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We propose a reformulation of the Einstein evolution equations that cleanly separates the conformal degrees
of freedom and the nonconformal degrees of freedom with the latter satisfying a first order strongly hyperbolic
system. The conformal degrees of freedom are taken to be determined by the choice of slicing and the initial
data, and are regarded as given functiG@eng with the lapse and the shift the hyperbolic part of the
evolution. We find that there is a two parameter family of hyperbolic systems for the nonconformal degrees of
freedom for a given set of trace free variables. The two parameters are uniquely fixed if we require the system
to be “consistently trace-free,” i.e., the time derivatives of the trace free variables remain trace-free to the
principal part, even in the presence of constraint violations due to numerical truncation error. We show that by
forming linear combinations of the trace free variables a conformal hyperbolic system with only physical
characteristic speeds can also be constru¢®@b56-282(199)05516-2

PACS numbd(s): 04.25.Dm

[. INTRODUCTION there are many recent proposals on reformulating the six
space-space parts of the Einstein equations into a first order

With the advent of large amounts of observational datehyperbolic systeni8—18]. Three of the hyperbolic formula-
from high-energy astronomy and gravitational wave astions have been coded up for numerical treatntenthe best
tronomy, general relativistic astrophysics—astrophysics inof our knowledgg namely, the Yorket al. formulation
volving gravitational fields so strong and dynamical that the[9,14,19 (see, e.g.[20,21]), the Bona-Masso formulation
full Einstein field equations are required for its accurate[15] (see e.g.[17]), and Friedrich’s formulatiof3,4,22—26
description—is emerging as an exciting research area. Thigvhich is rather different from the first two formulations in
calls for an understanding of the Einstein theory in its non-ts use of a global conformal transformation of the four-
linear and dynamical regime, in order to study the physics ofmetric to compactify hyperboloidal slicesHowever, in all
general relativistic events in a realistic astrophysical environthese cases, the numerical integration of the first order hy-
ment. This in turn calls for solving the full set of Einstein perbolic system consisting of the six space-space compo-
equations numerically. However, the complicated set of parnents of the Einstein equations so far have not lead to a
tial differential equations present major difficulties in all of substantial improvement over those using the traditional
these three tightly coupled areas: the understanding of it&rnowitt-Deser-Misner (ADM) [27] evolution equations.
mathematical structure, the derivation of its physical conseThis is despite the original hope that the well-posedness of
guences, and its numerical solution. The difficulties have atthe hyperbolic formulations leads to an immediate numerical
tracted a lot of recent effort, including two “Grand Chal- advantage.
lenge” [1,2] efforts on the numerical studies of black holes The second observation is that there have been various
and neutron stars, respectively. attempts in rewriting the traditional ADM form of the evo-

One major obstacle in solving the Einstein equations nulution equations by separating out the conformal degree of
merically is that we lack a complete understanding of thefreedom, beginning with Nakamuret al. [28] (see refer-
mathematical structure of the Einstein equations. The diffiences cited thereinLately this has received much attention
culties in numerically integrating the Einstein equations in awith [29] reporting that a variant of the approach leads to
stable fashion have motivated intense effort in rewriting thehighly stable numerical evolutions. A detailed study of the
Einstein equations into a form that is explicitly well-posed approach using gravitational wave systems carried out by our
[3—-18 (for an excellent overview, sgd9]). The main idea group[30] confirmed that the approach has advantages over
has been rewriting the six space-space components of ththe standard ADM formulation. We find that the approach
Einstein equations into a first order hyperbolic system. Thesgields results with accuracy comparable to that obtained by
space-space parts of the Einstein equations are dynamictile standard ADM formulation with the K-driving technique
evolution equations, while the time-time and space-timg31] for weak to medium waves, and has better stability
parts of the Einstein equations dedliptic) constraint equa- properties especially in the case of strong fields that needs
tions. high resolution with ADM[32] (see alsd33]).

The central question we raise in this communication is: In  These two observations motivated us to study the possi-
order to enable an accurate and stable numerical integratiduility of a formulation that separates out the conformal de-
of the full set of the Einstein equations, what part of thegree of freedom in the 6 evolution equations, while requiring
system should be taken to form a hyperbolic system? the remaining 5 equations governing the non-conformal de-

Our question is motivated by two observations. First,grees of freedom to form a first order hyperbolic system.
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A recap of the various components of the Einstein equa¢K is used to specify the slicing, e.g{=0 for maximal
tions is in order for a clearer discussion of our approach. Irslicing). The point we want to bring out here is that in all of
the standard ADM 31 formulation, the Einstein equations the existing hyperbolic reformulations of the Einstein evolu-
are broken intq@ the Hamiltonian constraint equatidthe  tion equations, part of the quantiti€k;; ,g;; ,dij ,«, 8} are

time-time part considered to be given, while others are evolved using hy-
@) ) . perbolic equations.
H="R+K*=KjK" = 16mpapm=0, .Y In the following, we present a formulation in which the

nonconformal degrees of freedom are separated out for hy-

(b) the 3 momentum constraint equatiofte time-space perbolic evolution.

part
H'=VK'—1V,K-8mj'=0, 2 Il. FORMULATION
where papw.i',S;,S=g''S; are the components of the For the evolution of the three-geometry, the conformal

stress energy tensor projected onto the 3-space(cuide 6 degree of freedom is representeddofthe determinant of the

evolution equationgthe space-space pagiven as 12 first SPatial 3-metricg;;), its spatial derivativeg; and its time
order equations derivativeK [ K= —1/(2g«)d;g]. For the non-conformal de-

grees of freedom, we define

&;gijZ—ZaKij, (3) ~ 1
9ij=0i /9™, ®)
8§Kij=—ViVja+a Rij‘f'KKij_ZKimK]m _ 1 s
Aij:(Kij_ggin)/g : (6)
1
—8m Sij_igijs —47mpapmij | 4 -
Dl =g \. (7)

whereV; denotes a covariant derivative with respect to the. ) ) ~ .

3-metric g;;, d; stands ford,— Lz with L4 being the Lie  9ij has unit determinant, and;; is the rescaled trace-free
derivative with respect t@', andR;; is the Ricci curvature Part of Kj;. All indices of tilde quantities are raised and
of the 3-metric. In the ADM formulation, Eqg3),(4) are  lowered with the conformal 3-metrig;; . We note thaD"
used to evolve the 12 variablgk;; ,g;;} forward in time for  is trace-free with respect to the indices,jj. We take

given lapsea and shift vectorg'. The constraint equations {aii,ﬁiikiz\ij}’ or their covariant component counterparts, to
are automatically satisfied ifK;;,g;;} satisfy them on the represent the nonconformal degrees of freedom.
initial time slice. However, in numerical evolutions the con-  |n the following we develop a first order hyperbolic sys-
straints will be violated due to truncation error. One majortem for the nonconformal degrees of freedom, under the sim-
difficulty in numerical relativity is that the constraint viola- plifying assumption that the 5 conformal degrees of freedom
tions often drive the development of instabilities, at least in{g,g’i K} and the gauge choice functiofis, 3’} can be re-
the case of numerical evolution using the standard ADMgarded as given functions of space and time. Note that these
equations(3),(4). variables cannot be specified independently of each other. A
In the hyperbolic reformulations of the evolution equa- concrete example is that of maximal slicing=0, and van-
tions[9-12,14-17, one makes use of the constraint equa-ishing shift, 3 =0, in which case botly andg ; are part of
tions (1),(2), and introduces additional variablés.g., dijc  the initial data(time independent and are therefore truely
=;j k Or its linear combinationsto cast Eqs(3),(4) into @  given functions in the numerical evolution. In other cases,
first order strongly hyperbolic systefoften the symmetric with K given to specify the slicing, it involves a nontrivial
hyperbolic subclags (More variables would have to be in- time integration to determing (from the definition ofK in
troduced for formulations involving higher derivatives terms of the time derivative af).
[9,11].) However, we note that hyperbolicity is often shown e now discuss hyperbolicity of the evolution of the non-
only under the assumption that some of the variables ingqqtqmg) variables{g;; ,D' , A}, by examining the prin-
volved in the evolution equations, in particular the lapse .jna| part of the evolution equations, which is the part that

and the shiftg!, are consid_ered as gi\_/en functions of spaceyacides about strong hyperbolicity of the systE®d]. To
and time. In actual numerical evolutions with no predeter-

mined choice of spacetime coordinatesand 8! have to be obtain the principal part we drop all terms that can be ex-
given in terms ofpthe variable$K;; ,g;; ,dij} (€.9., @, B’ pressed by1) the variables(g",D" A"} themselves, and

. X - . : ) 2) spacetime functions that are regarded as given, i.e.
determined in a set of elliptic equations involvi{§;; , g;; , ( i ; ) M
dij}). In the Bona-Masso formulatidri5], the lapse can be {,8',9.9,.K} and their space and time derivatives. We

part of the hyperbolic system for some choice of incingshaVe
(while the inclusion of the shift into the hyperbolic system

severely restricts the class of applicable shifis [9,11], in ij=~0, ®
addition to the lapse and the shift, the trace of the extrinsic . .
curvature,K=g'"Kj;, is also regarded as a given function iDYy=2aA" |, (9)
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1 tional to the principal part of the momentum constraing-
RI-3 9”R)- (10)  spectively. On the other hand, the LHS of the equations,

Al and ;D' are trace-free to the principal order. This
where~ represents “equal up to principal part,” and where means that truncation error in the numerical evolution which

for the evolution equation db'/, we have used that spatial leads to a violation of the constraints will driviél andD'l,

A ~ ag¥3

derivativesd; and the time derivativé; commute. to evolve away from being trace-free, even up to the princi-
To evaluateR'"! andR in Eq. (10), we use pal order.
(iii) We therefore propose to fix the freedom in the pa-
Rii~g~ 2Rl (1)  rameterse; and e, by requiring the system to be “consis-

tently trace-free,” i.e.e;=0 ande,=4/3, so that the equa-
tions are trace-free to principal order consistently. Hence Eq.

%19—2/3(ak|'|5ii _’éil"ljjk _’éjl'ljik ) (12) _
2 k.l Lk Lk (14) for A is left unchanged, but

where the relation . . _— 4

. D" ~2aAl —2ag"(gH +glH") + 3 ag"Hy  (18)

g9 i=—9,/9~0, (13

and the spatial derivatives of it have been used. We obtain e 2
~2a A”,k_gLA“,|—9f<A”,|+§g”9kmAml,|)-

~. 1 ~y ~
a{AIJ%Eag_lls(gle”k,I_g”DJkl,k (19)

o 2 The systen{Egs. (8),(14),(19)] forms a strongly hyperbolic
—g'D + §g” Dk'k,,). (14)  system with the same energy noft).

(iv) The remaining freedom in constructing conformal-
hyperbolic systems that are “consistently trace-free” is
'(rJhrough forming linear combinations of the variables. There
are clearly infinite choices. Here we show for example a
linear combination that leads to a system with only physical
characteristic speeds, a property advocated by Yadrél,
see e.g.[14]. Equation(14) can be written as

To make the nonconformal system strongly hyperbolic
one can add a combination of the momentum constraint t
Eq. (9). To principal part the momentum constraif® is

Hi~g AT ;. We obtain

oD ~2aAll | —2ag 3(giH+g[H") (15)
o Ry — UK T o ikl T
%za(Alj,k_g:(AJI,l_gf(A”,I)- (16) atA (ag )g &|U K~ ag a|U ks (20)
An energy norm can be constructed for the system where
Sy ST U s L= =imn miE L Zmis = m
E=| g’g;+A Aij+Zg D"Dj;" 17 U k=5 DY—0D" —giD 1+39 gmP ™. (2D

It is straightforward to demonstrate using E(®, (14), and
(16) that 9,E is a total derivative up to terms that can be
expressed by the variabldg'/,All D'} themselves. One
can also show directly that the characteristic metric of th
system(8), (14), and(16) has a complete set of eigenvectors

We can takeU', to be our basic nonconformal variables
(note g;;U,=0). Taking the time derivative ob', and
ecommuting time and space derivatives leads to

Wi_th regl eigen values. The system is similar to bqt con- aEDijk%a<'Aij k_aszl |_§{<A” + %@ijakm;\ml _

tained in the one parameter family of the hyperbolic systems ’ ’ © 3 ’

constructed if10]. (22
Next we go one step beyond hyperbolicity. We make the

following observations. To make the system strongly hyperbolic, we follow the step

(i) SinceAll and ’Dijk are trace-free, one can add a term leading to Eq.(15).anld at_id'the combination of momentum
100~ Y% H to Eq.(14), and a terme,agiiH, to Eq. (16) cor_lstraintSagl’3(gLHJ+g,'(H')—2ag”Hk/3 to Eq. (22 to
without affecting the hyperbolicity. We have therefore a two Ve at
parameter family of hyperbolic evolution equatiomgthout o o
making a variable change U =aA" . (23

(ii) With these two terms added respectively to Hdg)
and(16), the trace of the principle parts of the RHS's of the Equationg20) and(23) form a conformal hyperbolic system

equations are 8 aD*S ; (proportional to the principal part for {11, ;All} with only physical characteristic speeds. The
of the Hamiltonian constraiptand a(3ez—4)Ak"| (propor-  system can be symmetrized by contracting @8) with g~'.

064017-3



ALCUBIERRE, BRUGMANN, MILLER, AND SUEN PHYSICAL REVIEW D 60 064017

1. DISCUSSION AND CONCLUSION This formulation merges two recent trends in re-writing
We raise the question of what part of the variables inthe Einstein evpl_ution equations for numerical relativity: first
Einstein theory should be evolved in a hyperbolic fashion inOrder hyperbolicity and the separating out of the cqnformal
. " . . degrees of freedom. We believe it will lead to many interest-
nur_nerlcal rglatmty. We propose a reformulation of the Eln'ing investigations: Given the coordinate conditions, e.g.,
stein evolution equations that cleanly separates the confof - i slicing and an appropriate shift condition, can the
mal degrees of freedoify, g, ,K} and the nonconformal de-  compined elliptic hyperbolic system be shown to be well-
grees of freedom {g",D" A} (or their linear posed analyticallf9,35]? When posted as initial boundary
combinationg with the latter satisfying a first order strongly value problem, what are the suitable boundary conditions for
hyperbolic system. The conformal degrees of freedom arstability in numerical evolutions? How will the constraints
taken to be determined by the choice of slicings and theropagate under this system of conformal-hyperbolic equa-
initial data, and are regarded as given functions in the hypettions? One particularly interesting issue that will be reported
bolic part of the evolution equations, along with the lapseon in a followup paper is the stability of this formulation in
and the shift. numerical evolution, and how the stability is related to the
We find a two parameter family of nonconformal hyper- slicing conditions(K) one chooses.
bolic system for{g',D,,All}. The two parameters are
uniquely fixed if we require the system to be ‘“consistently
trace-free,” i.e., the time derivative of the trace-free vari-

ables{g",D"\ A} remains trace-free to principal part, even  This research was supported by the NSF grant Phy 96-

in the presence of constraint violations caused by numericalo507, NASA HPCC grant NCCS5-153, NRAC grant
truncation error. We also show that certain linear combinag3sp25, and HKRGC grant CUHK 4189/97P. We thank

tions of theD'l | lead to a conformal hyperbolic system with Carles Bona, Helmut Friedrich, Alan Rendall, and Ed Seidel
physical characteristic speed. for discussions.
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