all pointsl 0 exceptl 050, which
corresponds to spatial infinity. Since spatial infinity is no
point in the space-time, we claim that the determinant,D, has
a finite positive value for all initial positions.

We have shown that the Jacobian of the transforma
between the (u0 ,l 0) and (x0,0,x1,0) portions of the total co-
ordinate transformation,

xl ,m5 f l ,m~x0
a!,

is non-zero. Using the spherical symmetry of the space-t
and the inherent transformation properties of thexl ,m , we
can claim that the entire transformation is non-singular,

FIG. 5. A plot of the integral,I( l 0), as a function of the initial
radial position shows that there are no extrema. The integral h
finite derivative for all points exceptl 050, which is not in the
physical space-time.
2-10
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that the pseudo-Minkowski coordinates are a good coo
nate system of Schwarzschild space-time with a cons
density dust interior.

ACKNOWLEDGMENTS

We would like to thank Simonetta Frittelli for suggestin
that we try to understand the Einstein rings in our mod
This work was supported under grants Phy 97-22049
Phy 92-05109.

APPENDIX A: THE INITIAL DIRECTION AND
THE PARAMETER B

The parameterb, which arose as a constant of integrati
when integrating the null geodesic equations, parametr
the initial direction of the geodesic. In this appendix, w
choose the motion of the geodesic to remain in thex̂-ẑ plane
and the initial point to lie on the2 ẑ axis. The initial direc-
tion of a geodesic is captured by giving an angle,c, between
the spatial part of the directed tangent vector to the geod
and theẑ axis. We are interested in determining the relatio
ship between the anglec and the parameterb.

From Eq. ~11!, the coordinates of a null geodesic r
stricted to thex̂-ẑ plane were given in terms ofl by

u5u01~21!eE
l 0

l

dl8S 6
16Ak~ l 8!A~ l 8!

AA~ l 8!„2l 82f ~ l 8!…
D ,

l 5 l ,

u5p2E
l 0

l

dl8S 6
b

AA~ l 8!
D ,

f50, ~A1!

with

A~ l 8!5
12b2l 82f ~ l 8!

f ~ l 8!h~ l 8!
.

Up to rescaling, the~null! tangent vector to this geodesic i

La5S du

dl
,
dl

dl
,
du

dl
,
df

dl D5S du

dl
,1,

du

dl
,0D . ~A2!

Since both the measure of angles and the length of a
vector are independent of conformal factors, any conf
mally related metric may be used to compute them. In w
follows we use the physical metric of our model, which
the coordinates@ t,l 51/(A2r ),u,f# is
12400
i-
nt

l.
d

d

ic
-

ll
r-
t

ds25 f ~ l !dt22
h~ l !

2l 4
dl22

1

2l 2
dV25 f ~ l !dt22gi j dxidxj ,

~A3!

where f ( l ) andh( l ) are the coefficients of the metric give
in Eq. ~3! andgi j is a spatial metric. The spatial part of nu
vector, Eq.~A2!, normalized in the physical metric, is th
three vector

L̂ i5
1

uLu S 1,
du

dl
,0D , ~A4!

with

uLu5Ah~ l !

2l 4
1

1

2l 2 S du

dl D
2

.

The value of the derivativedu/dl is determined using Eq
~A1!:

S du

dl D
2

5
f ~ l !h~ l !b2

12b2l 2f ~ l !
. ~A5!

A unit spatial vector pointing in the radial direction is give
by

r̂ i5S A2l 2

Ah~ l !
,0,0D .

The inner product betweenLi and r i gives the angular
direction of the geodesic, namely,

gi j r̂
i L̂ j5cosc. ~A6!

After some algebra, Eq.~A6! can be solved forb, giving our
desired result

b5
sinc

lAf ~ l !
. ~A7!

The range inb at the initial point is determined by Eq
~A7!. The parameter ranges fromb50, corresponding to ra-
dially outgoing rays whenc50, to a maximum value,b
5bm , wherec5p/2, back down tob50 wherec5p, and
again the geodesic travels radially. Eitherb or c may be used
to parametrize the initial direction of the geodesic.
2-11
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APPENDIX B: FULL ANGULAR DEPENDENCE OF
THE LIGHT CONE

In Sec. II, we integrated the null geodesics emanat
from a point on the2 ẑ axis, restricted to thex̂-ẑ plane, in
terms of a parameterl. The angular integrals were

f50,

Q5Q~ l ,l 0 ,b!5p2E
l 0

l

dl8S 6
bAk~ l 8!

A12b2l 82f ~ l 8!
D .

~B1!

We want to perform a rigid rotation of this restricted soluti
restoring the full angular dependence, and allowing the
tial point to be at any position.

Due to spherical symmetry, the geodesic equations s
rate into one time, one radial, and two angular equations.
arbitrary solution to the angular part of the geodesic eq
tions can be obtained by performing a rigid rotation of t
solution given in Eq.~B1!. For such a solution, the motio
will take place in a new plane, but the angleQ( l ,l 0 ,b) will
be preserved.

To perform the rotation we use complex stereograp
coordinates, (z,z̄), as coordinates on the sphere defined
Eq. ~12!. In terms ofz, the solution corresponding to Eq
~11! is

z~ l ,l 0 ,b!5cot
Q~ l ,l 0 ,b!

2
5 z̄~ l ,l 0 ,b!. ~B2!

Under anSU(2) rotation,z transforms as

z85
az1b

cz1d
5

a cot
Q~ l ,l 0 ,b!

2
1b

c cot
Q~ l ,l 0 ,b!

2
1d

, ~B3!

wherea,b,c,d are the Cayley-Klein parameters@10#, which
can be expressed in terms of Euler angles,a, b, andg as

a5sin
a

2
e~ i /2!~g1b!,
12400
g

i-

a-
n

a-

c
n

b5cos
a

2
e~ i /2!~2g1b!,

c52cos
a

2
e~ i /2!~g2b!,

d5sin
a

2
e~ i /2!~2g2b!. ~B4!

To determine the values of the Euler angles, we note
whenQ5p, the geodesic is at the initial position,z0 . From
z85z0 , we have

b

d
5cot

a

2
eib5cot

u0

2
eif0. ~B5!

This condition fixes two of the Euler angles,a andb, to be
a5u0 and b5f0 . Thus, in terms of the new initial point
z0 , the Cayley-Klein parameters are

a5A 1

11z0z̄0
S z0

z̄0
D 1/4

e~ i /2!g,

b5A z0z̄0

11z0z̄0
S z0

z̄0
D 1/4

e2~ i /2!g,

c52A z0z̄0

11z0z̄0

S z̄0

z0
D 1/4

e~ i /2!g,

d5A 1

11z0z̄0

S z̄0

z0
D 1/4

e2~ i /2!g. ~B6!

The remaining free parameterg gives the orientation of
the plane in which the geodesic moves. In the case that
initial point lies on the2 ẑ axis,g is the anglef. When the
initial point of the geodesic is rotated to an arbitrary locatio
the parameterg acts as an angle about the new axis of sy
metry in the system.

Our final, full solution to the angular part of the geodes
equations is obtained using Eqs.~B6! with Eq. ~B3!:
he
z~ l 0 ,z0 ,z̄0 ,l ,b,g!5S z0

z̄0
D 1/2S e~ i /2!gcot

Q~ l ,l 0 ,b!

2
1Az0z̄0e2~ i /2!g

2Az0z̄0e~ i /2!gcot
Q~ l ,l 0 ,b!

2
1e2~ i /2!g

D , ~B7!

where we have dropped the prime onz. The angular solution,z is a function of the initial point (l 0 ,z0 ,z̄0), a parameter along
the light conel, and two free parameters, (b,g), which span the sphere of initial null directions at the initial point. T
dependence onl 0 , l , andb comes throughQ( l ,l 0 ,b) by integral expression
2-12
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Q~ l ,l 0 ,b!5p2E
l 0

l

dl8S 6
bAk~ l 8!

A12b2l 82f ~ l 8!
D . ~B8!

When the value ofl is taken to zero, Eq.~B7! gives the
final angular location of a point onI1 in terms of initial
directions (b,g) and the initial pointx0

a5(u0 ,l 0 ,z0 ,z̄0). In

this case, we denotez( l 0 ,z0 ,z̄0 ,l 50,b,g) by z`(x0
a ,b,g),

and Q( l 50,l 0 ,b) by u` . The existence of such a functio
provides a mapping from the sphere of initial null direction
12400
,

(b,g), to the sphere of null generators atI1. The Jacobian
matrix of the mapping is given by

J5S ]z`

]b

]z`

]g

]z̄`

]b

]z̄`

]g

D . ~B9!

In Sec. V, we use the determinant of this Jacobian to tra
form integrals overI1 to integrals over the initial null di-
rections.
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