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Single-exterior black holes and the AdS-CFT conjecture
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In the context of the conjectured AdS-CFT correspondence of string theory, we consider a class of asymp-
totically anti–de Sitter black holes whose conformal boundary consists of asingle connected component,
identical to the conformal boundary of anti–de Sitter space. In a simplified model of the boundary theory, we
find that the boundary state to which the black hole corresponds is pure, but this state involves correlations that
produce thermal expectation values at the usual Hawking temperature for suitably restricted classes of opera-
tors. The energy of the state is finite and agrees in the semiclassical limit with the black hole mass. We discuss
the relationship between the black hole topology and the correlations in the boundary state, and speculate on
generalizations of the results beyond the simplified model theory.@S0556-2821~99!04404-5#

PACS number~s!: 11.25.Hf, 04.62.1v, 04.70.Dy
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I. INTRODUCTION

Black holes and related classical solutions are a topic
long-standing interest in string theory@1,2#. Their study has
shed light on old questions@3–5# in black hole physics~see
e.g. @6#! as well as dualities@7–9# and other stringy issue
@10,11#. Indeed, it was an investigation of black holes th
first lead to Maldacena’s conjecture@12# ~based on earlier
work, e.g. @13#! relating string theory in asymptoticall
anti–de Sitter space to a conformal field theory on
boundary at spatial infinity. For evidence supporting t
conjecture, see@14#.

It is therefore natural to investigate asymptotically anti-
Sitter ~AdS! black holes in light of Maldacena’s conjectur
Previous work@15–20# has analyzed the (211)-dimensional
Bañados-Teitelboim-Zanelli~BTZ! black holes@21# in this
way, using the fact that the classical black hole solutions
certain quotients of AdS3 to identify associated states in th
conformal field theory~CFT!. Recall, however, that the non
extremal BTZ black holes have two asymptotically anti–
Sitter regions. As a result, the conformal boundary of su
spacetimes is not the usualS13R of the universal cover of
AdS3 , but two copies of this cylinder. This means tha
strictly speaking, such black holes are not described by q
the same conformal field theory as AdS3 and the correspond
ing states do not lie in the same Hilbert space. We note
theM50 black hole also has only a single asymptotic reg
and so again cannot lie in the same Hilbert space as the
black holes.

In contrast, there are other asymptotically AdS bla
holes which have only a single asymptotic region. Some
amples were constructed in@22,23# as quotients of AdS3 .
For such black holes, we expect the state in the bound
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CFT to be approximately described by the result of
quotient-like operation on the original vacuumu0& of the
conformal field theory. We do not consider here any effe
which may result from additional winding modes in the qu
tient spacetime.

Now, the boundary state corresponding to the BTZ bla
hole has been characterized as thermal@15#. This is a result
of the boundary CFT having two disconnected compone
and the fact that such black holes correspond to states o
boundary CFT in which the two boundary components
entangled. Thus, the boundary states are not pure state
either boundary component separately. On the other han
discussed in@24#, there is no reason to expect single-exter
black holes to be mixed states in any corresponding sens
particular, as the boundary theory is now exactly the sam
that of either AdS3 or the M50 black hole, one expects t
be able to interpret single-exterior black holes as~pure state!
excitations of these ground states.

In this paper we investigate the boundary states for cer
single-exterior, asymptotically AdS3 black holes by using a
simplified model of the boundary conformal field theory. O
main focus is on a class of spacetimes referred to asRP2

geons, which are analogous to the asymptotically flatRP3

geon@25–28#. In section II we discuss the structure and co
struction of theRP2 geons as quotient spaces of AdS3 . In
Sec. III we first motivate and define our model CFT and th
verify that theRP2 geon corresponds to a pure state of o
model theory. We also verify that the expectation value
the CFT Hamiltonian in this state coincides with the mass
the black hole in the limit where the black hole horizo
circumference is much greater than the length scale ass
ated with the AdS space. This corresponds to the limit wh
nR or nL is much greater thanQ1Q5 in terms of the left and
right momentum, one-brane, and five-brane quantum n
bers of the associated@12# six-dimensional black string. Note
that taking such a limit is also important to remove quant
corrections to the entropy of such black strings.

After developing our technology in the context of theRP2

geons, we then briefly address the single-exterior black h

ter
of
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JORMA LOUKO AND DONALD MAROLF PHYSICAL REVIEW D 59 066002
of Refs. @22,23# in Sec. IV. We close with some commen
on the extrapolation of our results to the full CFT of Ma
dacena’s conjecture, the encoding of the geon topolog
the boundary state, and other issues in Sec. V.

Our attention will be focused on the special case of M
dacena’s conjecture for the spacetime AdS33S33T4. We
use units in which\5c51. The (211)-dimensional New-
ton’s constant is denoted byG3 .

II. AdS 3 THE SPINLESS NONEXTREMAL BTZ HOLE,
AND THE RP2 GEON

In this section we describe the quotient constructions
the spinless nonextremal BTZ hole and theRP2 geon from
three-dimensional anti–de Sitter space, and the extensio
this quotient construction to the conformal boundaries of
spacetimes. The material for the BTZ hole is famili
@15,21,24,29#, but a review is needed in order to establish t
relationship between the BTZ hole and the geon. We a
mention generalizations of the geon construction to spa
times with additional internal dimensions, in particular t
internal factorS33T4 that arises in string theory@15#.

A. AdS3 ,CAdS3 , and the conformal boundary

Recall that the three-dimensional anti–de Sitter sp
AdS3 can be defined as the surface

2 l 252~T1!22~T2!21~X1!21~X2!2 ~2.1!

in R2,2 with the global coordinates (T1,T2,X1,X2) and the
metric

ds252~dT1!22~dT2!21~dX1!21~dX2!2. ~2.2!

The positive parameterl is the inverse of the Gaussian cu
vature. AdS3 is a smooth three-dimensional spacetime w
signature (211). It is maximally symmetric, and~the con-
nected component of! the isometry group is~the connected
component of! O(2,2). From now on we setl 51.

It is useful to introduce on AdS3 the coordinates (t,r,u)
by @22#

T15
11r2

12r2
cost, ~2.3a!

T25
11r2

12r2
sint, ~2.3b!

X15
2r

12r2
cosu, ~2.3c!

X25
2r

12r2
sinu. ~2.3d!

With 0<r,1 and the identifications

~ t,r,u!;~ t,r,u12p!;~ t12p,r,u!, ~2.4!
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these coordinates can be understood as global on AdS3, apart
from the elementary coordinate singularity atr50. The met-
ric reads

ds25
4

~12r2!2
@2 1

4 ~11r2!2dt21dr21r2du2#. ~2.5!

We define the time orientation on AdS3 so that the Killing
vector] t points to the future, and a spatial orientation so th
for rÞ0, the pair (]r ,]u) is right-handed.

Dropping from Eq. ~2.5! the conformal factor 4(1
2r2)22 yields a spacetime that can be regularly extended
r51. The timelike hypersurfacer51 in this conformal
spacetime is by definition the conformal boundary of AdS3 :
we denote this conformal boundary byB. B is a timelike
two-torus, coordinatized by (t,u) with the identifications

~ t,u!;~ t,u12p!;~ t12p,u!, ~2.6!

and the metric onB is flat,

ds252dt21du2. ~2.7!

B inherits from AdS3 a time orientation in which the vecto
] t points to the future, and a spatial orientation in which]u
points to the right.

The above definition of a metric onB relies on a particu-
lar coordinate system. The isometries of AdS3 act on the
metric ~2.7! as an O(2,2) group of conformal isometries, a
the metric onB is thus invariantly defined only up to suc
transformations. We therefore understand the metric~2.7! as
a representative of its O(2,2) equivalence class.

The above constructions adapt in an obvious way to
universal covering space of AdS3 , which we denote by
CAdS3, and to its conformal boundary, which we denote
BC . When the last identifications in Eqs.~2.4! and~2.6! are
dropped, the coordinates (t,r,u) can be regarded as globa
on CAdS3, and the coordinates (t,u) can be regarded a
global onBC . BC has topologyS13R, and the metric~2.7!
on BC is globally hyperbolic.BC is time-oriented, with] t
pointing to the future, and space-oriented, with]u pointing to
the right. The isometries of CAdS3 clearly induce conformal
isometries ofBC , and the metric onBC is invariantly defined
only up to these conformal isometries.

B. Spinless nonextremal BTZ hole

We now describe the spinless nonextremal BTZ bla
hole and its conformal boundary.

We denote byj int andh int the Killing vectors on CAdS3
that are respectively induced by the Killing vectors

jemb:52T1]X12X1]T1, ~2.8a!

hemb:5T2]X21X2]T2, ~2.8b!

of R2,2. The conformal Killing vectors thatj int and h int in-
duce onBC are respectively

j:5 cost sinu ]u1 sint cosu ] t , ~2.9a!
2-2
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SINGLE-EXTERIOR BLACK HOLES AND THE AdS-CFT . . . PHYSICAL REVIEW D 59 066002
h:5 cost sinu ] t1 sint cosu ]u . ~2.9b!

j int andh int are clearly mutually orthogonal, andj andh are
similarly mutually orthogonal.

We denote byD int the largest connected region of CAdS3
that contains the hypersurfacet50 and in which j int is
spacelike. As (jemb,jemb)5(T1)22(X1)2, we see from Eqs
~2.3! that D int is isometric to the subsetT1.uX1u of the sur-
face~2.1! in R2,2.D int intersects every constantt hypersurface
for 2 1

2 p,t, 1
2 p, but the only one of these hypersurfac

that is entirely contained inD int is t50. The conformal ex-
tension ofD int to BC intersectsBC in the two disconnected
diamonds

DR :5$~ t,u!u0,u,p,utu,p/22uu2p/2u%, ~2.10a!

DL :5$~ t,u!u2p,u,0,utu,p/22uu1p/2u%.
~2.10b!

By construction,j is spacelike with respect to the metr
~2.7! in DR and DL . In the orientations onDR and DL in-
duced by that onBC ,j points to the right inDR and to the
left in DL .h is future timelike inDR , and past timelike in
DL .

Now, let a be a prescribed positive parameter, and
G int.Z be the group of isometries of CAdS3 generated by
exp (ajint).G int preservesD int , and its action onD int is free
and properly discontinuous. The quotient spaceD int /G int is
the spinless, nonextremal BTZ black hole. The horizo
generating Killing vector, induced byh int , is respectively
future and past timelike in the two exterior regions, a
spacelike in the black and white hole interiors. The horiz
circumference isa, and the mass isM5a2/(32p2G3),
whereG3 is the (211)-dimensional Newton’s constant. A
conformal diagram is shown in Fig. 1.

In each of the two exterior regions of the hole, the geo
etry is asymptotic to the asymptotic region of CAdS3. One
can therefore attach to each of the two exterior region
conformal boundary that is isometric toBC . What is impor-
tant for us is that these conformal boundaries can be ide
fied as the quotient spacesDR /GR and DL /GL , whereGR

FIG. 1. A conformal diagram of the BTZ hole. Each point in th

diagram represents a suppressedS1. The involutionJ̃int introduced
in Sec. II C consists of a left-right reflection about the dashed v
tical line, followed by a rotation byp on the suppressedS1.
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andGL are the restrictions to respectivelyDR andDL of the
conformal isometry group ofBC generated by exp (aj)
@15,24#. To see this explicitly, considerDR , and coverDR
by the coordinates (a,b) defined by

a52 ln tan@~u2t !/2#, ~2.11a!

b5 ln tan@~u1t !/2#. ~2.11b!

Both a andb take all real values, and the metric~2.7! on DR
reads

ds252
dadb

cosha coshb
. ~2.12!

]a and]b are future-pointing null vectors, and

j52]a1]b , ~2.13a!

h5]a1]b . ~2.13b!

The generator exp (aj) of GR acts in these coordinates a
(a,b)°(a2a,b1a), and the metric~2.12! is not invariant
underGR , but the conformally equivalent metric

ds252S 2p

a D 2

dadb ~2.14!

is. The quotient spaceDR /GR , with the metric induced by
~2.14!, is thus isometric toBC with the metric~2.7!. Note
that the vector onDR /GR induced byh is a future timelike
Killing vector in the metric induced from Eq.~2.14!, and the
isometry with Eq. ~2.7! takes this vector to the vecto
(2p/a)] t on BC . Similar observations apply toDL /GL , the
main difference being that the timelike Killing vector in
duced by h is now past-pointing, and mapped to
2(2p/a)] t under the isometry withBC .

C. RP2 geon

We now turn to theRP2 geon.
Consider on CAdS3 the isometryJint that is the composi-

tion of exp (ajint/2) and the map (t,r,u)°(t,r,2u). The
group generated byJint acts onD int freely and properly dis-
continuously. We define theRP2 geon as the quotient spac
of D int under this group.

As Jint
2 5 exp (ajint), Jint induces on the BTZ hole an in

volutive isometry, which we denote byJ̃int , and theRP2

geon is precisely the quotient space of the BTZ hole un
theZ2 isometry group generated byJ̃int . The action ofJ̃int on
the BTZ hole is easily understood in the conformal diagra
as shown in Fig. 1 and described in the caption. The con
mal diagram of theRP2 geon is shown in Fig. 2. It is clea
that theRP2 geon is a black hole spacetime with a sing
exterior region that is isometric to one exterior region of t
BTZ hole. The geon is time orientable and admits a glo
foliation with spacelike hypersurfaces of topolog
RP2\$point at infinity%, whence its name; it is, however, no
space orientable. It shares all the local isometries of the B
hole. However, asJint inverts the sign of the Killing vector

r-
2-3
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JORMA LOUKO AND DONALD MAROLF PHYSICAL REVIEW D 59 066002
h int on CAdS3,h int does not induce a globally defined Kil
ing vector on the geon, while it does induce a globally d
fined Killing vector on the BTZ hole. The quotient constru
tion from the BTZ hole to theRP2 geon is highly similar to
the quotient construction from the Kruskal manifold to t
RP3 geon in four spacetime dimensions@25–28,30#.

The mapJ̃int can clearly be extended to the conform
boundary of the BTZ hole, where it defines an involutionJ̃
that interchanges the two boundary components. The con
mal boundary of the geon can thus be understood as
quotient of the conformal boundary of the BTZ hole und
theZ2 generated byJ̃. The conformal boundary of the geo
is clearly isometric to a single component of the conform
boundary of the BTZ hole, and the quotient construction
duces on it a time orientation. Although the boundary of
geon is space orientable, the quotient construction does
induce a choice for the space orientation: the reason is thJ̃
interchanges the orientations of the two boundary com
nents of the BTZ hole.

D. Internal dimensions

In string theory, there is interest in spacetimes that
metric products of CAdS3 and a compact ‘‘internal’’ space
The quotient constructions of the BTZ hole and theRP2

geon can clearly be extended to such a spacetime an
boundary by taking the identification groupG to act trivially
on the internal dimensions. However, if the internal spa
admits suitable isometries, other extensions of interest e

Specifically, if the internal space admits an involuti
isometryJc , the compositionJ8 of Jc andJint is an isometry
on the full spacetime, and takingJ8 to generate the identifi
cation group yields a generalization of theRP2 geon. An
equivalent construction is to consider first the product spa
time of the BTZ hole and the internal space, and quotient
by theZ2 generated by the mapJ̃8 that is the composition o
J̃int and Jc . The resulting geon has again a single exter
region. Defining the conformal boundary in terms of a co

FIG. 2. A conformal diagram of theRP2 geon. The region not
on the dashed line is identical to that in the diagram of Fig. 1, e
point representing a suppressedS1 in the spacetime. On the dashe
line, each point in the diagram represents again anS1 in the space-
time, but with only half of the circumference of theS1’s in the
diagram of Fig. 1.
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formal rescaling of the (211)-dimensional part of the met
ric, one finds that the conformal boundary is connected,
its geometry is that of one component of the conform
boundary of the BTZ hole with the constant internal spa
Note that while the geometry of the geon depends onJc , the
geometry of its conformal boundary does not.

In particular, if the internal space is orientable andJc
reverses the orientation, the above construction yield
space-orientable geon.

The case that will concern us below is a ten-dimensio
black hole spacetime~considered in the context of strin
theory in Ref.@15#! in which the internal space is the metr
product ofS3 andT4, with a round metric on the former an
a flat metric on the latter. If theT4 factor further factorizes
into a metric product ofS1 andT3, the reflection1 of the S1

is a nonorientable involutive isometry of the internal spa
Other nonorientable involutive isometries can be found
composing this inversion with orientable involutive isom
tries acting on the other factors, such as the antipodal ma
theS3. As smooth orientable quotients of AdS33S33T4, all
of these spacetimes provide exact classical solutions of st
theory.

III. BOUNDARY CONFORMAL FIELD THEORY

We now turn to the question of what sort of quantum st
in the boundary CFT of Maldacena’s conjecture@12# is in-
duced by the quotient constructions of Sec. II. We specia
to the internal spaceS33T4 and, in order to arrive at an
orientable spacetime in which we might discuss orienta
string theory, we further assume the metric on theT4 to
factorize in such a way that a reflection of anS1 provides an
internal involutive isometryJc as discussed in Sec. II D. W
will not consider the full CFT suggested by the conjectu
but, instead, we consider a simplified linear field theo
which we expect to capture the central features of intere

A. Model

We consider a set of free scalar fields on the bound
cylinderBC.S13R of CAdS3, but with certain refinements
The point is that, as discussed in Sec. II D, the internal iso
etry Jc does not affect how the identifications of the fu
spacetime CAdS33S33T4 project to identifications ofBC .
Nevertheless,Jc is expected to affect the full conformal fiel
theory of Ref.@12# on BC . Thus, our model must contai
enough additional structure to faithfully represent the act
of Jc .

Recall that theRP2 geon is a quotient of the BTZ blac
hole by the involutionJ̃int . Let us take a moment to conside
first how thisZ2 quotient would be reflected in a bounda
CFT. For a linear field, it is natural to think of the field o
both the BTZ hole and geon boundaries as being thesame
operator-valued distribution on the boundary of the BT
hole, but merely smeared against different classes of
functions. The detailed correspondence is given by lifting

1In terms of an angular coordinatex on theS1, x°2x.

h
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SINGLE-EXTERIOR BLACK HOLES AND THE AdS-CFT . . . PHYSICAL REVIEW D 59 066002
test function from the geon boundary to the BTZ black h
boundary and dividing byA2 to ensure canonical normaliza
tion of the field. Since the geon fields are embedded in
way in the algebra of BTZ fields, any state on the BT
boundary directly induces a state on the geon boundary
in @28#, it is sufficient to think of a free scalar fieldfg(x) on
the geon boundary as being a symmetrization of the co
sponding fieldfBTZ(x) residing on the boundary of the BT
black hole:

fg~x!5
1

A2
(

yPr21~x!

fBTZ~y!, ~3.1!

where r is the covering map from the BTZ black ho
boundary to the geon boundary.

Now, in our construction of the orientable geon fro
~BTZ hole!3S33T4, the involutive spacetime isometry ac
on the BTZ hole dimensions byJ̃int and on the internal tor-
oidal dimensions by reflecting one of theS1’s of the T4.
Thus, we must include in our model some feature that c
responds to this internal topology. We recall that the top
ogy of the internal torus is captured@12,15# by the fact that
the boundary CFT should be a nonlinear sigma model wh
target space is a symmetric product of copies of theT4. A
givenS1 factor of the internal space is represented as a s
metric product ofS1 factors in the target space of the sigm
model. It is clear that, when acting on the boundary fi
theory, the involution that exchanges a pointx with its image
J̃x should act nontrivially on this part of the sigma mod
reflecting the appropriateS1 factors in the target space. Th
is in direct analogy with the constructions of@31#, where the
involutions acted only on the internalS3. We will model this
feature by replacing the part of the sigma model associa
with the appropriateS1 factors by a single scalar fieldc. To
tighten the analogy with the sigma model, one might like
think of the field space ofc as compactified to a circle of th
same size as the internalS1 ~say, length 2pR). However,
this would present certain problems for our quotient co
struction. Setting aside the reflection of thisS1 for the mo-
ment, consider the analogue of Eq.~3.1! for a field fBTZ
which is periodic in field space with this period. The resu
ing geon fieldfg would then have period 2pR/A2. On the
other hand, the quotient byJ̃int does not change the size o
the internalS1 factors. Note that the 1/A2 normalization fac-
tor in Eq.~3.1! is fixed by the commutation relations and th
behavior of the Green’s functions.

In order to have a faithful representation of the involuti
J̃int , we choose to ignore the compactness of theS1 and to
allow our field c to take values on a real line. In analog
with theS1 it replaces, this line will be reflected through th
origin by the action of the involution on our field theory. F
contrast, the rest of the sigma model will be replaced b
single free scalar fieldf whose field space is not affected b
the involution.

Our simple model allows exact calculations to be do
and captures many features of interest. A notable excep
however, is that the central charge of our model is 2, wh
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that of the CFT in Maldacena’s conjecture is 6Q1Q5 . This
we will correct by hand when considering the energies of
states in Sec. III E.

In finding the geon state in the CFT we will proceed
indicated above, first calculating the boundary state of
BTZ hole in Sec. III B, and then performing a final identifi
cation to yield the state for the geon in Sec. III C. Though
state on the black hole boundary has been considered in@15#,
setting up the BTZ calculation in a different way will mak
our geon calculation particularly straightforward. In additio
we will be able to see certain effects of the compact bou
ary that were neglected in@15#.

Sections III B and III C consider only the oscillator mod
of our scalar fields. The zero modes are more subtle and
treated separately in Sec. III D. Section III E discusses
energy of our states and compares the result with the mas
the corresponding black hole or geon.

B. BTZ black hole state

As discussed in Sec. II, the BTZ black hole is the quotie
of the regionD int,CAdS3 under the discrete isometry grou
generated by exp (ajint). Similarly, the boundary of the BTZ
hole may be thought of as the quotient of the regionDRøDL
in the boundaryBC of CAdS3 under the group generated b
exp (aj). We would now like to consider the vacuum sta
u0& that is defined onBC with respect to the timelike Killing
vector ] t , and construct the state thatu0& induces on the
black hole boundary. Since the quotient ofD int to the BTZ
black hole does not act on the internal factors, the const
tion is identical for bothf andc and the discussion below
applies to either field.

Recall that the null coordinatesa and b, Eqs. ~2.11a!,
define a conformal mapping ofDR onto Minkowski space
~and similarly forDL). In terms of this Minkowski space, th
map exp (aj) is just a spatial translation, and when the ove
all scale of the metric is chosen as in Eq.~2.14!, the proper
distance of the translation is 2p. Thus, these identification
enact the usual compactification of Minkowski space toS1

3R. The effect of the compactification on the scalar fie
theory is merely to remove all modes that are not appro
ately periodic and to reinterpret the periodic modes, wh
are not normalizable onDR ~or DL), as normalizable mode
on the cylinder.

The nontrivial part in this construction is that, as noted
Sec. II B, the timelike Killing vectors on the two bounda
components of the BTZ black hole do not lift to the timelik
Killing vector ] t on BC : the future timelike Killing vector on
the boundary component arising fromDR lifts to
@a/(2p)#h, and that on the boundary component arisi
from DL lifts to 2@a/(2p)#h. Thus, in order to interpret the
state induced byu0& on the BTZ hole boundary in terms o
the BTZ particle modes, we must first write the state induc
by u0& on DRøDL in terms of continuum-normalized par
ticle states that are positive frequency with respect toh on
DR and with respect to2h on DL . This calculation is quite
similar to expressing the Minkowski vacuum in terms
Rindler particle modes~see e.g.@32–34#!.

To begin, consider the mode functions
2-5
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uv,e
R :5

1

A4pv
@ tan„~u2et !/2…# i ev, ~3.2a!

uv,e
L :5

1

A4pv
@ tan„~2u1et !/2…#2 i ev,

~3.2b!

wherev.0, the indexe takes the values61, and the modes
with superscript R(L) have support in DR(DL). The
R-modes are eigenfunctions of the vector fieldh on DR with
eigenvaluev, and theL-modes are similarly eigenfunction
of the vector field2h on DL with eigenvaluev. The modes
are continuum orthonormal onDRøDL . The modes withe
51 are right-moving and those withe521 are left-moving,
in the orientations onDR and DL induced by that onBC .2

These properties for theR-modes become explicit by writing
the modes in terms of the null coordinates (a,b), Eqs.
~2.11a!, on DR as uv,1

R 5(4pv)21/2e2 iva and uv,2
R

5(4pv)21/2e2 ivb. Analogous expressions hold for th
L-modes onDL .

Let now u0&osc stand for the vacuum of the non-ze
modes induced onDRøDL by u0&, and letu0&u stand for the
vacuum of theu-modes~3.2!. We need to expressu0&osc in
terms of u0&u and the excitations associated with t
u-modes. To this end, we follow the method of Unruh@35#
and build from theu-modes and their complex conjugates
complete set of linear combinations, calledW-modes, that
are bounded analytic functions in the lower half complet
plane. By construction, theW-modes are purely positive fre
quency with respect to] t , and they thus share the vacuu
u0&osc. The relevant Bogoliubov transformation can then
simply read from expressions of theW-modes.

Analytically continuing theu-modes ~3.2! betweenDR
andDL in the lower half of the complext plane, we find that
a complete set ofW-modes is

Wv,e
~1! 5

1

A2 sinh~pv!
~epv/2uv,e

R 1e2pv/2uv,e
L !,

~3.3a!

Wv,e
~2! 5

1

A2 sinh~pv!
~epv/2uv,e

L 1e2pv/2uv,e
R !,

~3.3b!

wherev.0 ande561. The creation and annihilation op
eratorsav,e

†(i ) ,av,e
( i ) for the W-modes are thus related to th

creation and annihilation operatorsbv,e
†L,R ,bv,e

L,R for the
u-modes by

av,e
~1!

1

A2 sinh~pv!
~epv/2bv,e

R 2e2pv/2bv,e
†L !, ~3.4a!

2As mentioned after Eqs.~2.10a!, in this orientationj is right-
pointing in DR and left-pointing inDL .
06600
e

av,e
~2! 5

1

A2 sinh~pv!
~epv/2bv,e

L 2e2pv/2bv,e
†R !.

~3.4b!

To relate the vacua, one notices that Eqs.~3.4! can be written
as @36#

av,e
~1! 5 exp~2 iK !bv,e

R exp~ iK !, ~3.5a!

av,e
~2! 5 exp~2 iK !bv,e

L exp~ iK !,
~3.5b!

whereK is the ~formally! Hermitian operator

K5 i(
e
E

0

`

dv r v~bv,e
†R bv,e

†L 2bv,e
R bv,e

L ! ~3.6!

and r v is defined by

tanh~r v!5 exp~2pv!. ~3.7!

The vacuumu0&osc, annihilated by theav,e
( i ) , is therefore re-

lated to the vacuumu0&u , annihilated by thebv,e
L,R , through

u0&osc5 exp~2 iK !u0&u . ~3.8!

In terms of the normalizedq-particle statesuq&v,e
R (uq&v,e

L )
associated with the modesuv,e

R (uv,e
L ), this relation reads

u0&osc5 )
v.0,e

S 1

cosh~r v! (q50

`

exp~2pvq!uq&v,e
R uq&v,e

L D .

~3.9!

We can now pass from the field theory onDRøDL to the
field theory on the boundary of the BTZ hole. Let us refer
the non-zero modes of the field as oscillator modes. For
oscillator modes, the effect of the periodic identifications
simply to replace the continuous indexv by the discrete
valuesv5vnª2pn/a, where the indexn takes values in
the positive integers, and to change the normalization fa
in the u-modes~3.2! from (4pv)21/2 to (4pn)21/2. For the
oscillator modes, we then obtain fromu0&osc, Eq. ~3.9!, the
state

uBTZ&osc5 )
n.0,e

S 1

cosh~r vn
! (q50

`

exp~2pvnq!uq&n,e
R uq&n,e

L D .

~3.10!

uBTZ&osc clearly lies in the Fock spaceH5HR^HL , where
HR andHL are the Hilbert spaces of the oscillator modes
the scalar field on the respectiveS13R conformal boundary
components of the BTZ hole. Note thatuBTZ&osc, Eq.~3.10!,
is properly normalized and that it may be written
uBTZ&osc5 exp (2iKBTZ)u0&osc, where

KBTZ5 i (
n.0,e

r vn
~bn,e

†Rbn,e
†L 2bn,e

R bn,e
L !. ~3.11!

When both fieldsf andc are considered~together with
the zero mode states discussed below in Sec. III D!, uBTZ&osc
2-6
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gives the BTZ black hole quantum state in our model the
on (S13R)ø(S13R). We see from Eq.~3.10! that uBTZ&osc
contains pairwise correlations between modes residing on
two boundary components, and when the modes on one c
ponent are traced over, the resulting state on the other c
ponent is thermal. The expectation value of any opera
associated with only one boundary component is thus id
tical to the expectation value in a thermal state. This is
particular true of the stress-energy tensor.

Finally, to identify the temperature of the effective the
mal state on a single boundary component, we recall that
discretizedu-modes are eigenfunctions of6h with eigen-
value vn . The expression~3.10! therefore implies that the
thermal state has temperature 1/(2p) with respect to6h,
which translates into the temperaturea/4p2 with respect to
the Killing vector] t in the form~2.7! of the boundary metric.
This is the usual Hawking temperature of~the interior of! the
BTZ black hole with respect to a Killing time coordinate th
agrees with ourt on the boundary@21#. We shall discuss the
energy expectation values further in Sec. III E after hav
first addressed the zero modes.

C. Geon state

We now construct the state of the oscillator modes in
model on the boundary of theRP2 geon. The zero mode
will be discussed below in Sec. III D.

Let rL andrR be the restrictions of the covering mapr of
the BTZ hole boundary over the boundary of the geon to
left and right components of the BTZ hole boundary. T
geon boundary fieldscg andfg are then related to the BTZ
fields by

cg~x!:5
1

A2
@cBTZ„rR

21~x!…2cBTZ„rL
21~x!…#,

~3.12a!

fg~x!:5
1

A2
@fBTZ„rR

21~x!…1fBTZ„rL
21~x!…#.

~3.12b!

The argumentx of cg(x) andfg(x) takes values in a single
copy of S13R, but the field operators act in the Hilbe
spaceHBTZ of the BTZ boundary theory. As the BTZ blac
hole state is symmetric with respect to the sign ofc, the
geon state will not depend on which boundary componen
called left or right.

What we wish to do is to calculate the restriction of t
BTZ state to the algebra generated by the fields~3.12!. Note
that the restriction of a pure state to a subalgebra is
necessarily pure. Thus,a priori, the result could be either
pure state or a mixed state.

We proceed by introducing two more fields,c̃g and f̃g ,
through

c̃g~x!:5
1

A2
@cBTZ„rR

21~x!…1cBTZ„rL
21~x!…#,

~3.13a!
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f̃g~x!:5
1

A2
@fBTZ„rR

21~x!…2fBTZ„rL
21~x!…#.

~3.13b!

These fields again live onS13R and act in the Hilbert space
HBTZ . The definitions~3.12! and ~3.13! amount to writing
the two fields $cBTZ ,fBTZ% on the two-component BTZ
boundary as the four fields$cg ,fg ,c̃g ,f̃g% on a single copy
of S13R. The Hilbert spaceHBTZ then factors asHBTZ

5Hg^ H̃g , whereHg is the Hilbert space of the geon field
~3.12! while H̃g is the Hilbert space of the fields~3.13!. The
desired state in the geon boundary theory (Hg) then follows
by tracing over the Hilbert spaceH̃g . In fact, taking this
trace will be trivial as we will see that the stateuBTZ&osc is a
tensor product state, containing no correlations betweenHg

and H̃g . That this must be so follows from the observatio
that uBTZ &osc contains only two-particle correlations. Sinc
this state vector is invariant under the operation of int
changing the right and left boundary components, it can o
contain correlations between fields of the same parity un
this operation.

Note that the only difference between the fieldsf andc
is in the signs in Eqs.~3.12! and~3.13!, and that interchang-
ing the tilded geon boundary fields for the untilded ones
equivalent to interchangingf for c on the BTZ boundary.
Thus, the state ofcg is identical to the state off̃g ~on the
BTZ boundary! and the state ofc̃g is identical to that offg .
As a result, it will again be sufficient to treat only one of th
fields f and c explicitly. We choose the fieldf, and then
read off the state ofc from the results.

Consider thus the fieldf. A complete orthonormal basi
of positive frequency oscillator modes on the geon bound
is given by the functionsUn,e(x)ªun,e

R
„rR

21(x)…, which are
the pushforward to the geon of the modes~3.2! on the right
BTZ boundary. We denote the annihilation and creation
erators associated with the fieldfg in this basis bydf,n,e and
df,n,e

† , and those associated with the fieldf̃g by df̃,n,e and

df̃,n,e
† . As the properties of the involutionJ̃ ~whose quotient

of the BTZ boundary yields the geon boundary! imply that
the pullback of these modes to the left BTZ boundary diffe
from Eqs.~3.2! by ap rotation~and a definition of left- and
right-moving!, we haveun,e

L
„rL

21(x)…5(21)nUn,2e(x), and
we then find from Eqs.~3.12b! and ~3.13b! the relations

df,n,e5
1

A2
@bf,n,e

R 1~21!nbf,n,2e
L #, ~3.14a!

df̃,n,e5
1

A2
@bf,n,e

R 2~21!nbf,n,2e
L #. ~3.14b!

Using Eqs.~3.14!, the operatorKBTZ , Eq. ~3.11!, can be
written in the form
2-7
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KBTZ5 i (
n51

`

~21!n@~df,n,1
† df,n,2

† 2df,n,1df,n,2!

2~df̃,n,1
†

df̃,n,2
†

2df̃,n,1df̃,n,2!#. ~3.15!

The parts of Eq.~3.15! referring tofg andf̃g each have the
same form as the terms in Eq.~3.11!, apart from some
changes of signs. By the same methods as in Sec. III B,
can therefore writeuBTZ&osc in terms of the normalized
q-particle statesuq&f,n,e and uq&f̃,n,e associated with the op
eratorsdf,n,e

† anddf̃,n,e
† as

uBTZ&osc5 )
n.0,sP$f,f̃%

S 1

cosh~r vn
! (q50

`

~21!nq~21!q[s~s!]

3exp~2pvnq!uq&s,n,1uq&s,n,2D , ~3.16!

where we have defineds(f)ª0 ands(f̃)ª1. This means
in particular thatuBTZ&osc is a direct product of a state inHg

with a state inH̃g . The restriction of Eq.~3.16! to the field
fg therefore yields the geon oscillator state forf.

For the fieldc, the calculation is similar except in that th
tilded and untilded fields are interchanged. The geon osc
tor state forc can therefore be read off from the restrictio
of Eq. ~3.16! to f̃g . Thus, definings(c)ª1, the geon oscil-
lator state including both fields is

ugeon&osc5 )
n.0,sP$c,f%

S 1

cosh~r vn
! (q50

`

exp~2pvnq!

3~21!nq~21!q[s~s!] uq&s,n,1uq&s,n,2D ,

~3.17!

which is a normalized pure state inHg .
The correlations between the right-movers and the l

movers exhibited in Eq.~3.17! are similar to the correlation
found in scalar field theory on the~interior of the! RP3 geon
spacetime and on an analogous Rindler-type spacetim
Ref. @28#.3 We shall discuss this phenomenon further in S
V.

D. Zero modes

In our calculations of the zero mode states below,
replace the oscillator modes on the CAdS3, BTZ hole, and
geon boundaries by modes of finite frequencyV. We then
take the limit V→0 to give the state for the actual ze
modes of our massless fields. Now, the reader may be
cerned by the fact that modifying the zero modes on
boundary of the BTZ hole affects not only the zero mode

3In Ref. @28#, the counterparts of the minus signs appearing in
~3.17! were encoded in the phase choices for the mode functio
06600
e
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e
n

BC ; it will modify the oscillator modes as well. Howeve
the procedure below may be thought of as a condensed
sion of the more manifestly self-consistent procedure of g
ing our fields a finite massm ~which of course affects all of
the modes together! and then taking them→0 limit. In this
longer and more complicated calculation, one would co
pute the state of the massive field onDLøDR in terms of
modes that are positive frequency with respect toh on DR
and 2h on DL and then take them→0 limit to yield the
state of the massless field~zero mode and all! on DLøDR .
The massless field state can then be compactified as be
It will be clear that the calculation below gives identic
results.

Now, the fact that the zero mode energy eigenstates
free field onS13R are not normalizable will lead to som
subtleties in our argument. In particular, the ground stateu0&
from which the BTZ and geon states are induced is n
normalizable. Thus, the BTZ and geon states are unlikely
be normalizable, and a limit taken in the Hilbert space top
ogy will not be useful. We will proceed by considering th
states as tempered distributions on the zero mode config
tion space. Note that, in the topology of tempered distrib
tions, a suitably rescaled version of the harmonic oscilla
ground state does in fact converge to the free particle gro
stated(p), wherep is the free particle momentum. The re
scaling is necessary sinced(p) is not a normalizable state in
the Hilbert space. Our limit will require a rescaling of th
state as well, and, for this reason, we induce the BTZ a
geon states from the stateu0&V , which is 1/ApV times the
normalizable ground state for the frequencyV zero modes.
More will be said about the precise form of this rescaling
the end of the calculation. Below, we first take the limit
the sense of~smooth! functions on the configuration spac
We then note that this convergence is sufficiently uniform
guarantee that the same limit is given by the topology
tempered distributions.

Let us begin by replacing the zero mode on the bound
of CAdS3 by the V.0 oscillator mode (4pV)21/2e2 iVt,
and similarly on the two components of the BTZ bounda
and on the geon boundary. In this case, the BTZ zero mo
are associated with the modes

uV
R5

1

A4pV
e2 iV~a1b!/25

1

A4pV
F tan„~u2t !/2…

tan„~u1t !/2…
G iV/2

,

~3.18a!

uV
L 5

1

A4pV
F tan„~2u2t !/2…

tan„~2u1t !/2…
G iV/2

, ~3.18b!

in the domainsDL,R on the boundary of CAdS3. We refer to
the creation and annihilation operators for such modes
bV

†,L,R andbV
L,R . As before, we need only explicitly calculat

the BTZ state for one of our scalar fields.
The calculation proceeds much as in Sec. III B, exc

that the zero mode does not have separate left- and ri
moving parts. Thus, the operatorKBTZ,V which relates the
.
.

2-8
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zero mode part of the regulated BTZ zero mode st
uBTZ&V to that of the vacuumu0&V on the BTZ boundary
takes the form

KBTZ,V5 ir V~dV
†LdV

†R2dV
L dV

R ! ~3.19!

with the corresponding form

uBTZ &V5S 1

ApV
D 1

cosh~r V!
(
q50

`

exp~2pVq!uq&V
R uq&V

L

~3.20!

for the zero mode state in terms of normalizedq-particle
states. Here, the fact that our stateu0&V is (pV)21/2 times a
normalized state can be seen explicitly.

We must now take the limit as the frequencyV is sent to
zero. To proceed, recall that the statesuq&V

L,R may be thought
of as the normalized occupation number states for a
monic oscillator on the real line. We therefore introduce
usual position states$ux&L,R% @normalized toL,R^xux8&L,R

5d(x2x8)# and momentum states$up&L,R% @normalized to
L,R^pup8&L,R5d(p2p8)# for this particle, as well as the ten
sor products uxL ,xR&5uxL&L ^ uxR&R and upL ,pR&5upL&
^ upR&. In the limit V→0, the occupation number state
must go over to energy eigenstates of the free particle. M
over, since states withq52k have positive parity, they mus
be proportional to the positive parity statesup&1

L,R[(up&L,R

1u2p&L,R)/A2 for the appropriate momentump in the limit
of small V. Similarly, odd states withq52k11 must be-
come proportional toup&2

L,R[(up&L,R2u2p&L,R)/A2.
To fix this remaining constant of proportionality, consid

the even wave functions@37#

L,R^xu2k&V
L,R5S V

p D 1/4

@22k~2k!! #21/2H2k~xAV!e2x2V/2

~3.21!

of the oscillator states. HereHn is the Hermite polynomial of
order n. Of course, since the statesu2k&V

L,R are normalized,
the wave function at any pointx vanishes asV→0. In con-
trast, we havê xup&15(1/Ap) cos (px). Thus, if we fix a
compact setD,R, in the limit of small V with E5(2k

1 1
2 )V held fixed we have

L,R^xu2k&V
L,R

→S V

p D 1/4

@22k~2k!! #21/2H2k~0!Ap~ L,R^xup&1
L,R!

~3.22!

uniformly on D. Using the fact that, in theV→0 limit at
fixed x, the coefficient in Eq.~3.22! is independent ofk and
the creation operator goes over to2 i (2V)21/2 times the
momentum operator, one can show that the relative norm
izations of the wave functionsL,R^xu2k11&V

L,R and
L,R^xup&2

L,R are the same up to a factor of2 i :

L,R^xu2k11&V
L,R
06600
e

r-
e

e-

l-

→2 i S V

p D 1/4

@22k~2k!! #21/2H2k~0!Ap~ L,R^xup&2
L,R!.

~3.23!

Let us now evaluate the part of the wave functi
^xL ,xRuBTZ&V that comes from harmonic oscillator stat
with energies Eq in a small interval E2dE/2,Eq,E
1dE/2 in the limit of smallV. We include both even parity
(q52k) and odd parity (q52k11) states. The associate
momentum interval is dp5p21dE where p5A2E
5A4kV. For fixed xL,R!1/AdE the values of the wave
functions L,R^xL,Ru2k&V

L,R for the allowed values ofk are
nearly identical and are given by Eq.~3.22!. Now, the even
Hermite polynomials at zero are given@38# by H2k(0)
5(21)k(2k)!/k!. Using Stirling’s approximation n!
5(A2pn)nne2n, and the fact that there aredE/2V states of
each parity in the allowed energy range, the contribution
these states is

A2 exp~2pp2/2!~^xL ,xRup,2p&1^xL ,xRup,2p&!~dp!.
~3.24!

Thus, summing over all such intervalsdp and considering all
xL ,xRPR gives the zero frequency state of the zero mode
eitherf or c:

uBTZ&05A2E
2`

`

dp exp~2pp2/2!up&Lu2p&R .

~3.25!

Although we have taken this limit in the topology of poin
wise convergence on R2, the exponential cutoff
exp (2pVq) and exponential falloff of the oscillator wav
functions in the momentum representation can be used
show that Eq.~3.25! is in fact the limit of uBTZ&V in the
sense of tempered distributions.

Thus, expression~3.25! is the zero mode state on the BT
boundary. We see that the trace over either boundary c
ponent yields a thermal state at the same temperature a
the oscillators. As expected, neither Eq.~3.25! nor the state
traced over one component is normalizable. We see that
is due to the precise correlation of the momenta on the r
and left in Eq. ~3.25!. It turns out that something simila
must happen whenever the zero mode spectrum is con
ous. This is because the stateu0& from which the BTZ state is
induced is invariant under the action of the Killing fieldh,
Eq. ~2.13b!. On the BTZ boundary this corresponds to t
action of the differenceHR2HL between the right and lef
boundary Hamiltonians. Thus,HR2HL will annihilate the
BTZ state. But, when the zero mode spectrum is continuo
HR2HL has no normalizable eigenstates.

To arrive at the geon boundary state for, say,f, we need
only introduce the basisup,p̃&&5u(p1 p̃)/A2,(p2 p̃)/A2& in
terms of eigenvaluesp,p̃ of the momenta conjugate to th
zero modes offg andf̃g . The BTZ state~3.25! for f may
be written
2-9
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uBTZ&f,05A2E dpdp̃ d~p! exp~2p p̃2/4!up,p̃&&.

~3.26!

As in Sec. III C, there are no correlations betweenf̃g and
fg . Thus, we may read off from Eq.~3.26! the geon bound-
ary states for bothc andf. The ~normalized! geon state for
c is given simply by the factor 221/4exp (2pp̃2/4) corre-
sponding tof̃g in Eq. ~3.26!, while the geon state forf is
given by the other factor 23/4d(p). Note that the zero mode
of f is in its ground state. One might expect this result to
maintained if the field space off could be compactified, in
which case the ground state would of course be norma
able.

At this point, a comment is in order on the form of th
factor (pV)21/2 by which we needed to rescale the norm
ized ground state. The reader will note that the distribut
d(p) is in fact the limit ~as a distribution over the configu
ration space! of (4/Vp)1/4 times the normalized Harmoni
oscillator ground state. Thus, the limit ofu0&V as V→0 is
not u0&, but is larger by (4pV)1/4. That this extra rescaling
is necessary results from the fact that the fluctuations ofpL
1pR in our state are much smaller than the fluctuations
the momentum in the ground state of the harmonic oscilla

The geon state forc is normalizable but the correspond
ing state forf is not. We note that thec zero mode state ca
in fact be calculated without dealing with distributions at a
To do so, one first writes the operatorKBTZ,V, Eq. ~3.19!, in
terms of creation and annihilation operators for the z
modes ofcg and c̃g . As usual, this gives a sum of tw
operators, one involvingc and one involvingc̃. Letting the
exponential of (2 i times! the c part act on a normalized
vacuum state gives a one-parameter family of normali
states that converges to the above resultin the Hilbert space
norm asV→0. We consider this an important check on o
use of distributions above. Note that, sinceHL2HR5 1

2 (PL
2

2PR
2) must annihilate the full stateuBTZ&c,0 , it then follows

that c̃g ~and thereforefg) is in the zero momentum state.

E. Energy expectation values

We now examine the expectation value of the energy~ex-
pected energy! in our quantum states. For the BTZ blac
hole, we consider the Hamiltonian associated with a sin
boundary component~say, the one on the right!. Note that it
is the Arnowitt-Deser-Misner~ADM ! Hamiltonian of a
single asymptotic region that gives the classical mass of
black hole@21#. Note also that the black hole mass is as
ciated with the Killing field] t of the boundary metric~2.7!.
Thus, we consider the notion of energy defined by this vec
field. The thermal behavior noted in Sec. III B is therefo
associated with a temperatureT5a/4p2.

Because the total energy is a sum of the Hamiltonians
the left- and right-moving modes separately, it is appar
from an examination of Eqs.~3.10! and ~3.17! that the ex-
pected energy of the oscillator modes isexactlythe same for
the BTZ and geon states. The extra minus signs in Eq.~3.17!
do not affect the expectation value and the Hamiltonian
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say, the right-moving modes on our boundary compon
does not care whether a right-moving state there is correl
with a mode on another boundary component or with a le
moving mode on the same boundary component. In b
cases, the result is just the expected energy in a thermal
of temperaturea/4p2. The same is also true of the stres
energy tensor.

For a zero mode on a component of the BTZ bounda
one sees from the regulated expression~3.20! that the state
again acts like a thermal state at the same temperature. W
such a state is not normalizable in theV→0 limit, the ex-
pectation value of the energy associated with] t is finite and
equal toa/4p2. On the geon boundary, the expected ene
of the c zero mode isa/2p2 while that of thef zero mode
vanishes.

For the oscillator modes of a free scalar field on a cyl
der, the energy expectation value in a thermal state is w
known @33#. The circumference of our cylinder~2.7! is 2p,
and the temperature isa/4p2: with these parameters, on
finds from the general formulas given in Ref.@33# that the
energy of our oscillator state relative to the ground state~Ca-
simir! energy is

1

2 (
m51

`
1

sinh2 ~2p2m/a!
. ~3.27!

To connect these results within our model with the f
CFT, we recall that our model theory has central charg
while the full CFT of@12# has central charge 6Q1Q2 . Since
the field space ofc represents one of the fourS1 factors of
the internal torus~and thus one fourth of the non-linea
sigma model!, we may expect that a central charge
3
2 Q1Q5 is associated with the part of the sigma model tha
similar to c, while the remaining9

2 Q1Q5 is associated with
fields similar tof. We therefore model the energy of the fu
theory with 3

2 Q1Q5 copies ofc and 9
2 Q1Q5 copies off.

As noted above, the energy is the same for bothf andc
on the BTZ boundary. Thus, the total energy there is giv
by 6Q1Q5 times the expression~3.27! plus 3Q1Q5a/2p2 for
the zero modes. For ourRP2 geon, the zero mode off is in
its ground state but the zero mode ofc has energya/2p2.
Thus, the total energy is 6Q1Q5 times expression~3.27! plus
3aQ1Q5/4p2. In the limit a@1 ~large black hole and large
temperature of the thermal states! the zero mode correction i
negligible and~using(m51

` m225p2/6) the expected energ
reduces toa2Q1Q5/8p2. In our notation~and for the spinless
case we consider!, T̃1 and T̃2 of @15# are given byT̃1

5T̃25a/4p2. We also note that all energies in@15# were
computed with respect to a Killing vector field that corr
sponds toR21] t , whereR is defined in@15#. With this un-
derstanding, our result in this limit agrees with@15# ~which
did not take into account the discrete nature of the fi
modes!.

Note that we have not set the three-dimensional Newto
constantG3 equal to 1 and, in fact, it is fixed@12,15# by the
relation between the anti-de Sitter space and the cen
charge of the CFT. Since we have set the length scalel of
anti-de Sitter space to one,G3

21 is 4Q1Q5 ~times the string
2-10
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SINGLE-EXTERIOR BLACK HOLES AND THE AdS-CFT . . . PHYSICAL REVIEW D 59 066002
scale!. It follows that the energy of our CFT state also agre
with the classical black hole massa2/32p2G3 for a@1. This
observation was made in@15# ~in which this limit was taken
implicitly ! in the context of BTZ holes. Note that takinga
@1 gives the limit in which the black hole is much larg
than the radius of curvature of the AdS space, and it is in
regime that the energy of a thermal bath4 required to main-
tain equilibrium would be small compared to the mass of
black hole.

IV. SWEDISH GEON

In this section we investigate a CFT on the boundary
another geon-type, single-exterior, (211)-dimensional
black hole spacetime: the spinless black hole with spa
topologyT2\$point at infinity% constructed in Ref.@22# and
analyzed in detail in Ref.@23#. We refer to this spacetime a
the Swedish geon.5 We will not be able to obtain the CFT
state as explicitly as for theRP2 geon, but we can reduce th
problem of finding this state to a mathematical problem
volving certain automorphic functions. We will also be ab
to contrast the correlations present in the Swedish geon
to those present in theRP2 geon state.

As the Swedish geon is space and time orientable,
consider as a model theory a single conformal scalar fielf
that lives on the boundary of the spacetime.

Let us briefly recall the construction of the Swedish ge
and its conformal boundary@22,23#. Let j int and j̃ int be on
CAdS3 the Killing vectors respectively induced by the Kil
ing vectors

jemb:52T1]X12X1]T1, ~4.1a!

j̃emb:52T1]X22X2]T1, ~4.1b!

of R2,2. The conformal Killing vectors induced onBC are
respectively

j:5 cost sinu ]u1 sint cosu ] t , ~4.2a!

j̃:52 cost cosu ]u1 sint sinu ] t . ~4.2b!

Note thatj int and j are as in Sec. II. The Swedish geon
now defined as the quotient of a certain subset of CA3
under the infinite discrete group generated byAint

ª exp (2ajint) andBintª exp (2aj̃int), where the paramete
a satisfies sinh (a/2).1. The geon is space and time orien
able, it admits a global foliation with spacelike hypersurfac
of topologyT2\$point at infinity%, and it has a single exte
rior region isometric to that of a spinless nonextremal B
black hole with horizon circumference g

4Or, an ‘‘approximately thermal’’ pure state such as theRP2 geon
analogue of the scalar field vacuum on theRP3 geon constructed in
@28#.

5References@22–24# used the term ‘‘wormhole.’’
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ª4 arccosh@sinh2 (a/2)#. The singularities, and the exoti
topology, are hidden behind the horizon.

It follows from the above that the conformal boundary
the Swedish geon consists of just one copy of the confor
boundary of CAdS3. As explained in detail in Ref.@23#, this
boundary emerges from the boundaryBC of the original
CAdS3 as the quotient of a setD,BC under the discrete
group GS generated byAª exp (2aj) and Bª exp (2aj̃).
D consists of a countable number of disconnected diamo
each of them the domain of dependence of an open inte
in the t50 circle: the end points of the intervals are at t
fixed points ofGS on this circle.

Recall from Sec. II that it was possible to describe t
RP2 geon boundary by considering just one of the diamon
of DRøDL , and taking its quotient under the identificatio
subgroup that maps this diamond to itself. A similar descr
tion is possible for the Swedish geon boundary@23#. Among
the countably many diamonds constitutingD, let D1 be the
one that intersects t50 in the interval (p/4)
2 arccos@C/(A2S)#,u,(p/4)1 arccos@C/(A2S)#, where
Sª sinh (a/2) andCª cosh (a/2). It can be shown that the
only elements ofGS that leaveD1 invariant are powers of
G1ªABA21B21, and that the boundary of the Swedis
geon is the quotient ofD1 under theZ generated byG1 .

Now, G1 can be written asG15 exp (gj1), where

j1ª
1

AS221
@C]f1S~ j̃2j!#. ~4.3!

j1 is a conformal Killing vector onBC , and its fixed points
at t50 are precisely at the corners ofD1 , at u5(p/4)
6 arccos@C/(A2S)#. The conformal Killing vectorj1 is
thus analogous to the conformal Killing vectorj on DR in
Sec. II. In particular,D1 admits a future timelike conforma
Killing vector orthogonal toj1 , analogous toh on DR , and
this conformal Killing vector defines the positive and neg
tive frequencies on the Swedish geon boundary.

Consider our conformal scalar fieldf on D1 /G1 . We
introduce onD1 the null coordinates (u,v):

u:5t2@u2~p/4!#, ~4.4a!

v:5t1@u2~p/4!#, ~4.4b!

which cover D1 with uuu, arccos@C/(A2S)# and uvu
, arccos@C/(A2S)#. In analogy with Eqs.~3.2!, one finds
that a complete orthonormal basis for the oscillator mode
f on D1 /G1 , positive frequency with respect to the geo
boundary time, is

Un,1 :5
1

A4pn
FV1 tan~u/2!

V2 tan~u/2!G
22p in/g

, ~4.5a!

Un,2 :5
1

A4pn
FV1 tan~v/2!

V2 tan~v/2!G
22p in/g

, ~4.5b!

wheren takes values in the positive integers and
2-11
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VªAA2S2C

A2S1C
. ~4.6!

The subscript1(2) yields the right-moving~left-moving!
modes. When the metric on the geon boundary is written
in Eq. ~2.7!, the frequency with respect to] t is just n. The
vacuum of the modes~4.5! is therefore the usual vacuum o
the geon boundary for the oscillator modes of the field:
denote this vacuum byu0&U . The usual vacuum for the zer
modes is again nonnormalizable; from now on we restrict
discussion to the oscillator modes.

We would now like to use Unruh’s analytic continuatio
method @35# to find the oscillator mode stateuS2geon&osc
that is induced on the boundary of the geon by the us
oscillator mode vacuumu0&osc on BC . This means that we
must form from theU-modes~4.5! and their complex conju-
gates linear combinations, theW-modes, that satisfy two re
quirements. First, when analytically continued to the low
half of the complex planes inu andv, theW-modes must be
bounded analytic functions: this guarantees that they
purely positive frequency linear combinations of the mod
that defineu0&osc. Note that theW-modes may have singu
larities at certain real values ofu andv, but apart from these
singularities, the analytic continuation defines them as fu
tions on all ofBC and not just in the diamondD1,BC .

Second, theW-modes must accommodate the fact that
geon boundary field operator onD is constructed by averag
ing f over GS, as in Eq. ~3.12b!. This means that the
W-modes must be invariant overGS, while each of the
U-modes~4.5!, when analytically continued fromD1 to D, is
individually invariant only under the subgroup ofGS gener-
ated byG1 .

It is easy to see thatGS takesu-independent functions into
u-independent functions and similarlyv-independent func-
tions intov-independent functions. TheW-modes can there
fore be divided into right-movers, constructed from$Un,1%
and their complex conjugates, and left-movers, construc
from $Un,2% and their complex conjugates. For concretene
consider the right-movers. To put the problem into a ma
ematically familiar form, we replaceu by the coordinatez
ª cot„(u/2)13p/8…. In terms ofz, BC corresponds to the
compactification of the real line, andD1 is covered by the
interval k2,z,k1 , where k6ªe2a/2(S6AS221). Ana-
lytic continuation ofu into the lower half-plane is equivalen
to analytic continuation ofz into the upper half-plane. The
generatorsA andB act onz as fractional linear transforma
tions whose matrices@which, as elements of PSL(2,R…
.SL(2,R…/(61), are defined only up to the overall sign# are

Â56S e2a/2 0

0 ea/2D , ~4.7a!

B̂56S cosh~a/2! sinh~a/2!

sinh~a/2! cosh~a/2!D . ~4.7b!
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The W-modes are thus the bounded analytic functions in
upperz half-plane that are invariant under the group gen
ated byÂ andB̂.6 Expressing the modes$Un,1%, Eq. ~4.5a!,
in terms ofz, we see that finding the Boboliubov transform
tion reduces to finding the coefficientsan in the expansions

W5 (
nÞ0

an

A4punu
F ~11k1!

A2
S z2k2

2z1k1
D G 2pni/g

, ~4.8!

where the terms with positiven come from theUn,1 and the
terms with negativen come from the complex conjugate
Note that, by construction, each term on the right-hand-s
of Eq. ~4.8! is invariant under the fractional linear transfo
mation ÂB̂Â21B̂21, whose fixed points are atz5k6 .

We shall not pursue the analysis further here, but
make one speculative comment. On the real axis, bothÂ and
B̂ map the intervalk2,z,k1 completely outside this inter
val. If k2,z,k1 , both Â andB̂ thus take each term in th
sum ~4.8! to a term whose magnitude differs by the fact
e22p2n/g. This suggests~but certainly does not prove! that if
the sum is to be invariant, the coefficientsan should be ex-
ponentially increasing inn/g. If this is true, comparison with
the relative weights of the terms in Eqs.~3.3! suggests~but
again certainly does not prove! that uS2geon&osc might ap-
pear in some respects as a thermal state in a temper
proportional tog. We leave the examination of these spec
lations subject to future work.

V. DISCUSSION

We have seen that, in our model, anRP2 geon corre-
sponds to a pure state of finite energy on the CAdS3 bound-
ary. In particular, these states contain correlations betw
the right- and left-moving sectors such that, when one
these sectors is traced over, the other sector is left in a t
mal state. The expectation value of the Hamiltonian in
RP2 geon state is exactly the same as the expectation v
of the Hamiltonian~for either of the boundary component!
in the corresponding BTZ black hole state, and this va
agrees with the the classical mass of the spacetimes in
limit where the black hole is much larger than the leng
scale of the AdS space.

In our model, the zero mode parts of our statesuBTZ &
andugeon& were not normalizable. This was due to the no
compact range of our fields and the resulting continuo
spectrum of the zero mode Hamiltonian. For the same r
son, the ground stateu0& of our model theory is again non

6Note thatÂ andB̂ are boosts with magnitudea, the fixed points

of Â are atz50 and z5`, and the fixed points ofB̂ are atz
561. This makes theW-modes automorphic functions@39# on the
noncompact Riemann surface that is isomorphic to the tim
symmetric hypersurface in the geonspacetime. For a fundamental
domain for this Riemann surface, see Ref.@22#.
2-12
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normalizable. Since our final states were in fact induc
from the ground state, it is no surprise that our construct
failed to generate normalizable states. Indeed, the surpri
that the fieldc is in a normalizable state on the geon boun
ary. In all cases, we arrive at a generalized state that ma
expressed in the usual way in terms of distributions.

While we were not able to complete a correspond
analysis of the Swedish geon states, the fact that these b
holes have only a single asymptotic region~with topology
S13R) leads one to once again expect pure states. Still,
culating one of these states would be of interest as it is
from clear what sort of correlations it would contain. In pa
ticular, in contrast with anRP2 geon, the identifications tha
lead to a Swedish geon act separately on the right- and
moving parts of the CFT. Thus, there should be no corre
tions between right- and left-moving modes and the corre
tions must take a rather different form than for anRP2 geon.
Nonetheless, the hypothesis that a Swedish geon is ‘‘not
far’’ from a thermal state is supported by the behavior of
~as yet formal! Unruh modes of Sec. IV under analytic co
tinuation. Another motivation for studying the Swedish ge
is that, since the identifications that yield an orienta
Swedish geon need not act on the internal factors, such g
may more readily allow a treatment of fields with compa
target spaces.

One might also try to generalize our calculation to high
dimensional single-exterior locally AdS black holes co
structed from the two-exterior locally AdS black holes
Refs. @40–43# via a suitable involution. However, suc
single-exterior black holes are of somewhat less interes
their asymptotic topology is always different from th
asymptotic topology of AdS space. Thus, the black hole
the AdS space will in any case not correspond to quite
same boundary field theory.

Of course, the real interest is to extrapolate our result
the more complicated CFT which forms the basis of M
dacena’s duality conjecture@12#. The main difficulty with
our model was that we were unable to capture the com
nature of the moduli space of this theory. It is unclear to
to what extent quotients of the type described here can a
ally be carried out in a nonlinear field theory.

It is natural to assume, however, that the major qualita
difference between our model and the full theory is that
BTZ and geon states become normalizable, placing the fi
fg and c̃g in their ground states. Certainly, we would on
again expect anRP2 geon to be associated with a pure sta
~of finite energy! in the usual Hilbert space. It should conta
correlations of the sort found here, between identical rig
and left-moving modes, again defining a thermal state w
respect to either the right- or left-moving sector alone. A
though we have not discussed fermions in our model, if th
were included with antiperiodic boundary conditions, the
sociated geon state would be interpreted as an excited
of the CFT vacuum representing AdS space. On the o
hand, fermions may also be included with periodic bound
conditions, in which case the ground state of the CFT
associated@15# with theM50 BTZ black hole and our geon
is a corresponding excited state. These two cases would
respond to string theories twisted in different ways arou
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the nontrivial topology of the black hole throat.
As excited states, theRP2 geon states are certainly no

invariant under time translations. In fact, an inspection of E
~3.17! shows that they are not even stationary. This is
accordance with the fact that the timelike Killing field in th
exterior region of the geon spacetime cannot be extende
a globally defined Killing field on all of the spacetime.

Now, in the theory considered here, all of the modes~ex-
cept the zero modes! of our scalar fields are periodic in tim
with a common period. Thus, the oscillator part of our ge
state is actually periodic in time. This is not a feature of t
classical geon spacetime and it isnot a feature that one
would expect to survive in the full boundary CFT. Indee
already in describing the original AdS space we see that
periodicity must be broken~by the anomalous dimensions o
certain operators in the CFT@44#! if the boundary theory is
to describe aperiodic processes.

In order to see what should be expected when this p
odicity is broken, we note that the construction of the ge
boundary state is in direct parallel with the constructi
given in @28# of vacua on the entire asymptotically flatRP3

geon spacetime and on an analogous Rindler-type space
In those cases, it was found that the correlations betw
field modes became unobservable by localized detectors
from the preferred timet50 and that the state behaved f
many purposes as a thermal~i.e., mixed! state. Clearly, we
expect parallel results here. It is true that, since any co
spondence between the boundary CFT and the bulk st
theory will be nonlocal, the relevance of local detectors
the boundary is unclear. However, one still expects that
geon state will, in an appropriate sense, approximate
BTZ state over a single boundary component at early
late times.

Perhaps one of the most interesting aspects of our ca
lation is the way in which the reflection of an internalS1 is
represented in the boundary quantum state. Our results
similar to those of@31#, in that the identifications on the
internal dimensions are reflected in certain symmetries of
CFT quantum states. In our model, this involved the state
the scalar fieldc, which was associated with theS1 factor on
which our spacetime identifications act. By including mo
of the full nonlinear sigma model and thus capturing more
the internal dimensions, we could arrive at similar states t
correspond to other orientableRP2-like geons with different
internal spaces, including orbifolds. In contrast, the comp
cated topology of the Swedish geons is associated only w
the AdS factor of the spacetime~and not with the internal
compact dimensions!. It would therefore be interesting to
probe this issue further through a full calculation of a Swe
ish geon boundary state.

Finally, we note that ifc̃g were the physical field on the
geon, the oscillator state would differ only by removing t
factors of (21)s(c). Placing the zero mode in its groun
state, one constructs in this way a state that one is tempte
associate with string theory on a non-orientableRP2 geon.
Thus, one might speculate that it may be possible to desc
states of non-orientable string theory in terms of the sa
CFT Hilbert space. Whether or not this happens in the
2-13
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theory or is merely an artifact of our model must, of cour
be left for future studies.
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1849~1992!; M. Bañados, M. Henneaux, C. Teitelboim, and
Zanelli, ibid. 48, 1506~1993!.
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