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Conformal hyperbolic formulation of the Einstein equations
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We propose a reformulation of the Einstein evolution equations that cleanly separates the conformal degrees
of freedom and the nonconformal degrees of freedom with the latter satisfying a first order strongly hyperbolic
system. The conformal degrees of freedom are taken to be determined by the choice of slicing and the initial
data, and are regarded as given functions~along with the lapse and the shift! in the hyperbolic part of the
evolution. We find that there is a two parameter family of hyperbolic systems for the nonconformal degrees of
freedom for a given set of trace free variables. The two parameters are uniquely fixed if we require the system
to be ‘‘consistently trace-free,’’ i.e., the time derivatives of the trace free variables remain trace-free to the
principal part, even in the presence of constraint violations due to numerical truncation error. We show that by
forming linear combinations of the trace free variables a conformal hyperbolic system with only physical
characteristic speeds can also be constructed.@S0556-2821~99!05516-2#
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I. INTRODUCTION

With the advent of large amounts of observational d
from high-energy astronomy and gravitational wave
tronomy, general relativistic astrophysics—astrophysics
volving gravitational fields so strong and dynamical that
full Einstein field equations are required for its accura
description—is emerging as an exciting research area.
calls for an understanding of the Einstein theory in its no
linear and dynamical regime, in order to study the physics
general relativistic events in a realistic astrophysical envir
ment. This in turn calls for solving the full set of Einste
equations numerically. However, the complicated set of p
tial differential equations present major difficulties in all
these three tightly coupled areas: the understanding o
mathematical structure, the derivation of its physical con
quences, and its numerical solution. The difficulties have
tracted a lot of recent effort, including two ‘‘Grand Cha
lenge’’ @1,2# efforts on the numerical studies of black hol
and neutron stars, respectively.

One major obstacle in solving the Einstein equations
merically is that we lack a complete understanding of
mathematical structure of the Einstein equations. The d
culties in numerically integrating the Einstein equations in
stable fashion have motivated intense effort in rewriting
Einstein equations into a form that is explicitly well-pos
@3–18# ~for an excellent overview, see@19#!. The main idea
has been rewriting the six space-space components o
Einstein equations into a first order hyperbolic system. Th
space-space parts of the Einstein equations are dynam
evolution equations, while the time-time and space-ti
parts of the Einstein equations are~elliptic! constraint equa-
tions.

The central question we raise in this communication is
order to enable an accurate and stable numerical integra
of the full set of the Einstein equations, what part of t
system should be taken to form a hyperbolic system?

Our question is motivated by two observations. Fir
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there are many recent proposals on reformulating the
space-space parts of the Einstein equations into a first o
hyperbolic system@8–18#. Three of the hyperbolic formula
tions have been coded up for numerical treatment~to the best
of our knowledge!, namely, the Yorket al. formulation
@9,14,16# ~see, e.g.,@20,21#!, the Bona-Masso formulation
@15# ~see e.g.,@17#!, and Friedrich’s formulation@3,4,22–26#
~which is rather different from the first two formulations i
its use of a global conformal transformation of the fou
metric to compactify hyperboloidal slices!. However, in all
these cases, the numerical integration of the first order
perbolic system consisting of the six space-space com
nents of the Einstein equations so far have not lead t
substantial improvement over those using the traditio
Arnowitt-Deser-Misner ~ADM ! @27# evolution equations.
This is despite the original hope that the well-posedness
the hyperbolic formulations leads to an immediate numer
advantage.

The second observation is that there have been var
attempts in rewriting the traditional ADM form of the evo
lution equations by separating out the conformal degree
freedom, beginning with Nakamuraet al. @28# ~see refer-
ences cited therein!. Lately this has received much attentio
with @29# reporting that a variant of the approach leads
highly stable numerical evolutions. A detailed study of t
approach using gravitational wave systems carried out by
group @30# confirmed that the approach has advantages o
the standard ADM formulation. We find that the approa
yields results with accuracy comparable to that obtained
the standard ADM formulation with the K-driving techniqu
@31# for weak to medium waves, and has better stabi
properties especially in the case of strong fields that ne
high resolution with ADM@32# ~see also@33#!.

These two observations motivated us to study the po
bility of a formulation that separates out the conformal d
gree of freedom in the 6 evolution equations, while requiri
the remaining 5 equations governing the non-conformal
grees of freedom to form a first order hyperbolic system.
©1999 The American Physical Society17-1
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A recap of the various components of the Einstein eq
tions is in order for a clearer discussion of our approach
the standard ADM 311 formulation, the Einstein equation
are broken into~a! the Hamiltonian constraint equation~the
time-time part!

H5 (3)R1K22Ki j K
i j 216prADM50, ~1!

~b! the 3 momentum constraint equations~the time-space
part!

Hi5¹ jK
i j 2g i j ¹ jK28p j i50, ~2!

where rADM, j i ,Si j ,S5gi j Si j are the components of th
stress energy tensor projected onto the 3-space, and~c! the 6
evolution equations~the space-space part! given as 12 first
order equations

] t̂gi j 522aKi j , ~3!

] t̂Ki j 52¹ i¹ ja1aFRi j 1KKi j 22KimK j
m

28pS Si j 2
1

2
gi j SD24prADMgi j G , ~4!

where¹ i denotes a covariant derivative with respect to
3-metric gi j , ] t̂ stands for] t2Lb with Lb being the Lie
derivative with respect tob i , andRi j is the Ricci curvature
of the 3-metric. In the ADM formulation, Eqs.~3!,~4! are
used to evolve the 12 variables$Ki j ,gi j % forward in time for
given lapsea and shift vectorb i . The constraint equation
are automatically satisfied if$Ki j ,gi j % satisfy them on the
initial time slice. However, in numerical evolutions the co
straints will be violated due to truncation error. One ma
difficulty in numerical relativity is that the constraint viola
tions often drive the development of instabilities, at least
the case of numerical evolution using the standard AD
equations~3!,~4!.

In the hyperbolic reformulations of the evolution equ
tions @9–12,14–17#, one makes use of the constraint equ
tions ~1!,~2!, and introduces additional variables~e.g., di jk
5gi j ,k or its linear combinations! to cast Eqs.~3!,~4! into a
first order strongly hyperbolic system~often the symmetric
hyperbolic subclass!. ~More variables would have to be in
troduced for formulations involving higher derivative
@9,11#.! However, we note that hyperbolicity is often show
only under the assumption that some of the variables
volved in the evolution equations, in particular the lapsea
and the shiftb j , are considered as given functions of spa
and time. In actual numerical evolutions with no predet
mined choice of spacetime coordinates,a andb j have to be
given in terms of the variables$Ki j ,gi j ,di jk% ~e.g., a,b j

determined in a set of elliptic equations involving$Ki j , gi j ,
di jk%). In the Bona-Masso formulation@15#, the lapse can be
part of the hyperbolic system for some choice of slicin
~while the inclusion of the shift into the hyperbolic syste
severely restricts the class of applicable shifts!. In @9,11#, in
addition to the lapse and the shift, the trace of the extrin
curvature,K5gi j Ki j , is also regarded as a given functio
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(K is used to specify the slicing, e.g.,K50 for maximal
slicing!. The point we want to bring out here is that in all o
the existing hyperbolic reformulations of the Einstein evo
tion equations, part of the quantities$Ki j ,gi j ,di jk ,a,b j% are
considered to be given, while others are evolved using
perbolic equations.

In the following, we present a formulation in which th
nonconformal degrees of freedom are separated out for
perbolic evolution.

II. FORMULATION

For the evolution of the three-geometry, the conform
degree of freedom is represented byg ~the determinant of the
spatial 3-metricgi j ), its spatial derivativeg,i and its time
derivativeK @K521/(2ga)] t̂g#. For the non-conformal de
grees of freedom, we define

g̃i j 5gi j /g1/3, ~5!

Ãi j 5S Ki j 2
1

3
gi j K D Y g1/3, ~6!

D̃ i j
k5g̃i j

,k . ~7!

g̃i j has unit determinant, andÃi j is the rescaled trace-fre
part of Ki j . All indices of tilde quantities are raised an
lowered with the conformal 3-metricg̃i j . We note thatD̃ i j

k
is trace-free with respect to the indices (i , j ). We take

$g̃i j ,D̃ i j
k ,Ãi j %, or their covariant component counterparts,

represent the nonconformal degrees of freedom.
In the following we develop a first order hyperbolic sy

tem for the nonconformal degrees of freedom, under the s
plifying assumption that the 5 conformal degrees of freed
$g,g,i ,K% and the gauge choice functions$a,b i% can be re-
garded as given functions of space and time. Note that th
variables cannot be specified independently of each othe
concrete example is that of maximal slicing,K50, and van-
ishing shift,b i50, in which case bothg andg,i are part of
the initial data~time independent!, and are therefore truely
given functions in the numerical evolution. In other cas
with K given to specify the slicing, it involves a nontrivia
time integration to determineg ~from the definition ofK in
terms of the time derivative ofg).

We now discuss hyperbolicity of the evolution of the no
conformal variables,$g̃i j ,D̃ i j

k ,Ãi j %, by examining the prin-
cipal part of the evolution equations, which is the part th
decides about strong hyperbolicity of the system@34#. To
obtain the principal part we drop all terms that can be
pressed by~1! the variables$g̃i j ,D̃ i j

k ,Ãi j % themselves, and
~2! spacetime functions that are regarded as given,
$a,b i ,g,g,i ,K% and their space and time derivatives. W
have

] t̂ g̃i j '0, ~8!

] t̂ D̃
i j

k'2aÃi j
,k , ~9!
7-2
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] t̂ Ã
i j 'ag1/3S Ri j 2

1

3
gi j RD , ~10!

where' represents ‘‘equal up to principal part,’’ and whe
for the evolution equation ofD̃ i j

k we have used that spatia
derivatives] i and the time derivative] t̂ commute.

To evaluateRi j andR in Eq. ~10!, we use

Ri j 'g22/3R̃i j ~11!

'
1

2
g22/3~ g̃klD̃ i j

k,l2g̃i l D̃ jk
l ,k2g̃ j l D̃ ik

l ,k!, ~12!

where the relation

gklg
kl

,i52g,i /g'0, ~13!

and the spatial derivatives of it have been used. We obt

] t̂ Ã
i j '

1

2
ag21/3S g̃klD̃ i j

k,l2g̃i l D̃ jk
l ,k

2g̃ j l D̃ ik
l ,k1

2

3
g̃i j D̃kl

k,l D . ~14!

To make the nonconformal system strongly hyperbo
one can add a combination of the momentum constrain
Eq. ~9!. To principal part the momentum constraint~2! is
Hi'g21/3Ãi j

, j . We obtain

] t̂ D̃
i j

k'2aÃi j
,k22ag1/3~ g̃k

i H j1g̃k
j Hi ! ~15!

'2a~Ãi j
,k2g̃k

i Ãj l
,l2g̃k

j Ãil
,l !. ~16!

An energy norm can be constructed for the system

E5E g̃i j g̃i j 1Ãi j Ãi j 1
1

4
g21/3D̃ i j

kD̃ i j
k. ~17!

It is straightforward to demonstrate using Eqs.~8!, ~14!, and
~16! that ] tE is a total derivative up to terms that can b
expressed by the variables$g̃i j ,Ãi j ,D̃ i j

k% themselves. One
can also show directly that the characteristic metric of
system~8!, ~14!, and~16! has a complete set of eigenvecto
with real eigen values. The system is similar to butnot con-
tained in the one parameter family of the hyperbolic syste
constructed in@10#.

Next we go one step beyond hyperbolicity. We make
following observations.

~i! SinceÃi j and D̃ i j
k are trace-free, one can add a ter

e1ag21/3g̃i j H to Eq. ~14!, and a terme2ag̃i j Hk to Eq. ~16!
without affecting the hyperbolicity. We have therefore a tw
parameter family of hyperbolic evolution equations~without
making a variable change!.

~ii ! With these two terms added respectively to Eqs.~14!
and~16!, the trace of the principle parts of the RHS’s of th
equations are 3e1aD̃ks

k,s ~proportional to the principal par
of the Hamiltonian constraint!, anda(3e224)Ãk

l
,l ~propor-
06401
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tional to the principal part of the momentum constraint!, re-
spectively. On the other hand, the LHS of the equatio
] t̂ Ã

i j and ] t̂ D̃
i j

k are trace-free to the principal order. Th
means that truncation error in the numerical evolution wh
leads to a violation of the constraints will driveÃi j andD̃ i j

k
to evolve away from being trace-free, even up to the prin
pal order.

~iii ! We therefore propose to fix the freedom in the p
rameterse1 and e2 by requiring the system to be ‘‘consis
tently trace-free,’’ i.e.,e150 ande254/3, so that the equa
tions are trace-free to principal order consistently. Hence
~14! for Ãi j is left unchanged, but

] t̂ D̃
i j

k'2aÃi j
,k22ag1/3~ g̃k

i H j1g̃k
j Hi !1

4

3
ag̃i j Hk ~18!

'2aS Ãi j
,k2g̃k

i Ãj l
,l2g̃k

j Ãil
,l1

2

3
g̃i j g̃kmÃml

,l D .

~19!

The system@Eqs. ~8!,~14!,~19!# forms a strongly hyperbolic
system with the same energy norm~17!.

~iv! The remaining freedom in constructing conforma
hyperbolic systems that are ‘‘consistently trace-free’’
through forming linear combinations of the variables. The
are clearly infinite choices. Here we show for example
linear combination that leads to a system with only physi
characteristic speeds, a property advocated by Yorket al.,
see e.g.,@14#. Equation~14! can be written as

] t̂ Ã
i j '~ag21/3!g̃kl] l Ũ

i j
k'agkl] l Ũ

i j
k , ~20!

where

Ũ i j
k5

1

2 S D̃ i j
k2g̃k

i D̃ il
l2g̃k

j D̃ j l
l1

2

3
g̃i j g̃kmD̃ml

l D . ~21!

We can takeŨ i j
k to be our basic nonconformal variable

~note g̃i j Ũ
i j

k50). Taking the time derivative ofŨ i j
k and

commuting time and space derivatives leads to

] t̂ Ũ
i j

k'aS Ãi j
,k2g̃k

i Ãj l
,l2g̃k

j Ãil
,l1

2

3
g̃i j g̃kmÃml

,l D .

~22!

To make the system strongly hyperbolic, we follow the st
leading to Eq.~15! and add the combination of momentu
constraintsag1/3(g̃k

i H j1g̃k
j Hi)22ag̃i j Hk/3 to Eq. ~22! to

arrive at

] t̂ Ũ
i j

k'aÃi j
,k . ~23!

Equations~20! and~23! form a conformal hyperbolic system
for $Ũ i j

k ,Ãi j % with only physical characteristic speeds. Th
system can be symmetrized by contracting Eq.~23! with gkl.
7-3
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III. DISCUSSION AND CONCLUSION

We raise the question of what part of the variables
Einstein theory should be evolved in a hyperbolic fashion
numerical relativity. We propose a reformulation of the E
stein evolution equations that cleanly separates the con
mal degrees of freedom$g,g,i ,K% and the nonconformal de

grees of freedom $g̃i j ,D̃ i j
k ,Ãi j % ~or their linear

combinations!, with the latter satisfying a first order strong
hyperbolic system. The conformal degrees of freedom
taken to be determined by the choice of slicings and
initial data, and are regarded as given functions in the hyp
bolic part of the evolution equations, along with the lap
and the shift.

We find a two parameter family of nonconformal hype
bolic system for $g̃i j ,D̃ i j

k ,Ãi j %. The two parameters ar
uniquely fixed if we require the system to be ‘‘consisten
trace-free,’’ i.e., the time derivative of the trace-free va
ables$g̃i j ,D̃ i j

k ,Ãi j % remains trace-free to principal part, eve
in the presence of constraint violations caused by numer
truncation error. We also show that certain linear combi
tions of theD̃ i j

k lead to a conformal hyperbolic system wi
physical characteristic speed.
ee

.g

Ib

rk

rk

rk
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This formulation merges two recent trends in re-writin
the Einstein evolution equations for numerical relativity: fir
order hyperbolicity and the separating out of the conform
degrees of freedom. We believe it will lead to many intere
ing investigations: Given the coordinate conditions, e
maximal slicing and an appropriate shift condition, can t
combined elliptic hyperbolic system be shown to be we
posed analytically@9,35#? When posted as initial boundar
value problem, what are the suitable boundary conditions
stability in numerical evolutions? How will the constrain
propagate under this system of conformal-hyperbolic eq
tions? One particularly interesting issue that will be repor
on in a followup paper is the stability of this formulation i
numerical evolution, and how the stability is related to t
slicing conditions~K! one chooses.
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