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In the context of the conjectured AdS-CFT correspondence of string theory, we consider a class of asymp-
totically anti—de Sitter black holes whose conformal boundary consists sifigle connected component,
identical to the conformal boundary of anti—de Sitter space. In a simplified model of the boundary theory, we
find that the boundary state to which the black hole corresponds is pure, but this state involves correlations that
produce thermal expectation values at the usual Hawking temperature for suitably restricted classes of opera-
tors. The energy of the state is finite and agrees in the semiclassical limit with the black hole mass. We discuss
the relationship between the black hole topology and the correlations in the boundary state, and speculate on
generalizations of the results beyond the simplified model thé&8@§556-282199)04404-5

PACS numbses): 11.25.Hf, 04.62+v, 04.70.Dy

I. INTRODUCTION CFT to be approximately described by the result of a
quotient-like operation on the original vacuui@) of the
Black holes and related classical solutions are a topic ofonformal field theory. We do not consider here any effects
long-standing interest in string theof¥,2]. Their study has which may result from additional winding modes in the quo-
shed light on old questiori8-5] in black hole physicgsee tient spacetime.
e.g.[6]) as well as dualitie§7—9] and other stringy issues Now, the boundary state corresponding to the BTZ black
[10,11. Indeed, it was an investigation of black holes thathole has been characterized as therfil]. This is a result
first lead to Maldacena’s conjectufé?] (based on earlier of the boundary CFT having two disconnected components
work, e.g. [13]) relating string theory in asymptotically and the fact that such black holes correspond to states of the
anti—de Sitter space to a conformal field theory on theboundary CFT in which the two boundary components are
boundary at spatial infinity. For evidence supporting thisentangled. Thus, the boundary states are not pure states on
conjecture, segl4]. either boundary component separately. On the other hand, as
It is therefore natural to investigate asymptotically anti-dediscussed ii24], there is no reason to expect single-exterior
Sitter (AdS) black holes in light of Maldacena’s conjecture. black holes to be mixed states in any corresponding sense. In
Previous wor15—-20 has analyzed the (21)-dimensional particular, as the boundary theory is now exactly the same as
Barados-Teitelboim-ZanelliBTZ) black holes[21] in this  that of either Ad$ or the M =0 black hole, one expects to
way, using the fact that the classical black hole solutions arée able to interpret single-exterior black holeqjasre statg
certain quotients of Adgto identify associated states in the excitations of these ground states.
conformal field theory(CFT). Recall, however, that the non- In this paper we investigate the boundary states for certain
extremal BTZ black holes have two asymptotically anti—desingle-exterior, asymptotically AdSlack holes by using a
Sitter regions. As a result, the conformal boundary of suclsimplified model of the boundary conformal field theory. Our
spacetimes is not the usugitx R of the universal cover of main focus is on a class of spacetimes referred tiR/E%
AdS;, but two copies of this cylinder. This means that, geons, which are analogous to the asymptotically R&?
strictly speaking, such black holes are not described by quitgeon[25-28. In section Il we discuss the structure and con-
the same conformal field theory as Agd&hd the correspond- struction of theRPP?> geons as quotient spaces of AdSn
ing states do not lie in the same Hilbert space. We note thaec. Il we first motivate and define our model CFT and then
theM =0 black hole also has only a single asymptotic regionverify that theRI’?> geon corresponds to a pure state of our
and so again cannot lie in the same Hilbert space as the BTihodel theory. We also verify that the expectation value of
black holes. the CFT Hamiltonian in this state coincides with the mass of
In contrast, there are other asymptotically AdS blackthe black hole in the limit where the black hole horizon
holes which have only a single asymptotic region. Some exeircumference is much greater than the length scale associ-
amples were constructed (22,23 as quotients of Ad$ ated with the AdS space. This corresponds to the limit where
For such black holes, we expect the state in the boundaryy or n_ is much greater tha@®;Qs in terms of the left and
right momentum, one-brane, and five-brane quantum num-
bers of the associat¢d?2] six-dimensional black string. Note
*Electronic address: louko@aei-potsdam.mpg.de; address aftéhat taking such a limit is also important to remove quantum
September 1, 1999: School of Mathematical Sciences, University oforrections to the entropy of such black strings.
Nottingham, Nottingham NG7 2RD, United Kingdom. After developing our technology in the context of tR&?
TElectronic address: marolf@suhep.phy.syr.edu geons, we then briefly address the single-exterior black holes
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of Refs.[22,23 in Sec. IV. We close with some comments these coordinates can be understood as global on,Axqifart
on the extrapolation of our results to the full CFT of Mal- from the elementary coordinate singularitypat 0. The met-
dacena’s conjecture, the encoding of the geon topology imic reads
the boundary state, and other issues in Sec. V.

Our attention will be focused on the special case of Mal- 4 L — s s
dacena’s conjecture for the spacetime AHS X T4 We dszzﬁ[—z(lﬂ) )dt*+dp+p<do]. (2.9
use units in whichh =c=1. The (2+1)-dimensional New- (1=p%)

ton's constant is denoted ;. We define the time orientation on AgiSo that the Killing
vectorgd, points to the future, and a spatial orientation so that,
Il. AdS ;3 THE SPINLESS NONEXTREMAL BTZ HOLE, for p#0, the pair Gp ,dy) is right-handed.
AND THE RP? GEON Dropping from Eq. (2.5 the conformal factor 4(1
2\ =2 i ;
In this section we describe the quotient constructions of P )" yields a spacetime that can be regularly extended to

the spinless nonextremal BTZ hole and the? geon from p=1. The .tirgelijkef. hypershurfacqu:l i?bthis dconfofrmgls
three-dimensional anti—de Sitter space, and the extension 3pa((:jet|me 'Sh.y € |fn|t|on It be cog orma E?l.m ary o I%
this quotient construction to the conformal boundaries of theve denote this conformai bounaary I@/_ IS a t'.me' €
spacetimes. The material for the BTZ hole is familiar two-torus, coordinatized byt (f) with the identifications
[15,21,24,2% but a review is needed in order to establish the N _
relationship between the BTZ hole and the geon. We also (t.6)~(t, 0+ 2m)~(t+2m.6), 2.6
mention. genergllizatio.ns of the geon .const_ruction. 10 spaceynq the metric orB is flat,

times with additional internal dimensions, in particular the

internal factorS®*x T* that arises in string theorfy15]. d2= —dt2+d 62, (2.7

A. AdS;,CAdS;, and the conformal boundary B inherits from AdS$ a time orientation in which the vector
d, points to the future, and a spatial orientation in which
‘f)oints to the right.
The above definition of a metric dB relies on a particu-
—12= — (TH2— (T2)2+ (X124 (X?)2 (2.1) lar coordinate system. The isometries of Ad&ct on the
metric (2.7) as an O(2,2) group of conformal isometries, and
in R22 with the global coordinatesT¢,T2,X*,X?) and the the metric onB is thus invariantly defined only up to such
metric transformations. We therefore understand the mégic) as
a representative of its O(2,2) equivalence class.
ds?=—(dTH2— (dT?)2+ (dXH)2+(dX?)2. (2.2 The above constructions adapt in an obvious way to the
universal covering space of AdS which we denote by
The positive parametdris the inverse of the Gaussian cur- CAdS;, and to its conformal boundary, which we denote by
vature. AdSg is a smooth three-dimensional spacetime withB.. When the last identifications in Eq.4) and(2.6) are
signature ¢+ +). Itis maximally symmetric, an@the con-  dropped, the coordinates, f,6) can be regarded as global
nected component pthe isometry group igthe connected on CAdS,, and the coordinatest,) can be regarded as

Recall that the three-dimensional anti—de Sitter spac
AdS; can be defined as the surface

component of O(2,2). From now on we s¢t=1. global onB¢. B¢ has topologyS'x R, and the metri¢2.7)
It is useful to introduce on AdiSthe coordinatest(p,6)  on B is globally hyperbolic.B. is time-oriented, withd,
by [22] pointing to the future, and space-oriented, witfpointing to
, the right. The isometries of CAd&learly induce conformal
Ti_ 1+p i (2.33 isometries oB., and the metric o is invariantly defined
B 1-p? cost, ' only up to these conformal isometries.
1+p2 B. Spinless nonextremal BTZ hole
2_ .
T 1,2 sint, (2.30 We now describe the spinless nonextremal BTZ black
hole and its conformal boundary.
5 We denote by¢;, and 7, the Killing vectors on CAd$
Xl= p cosé, (2.30 that are respectively induced by the Killing vectors
P Eomp: = — Thasa— X1, (2.89
2
X2 - P _sino. (2.39 Nemp: = T2dx2+ X2d12, (2.8b
-p
of R22 The conformal Killing vectors thagj,; and z;,; in-
With 0=<p<1 and the identifications duce onB are respectively
(t,p,0)~(t,p,0+2m)~(t+2m,p,0), (2.9 &= cost sinf d,+ sint cosé dy, (2.9
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andI'| are the restrictions to respectivddg andD, of the
conformal isometry group oB. generated by exmg)
[15,24. To see this explicitly, considddg, and coverDg
by the coordinatesd,8) defined by

a=—Intan[(0—-1)/2], (2.11a
B=Intan[(0+1)/2]. (2.11b
Both « and B take all real values, and the metf&.7) onDg
reads
dadpB
= 2.1
ds’ cosha coshp (212
FIG. 1. A conformal diagram of the BTZ hole. Each point in the o
diagram represents a suppres§d The involutiond, introduced ~ 7« @nddg are future-pointing null vectors, and
in Sec. Il C consists of a left-right reflection about the dashed ver- . 21
tical line, followed by a rotation byr on the suppressesf-. §=—dat g (2.133
N=d,tdg. (2.13b

7:= cost sinf d;+ sint cosf d,. (2.9b
The generator ex@m€) of I'g acts in these coordinates as
(a,B8)—(a—a,B+a), and the metri¢2.12) is not invariant
underl'r, but the conformally equivalent metric

&ne and 7y, @re clearly mutually orthogonal, agdand » are
similarly mutually orthogonal.

We denote byD;; the largest connected region of CAdS
that contains the hypersurfadge=0 and in which &, is 2.7\ 2
spacelike. As £omp, Eemp) = (TH?— (X1)?, we see from Egs. ds?=— (—) dadp (2.19
(2.3) that Dy, is isometric to the subsdt'>|X?| of the sur- a
face(2.1) in R*”.D;,, intersects every constanhypersurface is. The quotient spacBr/T'r, with the metric induced by
for —zm<t<zm, but the only one of these hypersurfaces , 14 “is thus isometric tB. with the metric(2.7). Note
that is entil’ely contained iﬁ)im is t=0. The conformal ex- that the vector 0|'DR/FR induced by7] is a future timelike
tension ofDjy o Bc intersectsBc in the two disconnected  ;jling vector in the metric induced from Eq2.14), and the
diamonds isometry with Eq.(2.7) takes this vector to the vector
(2m/a)d; on B¢. Similar observations apply O, /T , the

Dr:={(t,O)|0< o<, t| <m/2—=[6—m/2}, (2.103 main difference being that the timelike Killing vector in-
. _ _ duced by n is now past-pointing, and mapped to
D, :={(t,0 <O0<0/[t|< 72— |6+ =/2}. : .
o= [t m/2=|0+mi2l} (2.10B —(27/a)d; under the isometry witlB .
By construction,¢ is spacelike with respect to the metric C. RP? geon

(2.7 in Dg andD_ . In the orientations o andD, in-
duced by that oB¢,£ points to the right inDg and to the
left in D .#n is future timelike inDg, and past timelike in
DL .

Now, let a be a prescribed positive parameter, and le
I';,v=7 be the group of isometries of CAgdSenerated by .
exp @& -Tin: preserved,,;, and its action orD;, is free Of Diny ‘;”der this group. . .
and properly discontinuous. The quotient spaxg /T, is AS Jini= Xp @in), Jin induces on tDe BTZ hole an in-
the spinless, nonextremal BTZ black hole. The horizon-volutive isometry, which we denote by, and theRP?
generating Killing vector, induced by, is respectively ~9eon is precisely the quotient space of the BTZ hole under
future and past timelike in the two exterior regions, andtheZ, isometry group generated By,. The action ofJ;,; on
spacelike in the black and white hole interiors. The horizonthe BTZ hole is easily understood in the conformal diagram,
circumference isa, and the mass iM =a?/(327°G,), as shown in Fig. 1 and described in the caption. The confor-
whereG; is the (2+1)-dimensional Newton’s constant. A mal diagram of thek’? geon is shown in Fig. 2. It is clear
conformal diagram is shown in Fig. 1. that theRIP> geon is a black hole spacetime with a single

In each of the two exterior regions of the hole, the geom-exterior region that is isometric to one exterior region of the
etry is asymptotic to the asymptotic region of CAdSOne  BTZ hole. The geon is time orientable and admits a global
can therefore attach to each of the two exterior regions #liation with spacelike hypersurfaces of topology
conformal boundary that is isometric By.. What is impor- ~ RP?\{point at infinity}, whence its name; it is, however, not
tant for us is that these conformal boundaries can be identspace orientable. It shares all the local isometries of the BTZ
fied as the quotient spac&@y/I'gs andD, /T",, whereI'y  hole. However, ag,, inverts the sign of the Killing vector

We now turn to theRPP? geon.

Consider on CAd$the isometryd;, that is the composi-
tion of exp @&./2) and the mapt(p, 6)—(t,p,—6). The
jgroup generated by, acts onD;,; freely and properly dis-
continuously. We define thBPP? geon as the quotient space
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formal rescaling of the (2 1)-dimensional part of the met-
ric, one finds that the conformal boundary is connected, and
its geometry is that of one component of the conformal
boundary of the BTZ hole with the constant internal space.
Note that while the geometry of the geon dependd gnthe
geometry of its conformal boundary does not.

In particular, if the internal space is orientable ahd
reverses the orientation, the above construction yields a
space-orientable geon.

The case that will concern us below is a ten-dimensional
black hole spacetiméconsidered in the context of string
theory in Ref[15]) in which the internal space is the metric
product ofS® andT#, with a round metric on the former and
a flat metric on the latter. If th@* factor further factorizes

FIG. 2. A conformal diagram of th&P? geon. The region not . . 1 3 . 1
on the dashed line is identical to that in the diagram of Fig. 1, eac !nto a metric product o&" andT", the reflection of the S

point representing a suppress&'din the spacetime. On the dashed IS a nonorier_]table in\_/olutive_ isqmetry c_)f the internal space.
line, each point in the diagram represents agaiis4in the space- Other nonorientable involutive isometries can be found by

time, but with only half of the circumference of t1&"s in the composing this inversion with orientable involutive isome-
diag'ram of Fig. 1. tries acting on the other factors, such as the antipodal map on
the S®. As smooth orientable quotients of Ag€S X T4, all
i ON CAdS,, 7 does not induce a globally defined Kill- of these spacetimes provide exact classical solutions of string
n » NN
ing vector on the geon, while it does induce a globally de-tN€ory-

fined Killing vector on the BTZ hole. The quotient construc-
tion from the BTZ hole to th&kP? geon is highly similar to IIl. BOUNDARY CONFORMAL FIELD THEORY

the quotient construction from the Kruskal manifold to the We now turn to the question of what sort of quantum state

RP® geon in four spacetime dimensiof25-28,30. in the boundary CFT of Maldacena’s conject(ile?] is in-
The mapJ;, can clearly be extended to the conformal duced by the quotient constructions of Sec. Il. We specialize
boundary of the BTZ hole, where it defines an involutibn to the internal spac&®xT* and, in order to arrive at an
that interchanges the two boundary components. The confoprientable spacetime in which we might discuss orientable
mal boundary of the geon can thus be understood as thatring theory, we further assume the metric on teto
quotient of the conformal boundary of the BTZ hole underfactorize in such a way that a reflection of &hprovides an

the Z, generated by. The conformal boundary of the geon internal involutive isometryl, as discussed in Sec. Il D. We
is clearly isometric to a single component of the conformaWwill not consider the full CFT suggested by the conjecture
boundary of the BTZ hole, and the quotient construction in-but, instead, we consider a simplified linear field theory
duces on it a time orientation. Although the boundary of thewhich we expect to capture the central features of interest.
geon is space orientable, the quotient construction does not
induce a choice for the space orientation: the reason isithat A. Model
interchanges the orientations of the two boundary compo- \ve consider a set of free scalar fields on the boundary
nents of the BTZ hole. cylinderB.=S!x R of CAdS;, but with certain refinements.
The point is that, as discussed in Sec. Il D, the internal isom-
D. Internal dimensions etry J. does not affect how the identifications of the full
In string theory, there is interest in spacetimes that arépacetime CAd$x S*x T* project to identifications 0B .
metric products of CAd$and a compact “internal” space. Nevertheless]. is expected to affect the full conformal field
The quotient constructions of the BTZ hole and the?  theory of Ref.[12] on B¢. Thus, our model must contain
geon can clearly be extended to such a spacetime and ighough additional structure to faithfully represent the action
boundary by taking the identification grolipto act trivially ~ of Jc.
on the internal dimensions. However, if the internal space Recall that theRP? geon is a quotient of the BTZ black
admits suitable isometries, other extensions of interest exishole by the involutionJ,, . Let us take a moment to consider
Specifically, if the internal space admits an involutive first how thisZ, quotient would be reflected in a boundary
isometryJ, , the compositiod’ of J, andJ;y is an isometry  CFT. For a linear field, it is natural to think of the field on
on the full spacetime, and takinj to generate the identifi- both the BTZ hole and geon boundaries as beingstmae
cation group yields a generalization of tf&? geon. An  operator-valued distribution on the boundary of the BTZ
equivalent construction is to consider first the product spacedole, but merely smeared against different classes of test
time of the BTZ hole and the internal space, and quotient thisunctions. The detailed correspondence is given by lifting a
by theZ, generated by the map that is the composition of

Jint @and J.. The resulting geon has again a single exterior
region. Defining the conformal boundary in terms of a con- In terms of an angular coordinajeon theS?, y— — .
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test function from the geon boundary to the BTZ black holethat of the CFT in Maldacena’s conjecture iQ8s. This
boundary and dividing by/2 to ensure canonical normaliza- we will correct by hand when considering the energies of our
tion of the field. Since the geon fields are embedded in thistates in Sec. Il E.
way in the algebra of BTZ fields, any state on the BTZ In finding the geon state in the CFT we will proceed as
boundary directly induces a state on the geon boundary. Agdicated above, first calculating the boundary state of the
in [28], it is sufficient to think of a free scalar field,(x) on ~ BTZ hole in Sec. Ill B, and then performing a final identifi-
the geon boundary as being a symmetrization of the corresation to yield the state for the geon in Sec. Il C. Though the
sponding fieldpgrz(x) residing on the boundary of the BTZ state on the black hole boundary has been considerfeddin
black hole: setting up the BTZ calculation in a different way will make
our geon calculation particularly straightforward. In addition,

1 we will be able to see certain effects of the compact bound-
bg(x)=—1= 21 berz(Y), 3.9 ary that were neglected ii5].
yep “(x) Sections Il B and Il C consider only the oscillator modes

of our scalar fields. The zero modes are more subtle and are

where p is the covering map from the BTZ black hole treated separately in Sec. Ill D. Section Il E discusses the

boundary to the geon boundary. energy of our states and compares the result with the mass of
Now, in our construction of the orientable geon from the corresponding black hole or geon.

(BTZ hole)x S3X T4, the involutive spacetime isometry acts

on the BTZ hole dimensions kﬁlmt and on the internal tor- B. BTZ black hole state

oidal dimensions by reflecting one of tf&'s of the T*. . . . .
Thus, we must include in our model some feature that cor- As discussed in Sec. Il, the BTZ black hole is the quotient

. f the regionD;,;C CAdS; under the discrete isometry group
responds to this internal topology. We recall that the topol-0 int -
ogy of the internal torus is captur¢d2,15 by the fact that generated by ex@iy). Similarly, thg boundary of the BTZ
the boundary CFT should be a nonlinear sigma model whos.@0|e may be thought of as the quotient of the redipu D,
target space is a symmetric product of copies of THe A in the boundanBc of CAd,S3' under th? group generated by
given St factor of the internal space is represented as a sy £XP (af)._We \.NOUId now [|ke to consider the vacuum .state
metric product ofS! factors in the target space of the sigma 0) that is defined orB¢ with respect to thg timelike Killing
model. It is clear that, when acting on the boundary field”€ctor di, and construct the state th) induces on the

theory, the involution that exchanges a pointith its image ~ P'ack hole boundary. Since the quotient®f to the BTZ
~ o . . black hole does not act on the internal factors, the construc-
Jx should act nontrivially on this part of the sigma model

reflecting the appropriats® factors in the target space. This gggnlzsl(:gn;fr? érf?irélt:jom(ﬁ andy and the discussion below
IS |n|d;rect an?lc&gy vlwth tr:ﬁ C.OTSUUS%“C\)/';}S [Gﬂl]l th;er:et:]he Recall that the null coordinates and B, Egs.(2.113,
|fnv? u |ot|)15 acle on %r?n etlnfetrr? - Ve wl rgol elthis ¢ gaefine a conformal mapping dg onto Minkowski space
vsiztihutrr?e gp;?g;?;?gl faec{)oa;rs l:())y a gir?é%nscggr ﬁeass_?g'a €fand similarly forD|). In terms of this Minkowski space, the
tighten the analogy with the sigma model, one might like tomap exp ) is just a spatial translation, and when the over-

4 : oo . all scale of the metric is chosen as in Eg.14), the proper
think of the field space of as compactified to a circle of the distance of the translation is/2 Thus, these identifications

tsr?}??/vsijzlg E\:’etsientmgg:?asfil (ss))glelzﬁsgtpoffu)r. (;_L%Vt\fgxfréon_enact the usual compact|f|cat|or_1 _of M|nkowsk| spacesl‘q
struction. Setting aside the reflection of ti85 for the mo- I The effect of the compactification on the scalar ﬂe'd.
ment cdnsider the analogue of E@.1) for a field ¢ theory |s_m§rely to remove all modes th_at are not appropri-
whicﬁ is periodic in field space with fhis period. The BrIaZsuIt— ately periodic and to reinterpret the periodic modes, which
. ) . y are not normalizable oBg (or D, ), as normalizable modes
ing geon fieldg, would then have period 2R/\/2. On the on the cylinder.
other hand, the quotient by, does not change the size of  The nontrivial part in this construction is that, as noted in
the internalS factors. Note that the Y2 normalization fac-  Sec. 11 B, the timelike Killing vectors on the two boundary
tor in Eq.(3.1) is fixed by the commutation relations and the components of the BTZ black hole do not lift to the timelike
behavior of the Green’s functions. Killing vector ¢, on B : the future timelike Killing vector on

In order to have a faithful representation of the involutionthe boundary component arising fronDg lifts to
Jit, We choose to ignore the compactness of $heand to  [a/(27)]#, and that on the boundary component arising
allow our field ¢ to take values on a real line. In analogy from D, lifts to —[a/(2)]#. Thus, in order to interpret the
with the St it replaces, this line will be reflected through the state induced by0) on the BTZ hole boundary in terms of
origin by the action of the involution on our field theory. For the BTZ particle modes, we must first write the state induced
contrast, the rest of the sigma model will be replaced by @y |0) on DgUD, in terms of continuum-normalized par-
single free scalar fieldb whose field space is not affected by ticle states that are positive frequency with respecgton
the involution. Dg and with respect te- » on D . This calculation is quite

Our simple model allows exact calculations to be donesimilar to expressing the Minkowski vacuum in terms of
and captures many features of interest. A notable exceptiomRindler particle modegsee e.g[32-34).
however, is that the central charge of our model is 2, while To begin, consider the mode functions
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ul o= ! [tan(( 60— et)/2)]'¢®

Va4mw (3.23
U, o= \/41_[tan(( — 0+ et)/2)] e,
(3.2b

wherew>0, the indexe takes the values 1, and the modes
with superscript R(L) have support inDg(D,). The
R-modes are eigenfunctions of the vector figlebn D g with
eigenvaluew, and theL-modes are similarly eigenfunctions
of the vector field— » on D, with eigenvaluew. The modes
are continuum orthonormal ddgUD, . The modes withe
=1 are right-moving and those wid+= —1 are Ieft-moving,
in the orientations o and D, induced by that orB¢.?
These properties for thR-modes become explicit by writing
the modes in terms of the null coordinatea, 8), Eqs
(2118, on Dg as uf ,=(4mw) Y% ' and u}

— (4770)) 1/2
L-modes orD, .

—ioB, Analogous expressions hold for the

PHYSICAL REVIEW D 59 066002

1

V2 sinh(7w)

af)e: mu/th) —e” wwIZbeQE)_

(3.4b

To relate the vacua, one notices that H§s4) can be written
as[36]

all = exp(—iK)bR . exp(iK), (3.59
al?.= exp(—iK)b} . exp(iK),
(3.5b
whereK is the (formally) Hermitian operator
K=iY, f dor,(bIRbIt —bR b: ) (3.6)
€ 0
andr , is defined by
tanh(r )= exp(— 7w). (3.7

The vacuum0).s., annihilated by the{!)_, is therefore re-

L€

Let now |0), Stand for the vacuum of the non-zero lated to the vacuuno),, annihilated by theo;%, through

modes induced oBzUD, by |0), and let|0), stand for the
vacuum of theu-modes(3.2). We need to expregd®) . in

terms of |0), and the excitations associated with the

u-modes. To this end, we follow the method of Unii8b]

and build from theu-modes and their complex conjugates a

complete set of linear combinations, callgd¢modes, that
are bounded analytic functions in the lower half compiex
plane. By construction, th&/-modes are purely positive fre-

guency with respect t@,, and they thus share the vacuum
|0)osc- The relevant Bogoliubov transformation can then be

simply read from expressions of th&modes.

Analytically continuing theu-modes(3.2) betweenDg
andD| in the lower half of the complekplane, we find that
a complete set ofV-modes is

1 _
W(l>6= - emlzuR e 7rw/2uL 6),
¢ 2 sinh(7w) “ @
(3.33
(2) — ; 7Tw/2uL +e ﬂ'w/2 R )
@€ 2 sinh(7w) @€
(3.3b

wherew>0 ande=*1. The creation and annihilation op-
eratorsaju('e) ,a(') for the W-modes are thus related to the

creation and annihilation operators!-.?,b5 % for the
u-modes by

1
(1) Twl2WR —7Tw/2 L
a em'“p; — b, 3.4
@2 sinh(7w) e o (343

2As mentioned after Eqg2.103, in this orientation¢ is right-
pointing in Dg and left-pointing inD .

|O>osc: exp(_|K)|0>u-

In terms of the normalizeg-particle stategq)? .
associated with the modes; ,

[l

w>0,e

(3.8
(a0

(u}, ), this relation reads

o

> exp(—moq)| )R Jayh .

|O>osc: cosh(r,) s
(3.9

We can now pass from the field theory BgUD, to the
field theory on the boundary of the BTZ hole. Let us refer to
the non-zero modes of the field as oscillator modes. For the
oscillator modes, the effect of the periodic identifications is
simply to replace the continuous index by the discrete
valuesw= w,:=27n/a, where the index takes values in
the positive integers, and to change the normalization factor
in the u-modes(3.2) from (47w) Y2 to (47n) 2 For the
oscillator modes, we then obtain frof@),s., Eq.(3.9), the
state

oo

_— R L
cosh(r,, ) 2o exp— 7T“’rﬂ)|q>n,e|q>n,e> :
(3.10

4=
|BTZ) s Clearly lies in the Fock spack=Hr®H, , Wwhere
Hg and’H, are the Hilbert spaces of the oscillator modes of
the scalar field on the respecti®x R conformal boundary
components of the BTZ hole. Note th&TZ) .., Eq(3.10,

is properly normalized and that it may be written as
|BTZ)os= €Xp (—iKg12)[0)0sc, Where

Kgrz=i Z

n>0,e

|BTZ>osc: H
n>0,e

r o, (bh0N~ bR by ). (3.11)
When both fields¢p and ¢ are consideredtogether with
the zero mode states discussed below in Sec.)Jl|BTZ) .
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gives the BTZ black hole quantum state in our model theory B 1

on (S'xR)U(S'xR). We see from Eq(3.10 that|BTZ)os bg(x):=—=[ ar2(pR (X))~ dPeT2(PL " (X))].
contains pairwise correlations between modes residing on the 2

two boundary components, and when the modes on one com- (3.13b

ponent are traced over, the resulting state on the other com-

ponent is thermal. The expectation value of any operatofpege fields again live 08X R and act in the Hilbert space
associated with only one boundary component is thus |denHBTZ_ The definitions(3.12 and (3.13 amount to writing
tical to the expectation value in a thermal state. This is iny o 4o fields { gtz dgrz} ON the two-component BTZ

particular true of the stress-energy tensor. . ~ ~ .
; : ; - boundary as the four fieldsy, , ¢4, ¥4, d4} ON a single copy
Finally, to identify the temperature of the effective ther- ) 97979 "g
naty I ity peratu v %f S!XR. The Hilbert spaceHgr, then factors asHgr,

mal state on a single boundary component, we recall that th -
discretizedu-modes are eigenfunctions of  with eigen- ~ =Hy®Hy, whereH, is the Hilbert space of the geon fields
value w,. The expressiorf3.10 therefore implies that the (3.12 while H, is the Hilbert space of the field$.13. The
thermal state has temperature f)2with respect toz+ 7, desired state in the geon boundary thedkg) then follows
which translates into the temperatuéts? with respect to by tracing over the Hilbert Spacgg_ In fact, taking this
the Killing vectord, in the form(2.7) of the boundary metric.  trace will be trivial as we will see that the Sta&TZ)is a
;2‘; ibSIthE rl:slual '_‘iﬁWking thperél_wre(?_ie interio(;_oj :[[heth ttensor product state, containing no correlations betwegn
ack hole with respect to a Killing time coordinate tha oy : :
agrees with out on the EoundarﬂZl]. \?Ve shall discuss the ?hnd Hqy_That this must be so follows from the pbservqtlon
: ! ; at|BTZ ), contains only two-particle correlations. Since
energy expectation values further in Sec. IIl E after havmgthis state vector is invariant under the operation of inter-

first addressed the zero modes. changing the right and left boundary components, it can only
contain correlations between fields of the same parity under
C. Geon state this operation.

We now construct the state of the oscillator modes in our Note that the only difference between the fietdlsand
model on the boundary of thBP’2 geon. The zero modes IS in the signs in Eqs(3.12) and(3.13, and that interchang-
will be discussed below in Sec. Il D. ing the tilded geon boundary fields for the untilded ones is

Let p_ andpg be the restrictions of the covering mamf ~ €quivalent to interchanging for ¢ on the BTZ boundary.
the BTZ hole boundary over the boundary of the geon to théhus, the state ofl, is identical to the state op, (on the
left and right components of the BTZ hole boundary. TheBTZ boundary and the state ofs, is identical to that ofp, .
geon boundary fieldgy and ¢, are then related to the BTZ As a result, it will again be sufficient to treat only one of the
fields by fields ¢ and ¢ explicitly. We choose the fieldh, and then

1 read off the state ofy from the results.
o —1, Ny -1 Consider thus the fielgp. A complete orthonormal basis
%(X)'_EWBTZ(’)R ()= drerz(pL O], of positive frequency oscillator modes on the geon boundary
(3.123 is given by the functiond), (x):=uf .(pg*(x)), which are
the pushforward to the geon of the mod8s2) on the right
1 BTZ boundary. We denote the annihilation and creation op-
By(x): =E[¢BTZ(p§1(X))+ der2(p H(X))]. erators associated with the fiefd, in this basis byd,, , . and
(3.12h dT‘n,E, and those associated with the fi~e~;i>g by d3 , . and
d;s’n‘e. As the properties of the involutioh (whose quotient
The argumenk of ¢,(x) and ¢4(x) takes values in a single of the BTZ boundary yields the geon boundaimply that
copy of S'xR, but the field operators act in the Hilbert the pullback of these modes to the left BTZ boundary differs
spaceHgr; of the BTZ boundary theory. As the BTZ black from Egs.(3.2) by a rotation(and a definition of left- and
hole state is symmetric with respect to the signiofthe  right-moving, we havelJ,E’E(p[l(x))=(—1)“Un'_5(x), and
geon state will not depend on which boundary component igye then find from Eqs(3.12h and(3.13b the relations
called left or right.

What we wish to do is to calculate the restriction of the

BTZ state to the algebra generated by the fi€RI42. Note 1 &

that the restriction of a pure state to a subalgebra is not dtﬁynvfz\/E[brb,n,e—}_(_l)nb;,nﬁe]’ (3.143
necessarily pure. Thus, priori, the result could be either a
pure state or a mixed state.
We proceed by introducing two more fieldg, and ¢, 1
through d;s’nj:E[b';n’e—(—1)”b;’n’_€]. (3.14b

~ ._i -1 -1
wg(x)'_\/inTZ(pR () derzlp (X)), Using Egs.(3.14), the operatoKgrz, Eq. (3.11), can be

(3.133  written in the form
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* Bc; it will modify the oscillator modes as well. However,
Kgrz=1i Z (— 1)”[(dfb’n’+d;’n,,—d¢1n,+d¢,n'_) the procedure below may be though§ of as a condensed ver-
n=1 sion of the more manifestly self-consistent procedure of giv-

—(dI d —d . d- ) (3.15 ing our fields a finite mass (which of course affects all of
e A ' the modes togethpmnd then taking then—0 limit. In this
longer and more complicated calculation, one would com-
pute the state of the massive field Bn UDg in terms of
modes that are positive frequency with respectyton Dy

The parts of Eq(3.15 referring tog, and?bg each have the
same form as the terms in E@3.11), apart from some
changes of signs._ By the same methods as in Sec. I,” B, Wend — n on D and then take then—0 limit to yield the
can therefore write|BTZ) o i terms OT the n_ormahzed state of the massless fiefdero mode and gllon D, UDg.
g-particle state$q>$n,€ and|q)3,n,. associated with the 0p- 16" massless field state can then be compactified as before.

T . . : . X
eratorsd,, , . anddy = _as It will be clear that the calculation below gives identical
. results.
1 Now, the fact that the zero mode energy eigenstates of a
= - —1)\nhd( — 1)als(o)] ! . ;
BTZ)osc H ~ | cosh(r Z (=D™(=1) free field onS'X R are not normalizable will lead to some
n>0,0e{¢,¢} ( o,/ q 0

subtleties in our argument. In particular, the ground d@Ye
from which the BTZ and geon states are induced is non-
xexp(— anQ)|Q>a,n,+|Q>a,n,—) , (3.16  normalizable. Thus, the BTZ and geon states are unlikely to
be normalizable, and a limit taken in the Hilbert space topol-
i ~ . ogy will not be useful. We will proceed by considering the
where we have defines(¢):=0 ands(¢):=1. This means gates as tempered distributions on the zero mode configura-
in particular tha{BTZ)is a direct product of a state g {jon space. Note that, in the topology of tempered distribu-
with a state inH,. The restriction of Eq(3.16) to the field tions, a suitably rescaled version of the harmonic oscillator
¢, therefore yields the geon oscillator state #r ground state does in fact converge to the free particle ground
For the fieldy, the calculation is similar except in that the state §(p), wherep is the free particle momentum. The re-
tilded and untilded fields are interchanged. The geon oscillascaling is necessary sinép) is not a normalizable state in
tor state forys can therefore be read off from the restriction the Hilbert space. Our limit will require a rescaling of the
of Eq.(3.16 to ?,‘59_ Thus, definings(¢):=1, the geon oscil- state as well, and, for this reason, we induce the BTZ and
lator state including both fields is geon states from the sta@),, which is /7 Q times the
normalizable ground state for the frequeri@yzero modes.
More will be said about the precise form of this rescaling at

©

lgeon o= I —Z exp(— mwy0) the end of the calculation. Below, we first take the limit in
n>0ae{y,¢} | COSN(r, )d=0 : . \
the sense ofsmooth functions on the configuration space.
We then note that this convergence is sufficiently uniform to
X (—=1)M(—1)A gy A gn | guarantee that the same limit is given by the topology of
tempered distributions.
(3.17 Let us begin by replacing the zero mode on the boundary
of CAdS; by the Q>0 oscillator mode (4Q) Y% '
which is a normalized pure state f, . and similarly on the two components of the BTZ boundary

The correlations between the right-movers and the leftand on the geon boundary. In this case, the BTZ zero modes
movers exhibited in Eq.3.17) are similar to the correlations are associated with the modes

found in scalar field theory on thénterior of the R geon (/2

spacetime and on an analogous Rindler-type spacetime in UR = 1 o1+ B2 tan((6-1)/2)
Ref.[28].* We shall discuss this phenomenon further in Sec. ¢ a0 a0l tan((6+1)/2)
V. )

(3.189

D. Zero modes
102

: (3.18b

In our calculations of the zero mode states below, we 1 _ 1 [tan((—6-1)/2)
replace the oscillator modes on the CAJBTZ hole, and o 470l tan((— 6+1)/2)
geon boundaries by modes of finite frequerizy We then )
take the limit(Q—0 to give the state for the actual zero

modes of our massless fields. Now, the reader may be cOfy, the domain, g on the boundary of CAdS We refer to
cerned by the fact that modifying the zero modes on thene creation and annihilation operators for such modes as
boundary of the BTZ hole affects not only the zero mode orb;r),L,R and bb’R. As before, we need only explicitly calculate
the BTZ state for one of our scalar fields.
The calculation proceeds much as in Sec. Il B, except
3In Ref.[28], the counterparts of the minus signs appearing in Eqthat the zero mode does not have separate left- and right-
(3.17 were encoded in the phase choices for the mode functions.moving parts. Thus, the operat#izrz o which relates the
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zero mode part of the regulated BTZ zero mode state Q) o s LR LR
|BTZ), to that of the vacuumO), on the BTZ boundary H—l(—) [224(2K)1 ] H2H 54 (0) (- R(x|p) =)

takes the form (3.23
—i fL4TR L 4R

Kerza=ira(dodo™dado) (319 Let us now evaluate the part of the wave function

with the corresponding form (x_,Xg|BTZ)q that comes from harmonic oscillator states
with energiesE, in a small interval E— 6E/2<Ey<E

1 1 * + SE/2 in the limit of smallQ2. We include both even parity

|BTZ >Q=(—)—2 exp(— 7Qq)|q)R Q)5 (q=2k) and odd parity §=2k+1) states. The associated
V@] cosh(ra)d=o momentum interval is Sp=p SE where p=.2E

(320 =4kQ. For fixed x, g<1/\/6E the values of the wave

for the zero mode state in terms of normalizegarticle ~ fUnctions L'R_<XLVR|2k>bR for the allowed values ok are
states. Here, the fact that our sté, is (7)) Y2 times a nearly identical ar_1d are given by E@._ZZ). Now, the even
normalized state can be seen explicitly. Hermlt(i polynomials at zero are give88] by H;(0)

We must now take the limit as the frequer@yis sentto = (1) (an)”j!' Using  Stirling’s  approximation n!
zero. To proceed, recall that the staig;R may be thought = (vV27n)n"e ", and the fact that there afk/2() states of
of as the normalized occupation number states for a ha€ach parity in the allowed energy range, the contribution of
monic oscillator on the real line. We therefore introduce the"€Se states is
usual position stateg|x)-F} [normalized td-R(x|x')-R
= §(x—x")] and momentum statg$p)-R} [normalized to /2 exp(— wp%/2) ({(X_ ,Xg|p, — P} + (X_ . Xg|P, — P))(Sp).
LR(p|p"y-R=8(p—p’)] for this particle, as well as the ten- (3.2
sor products [x_,Xg) =X ) ®|xg)r and [p,pr)=[pL)
®|pg). In the limit Q—0, the occupation number states Thus, summing over all such intervalp and considering all

must go over to energy eigenstates of the free particle. Moreg,  x. e R gives the zero frequency state of the zero mode for
over, since states witf)=2k have positive parity, they must gijther ¢ or :

be proportional to the positive parity statgg' R=(|p)-R

+|—p)-R)/ 2 for the appropriate momentumin the limit "

of small Q. Similarly, odd states witlg=2k+1 must be- |BTZ)o= \/Ef dpexp(—mp?2)|p)|—p)r.

come proportional tdp)=R=(|p)-R—|—p)-F)/ 2. - -
To fix this remaining constant of proportionality, consider (3.29

the even wave functions37]

4

» Although we have taken thizs limit in the topology of point-
Q 3 2 wise convergence onR4 the exponential cutoff
L’R<X|2k>!LiR:(;> [2%(2K)!] P H () e exp (—mQq) and exponential falloff of the oscillator wave
(3.2  functions in the momentum representation can be used to
show that Eq.(3.29 is in fact the limit of |BTZ), in the
of the oscillator states. Het¢,, is the Hermite polynomial of sense of tempered distributions.
ordern. Of course, since the staté2k)5" are normalized, Thus, expressiofB.25 is the zero mode state on the BTZ
the wave function at any pointvanishes a§)—0. In con-  boundary. We see that the trace over either boundary com-
trast, we have(x|p), = (1/\m) cos pX). Thus, if we fix a ponent yields a thermal state at the same temperature as for
compact setACR, in the limit of small Q with E=(2k the oscillators. As expected, neither Eg.25 nor the state
+ 1)Q held fixed we have traced over one component is normalizable. We see that this
is due to the precise correlation of the momenta on the right
L,R<X|2k>|5R and left in EQ.(3.25. It turns out that something similar
must happen whenever the zero mode spectrum is continu-
Q)4 ous. This is because the st from which the BTZ state is
—>(—) [22K(2K)1 ]~ Y2H 5, (0) Var( BR(x| p) LR induced is invariant under the action of the Killing fietg
(3.22 Eqg. (2.13hH. On the BTZ boundary this corresponds to the
' action of the differencéHg—H, between the right and left
uniformly on A. Using the fact that, in th€ —0 limit at ~ Poundary Hamiltonians. Thusiz—H,_ will annihilate the
fixed x, the coefficient in Eq(3.22 is independent ok and BTZ state. But, when the zero mode spectrum is continuous,

the creation operator goes over tei(2Q) 2 times the Hr—HL has no normalizable eigenstates.
momentum operator, one can show that the relative normal- T‘? arrive at the geon boundary state for, say,we nged
izations of the wave functiodsR(x|2k+1)5R and only introduce the basip,p))=|(p+p)/2,(p—p)/V2) in

LR(x|p)-R are the same up to a factor efi: terms of eigenvaluep,p of the momenta conjugate to the
zero modes ofpy and ¢, . The BTZ state(3.29 for ¢ may
“R(X|2k+1)gR be written
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- ~5 - say, the right-moving modes on our boundary component
|BTZ) 0= \/EJ' dpdp &(p) exp(—7p?/4)[p,p)). does not care whether a right-moving state there is correlated
(3.26  With a mode on another boundary component or with a left-
moving mode on the same boundary component. In both
As in Sec. Il C, there are no correlations betwé‘ﬁé’] and cases, the result is jUSt the expeCted energy in a thermal state
¢4 Thus, we may read off from E¢3.26 the geon bound- of temperaturea/472. The same is also true of the stress-
ary states for botly and ¢. The (normalized geon state for em;:‘:rgy tensor. g ¢ of the BTZ bound
S ; 1/4 =3 ) or a zero mode on a component of the oundary,
¥ ls g_lven Elmply by the facto_r 27 exp (- mp4) corrg one sees from the regulated expressi®20 that the state
sponding togy in Eg. (3.26), while the geon state fop is

, # again acts like a thermal state at the same temperature. While
given by the other factorZ’5(p). Note that the zero mode g, 5 state is not normalizable in the—0 limit, the ex-

of ¢ is in its ground state. One might expect this result to b&,ecation value of the energy associated witlis finite and
ma_mtamed if the field space @ could be compactified, in _equal toa/4m2. On the geon boundary, the expected energy
which case the ground state would of course be normalizg the ¢ zero mode isa/272 while that of the¢ zero mode
able. ;

. . . vanishes.

At this point, a comment is in order on the form of the £ the oscillator modes of a free scalar field on a cylin-
_factor (m(2) by which we neec_ied to rescale the nqrmal'der, the energy expectation value in a thermal state is well
ized ground state. The reader will note that the dlstr|but|or]<nown [33]. The circumference of our cylinde.?) is 27
5(9) is in fact the Iimitﬁs_a distribution over the configL_J— and the temperature ia/472: with these parameters, one
ration spacg of (4/2m)™" times the normalized Harmonic fihqs from the general formulas given in RE83] that the

oscillator ground state. Thus'lﬁ‘e limit 8)q asQ—0is  gpergy of our oscillator state relative to the ground stae-
not|0), but is larger by (4rQ)**. That this extra rescaling simir) energy is

is necessary results from the fact that the fluctuationg, of

+ pr in our state are much smaller than the fluctuations of 17 1
the momentum in the ground state of the harmonic oscillator. > I'12—2 (3.27
The geon state fog is normalizable but the correspond- m=1 sinff (27“m/a)

ing state for¢ is not. We note that théq zero mode state can o .

in fact be calculated without dealing with distributions at all. O connect these results within our model with the full
To do so, one first writes the operatdgry o, Eq.(3.19, in  CFT, we recall that our model theory has central charge 2
terms of creation and annihilation operators for the zergvhile the full CFT of[12] has central charge(glle. Since
modes of, and '12/9- As usual, this gives a sum of two the field space of/ represents one of the fo@&" factors of

. . . o~ . the internal torus(and thus one fourth of the non-linear
operators, one involvings and one involvingy. Letting the sigma model we may expect that a central charge of

exponential of (i times the ¢ part act on a normalized 35 (. is associated with the part of the sigma model that is

vacuum state gives a one-parameter family' of normalize@im"ar to 4, while the remainingQ,Qs is associated with
states that converges to the above resuthe Hilbert space  ig|ys similar to. We therefore model the energy of the full

norm as(.)—jo. We consider this an impprtant checf or; Ourtheory with 2Q, Qs copies ofy and $Q,Qs copies of¢.
usezof dlstrlbutlpps above. Note that, swidg— Hr=3(P{ As noted above, the energy is the same for hptand i
— Pi) must annihilate the full sta{@TZ) o, it then follows o the BTZ boundary. Thus, the total energy there is given
that 44 (and thereforap,) is in the zero momentum state. by 6Q;Qs times the expressiof8.27) plus 3Q,Qsa/27? for
the zero modes. For olitP? geon, the zero mode @ is in

E. Energy expectation values its ground state but the zero mode wfhas energya/272.
Thus, the total energy is®, Q5 times expressioB.27) plus
3aQ;Qs/472. In the limit a>1 (large black hole and large
temperature of the thermal statéise zero mode correction is

We now examine the expectation value of the endeyy
pected energyin our quantum states. For the BTZ black

hole, we consider the Hamiltonian associated with a singl(?]egligible andusingS”_,m~2=72/6) the expected energy
m=1 -

boundary componerisay, the one on the rightNote that it 2 2 ) :
is the Arnowitt-Deser-Misner(ADM) Hamiltonian of a reduces t@ Q195/87T - In ournotation(and for the spinless

single asymptotic region that gives the classical mass of theaS€ we considgr T, and T_ of [15] are given byT.,
black hole[21]. Note also that the black hole mass is asso-=T_=a/4w2. We also note that all energies 5] were
ciated with the Killing fieldd, of the boundary metri€2.7).  computed with respect to a Killing vector field that corre-
Thus, we consider the notion of energy defined by this vectosponds toR™~*d;, whereR is defined in[15]. With this un-
field. The thermal behavior noted in Sec. Il B is thereforederstanding, our result in this limit agrees wijttb] (which
associated with a temperatuFe=a/4 2. did not take into account the discrete nature of the field
Because the total energy is a sum of the Hamiltonians fomodes.
the left- and right-moving modes separately, it is apparent Note that we have not set the three-dimensional Newton’s
from an examination of Eq$3.10 and(3.17) that the ex- constaniG; equal to 1 and, in fact, it is fixedl2,15 by the
pected energy of the oscillator modesisactlythe same for relation between the anti-de Sitter space and the central
the BTZ and geon states. The extra minus signs ifEq7?  charge of the CFT. Since we have set the length scafe
do not affect the expectation value and the Hamiltonian ofanti-de Sitter space to onagl is 4Q,Q;5 (times the string
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scalg. It follows that the energy of our CFT state also agrees=4 arccoslisint? (a/2)]. The singularities, and the exotic

with the classical black hole maad/3272G, for a>1. This  topology, are hidden behind the horizon.

observation was made [A5] (in which this limit was taken It follows from the above that the conformal boundary of

implicitly) in the context of BTZ holes. Note that takieg  the Swedish geon consists of just one copy of the conformal

>1 gives the limit in which the black hole is much larger boundary of CAd$. As explained in detail in Ref23], this

than the radius of curvature of the AdS space, and it is in thiboundary emerges from the boundaBy: of the original

regime that the energy of a thermal thtbquired to main- CAdS; as the quotient of a sdd CB¢ under the discrete

tain equilibrium would be small compared to the mass of thegroup 'S generated byA:= exp (—a&) and B:= exp (—ad).

black hole. D consists of a countable number of disconnected diamonds,

each of them the domain of dependence of an open interval
IV. SWEDISH GEON in thet=0 circle: the end points of the intervals are at the
i i i i fixed points ofl'> on this circle.

In this section we investigate a CFT on the boundary of * Reca| from Sec. II that it was possible to describe the
another geon-type, single-exterior, {2)-dimensional pp2 gegn houndary by considering just one of the diamonds
black h°|e2 spacetime: the spinless black hole with spatiay b \jp, | and taking its quotient under the identification
topology T*\{point at infinity: constructed in Refl22] and g hqroup that maps this diamond to itself. A similar descrip-
analyzed in detail in Ret._23]. We refer to this spacetime as s possible for the Swedish geon boundgZg]. Among
the Swed|sh.g_eof’1.We will ngt be able to obtain the CFT the countably many diamonds constitutiBg let D, be the
state as explicitly as for thBI’* geon, but we can reduce the .o that intersects t=0 in the interval (r/4)
problem of finding this state to a mathematical problem in-_ arccod C/(y25)]< 6<(/4)+ arccod C/(y2S)], where
volving certain automo_rphic functior_ls. We will a_llso be able ¢, _ sinh @/2) andC:= cosh &/2). It can be showr; that the
to contrast the correlations present in the Swedish geon staf)% y elements of'S that leaveD; invariant are powers of

H 2
to those present in thRP" geon state. 1:==ABA B! and that the boundary of the Swedish

. - . . G
As the Swedish geon is space and time orientable, Waeon is the quotient db, under theZ generated bya
consider as a model theory a single conformal scalar feld Now. G. can be writtlen a$,= exp (&), where o
1 1 1= I

that lives on the boundary of the spacetime.
Let us briefly recall the construction of the Swedish geon

~ 1 ~
and its conformal boundarj22,23. Let ¢;,, and &,; be on £1:=—=—=[Cdy+S(é-§)]. 4.3
CAdS; the Killing vectors respectively induced by the Kill- VS -1
ing vectors

&, is a conformal Killing vector orB, and its fixed points
Eomp: = — Thdsa— XLan, (4.13 at t=0 are precisely at the corners Gfl at 49:(77/4)
+ arcco§ C/(1/2S)]. The conformal Killing vectoré; is
thus analogous to the conformal Killing vectéron Dg in
Sec. Il. In particularD; admits a future timelike conformal
Killing vector orthogonal tc¢,, analogous ta; on Dy, and
this conformal Killing vector defines the positive and nega-

Eomp. = — Taye— X2071, (4.1b

of R%2 The conformal Killing vectors induced oB. are

respectively tive frequencies on the Swedish geon boundary.
oo, 4o o .1
& =— cost cosf d,+ sintsing 4. (4.2b u=t=[o=(m/4)], (4.43

Note thaté;, and ¢ are as in Sec. Il. The Swedish geon is vi=t+[0—(7/4)], (4.4b

now defined as the quotient of a certain subset of GAdS _
under the infinite discrete group generated My,  Which cover D; with [u|< afCCf)S{C/(\/ES)] and |v|

= exp (~aén) andByy:= exp (~a&y), where the parameter = arcco§ C/(y29)]. In analogy with Eqs(3.2), one finds

a satisfies sinhg/2)>1. The geon is space and time orient- that a complete othonormaI basis fgr the oscillator modes of
able, it admits a global foliation with spacelike hypersurfaces? ©n D1/Gy, positive frequency with respect to the geon
of topology T2\ {point at infinity}, and it has a single exte- Poundary time, is
rior region isometric to that of a spinless nonextremal BTZ

. . ; r —2min/
black hole  with  horizon  circumference vy U = 1 |[V+tan(u/2)|~ =™ 454
T [4anl V- tan(uf2) : '
4Or, an “approximately thermal” pure state such as té? geon U. = 1 [V+tan(v/2) ~2minly (45D
analogue of the scalar field vacuum on #i® geon constructed in n=: AanlV— tan(v/2) ! ’
[28]. ]
SReference$22-24 used the term “wormhole.” wheren takes values in the positive integers and
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2s-c The W-modes are thus the bounded analytic functions in the
Vi= \ [ ——. (4.6) upperz half-plane that are invariant under the group gener-
V2s+C ated byA andB.® Expressing the modgdJ,, . }, Eq. (4.59,
in terms ofz, we see that finding the Boboliubov transforma-
The subscript+(—) yields the right-moving(left-moving  tion reduces to finding the coefficierts in the expansions

modes. When the metric on the geon boundary is written as
in Eq. (2.7), the frequency with respect # is justn. The

2qnil
vacuum of the modegt.5) is therefore the usual vacuum on a, [(1+ky)[ z—k_ "
! um | w=3 Y]
the geon boundary for the oscillator modes of the field: we 170 \4x|n| o | —z+k,

denote this vacuum bj0),,. The usual vacuum for the zero
modes is again honnormalizable; from now on we restrict the

discussion to the oscillator modes. where the terms with positive come from thel,, ;. and the
We would now like to use Unruh’s analytic continuation tgrms with negativen come from the complex'conjugates.

method[35] to find the oscillator mode statéS—geones.  Note that, by construction, each term on the right-hand-side

that is induced on the boundary of the geon by the usuabf Eq. (4.9) is invariant under the fractional linear transfor-

oscillator mode vacuunf0).s. on B¢. This means that we mationABA 181, whose fixed points are at=k..

must form from thel-modes(4.5) and their complex conju- We shall not p;ursue the analysis further hér.e, but we

gates linear combinations, tM&modes, that satisfy two re- K lati onth | axis. Botind
quirements. First, when analytically continued to the lower'T1@K€ ONe Specu ative comment. On the real axis,

half of the complex planes in andv, theW-modes must be B map the intervak_<z<k, completely outside this inter-
bounded analytic functions: this guarantees that they areal. If k_<z<k, , bothA andB thus take each term in the
purely positive frequency linear combinations of the modesum (4.8) to a term whose magnitude differs by the factor
that define|0)os.. Note that thew-modes may have singu- e-27*n'v_ This suggestébut certainly does not proyehat if
larities at certain real values Ufandv, but apart from these the sum is to be invariant, the Coefﬁciem should be ex-
singularities, the analytic continuation defines them as funcponentially increasing in/y. If this is true, comparison with
tions on all ofB¢ and not just in the diamonB;CBc. the relative weights of the terms in Eq8.3) suggestgbut
Second, théV-modes must accommodate the fact that theagain certainly does not propéhat |S—geor . might ap-
geon boundary field operator dhis constructed by averag- pear in some respects as a thermal state in a temperature

ing ¢ over I'S, as in Eq.(3.12h. This means that the proportional toy. We leave the examination of these specu-
W-modes must be invariant ovdrS, while each of the |ations subject to future work.

U-modes(4.5), when analytically continued frofd; to D, is
individually invariant only under the subgroup BFf gener-
ated byG;.

It is easy to see thdtS takesu-independent functions into We have seen that, in our model, &2 geon corre-
u-independent functions and similarly-independent func- sponds to a pure state of finite energy on the CAd&und-
tions intov-independent functions. TH&-modes can there- ary. In particular, these states contain correlations between
fore be divided into right-movers, constructed frdid, . } the right- and left-moving sectors such that, when one of
and their complex conjugates, and left-movers, constructethese sectors is traced over, the other sector is left in a ther-
from{U, _} and their complex conjugates. For concretenessmal state. The expectation value of the Hamiltonian in an
consider the right-movers. To put the problem into a math4iP? geon state is exactly the same as the expectation value
ematically familiar form, we replace by the coordinatez  of the Hamiltonian(for either of the boundary components
:= cot((u/2)+37/8). In terms ofz, B corresponds to the in the corresponding BTZ black hole state, and this value
compactification of the real line, arid, is covered by the agrees with the the classical mass of the spacetimes in the
interval k_<z<k, , wherek.:=e"®%(S+./$—1). Ana- limit where the black hole is much larger than the length
lytic continuation ofu into the lower half-plane is equivalent scale of the AdS space.
to analytic continuation of into the upper half-plane. The In our model, the zero mode parts of our staB3Z )
generatorsA and B act onz as fractional linear transforma- and|geon) were not normalizable. This was due to the non-
tions whose matricegwhich, as elements of PSL(2) compact range of our fields and the resulting continuous
=SL(2R)/(*1), are defined only up to the overall sigmre ~ spectrum of the zero mode Hamiltonian. For the same rea-

son, the ground stat®) of our model theory is again non-

V. DISCUSSION

A==+

e~ al2 0

0 ea’z) : (4.79 L
Note thatA andB are boosts with magnituds the fixed points

of A are atz=0 andz=w, and the fixed points oB are atz

) =+ 1. This makes th&/-modes automorphic functiori89] on the

R cosh(a/2) sinh(a/2) noncompact Riemann surface that is isomorphic to the time-

B==| sinh(a/2) cosh(a/2) |- (4.7D  symmetric hypersurface in the gespacetimeFor a fundamental

domain for this Riemann surface, see R&f].
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normalizable. Since our final states were in fact inducedhe nontrivial topology of the black hole throat.
from the ground state, it is no surprise that our construction As excited states, th&P? geon states are certainly not
failed to generate normalizable states. Indeed, the surprise iisvariant under time translations. In fact, an inspection of Eq.
that the fieldy is in a normalizable state on the geon bound-(3.17) shows that they are not even stationary. This is in
ary. In all cases, we arrive at a generalized state that may hgcordance with the fact that the timelike Killing field in the
expressed in the usual way in terms of distributions. exterior region of the geon spacetime cannot be extended to
While we were not able to complete a corresponding globally defined Killing field on all of the spacetime.
analysis of the Swed.ish geon states, the facj[ that these black Now, in the theory considered here, all of the mot®es
h?Ies have only a single asymptotic regimith topology  cent the zero modg®f our scalar fields are periodic in time
S*xT) leads one to once again expect pure states. Still, calyith 5 common period. Thus, the oscillator part of our geon
culating one of these states would be of interest as it is fagiae s actually periodic in time. This is not a feature of the

from clear what sort of correlations it would contain. In par- classical geon spacetime and it it a feature that one

. - . 2 - e .
ticular, in contrast with afRlP~ geon, the identifications that would expect to survive in the full boundary CFT. Indeed,

lead to a Swedish geon act separately on the right- and left- : o . :
moving parts of the CET. Thus, there should be no Correlaf;llready in describing the original AdS space we see that this

tions between right- and left-moving modes and the correlaperio.diCity must b_e brokeby the_anomalous dimensions_ of
tions must take a rather different form than forlah? geon. certain operators in the CHR4]) if the boundary theory is

Nonetheless, the hypothesis that a Swedish geon is “not totp describe aperiodic processes. _ _
far” from a thermal state is supported by the behavior of the N order to see what should be expected when this peri-
(as yet formal Unruh modes of Sec. IV under analytic con- odicity is broken,. we note that the construction of the geon
tinuation. Another motivation for studying the Swedish geonboundary state is in direct parallel with the construction
is that, since the identifications that yield an orientablediven in[28] of vacua on the entire asymptotically flat>®
Swedish geon need not act on the internal factors, such geo@€on spacetime and on an analogous Rindler-type spacetime.
may more readily allow a treatment of fields with compactIn those cases, it was found that the correlations between
target spaces. field modes became unobservable by localized detectors far

One might also try to generalize our calculation to higher-from the preferred timé=0 and that the state behaved for
dimensional single-exterior locally AdS black holes con-many purposes as a thermak., mixed state. Clearly, we
structed from the two-exterior locally AdS black holes of expect parallel results here. It is true that, since any corre-
Refs. [40-43 via a suitable involution. However, such spondence between the boundary CFT and the bulk string
single-exterior black holes are of somewhat less interest datieory will be nonlocal, the relevance of local detectors on
their asymptotic topology is always different from the the boundary is unclear. However, one still expects that the
asymptotic topology of AdS space. Thus, the black hole ang@eon state will, in an appropriate sense, approximate the
the AdS space will in any case not correspond to quite théTZ state over a single boundary component at early and
same boundary field theory. late times.

Of course, the real interest is to extrapolate our results to Perhaps one of the most interesting aspects of our calcu-
the more complicated CFT which forms the basis of Mal-lation is the way in which the reflection of an interr@ is
dacena’s duality conjecturgl2]. The main difficulty with  represented in the boundary quantum state. Our results are
our model was that we were unable to capture the compagaimilar to those of(31], in that the identifications on the
nature of the moduli space of this theory. It is unclear to udnternal dimensions are reflected in certain symmetries of the
to what extent quotients of the type described here can actsFT quantum states. In our model, this involved the state of
ally be carried out in a nonlinear field theory. the scalar fieldy, which was associated with tig factor on

It is natural to assume, however, that the major qualitativevhich our spacetime identifications act. By including more
difference between our model and the full theory is that theof the full nonlinear sigma model and thus capturing more of
BTZ and geon states become normalizable, placing the fielde internal dimensions, we could arrive at similar states that

¢g and:bg in their ground states. Certain'y, we would once .COI‘reSpond to Other Ori.entabm)z'“ke geons with different )
again expect ail’? geon to be associated with a pure stateinternal spaces, including orbifolds. In contrast, the compli-
(of finite energy in the usual Hilbert space. It should contain cated topology of the Swedish geons is associated only with
correlations of the sort found here, between identical rightthe AdS factor of the spacetim@nd not with the internal
and left-moving modes, again defining a thermal state witffompact dimensions It would therefore be interesting to
though we have not discussed fermions in our model, if theysh geon boundary state.

were included with antiperiodic boundary conditions, the as- Finally, we note that ifs; were the physical field on the
sociated geon state would be interpreted as an excited stageon, the oscillator state would differ only by removing the
of the CFT vacuum representing AdS space. On the othdiactors of (—1)3%). Placing the zero mode in its ground
hand, fermions may also be included with periodic boundarstate, one constructs in this way a state that one is tempted to
conditions, in which case the ground state of the CFT isassociate with string theory on a non-orientaBIg? geon.
associatedl15] with the M =0 BTZ black hole and our geon Thus, one might speculate that it may be possible to describe
is a corresponding excited state. These two cases would costates of non-orientable string theory in terms of the same
respond to string theories twisted in different ways aroundCFT Hilbert space. Whether or not this happens in the full
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theory or is merely an artifact of our model must, of coursebion Lawrence, Juan Maldacena, and Max Niedermaier for

be left for future studies. discussions and correspondence. D.M. was supported in part
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